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Chi-square lower bounds
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Abstract: The information inequality has been shown to be an effective tool
for providing lower bounds for the minimax risk. Bounds based on the chi-
square distance can sometimes offer a considerable improvement especially
when applied iteratively. This paper compares these two methods in four ex-
amples including the bounded normal mean problem as well as obervations
from a Poisson distribution.

1. Introduction

Lower bounds for the minimax risk under squared error loss are often used as a
benchmark for the evaluation of statistical procedures. One useful technique for
providing such bounds is based on the information inequality. The basic idea as
given in [2] can be explained as follows. Fix a measure μ and suppose that X has
a density fθ where θ is assumed to lie in an interval [a, b]. Suppose that M is
the minimax risk under squared error loss for estimating θ and that b(θ) is the
bias function of a minimax estimator. Let J(θ) be the Fisher information. The
information inequality then implies that

(1) M ≥ (1 + b
′
(θ))2

J(θ)
+ b2(θ),

where b is the bias function. Now suppose that the minimax value M in (1) is
replaced by a parameter r and that there are no differentiable functions β on [a, b]
which satisfy the differential inequality

β
′
(θ) ≤ (J(θ)(r − β2(θ)))1/2 − 1.

It then follows that r is a lower bound for the minimax risk.
This technique of finding lower bounds was used in [2] to find lower bounds for

the risk in estimating the value of a probability density. In [4] this method was
contrasted to Bayes risks bounds as developed in [3] and shown in many cases to
yield much stronger lower bounds.

Another approach to finding lower bounds is contained in [5]. This constrained
risk inequality focuses just on two points in a parameter space. Once again fix a
measure a measure μ and suppose that X has either density fθ1 or fθ2 with respect
to μ. Let R(φ, δ) be the risk under square error loss, namely

R(φ, δ) =
∫

(φ − δ(x))2fφ(x)μ(dx)
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and let I(θ1, θ2) = (
∫ f2

θ2
(x)

fθ1 (x)μ(dx))1/2. Set θ = θ2 − θ1. If 0 < ε < |θ|
I and R(θ1, δ) ≤

ε2 then
R(θ2, δ) ≥ (|θ| − εI)2.

This two point inequality was originally developed as a way to provide lower
bounds for adaptive estimation problems. Given the mean squared error at one
point it bounds the mean squared error at another point. In applications it was
used to show that a minimax rate optimal procedure over one function class may
sometimes need to pay a penalty over a another parameter space. See for example
[6].

It can however also be effectively used to provide bounds for the minimax risk.
In Section 2 we give two examples where sharp minimax results can be attained
in this way. In Section 3 we show that the constrained risk inequality follows from
some bounds originally due to Hammersley [12] and Chapman and Robbins [9].
The Hammersley-Chapman-Robbins bounds were originally focused on unbiased
estimators but they are redeveloped here in terms of trading bias and variance. An
upper bound on the variance at one point leads to a bound on how quickly the bias
must change from that point to another point. Finally in Section 4 we show these
bias-variance tradeoff bounds can be applied iteratively to yield effective bounds
on the minimax risk. The technique is analagous to bounds obtained from the
information inequality. Moreover it is at least as strong and often yields significantly
improved bounds. In this section we compare these new bounds to those from the
information inequality as well as to exact minimax results when known.

2. A simple minimax result using the constrained risk inequality

In this section we present two examples where the inequality is sharp. Both of these
examples were also considered in [14] but in that paper constraints were not put
on the parameter space and the attention was on unbiased estimators.

We focus here on minimax statements for the mean squared error. Note that by
balancing the risk at the two parameter points in the constrained risk inequality
the following minimax result immeadiately follows.

(2) inf
θ̂

sup
θ=θ0,θ1

E(θ̂ − θ)2 ≥ θ2

(1 + I)2
.

As a first example where this inequality is sharp let fθ be the density of a uniform
[0, 1 − θ] for 0 ≤ θ ≤ a. It follows that if θ1 > θ0 then

I2(θ0, θ1) =
(1 − θ0)
(1 − θ1)

whereas if θ0 > θ1 then I(θ0, θ1) is infinite. Let us consider the case when θ0 = 0
and θ1 = a. Then (2) shows that

inf
θ̂

sup
θ=θ0,θ1

E(θ̂ − θ)2 ≥ θ2

(1 + I)2
(3)

= a2 (1 − a)
(

√
1 − a + 1)2

.(4)
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Now let

δ(x) = 0 if 1 − a ≤ x ≤ 1,(5)

δ(x) =
a

1 +
√

1 − a
if 0 ≤ x ≤ 1 − a.(6)

Then it is simple to check that

(7) R(θ, δ) = θ2 a − θ

1 − θ
+

(
a

1 +
√

1 − a
− θ

)2 1 − a

1 − θ
.

This risk function is maximized when a is close to 0.75 but it is not always
maximized at the end points. It is however easy to check numerically that the risk
function is maximized at the endpoints when a ≤ 0.5. In particular if 0 ≤ θ ≤ a ≤
0.5 the two point bound gives a sharp lower bound for the minimax risk. It should be
mentioned that the information inequality method mentioned in the introduction
is not applicable here as the Fisher Information is infinite.

2.1. Shifted exponential

Let X have density fθ where fθ = exp(x − θ)1(x ≥ θ). X is a shifted expontial.
Assume that 0 ≤ θ ≤ 1. For θ2 > θ1, I2(θ1, θ2) = exp(θ2 − θ1). It then follows that

inf
θ̂

sup
θ=0,a

E(θ̂ − θ)2 ≥ a2

(
1

1 + exp(a/2)

)2

.

In this problem it is easy to calculate the minimax procedure when the parameter
space if restricted to the two values 0 and a. Note that a sufficient statistic for this
problem is 1(x ≥ θ). Hence a minimax procedure is given by

δ(x) = 0 if 0 ≤ x < a,(8)
δ(x) = ca if x ≥ θ.(9)

Then it is simple to check that

R(0, δ) = c2a2 exp(−a),(10)

R(a, δ) = (c − 1)2a2(11)

and that the minimax procedure corresponds to a choice of c = 1−exp(−a/2)
1−exp(−a) and

that the maximum risk at the points 0 and a are equal to the lower bound.
It is also easy to calculate the risk of the procedure δ for other values of θ. With

the choice of c = 1−exp(−a/2)
1−exp(−a)

R(θ, δ) = θ2 − 2caθ exp(−(a − θ)) + c2a2 exp(−(a − θ)).

It is easy to check numerically that the maximum is attained at the endpoints when
a ≤ 0.9 but not when a = 1. It then follows that for the parameter space 0 ≤ θ ≤ 0.9
the procedure given above will be minimax over 0 ≤ θ ≤ 0.9 and not just minimax
over the two points of 0 and 0.9. Note also that since the Fisher information is also
infinite in this example the information inequality method is also not applicable
here.



Chi-square lower bounds 25

3. Some improved bounds

There are two basic strategies. Both use Cauchy-Schwartz. Let δ be an estimator
of the parameter θ. Assume that θ1 > θ0

Efθ0

{
(δ − a)

(
fθ1(X)
fθ0(X)

)}
= θ1 + B(θ1) − a

≤ (Efθ0
(δ − a)2)1/2

(
Efθ0

(
fθ1(X)
fθ0(X)

)2)1/2

.

This then yields

B(θ1) ≤ a − θ1 + (Efθ0
(δ − a)2)1/2I(θ0, θ1)

giving an upper bound on the bias at the point θ1 as a function of a.
Now assume that θ1 < θ0. Then

Efθ0

{
(a − δ)

(
fθ1(X)
fθ0(X)

)}
= a − (θ1 + B(θ1))

≤ (Efθ0
(δ − a)2)1/2

(
Efθ0

(
fθ1(X)
fθ0(X)

)2)1/2

.

This then yields

B(θ1) ≥ a − θ1 − (Efθ0
(δ − a)2)1/2I(θ0, θ1).

By taking a = θ0 and assuming as in [5] that (Efθ0
(δ − a)2)1/2I(θ0, θ1) ≤ θ1 − θ0

it immediately follows that

B2(θ1) ≥ (|θ| − εI(θ0, θ1))2.

This bound thus improves on the original constrained risk bound in the sense
that it now shows that the bound for mean squared error at the point θ1 is really
a bound for the squared bias at that point. Moreover it shows that although the
original bound in [5] can be sharp, it can only be sharp in cases where the variance
at one of the parameter points is in fact equal to zero.

Now the choice of a = θ0 is not the only possible choice. Let a = θ0 + B(θ0) + y.
Then

B(θ1) ≤ θ0 + B(θ0) + y − θ1 + (Efθ0
(δ − Efθ0

δ − y)2)1/2I(θ0, θ1)

and hence

B(θ1) − B(θ0) ≤ θ0 − θ1 + y + (V arfθ0
(δ) + y2)1/2I(θ0, θ1).

Now the right hand side of this inequality is clearly minimized for some y ≤ 0

and it is easy to check that the minimum is attained when y = −
√

V arfθ0
(δ)

I(θ0,θ1)2−1 which

then yields

B(θ1) − B(θ0) ≤ θ0 − θ1 +
√

V arfθ0
(δ)(I2(θ0, θ1) − 1)1/2.
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Now suppose that we focus one again on a bound on the mean squared error at
zero with B2(θ0) + V arfθ0

(δ) ≤ ε2. It follows that

B(θ1) ≤ θ0 − θ1 + B(θ0) +
√

ε2 − B2(θ0)(I2(θ0, θ1) − 1)1/2.

The right hand side of this inequality is maximized when B(θ0) = ε
I(θ0,θ1)

yielding
the original inequality of Brown and Low [5] in terms of the bound on bias. Putting
all these results together in the case when θ1 > θ0 it is clear that whenever the
inequality (7) sharp it follows that V arfθ0

(δ) = ε2 I(θ0,θ1)−1
I(θ0,θ1)

, B(θ0) = ε
I(θ0,θ1)

,
V arfθ1

(δ) = 0 and B(θ1) = ε − (θ1 − θ0). In the case when θ1 < θ0 the variances
remain unchanged but B(θ0) = − ε

I(θ0,θ1)
and B(θ1) = (θ0 −θ1)−ε. As a consequence

the bounds given in above improve on (7) whenever these conditions do not all hold.
There is a second approach that also yields the above improved bound.

Eg

{
(δ − Egδ)

(
fθ1(X) − fθ0(X)

g(X)

)}
= θ1 + B(θ1) − (θ0 + B(θ0))

(12)

≤ (V argδ)1/2

(
Eg

(
fθ1 − fθ0

g

)2)1/2

.

By varying g we can create a collection of bounds for the change in bias and it
is often not immediately clear how best to select a g. In particular in parametric
problems where we are estimating θ we usually have all θ ∈ [θ0, θ1] and we are free
to select for g any fθ. In such a case (Eg(

fθ1 −fθ0
g )2)1/2 is often minimized for a

g other than fθ0 or fθ1 . This does not however imply that it is best to use such
a choice of g because in applications we must also bound the value of V argδ. For
minimax estimation this is usually done by first assuming a bound on the minimax
risk equal to say r and then bounding V arg(δ) by r − B2(g). This bound is often
minimized at one of the fθ1 or fθ0 and in the applications considered here it appears
best to use one of these values. Thus for the examples in the present paper we focus
on taking g to be equal to fθ1 or fθ0 which yield

(13) B(θ1) − B(θ0) ≤ (V arfθ0
δ)1/2(I2(θ0, θ1) − 1)1/2 − (θ1 − θ0)

and

(14) B(θ1) − B(θ0) ≤ (V arfθ1
δ)1/2(I2(θ1, θ0) − 1)1/2 − (θ1 − θ0).

These bounds are actually a consequence of a bound due to Hammersley [12] and
Chapman and Robbins [9]. The focus in those papers was on unbiased estimators.
However every estimator is clearly an unbiased estimator of its expectation and
taking this point of view these bounds are identical to the bounds in these papers.
See also [7] where a generalization of the Hammersley-Chapman-Robbins inequality
is given for other loss functions.

4. Iterative bounds

In many applications the most effective use of the inequalities (13) and (14) for
bounding minimax risk is through an iterative scheme. In this section we consider
several examples some of which are concerned with weighted squared error loss.

Suppose that
r ≥ g(θ)(V ar(θ) + B2(θ))
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for 0 ≤ θ ≤ 1. It then follows that for every pair θ1 and θ2 we must have

B(θ2) − B(θ1) ≤ (V arθ1(δ))
1/2(I2(θ1, θ2) − 1)1/2 − (θ2 − θ1)(15)

≤
(

r

g(θ1)
− B2(θ1)

)1/2

(I2(θ1, θ2) − 1)1/2 − (θ2 − θ1)(16)

and also have

B(θ2) − B(θ1) ≤ (V arθ2(δ))
1/2(I2θ2, θ1) − 1)1/2 − (θ2 − θ1)(17)

≤
(

r

g(θ2)
− B2(θ2)

)1/2

(I2(θ2, θ1) − 1)1/2 − (θ2 − θ1).(18)

It follows that if there does not exist a function B which satisfies this inequality
for all θ then r must be a lower bound for the minimax risk. These bounds will
always be at least as strong as theose given in [2].

In this section we consider three examples which illustate the use of these iterative
bounds. The first example concerns the well known bounded normal mean problem.
Let X ∼ N(θ, 1) with |θ| ≤ L. This model is important in the development of
the theory of estimating linear functionals in nonparametric function estimation
problems. See for example and Donoho [10]. It was initially studied by Casella
and Strawderman [8] as well as Bickel [1]. In particular Casella and Strawderman
calculated the minimax risk for a number of values of L ≤ 2 and these results were
later extended by Kuks [15], Donoho, Liu and Macgibbon [11] as well as Feldman
and Brown (1989). These results allow for a direct comparison of our lower bounds
as well as a comparison with the Information inequality bounds obtained in [4].

In the second example we observe X a binomial (n,p) random variable and the
focus is on esimating the canonical binomial parameter under a weighted squared
error loss where the weight function is Fisher information. In this model we do not
constrain the canonical parameter. This model was also considered in [4]. Finally we
shall turn to estimating the mean of a Poisson random variable, once again under
the assumption that the mean vector is bounded by a given value. This model was
extensively studied in [13] and we shall compare our bounds to the exact minimax
results given in that paper.

4.1. Bounded normal mean problem

For X ∼ N(θ, 1) we have I2(θ1, θ2) = exp((θ2 − θ1)2). Hence if r is a lower bound
for the minimax risk there must be a function B on [−L, L] such that

B(φ) − B(θ) ≤ (r − max(B2(φ), B2(θ)))1/2(exp((φ − θ)2) − 1)1/2 − (φ − θ)

for all φ > θ. It is easy to see such a solution exists if and only there is a function
B on [0, L] satisfying B(0) = 0 and

(19) B(φ) − B(θ) ≤ (r − B2(φ))1/2(exp((φ − θ)2) − 1)1/2 − (φ − θ)

for all φ > θ ≥ 0.
In practice we do not try to discover values of r for which there are solutions

but rather values for which we can show that there cannot be a solution. Any such
value for which a solution does not exist is thus a lower bound. Moreover we do not
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in practice consider all possible choices of φ and θ but we only consider a grid of
values. In this case it is convenient to select an equally spaced grid of points on the
interval [0, L]. Let N be the number of grid points and for i = 0, 1, . . . , N − 1 let
φi = iL/N − 1. We shall then check for any given value of r whether there exists a
solution to (19) on this grid. This can be done as follows. In the first stage starting
at the value of B(0) solve for i > 0

(20) B(θi) − B(0) ≤ (r − B2(θi))1/2(exp(θ2
i ) − 1)1/2 − θi.

The solution gives us an upper bound for each of the values B(θi) for i > 0.
At the second stage start from the upper bound on the value B(θ1) and solve

for j > 1

(21) B(θj) − B(θ1) ≤ (r − B2(θj))1/2(exp(θj − θ1)2 − 1)1/2 − (θj − θ1),

where B(θ1) is actually the upper bound from the first stage. From these first two
stages we have two upper bounds for the value of B(θ2). Take the smallest of these
two values and continue to the next stage solving for each j > 2.

(22) B(θj) − B(θ2) ≤ (r − B2(θj))1/2(exp(θj − θ2)2 − 1)1/2 − (θj − θ2).

This process is continued. At the ith step we start at the point θi−1 where we take
for B(θi) the smallest of the upper bounds from the previous i − 1 stages. At each of
these stages we have a quadratic inequality which may or may not have a solution.
If it does not have a solution there cannot then be a solution to (19) and r is then
a lower bound to the minimax risk.

For this scheme there are really only two parameters, the value r and the number
of grid points. For a very fine grid the above scheme is very closely connected
to the information inequality method. In fact in terms of numerical solutions the
application of the inequality method also involves taking a grid of values. However
when finding a solution to that grid of values we only look from the point θi to the
next point θi+1 rather than to all point θj with j > i. This is the primary advantage
of the method. In fact for small values of L it suffices to take N = 2 and consider
just θ = 0 and θ = L. Taking a finer grid does not improve the lower bound at least
when L ≤ 0.5. In this case an exact answer can be given since we need only find
the smallest r for which the quadratic equation

(B(L) + L)2 = (r − B2(L))(exp(L2) − 1)

has a solution. It is easy to check that the smallest r is r = L2 exp(−L2) which in the
case of L = 0.5 yields the bound 0.1947. For L = 1 the bound from this approach
no longer gives the best lower bound. For the two endpoint it only yields 0.368
and as can be seen in the table it is possible to improve this bound by considering
a finer grid of values. As L grows it is important to also increase the number of
points. It should be clear from the following table that the major improvement over
the incormation inequality is when L is small. In this example once L = 10 the
methods essentially yield the same results.

4.2. Binomial

We now turn to the problem of estimating the canonical exponential parameter
θ = ln(p/(1 − p)) when we observe X a binomial (n,p) random varaiable. As in [4]
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Table 1

Bounds for the minimax risk when X ∼ N(θ, 1) and |θ| ≤ L

L Information inequality Chi-square iterative Minimax risk
0.5 0.126 0.194 0.199
1 0.300 0.403 0.450
2 0.547 0.617 0.645
3 0.688 0.733 0.751
5 0.829 0.848 0.857
10 0.937 0.938 0.945

we focus here on lower bounds for the minimax risk under a weighted squared error
loss L(θ, a) = J(θ)(θ − a)2 where J(θ) = neθ/(1 + eθ)2 is the Fisher Information.
Note that for X, binomial(n,p) the chi-square distance is given by

I2(p1, p2) =
(

(1 − p2)2

(1 − p1)
+

p2
2

p1

)n

and since p = eθ

1+eθ it follows that

I2(θ1, θ2) =
(

1 + eθ1

(1 + eθ2)2
(1 +

e2θ2

eθ1
)
)n

.

It then follows that

(23) B(θ2) − B(θ1) ≤
(

r

J(θ1)
− B2(θ1)

)1/2

(I2(θ1, θ2) − 1)1/2 − (θ2 − θ1)

for all θ2 > θ1. However since I(θ1, θ2) = I(−θ1, −θ2) and J(θ) = J(−θ) there is a
solution to (23) if and only if there is a solution to if there is also a solution to

(24) B(φ) − B(θ) ≤
(

r

J(θ)
− B2(θ)

)1/2

(I2(θ, φ) − 1)1/2 − (φ − θ)

for all 0 ≤ θ ≤ φ < ∞ where B(0) = 0.
Solutions to such an equation only exist if r is sufficiently large. The smallest such

r is thus a lower bound for the minimax risk. The following table gives a comparison
of the bounds obtained via this method to the bounds given in [4] obtained using
the information inequality method. Also included for comparison are bounds for
the minimax risk based on lower bounds for the Bayes risk given in [3].

4.3. Poisson

Johnstone and MacGibbon [13] considered the problem of finding the minimax risk
for estimating the mean of a Poisson random variable under a weighted squared

Table 2

Bounds for the minimax risk for binomial

n Brown-Gajek Information inequality Chi-square iteration
1 0.1314 0.211 0.2208
3 0.3058 0.400 0.4097
5 0.4186 0.505 0.5156

10 0.5829 0.646 0.6587
25 0.7707 0.800 0.8135

100 0.9279 0.934 0.9403
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Table 3

Bounds for the minimax risk for Poisson

m Information inequality Iterative Chi-square Minimax value Ratio
0.1 0.066 0.090 0.090 1.0
0.2 0.115 0.164 0.164 1.0
0.3 0.154 0.222 0.222 1.0
0.6 0.243 0.3295 0.333 1.011
0.9 0.307 0.389 0.396 1.018
1.2 0.358 0.435 0.447 1.0276
1.5 0.400 0.472 0.483 1.0233
1.8 0.435 0.503 0.515 1.0239
1.9 0.445 0.512 0.524 1.0234
2.0 0.455 0.521 0.533 1.0230
2.1 0.465 0.529 0.542 1.0246
2.2 0.474 0.537 0.550 1.0242
2.3 0.483 0.545 0.558 1.0239
2.4 0.491 0.552 0.565 1.0236
2.7 0.514 0.572 0.585 1.0227
3.0 0.535 0.590 0.603 1.0220
3.5 0.565 0.615 0.628 1.0211
4.0 0.591 0.638 0.650 1.0188
4.5 0.613 0.657 0.669 1.0183
5.0 0.633 0.673 0.685 1.0178
6.0 0.666 0.701 0.713 1.0171
7.0 0.693 0.724 0.735 1.0152
8.0 0.715 0.743 0.754 1.0148

10.0 0.751 0.773 0.783 1.013
11.5 0.771 0.790 0.801 1.014

error loss with weight equal to the Fisher information. The minimax risk was eval-
uated when the mean vector was assumed to be bounded by a given value which we
shall write as m. Minimax values were given for m ranging from 0.1 to 11.5. In this
case the bounds available from the iterative application of the chi-square bounds
can be found as follows.

For X a Poisson random variable with mean λ it is easy to check that

I2(λ1, λ2) = eλ1−2λ2e
λ2

2

λ1

and that the Fisher information J(λ) = 1
λ . Note that if

r ≥ J(λ)(V arλ(δ) + B2(λ))

for all 0 ≤ λ ≤ m it follows, since the Fisher information vanishes at zero that
B(0) = 0. Bounds for the minimax risk can thus be found by seeking solutions to

B(λ2) − B(λ1) ≤ (rλ2 − B2(λ2))
1
2 (eλ2−2λ1e

λ1
2

λ2 − 1)
1
2 − (λ2 − λ1)

for all 0 ≤ λ1 < λ2 ≤ m under the assumption that B(0) = 0. In order to find a
lower bound for the minimax risk we can as before only look at a grid of points.
For small values of m only two points are needed and using just two points one at
0 and the other at m it is easy to check that a solution can exist only if

r ≥ me−m.

It turns out that this inequality is in fact sharp if m ≤ 0.3. For larger values of
m we need to put more points in the grid. Although the resulting lower bounds are
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not sharp a comparison with the minimax risks given by Johnstone and MacGibbon
[13] shows that the ratio of the minimax risk to the lower bound is no larger than
about 1.025. Detailed results are given in Table 3 where lower bounds are also given
based on the information inequality method.
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