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Minimax estimation over hyperrectangles

with implications in the Poisson case

Brenda MacGibbon1

Université du Québec à Montréal

Abstract: The purpose of this research is to extend the results of John-
stone and MacGibbon [18, 19] to study the asymptotic behavior of the ratio
of linear minimax risk to nonlinear minimax risk for the estimation of a Pois-
son mean that lies in a rescaled compact l1-ellipsoid using the information-
normalized quadratic loss function. This would be an analogue of Pinsker’s
[24] result for l2-ellipsoids with quadratic loss in the Gaussian case. In view of
the work of Brown et al. [7] which demonstrated the asymptotic equivalence
of the problems of estimation under the same loss function of the intensity
of a non-homogeneous Poisson process and estimation in the Gaussian white
noise model with drift, some results concerning Poisson mean estimation with
respect to quadratic loss are also included.

1. Introduction

This work is inspired by the results of Brown et al. in [7] where they establish the
asymptotic equivalence of the problems of estimation under the same loss function of
the intensity of a non-homogeneous Poisson process and estimation in the Gaussian
white noise model with drift. In the light of this equivalence, Brown’s [5] contention
that minimaxity has played an essential role in many statistical areas including
nonparametric function estimation has also been influential. For these reasons, it
seems relevant to take another look at the exact results on minimax estimation
of an infinite dimensional Poisson mean known to lie in a certain type of compact
convex domain under information-normalized loss in [18] and the asymptotic results
relating this Poisson minimax estimation problem in finite dimensions to the normal
mean vector one with squared error loss in [19]. In [18] and [19], particular attention
is paid to the relationship between linear minimax risk and nonlinear minimax risk.
It is natural to study this relationship because in many statistical applications linear
estimates are often used.

In particular, under information-normalized quadratic loss, Johnstone and
MacGibbon in [18] considered minimax estimation of the mean of a Poisson ex-
periment when that mean is known to be in a compact convex domain, which is
rectangularly convex at the origin. Sets such as compact ellipsoids or l1-bodies (with
p ≥ 1) and hyperrectangles satisfy this definition. Their method of proof uses the
connection between the estimation problem and solutions to elliptic partial differ-
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ential equations (see also [2, 21, 22]). An exact bound on the ratio of linear minimax
risk to the minimax risk was obtained.

The methods of proof are analogous to those used for the Gaussian bounded
mean estimation problem by Donoho et al. in [10], who considered the problem of
estimating the (infinite dimensional) mean of a standard Gaussian shift when the
mean is known to lie in a compact, orthosymmetric, convex, quadratically convex
set in �2. They used the heuristic that the difficulty of the hardest rectangular sub-
problem is equal to the difficulty of the full problem and consequently reduced the
study to one dimension. They found a bound of 1.25 on the ratio of the linear min-
imax risk to the minimax risk. Such a bound was called the Ibragimov-Hasminskii
[17] constant since its behavior was first studied in [17]. The numerical specifica-
tion of this bound was achieved using the optimization system NPSOL [15]. They
also showed that if the set is not quadratically convex, as in the case of �1-bodies,
then minimax linear estimators may be outperformed arbitrarily by nonlinear esti-
mates.

Because the results in [10] depend on the one dimensional problem, we men-
tion that Casella and Strawderman [8] were the first to study the one dimensional
problem of estimating a bounded normal mean with known variance and to pro-
vide analytic and numerical results for the minimax risk for this problem. Zinz-
ius [27], Feldman and Brown [11] and Vidakovic and das Gupta [25] also studied
these questions. In order to find the minimax solution, the dual problem of find-
ing the least favorable prior distribution for the corresponding Bayes problem is
often considered. The duality theory ensures that, if there exist solutions to both
problems, then the Bayes procedure with respect to the least favorable prior dis-
tribution will be minimax (cf. [1, 4, 12, 20, 26] ). For many of these problems,
(see, e.g., [13]) the least favorable prior distribution is a discrete measure with
finite support. Thus, the finding of a minimax solution becomes a global opti-
mization of a nonlinear, non-convex function and numerical techniques are neces-
sary.

The most important aspect of the work in [10] is the application of the results
to minimax nonparametric function estimation under quadratic loss. As argued in
[18] and [19], the Poisson distribution models prototypical discrete data settings
and deserves independent study. It is to be hoped that the results in this paper
would lead to applications in minimax estimation with respect to normalized loss
of an intensity function of an inhomogeneous Poisson process or a signal which may
be contaminated by Poisson “white noise” or a Poisson regression function which
satisfies certain smoothness conditions.

This, however, is not feasible at the moment without a deeper understanding
of how to match this problem of estimating the intensity of a Poisson process
under information-normalized loss with the appropriate Gaussian analogue. Our
goal for the moment must be more limited in scope and we have chosen to find
the Poisson analogue of one of the more elegant results in minimax estimation of
constrained normal means. This is Pinsker’s [24] result, which shows that, for a
Gaussian mean vector (with standard covariance matrix) that lies in an ellipsoid of
the form: {

∑n
i=1 aiω

2
i ≤ c2

ε2(n) }, the ratio of the minimax linear risk to the minimax
risk approaches 1 as n ↑ ∞ and nε2(n) is constant. This problem is studied in
Section 1.

In Section 2 some results about Poisson mean estimation with quadratic loss (cf.
[23]) are explored in view of the asymptotic equivalence given by [7].
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2. The Poisson analogue of Pinsker’s result using
information-normalized loss

In order to examine Pinsker’s result for Poisson estimation using information-
normalized loss, we will first recall some of the results of Johnstone and MacGibbon
([18],[19]). They studied the problem of minimax estimation of a bounded Poisson
vector in R

n
+ using the normalized quadratic loss function given by

∑
i(δi − τi)2τ −1

i .
The problem studied in [18] in one dimension can be described as follows. Let

X denote a Poisson random variable with mean τ . The information-normalized
quadratic loss function can be written as, L(δ, τ) = τ −1(δ − τ)2, with risk, R(δ, τ) =∑∞

x=0 τ −1(δ(x) − τ)2 τx

x! e
−τ .

Under the additional assumption that τ lies in an interval of the form [0, m], m >
0, an estimator δm is minimax for the above problem if, for all δ ∈ D, the space of
decision procedures,

(2.1) sup
0≤τ ≤m

R (δm, τ) = inf
δ∈D

sup
0≤τ ≤m

R (δ, τ) .

In this Poisson model, in order to determine the minimax risk ρP (m), the corre-
sponding Bayes problem was considered. A distribution or prior probability measure
π is specified on the parameter space [0, m] and a measure of the performance of a
procedure δ is given by its Bayes risk:

(2.2) r(δ, π) =
∫ m

0

R(δ, θ)π(dθ).

The estimator δπ is called the Bayes procedure with respect to the prior probability
measure π if δπ minimizes the Bayes risk.

The Bayes risk r(π) of a prior probability measure π on [0, m] is defined as
r(π) = r(δπ, π). A prior probability measure π∗ is “least favorable” if its Bayes risk
is greater than or equal to that of any other prior. Subject to the decision problem
satisfying sufficient regularity conditions, a least favorable prior distribution exists
(and has finite support in the bounded case considered here) and the corresponding
Bayes procedure is minimax (cf. Wald [26], Brown [4], Kempthorne [20]). If the least
favorable prior π∗ has finite support on a set of k points denoted by {bim} with
corresponding non-negative weights {ai} (such that the sum of the weights is one),
then the Bayes rule δπ∗ under information-normalized quadratic loss with respect
to this prior is given by

(2.3) δπ∗ (x) =
∑k

i=1 ai(bim)xe−bim∑k
i=1 ai(bim)x−1e−bim

.

The minimax estimator δm is equal to this Bayes rule with the convention that
δm(0) = 0. For this Poisson model, the minimax risk ρP (m) is defined as the Bayes
risk of this least favorable prior.

For n = 1 and small m, they found the exact minimax estimator. For larger
m, they used a modification of a convergent iterative procedure for the numerical
specification of least favorable priors described by Kempthorne in [20].

As many statistical procedures are linear, it was also of interest in [18] to consider
linear estimation. For this Poisson problem, the linear minimax estimator is defined
to be the linear estimator δL

m satisfying (2.1) with the infimum over δ referring only
to linear procedures. Let ρL,P (m) denote the linear minimax risk for this Poisson
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problem. The linear minimax estimator is given by δL
m(x) = m

m+1x and the linear
minimax risk ρL,P (m) = m

m+1 . The analogous minimax and linear minimax esti-
mation problems on a general bounded interval [m1, m2] were also resolved in [18],
provided that affine estimators were included in the definition of the minimax risk.
They also found an upper bound of 1.251 for the Ibragimov-Hasminskii constant
for this problem of estimating a bounded Poisson mean which lies in an interval of
the form [0, m], m > 0.

Johnstone and MacGibbon [18] also considered minimax estimation on hyperrec-
tangles and more general convex domains using the information-normalized loss. For
each τ = (τi)∞

i=1, ((τ1 ≥ 0 for each i), let [0, τ ] denote the hyperrectangle = Πi[0, τi].
A set T is said to be rectangularly convex at 0, if for each τ ∈ T , the hyperrec-
tangle [0, τ ] is in T . In [18], it was shown that if the mean is known to lie in T , a
compact convex domain, rectangularly convex at 0, then the minimax risk among
linear estimates denoted by ρL,P (T ) is within a factor 1.251 of the minimax risk. It
was also shown that ρL,P (T ) = supτi

{
∑

i
τi

1+τi
: [0, τ ] ∈ T }. A similar problem for

infinite dimensional hyperrectangles which are centered at a non-zero point was also
considered in [18]. For this problem affine estimators were used in the calculation
of the linear minimax risk.

In [19], using the special mathematical properties of this information-normalized
loss function for the Poisson model, information inequalities as found in Brown
and Gajek [6], and the polydisc transform, the asymptotic minimax estimator for
the Poisson model was obtained in a fashion analogous to Bickel’s work [3] for the
normal estimation problem. These results will be used here to prove the analogue
of Pinsker’s result [24] concerning Gaussian random variables for the Poisson case.

Now let us consider this result of Pinsker’s [24], one of the most interesting ones
in the study of the estimation of constrained Gaussian means. A special case of it
can be described in detail as follows.

Let us consider a Gaussian sequence model:

yi = ωi + zi, with zi
i.i.d∼ N(0, 1), i = 1, 2, . . . ,

where the problem is to estimate (ωi) belonging to an ellipsoid

(2.4) Ωε(n) =
{

ω :
n∑

i=1

a2
i ω

2
i ≤ c2

ε2(n)

}
,

where ε(n) > 0 and n ↑ ∞ and nε2(n) ∼ constant.
Henceforth, in order to distinguish between the Poisson and Gaussian cases,

the subscripts P and G will be used. (The subscript L will always refer to linear
estimation. Let us denote by ρG(Ωε(n)) the minimax risk (in the Gaussian problem)
on Ωε(n). Pinsker [24] gave an exact evaluation of the asymptotic minimax risk for
this problem as n ↑ ∞ and nε2(n) ∼ constant:

(2.5) ρG

(
Ωε(n)

)
∼ sup

{ ∑
i

ω2
i

1 + ω2
i

:
∑

i

a2
i ω

2
i ≤ c2

ε2(n)

}
,

and thus proving that ρL,G(Ωε(n))
ρG(Ωε(n))

→ 1 as n ↑ ∞ and nε2(n) ∼ constant where
ρG(Ωε(n)) denotes the minimax risk and ρL,G(Ωε(n)) denotes the linear minimax

risk on Ωε(n). The linear minimax risk has been shown to equal supωi
{
∑

i
ω2

i

1+ω2 :∑
i a2

i ω
2
i ≤ c2

ε2(n) } for the Gaussian problem. A generalization of this result over
�p-balls for �q-error was given by Donoho and Johnstone [9].
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Here, we prove the Poisson analogue of Pinsker’s result which can be stated as
follows. The risk functions have the subscript P in order to denote the Poisson
estimation problem with respect to information-normalized loss.

Theorem 2.1. Let us consider the ε2(n)−scaled �1-ellipsoid T = T
1,n,a, c2

ε2(n)
in R

n
+

where

(2.6) T
1,n,a, c2

ε2(n)
=

{
τ :

n∑
i=1

a2
i τi ≤ c2

ε2(n)

}
.

If n ↑ ∞ and ε(n) → 0 such that nε2(n) ∼ constant, and with ρP (T
1,n,a, c2

ε2(n)
) denot-

ing the minimax risk for estimating the Poisson mean vector under the information-
normalized loss =

∑n
i=1 τ −1

i (δi − τi)2, then the limit is given by:(
ρP

(
T

1,n,a, c2

ε2(n)

) /
sup

{∑
i

τi

1 + τi
:
∑

i

a2
i τi ≤ c2

ε2(n)

})
= 1 + o(1)(2.7)

and this limit is equal to the linear minimax risk on T
1,n,a, c2

ε2(n)
. In other words, the

limit as n ↑ ∞, such that nε2(n) ∼ constant, of the ratio of the linear minimax risk
ρL,P to the minimax risk,

ρL,P (T
1,n,a, c2

ε2(n)
)

ρP (T
1,n,a, c2

ε2(n)
)

→ 1,(2.8)

where

(2.9)

(
sup

{∑
i

τi

1 + τi
:
∑

i

a2
i τi ≤ c2

ε2(n)

} /
ρP

(
T

1,n,a, c2

ε2(n)

))
= 1 + o(1).

Proof. The polydisc transform plays a fundamental role in proving this result
as it did in the asymptotic minimax results for Poisson mean estimation under
information–normalized loss obtained by Johnstone and MacGibbon [19]. Recall
that the polydisc transform is defined as follows: the polydisc transform is the
many–to–one mapping τ∗ : R

2n → R
n
+ defined by

τ∗ : (ω1, ω2, . . . , ω2n−1, ω2n) → (ω2
1 + ω2

2 , . . . , ω2
2p−1 + ω2

2p).

For each set T in R
n
+, the Poisson mean parameter space, Ω = τ −1

∗ (T ) will denote
the pre-image of T . Note that

(2.10) Ω
2,2n,a∗, c2

ε2(n)
= τ −1

∗

(
T

1,n,a, c2

ε2(n)

)
,

where a = a1, a2, a3, . . . and a∗ = a1, a1, a2, a2, a3, a3, . . ..
Let us recall the following necessary terminology and results from [19]. In [19]

one of the deepest results from the theory of elliptic partial differential equations
[14] was used to show that under suitable regularity conditions on the boundary of
T , which T

1,n,a, c2

ε2(n)
obviously satisfies, then, for any positive m, the minimax risk

with respect to the information-normalized loss function satisfies

(2.11) ρP (mT ) = inf
δ∈Δ

sup
τ ∈mT

Eσ

n∑
i=1

τ −1
i [δi(X) − τi]2 = n − m−1λ(Ω) + o(m−1).
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where λ(Ω) denotes the minimum eigenvalue of the Laplace operator =
∑2n

1 ∂2/∂ω2
j

on Ω = τ −1
∗ (T ), that is, the smallest λ for which the equation

(2.12)

{
Δu(ω) = −λu(ω), ω ∈ int(Ω),
u(ω) = 0, ω ∈ ∂(Ω),

has a non-zero solution. The eigenspace corresponding to λ(Ω) is one-dimensional,
and the corresponding eigenfunction uΩ(ω) = u(ω, Ω) [or −u(ω)] is strictly positive
on Ω (cf. [14]). Assume that uΩ is normalized so that

∫
Ω

u2
Ω = 1.

Johnstone and MacGibbon [19] considered the connection between the n-dimen-
sional Poisson estimation problem and the 2n-dimensional Gaussian location esti-
mation problem induced by the polydisc transform. They studied the information-
like functionals that arise in studying Bayes risks in Poisson estimation and found
analogies with the role of Fisher information in Bayes estimation of a Gaussian
mean vector. In the latter case (see [3]), when X ∼ N2n(θ, I), Brown’s identity
connects the Bayes risk r2n(H) = infδ

∫
Eθ[δ(X) − θ]2H(dθ) for estimation of θ

with respect to an absolutely continuous prior density H(dθ) = h(θ) dθ with Fisher
information I(H) =

∫
|Dh|2/h via the identity,

r2n(H) = 2n − I2n(H � Φ),

where Φ denotes the standard Gaussian distribution function in R
2n, and I2n rep-

resents the multivariate Fisher information of dimension 2n. If θ = mτ and the
prior H = σmF are transforms of F (dτ) under the scaling σm : τ → mτ , then

r2n(σmF ) = 2n − m−2I2n(F � Φ1/m),

where Φ1/m denotes the Gaussian distribution N2n(0, m−1I).
The corresponding quantity in the estimation of an n−dimensional Poisson mean

σ = σm(T ) = mτ given the prior F (dτ) = f(τ)dτ is defined in [19] and its limit
asymptotically as m → ∞ is shown to be given by

Jn(F ) =
∫ n∑

i=1

f −1(Dif)2(τ)τi dτ.

Jn(F ) is related to Fisher information via the identity

Jn(F ) = 4−1π−pI2n(g), g(ω) = f(τ∗(ω)),

where τ∗ represents the polydisc transform.
Such identities were used in [19] to prove (2.11). Now (2.11) can be combined

with the well known result (see, e.g., the solution for the normal problem on a sphere
[3]) that if the convex domain Ω satisfies certain regularity conditions, which are
obviously satisfied by Ω2,2n,a∗,c2 , then asymptotically as m → ∞,

(2.13) ρG (mΩ) = 2n − 4
m2

λ(Ω) + o(m−2).

Letting Ω2 = Ω2,2n,a∗,c2 and letting m = ε−1(n) we obtain:

ρG

(
Ω2

ε(n)

)
= 2n − 4ε2(n)λ(Ω2) + o(ε2(n)).
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Now scaling by (
√

2)−1,

ρG

( √
2Ω2

ε(n)

)
= 2n − 2ε2(n)λ(Ω2) + o(ε2(n)).

In an analogous fashion in the Poisson case, with T1 = T1,n,a,c2 , using (2.11) and
letting m = ε−2(n), and multiplying by ε2(n),

ρP

(
T1

ε2(n)

)
= n − ε2(n)λ(Ω2) + o(ε2(n)).(2.14)

Thus if nε2(n) ∼ constant and ε(n) → 0 as n ↑ ∞, then it follows from (2.14) and
(2.14) that

2 ρP

(
T1

ε2(n)

)
∼ ρG

( √
2Ω2

ε(n)

)
.(2.15)

Using Pinsker’s result [24]and (2.15), with ε2(n) satisfying the above conditions,
we have the following asymptotic equivalence:

(2.16) ρP

(
T

1,n,a, c2

ε2(n)

)
∼

(
1
2

)
sup

{∑
i

ω2
i

1 + ω2
i

:
∑

i

(a∗
i )

2ω2
i ≤ 2c2

ε2(n)

}

= sup

{∑
i

τi

1 + τi
:
∑

i

a2
i τi ≤ c2

ε2(n)

}
.

The above equality follows from the properties of the polydisc transform, of a = (ai)
and a∗ = (a∗

i ) and of the function f(x) = x/(1 + x).
It follows from arguments used in Lemma 3 of [19] that the minimax linear risk

on T1, ρL,P (T1) = sup
(∑n

i=1
τi

1+τi
:
∑

i a2
i τi ≤ c2

)
. Thus,

ρL,P

(
T

1,n,a, c2

ε2(n)

)
= sup

{∑
i

τi

1 + τi
:
∑

i

a2
i τi ≤ c2

ε2(n)

}
.

Now combining this with the previous three equations, we have as n ↑ ∞ with
nε2(n) ∼ constant(

sup

{∑
i

τi

1 + τi
:
∑

i

a2
i τi ≤ c2

ε2(n)

} /
ρP

(
T

1,n,a, c2

ε2(n)

))
= 1 + o(1),

thus proving the desired result. For the full argument of this proof see an updated
version of this paper on arXiv.org.

3. Some results concerning estimation under quadratic loss

Since the application of the asymptotic equivalence results in [7] for estimating the
intensity function of a Poisson process would use unweighted quadratic loss as is
usual with Gaussian estimation, it would be fruitful to look at the estimation of
constrained Poisson mean vectors under quadratic loss.
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We recall some of the results from MacGibbon et al. [23] who studied the problem
of Poisson mean estimation under quadratic loss with the additional assumption
that Θ lies in an interval on a bounded interval [0, m], m > 0. In [23] the minimax
risk, ρ(m), the linear minimax risk, ρL(m), and the affine minimax risk, ρA(x) and
their associated minimax estimators were determined for this problem.

The linear minimax estimator was given by δL
m(x) = m

m+1x with the linear min-

imax risk ρL(m) = m2

m+1x, and the affine minimax estimator was given by

δA
m(x) =

√
m + 1 − 1 +

(
1 − 1√

m + 1

)
x

with the affine minimax risk ρA(m) =
[√

m + 1 − 1
]2

.
For small m(m ≤ 0.91), they found that the least favorable prior πm is a two

point prior given by amε{0}(n) + (1 − am)ε{m}(n) where am satisfies R(0, δπm) =
R(m, δπm). The minimax estimator is then given by

δm(x) = m if x ≥ 1

and δm(0) =
(1 − am)e−mm

am + (1 − am)e−m
, with am =

1
1 + e

m
2

.

This yields a minimax risk of ρ(m) = r(πm) = m2

(1+e
m
2 )2

, for 0 < m ≤ m0.

A global optimization technique (cf. [16]) for finding the maximum of a Lip-
schitz continuous function is used to find the minimax solution in the case of a
three point prior. Since, in order to determine the Ibragimov-Hasminskii constant
for this problem, a modification of Kempthorne’s [20] iterative procedure for numer-
ical specification of discrete least favorable priors was used as m and the number
of points in the prior increases to obtain the values of the Ibragimov-Hasminskii
constants, μA(m) = ρA(m)

ρ(m) and μL(m) = ρL(m)
ρ(m) , the bound m was increased un-

til μA(m) was clearly decreasing. It was shown numerically that μL(m) decreased
from its value of 4 at m = 0. By a judicious choice of prior in Brown’s information
inequality for the Bayes risk (cf. [6]), limm→∞ μA(m) and limm→∞ μL(m) can be
bounded.

The Ibragimov-Hasminskii constant, μA = supm
ρA(m)
ρ(m) , for the bounded Poisson

mean problem under quadratic loss was shown numerically to be approximately
1.56 in [23]. When only linear estimators were considered then obviously it was
shown that numerically μL was equal to 4.

The standard arguments that the problem on hyperrectangles can be reduced
to considering the bounded interval problem used in [10] show that the Ibragimov-
Hasminskii constants remain the same over hyperrectangles in this Poisson problem.

In [10] the Gâteaux derivative was used to establish the result that when the
mean of an infinite dimensional Gaussian vector is known to lie in a compact convex
orthosymmetric domain, quadratically convex in �2, then the minimax risk among
linear estimates is within a factor 1.25 of the minimax risk. In order to compare
the linear minimax risk with the minimax risk when estimating the mean of an
infinite dimensional Poisson vector known to lie in Θ, a compact convex domain,
rectangularly convex at 0 and quadratically convex in �2, Gâteaux derivatives were
also used in [23]. They showed that the Ibragimov-Hasminskii constant in this case
was equal to 4. Since the arguments in [23] are more subtle than those in [10], we
give a brief summary of the proof of the result from [23] here.
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For each θ ∈ Θ, let J(θ) = ρL([0, θ]) =
∑

i
θ2

i

θi+1 denote the linear minimax
risk on the hyperrectangle [0, θ]. Arguing as is in the proof of Theorem 7 [10], J
has a maximum τ ∗ ∗ on Θ. In order to complete the proof, it suffices to show that
R(δ, θ) ≤ J(τ ∗ ∗) for all θ ∈ Θ.

The same change of variable as in [10] was used in [23]; that is, let t = (ti)i be
defined by ti = θ2

i for each i. Clearly, T = {t : ti = θ2
i , θi ∈ Θ} is convex, because Θ

is quadratically convex. Let us define J̃ on T by J̃(t) = J(θ). Clearly, since τ ∗ = τ ∗ ∗2

is a maximum of J̃ , the Gâteaux derivative of J̃ at τ ∗ = Dτ ∗ J̃ is negative at τ ∗. To
complete the proof, it must be shown that R(δ, θ) − J(τ ∗) ≤ Dτ ∗ J̃ for all θ ∈ Θ.

Now, R(δ∗
L, θ) − J(τ ∗) =

∑ (
√

ti −
√

τ ∗
i
)(

√
ti+

√
τ ∗

i
+τ ∗

i )

(
√

τ ∗
i
+1)2

. Let J̃(t) =
∑

i
ti√
ti+1

. Then

the Gâteaux derivative of J̃(t) at τ ∗, Dτ ∗ J̃ , which is negative, is given by

Dτ ∗ J̃ =
∑ (√

ti −
√

τ ∗
i

) (
1
2

√
ti

√
τ ∗
i +

1
2
τ ∗
i +

√
ti +

√
τ ∗
i

)
.

It was shown in [23] that by considering for all θ ∈ Θ∗ (with t = θ2) the two cases,√
τi −

√
τ ∗
i , positive or negative, term by term, that Dτ ∗ J̃ ≥ R(δ∗

L, θ) − J((τ ∗).

Remark 3.1. We conjecture that for the Poisson estimation problem, the form of
infinite dimensional subsets Θ for which the ratio of ρL(Θ) to ρ(Θ) is bounded by
the univariate Ibragimov-Hasminskii constant can be different for each of the loss
functions studied here. In particular, from [18] it is known that the bound holds for
l1-rectangles with respect to information-normalized loss. An argument was given
in [10] that linear estimators can be arbitrarily outperformed by nonlinear ones in
the sense of minimax risk for �1-cubes in the Gaussian estimation problem using
quadratic loss. We conjecture that a similar argument can be used for Poisson mean
estimation on �1-cubes under quadratic loss to prove an analogous result.

4. Conclusion

A first step has been taken to extend the results of Johnstone and MacGibbon
[19]. Using the methods of proof developed here it has been possible to prove the
Poisson analogue of Pinsker’s result [24] with respect to information-normalized
loss. Although the methods of [19] are not applicable to the problem of proving an
analogous result to that of Pinsker [24] for the case of Poisson minimax estimation
with respect to quadratic loss, the asymptotic equivalence results of [7] can be
used to obtain minimax estimators of the intensity of a non-homogeneous Poisson
process with respect to quadratic loss. It would be interesting to develop a suitable
asymptotic equivalence in order to find minimax estimators of the intensity function
of a Poisson process with respect to the information-normalized loss function.

However, it is also to be expected that several other interesting results concerning
Poisson mean estimation under information-normalized loss can be proved in an
analogous fashion to the Gaussian case by a judicious use of the polydisc transform.
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