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Asymptotics of statistical estimators of

integral curves

Vladimir Koltchinskii1,∗ and Lyudmila Sakhanenko2,†

Georgia Institute of Technology and Michigan State University

Abstract: The problem of estimation of integral curves of a vector field based
on its noisy observations is studied. For Nadaraya-Watson type estimators,
several results on asymptotics of the shortest distance from the estimated
curve to a specified region have been proved. The problem is motivated by
applications in diffusion tensor imaging where it is of importance to test various
hypotheses of geometric nature based on the estimated distances.

Let G be a bounded open convex subset of R
d. Suppose an unknown vector field

v : R
d �→ R

d is observed at random points Xi ∈ G, i = 1, . . . , n, with random
errors ζ1, . . . , ζn, meaning that the observations (Xi, Vi) satisfy

(1) (Xi, Vi) = (Xi, v(Xi) + ζi).

Define an integral curve x(t) for the vector field v with initial condition a ∈ G,
which is a solution of the differential equation

(2)
dx(t)

dt
= v(x(t)), t ≥ 0, x(0) = a ∈ G.

This curve x(t) exists, is unique and stays in G provided that v is smooth enough
and zero outside of G, see for instance Hille [1].

The estimation problem for x(t), t > 0, based on data (1) appears quite naturally
in diffusion tensor imaging. This popular in vivo imaging technique combines mag-
netic resonance imaging (MRI) technology with diffusion measurements of water
molecules. In this context, microstructures in soft tissues (such as neural fibers)
can be modeled by integral curves x(t), t > 0. In particular, it is of importance to
test hypotheses that an integral curve reaches a specified region of the brain. See
Koltchinskii, Sakhanenko, and Cai [2] and Sakhanenko [3] for further references.

Koltchinskii et al. [2] proposed an estimation procedure for x(t), t > 0, based on
Nadaraya-Watson type regression estimator of the vector field:

V̂n(x) =
1

nhd
n

n∑
i=1

K

(
x − Xi

hn

)
Vi,
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where K is a kernel function and hn is a bandwidth. A plug-in estimate X̂n(t) for
x(t) is defined as the solution of (2) with v replaced by V̂n.

The following assumptions are made:
(A1) Sequences {Xi : i = 1, 2, . . . } and {ζi : i = 1, 2, . . . } are independent;
(A2) Locations {Xi : i = 1, 2, . . . } are independent and uniformly distributed in
G;
(A3) Noise variables {ζi : i = 1, 2, . . . } are independent and identically distributed
with zero mean, covariance matrix Σ, and finite fourth moment E|ζi|4 < ∞;
(A4) G is an open bounded set of Lebesgue measure 1, which includes the support
of the twice continuously differentiable vector-field v;
(A5) For a fixed T > 0 there exists γ > 0 such that | 1

t−s

∫ t

s
v(x(λ)) dλ| ≥ γ for all

0 ≤ s < t ≤ T ;
(A6) The bandwidth hn is chosen to satisfy nhd+3

n → β for some finite positive
number β, as n → ∞;
(A7) The kernel K is twice continuously differentiable and non-negative on a
bounded support and satisfies

∫
Rd

K(x) dx = 1,

∫
Rd

K(x)x dx = 0.

In what follows all the vectors are columns and u∗ denotes transposed vector u.
For a vector-function v its gradient and Hessian are denoted as v′ and v′ ′, respec-
tively.

Define a centered Gaussian process ξ(t) as the solution of the following SDE

dξ(t) =
√

β

2

∫
Rd

K(u)〈v′ ′(x(t))u, u〉 du dt

+v′(x(t))ξ(t) dt +
(

ψ(v(x(t)))[Σ + v(x(t))v∗(x(t))]
)1/2

dW (t)(3)

with the initial condition ξ(0) = 0, where W (t), t ≥ 0, is a standard Brownian
motion in R

d and

ψ(v) =
∫ ∫

K(z)K(z + vτ) dz dτ.

Also note that v′ ′(·) is a tensor of order 3 and for vectors u, w we write 〈v′ ′(x)u, w〉 =∑
jk v′ ′

i,jkujwk. Let Mβ(t) and C(t, s) denote the mean and the covariance of ξ(·),
respectively.

The following asymptotic result was proved in Koltchinskii et al. [2].

Theorem 1. Suppose that (A1-4) hold and hn → 0 such that nhd+2
n → ∞ as

n → ∞. Then for all T > 0

sup
0≤t≤T

|X̂n(t) − x(t)| → 0 as n → ∞

in probability. Suppose additionally (A5-7) hold. Then the sequence of stochastic
processes √

nhd−1
n (X̂n(t) − x(t)), 0 ≤ t ≤ T

converges weakly in the space of R
d-valued continuous functions on [0, T ] to the

Gaussian process ξ(t), 0 ≤ t ≤ T.
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A similar result can be proved under weaker assumptions on the kernel that would
include the kernels that are not necessarily nonnegative (which is of importance in
bias reduction). In particular, if

∫
Rd

xixjK(x) dx = 0, i, j = 1, . . . , d

then Mβ(t) = 0, t ∈ [0, T ] and the equation defining the process ξ(·) can be
simplified.

Let Γ denote a closed subset of G, and let d(x, y) be a distance between x and
y in R

d. Define
d(x, Γ) = inf

y∈Γ
d(x, y).

Let m be a strictly increasing function on R+ (for instance, m(u) = u2 or m(u) = u,
u > 0). Denote ϕ(x) = m(d(x, Γ)).

We assume that
(A8) The function ϕ : G �→ R is continuously differentiable.

In an important case of Euclidean distance d and m(u) = u2,

ϕ(x) = inf
y∈Γ

d∑
i=1

(xi − yi)2,

which would be differentiable for nice sets Γ with a sufficiently smooth boundary.
Denote

M :=
{

τ ∈ [0, T ] : ϕ(x(τ)) = inf
0≤t≤T

ϕ(x(t))
}

.

Because of smoothness assumptions on ϕ and v, the function ϕ(x(t)) attains a
minimum on the closed interval [0, T ] at either endpoints t = 0 or t = T, or at the
critical points where

v(x(t))∗ϕ′(x(t)) = 0.

Due to condition (A5) v(x(t)) �= 0 for all t ∈ [0, T ], thus critical points can be
divided into two categories: those with ϕ′(x(t)) = 0 and those with nonzero gradient
ϕ′(x(t)) orthogonal to v(x(t)). This leads to two different types of possible limiting
distributions: a normal type and a chi-squared type.

Define
μn(T ) := min

t∈[0,T ]
ϕ(X̂(t)) − min

t∈[0,T ]
ϕ(x(t)).

Also note that for vectors u, w we write ϕ′ ′(x)(u, w) =
∑

ij ϕ′ ′
ij(x)uiwj . The symbol

→d means convergence in distribution.
The following result was stated in Koltchinskii et al. [2] with no proof. We provide

its complete proof below.

Theorem 2. Let x(t), t ≥ 0 be an integral curve starting at x(0) = x0 ∈ G. Suppose
the conditions (A1-8) hold. Also suppose that M ⊂ (0, T ). Then the sequence of r.v.
converges in distribution

√
nhd−1

n μn(T ) →d inf
τ ∈M

ξ(τ)∗ϕ′(x(τ)).

In particular, if the minimal set M consists only of one point τ ∈ (0, T ], then the
above sequence is asymptotically normal with mean (Mβ(τ))∗ϕ′(x(τ)) and variance
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σ2 = (ϕ′(x(τ)))∗C(τ, τ)ϕ′(x(τ)). Suppose now that ϕ is twice continuously differ-
entiable. If, for all τ ∈ M, ϕ′(x(τ)) = 0 and ϕ′ ′(x(τ))(v(x(τ)), v(x(τ))) > 0, then
the sequence of r.v. converges in distribution

nhd−1
n μn(T ) →d 1

2
inf

τ ∈M

[
ϕ′ ′(x(τ))(ξ(τ), ξ(τ)) −

(
ϕ′ ′(x(τ))(v(x(τ)), ξ(τ))

)2

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))

]
.

If the minimal set consists only of one point τ, then the limit becomes

1
2

[
ϕ′ ′(x(τ))(Z, Z) −

(
ϕ′ ′(x(τ))(v(x(τ)), Z)

)2

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))

]
, Z ∼ N (Mβ(τ), C(τ, τ)) in R

d.

On the other hand, if for all u ∈ R
d, ϕ′ ′(x(τ))(v(x(τ)), u) = 0, then the distribu-

tional limit of the sequence nhd−1
n μn(T ) is 1

2 infτ ∈M ϕ′ ′(x(τ))(ξ(τ), ξ(τ)), which in
the unique minimum case is 1

2ϕ′ ′(x(τ))(Z, Z).

Throughout the rest of the paper we use the notation |u| = (
∑d

i=1 |ui|2)1/2 for
Euclidean norm of a d-dimensional vector u. A couple of typical applications of the
result of Theorem 2 are as follows:

• Let Γ = {a}, a ∈ G and let x(t), t ≥ 0 be the integral curve starting at
x(0) = x0 ∈ G. Suppose that for some τ ∈ (0, T )

min
0≤t≤T

|x(t) − a|2 = |x(τ) − a|2,

and, moreover, suppose that τ is the only point where the minimum is attained. If
x(τ) �= a, then the sequence

√
nhd−1

n

[
min

0≤t≤T
|X̂n(t) − a|2 − min

0≤t≤T
|x(t) − a|2

]

is asymptotically normal with mean 2Mβ(τ)∗(x(τ) − a) and variance σ2 = 4(x(τ) −
a)∗C(τ, τ)(x(τ) − a). If x(τ) = a, then the sequence nhd−1

n min0≤t≤T |X̂n(t) − a|2
converges in distribution to the r.v.

|Z|2 −

(
v(x(τ))∗Z

)2

|v(x(τ))|2 , Z ∼ N (Mβ(τ), C(τ, τ)) in R
d.

• Let Γ := {x : x∗u = l} ∩ G be a part of the hyperplane that lies in G
and is orthogonal to a unit vector u, l > 0. For points x satisfying the condition
x+(l − x∗u)u ∈ G (i.e., the orthogonal projection of x onto the hyperplane belongs
to G), the distance from x to Γ is

d(x, Γ) := min
y∈Γ

|x − y| =
∣∣∣x∗u − l

∣∣∣;
otherwise, it is

d(x, Γ) := min
y∈Γ∩∂G

|x − y|.

As before, let x(t), t ≥ 0 be the integral curve starting at x(0) = x0 ∈ G. Suppose
that for some τ ∈ (0, T )

min
0≤t≤T

d2(x(t), Γ) = d2(x(τ), Γ) =: D2,
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and, moreover, suppose that τ is the only point where the minimum is attained. If
D2 > 0 and x(τ) + (l − x(τ)∗u)u ∈ G, then the sequence

√
nhd−1

n

[
min

0≤t≤T
d2(X̂n(t), Γ) − D2

]

is asymptotically normal with mean 2(x(τ)∗u − l)(Mβ(τ))∗u and variance σ2 =
4D2u∗C(τ, τ)u.

If D2 = 0 and, moreover, the vector v(x(τ)) is orthogonal to u, then the sequence
nhd−1

n min0≤t≤T d2(X̂n(t), Γ) converges in distribution to the r.v. γ2, where γ is a
normal random variable with mean Mβ(τ) and variance u∗C(τ, τ)u.

• Let Γ := {x : |x − a| = r} ⊂ G be a sphere. Then

d(x, Γ) := min
y∈Γ

|x − y| =
∣∣∣|x − a| − r

∣∣∣.
Again, x(t), t ≥ 0 is the integral curve starting at x(0) = x0 ∈ G. Suppose that for
some τ ∈ (0, T )

min
0≤t≤T

d2(x(t), Γ) = d2(x(τ), Γ) =: D2,

and, moreover, suppose that τ is the only point where the minimum is attained.
Suppose also the conditions (A1-7) hold. If D2 > 0, then the sequence

√
nhd−1

n

[
min

0≤t≤T
d2(X̂n(t), Γ) − D2

]

is asymptotically normal with mean 2DMβ(τ)∗n(x(τ)) and variance

σ2 = 4D2n(x(τ))∗C(τ, τ)n(x(τ)),

where n(x) := x−a
|x−a| . If D2 = 0 and, moreover, the vector v(x(τ)) is tangent

to Γ, then the sequence nhd−1
n min0≤t≤T d2(X̂n(t), Γ) converges in distribution to

the r.v. γ2, where γ is a normal random variable with mean Mβ(τ) and variance
n(x(τ))∗C(τ, τ)n(x(τ)).

Recently, Sakhanenko [3] showed the pointwise optimality of the convergence rate
n−2/(d+3) of the estimator X̂n in a minimax sense (for twice continuously differen-
tiable vector fields). The same is true for estimators of the minimal distance from the
true integral curve to a specified region in the case when infτ ∈M ξ(τ)∗ϕ′(x(τ)) �= 0.

Proof of Theorem 2. Define

Ŷn(t) := ϕ(X̂n(t)), y(t) := ϕ(x(t)), 0 ≤ t ≤ T.

Let an :=
√

nhd−1. Since the function ϕ is continuously differentiable, we can use
a standard Δ-method type of argument combined with the result of Theorem 1 to
prove that the sequence of stochastic processes

an(Ŷn(t) − y(t)), 0 ≤ t ≤ T

converges weakly in the space C[0, T ] to the Gaussian stochastic process η(t) :=
ϕ′(x(t))ξ(t), 0 ≤ t ≤ T. Recall that

M :=
{

τ : y(τ) = inf
0≤t≤T

y(t)
}
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is the minimal set of y. Then the sequence

an

(
inf

t∈[0,T ]
Ŷn(t) − inf

t∈[0,T ]
y(t)

)

converges in distribution to the random variable infτ ∈M η(τ). The above fact might
very well be known, but since we have not found a direct reference, we give its proof
for completeness.

First note that for any small enough ε > 0 there exists δ > 0 such that for all
t �∈ Mδ

y(t) ≥ inf
t∈[0,T ]

y(t) + ε,

Mδ being the δ-neighborhood of M. [Here and in what follows if T ∈ M , then for this
endpoint all the limits are understood as one-sided from left and all neighborhoods
are intersected with (0, T ].] Moreover, if one defines

δ(ε) := inf
{

δ > 0 : ∀t �∈ Mδ y(t) ≥ inf
t∈[0,T ]

y(t) + ε
}

,

then δ(ε) → 0 as ε → 0. [Indeed, otherwise there exists εn → 0 and δ > 0 such that
δ(εn) > δ for all n ≥ 1. For this δ, there exists tn �∈ Mδ satisfying the condition

y(tn) < inf
t∈[0,T ]

y(t) + εn.

Extracting a subsequence of tn that converges to τ �∈ Mδ we get y(τ) =
inft∈[0,T ] y(t), contradiction]. Let

An(ε) :=
{

sup
t∈[0,T ]

∣∣∣Ŷn(t) − y(t)
∣∣∣ ≤ ε/3

}
.

Since weak convergence of an(Ŷn − y) with an → ∞ implies

sup
t∈[0,T ]

∣∣∣Ŷn(t) − y(t)
∣∣∣ → 0

in probability, we have P(Ac
n(ε)) → 0 as n → ∞. On the event An(ε),

inf
t�∈Mδ

Ŷn(t) ≥ inf
t�∈Mδ

y(t) − ε/3 ≥ inf
t∈[0,T ]

y(t) + ε − ε/3 ≥ inf
t∈[0,T ]

Ŷn(t) + ε/3,

which implies on this event

inf
t∈[0,T ]

Ŷn(t) = inf
t∈Mδ

Ŷn(t).

The following obvious representation holds for all τ ∈ M and all t with |t − τ | < δ :

Ŷn(t) − y(τ) = Ŷn(τ) − y(τ) + y(t) − y(τ) + (Ŷn − y)(t) − (Ŷn − y)(τ).

It implies that on the event An(ε)

inf
t∈[0,T ]

Ŷn(t) − inf
t∈[0,T ]

y(t) = inf
t∈Mδ

Ŷn(t) − inf
t∈[0,T ]

y(t) =

= inf
τ ∈M

[
Ŷn(τ) − y(τ) + inf

t:|t−τ |<δ
(y(t) − y(τ))

]
+ rn(δ),
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where
rn(δ) ≤ sup

|t1−t2|<δ

∣∣∣(Ŷn − y)(t1) − (Ŷn − y)(t2)
∣∣∣.

Note that
inf

t:|t−τ |<δ
(y(t) − y(τ)) = 0

and that the asymptotic equicontinuity of an(Ŷn − y) implies for all ε > 0

lim
δ→0

lim sup
n→∞

P

{
anrn(δ) ≥ ε

}
= 0.

This is enough to conclude that

inf
t∈[0,T ]

Ŷn(t) − inf
t∈[0,T ]

y(t) = inf
τ ∈M

(Ŷn(τ) − y(τ)) + oP

(
1
an

)
,

implying the convergence

an

(
inf

t∈[0,T ]
Ŷn(t) − inf

t∈[0,T ]
y(t)

)
d→ inf

τ ∈M
η(τ).

We now turn to the case of ϕ′(x(τ)) = 0 for all τ ∈ M. Since we assume in this
case that ϕ is twice continuously differentiable, we can use Taylor expansion of the
second order to get for τ ∈ M and with some θ ∈ (0, 1)

ϕ(X̂n(t)) = ϕ(x(t)) +
(
ϕ′(x(t)) − ϕ′(x(τ))

)∗
(X̂n(t) − x(t))

+
1
2
ϕ′ ′

(
x(t) + θ(X̂n(t) − x(t))

)(
X̂n(t) − x(t), X̂n(t) − x(t)

)
.(4)

Since both functions ϕ′ and t �→ x(t) are Lipschitz and ϕ′ ′ is uniformly bounded
(as an operator valued function), we easily get that

∣∣∣ϕ(X̂n(t)) − ϕ(x(t))
∣∣∣ ≤ ηn|t − τ | + η2

n,

where with some constant L > 0

ηn := L sup
0≤s≤T

|X̂n(s) − x(s)| = OP

(
1√

nhd−1

)
.

Let Mn → ∞ slowly enough (this sequence will be chosen later) and

Bn :=
{√

nhd−1ηn ≤ Mn

}
.

Then, obviously, P(Bc
n) → 0.

Note that since x(t) is twice continuously differentiable we have

x(t) − x(τ) = v(x(τ))(t − τ) + O(|t − τ |2).

Therefore,

ϕ(x(t)) − ϕ(x(τ)) =
1
2
ϕ′ ′(x(τ))(x(t) − x(τ), x(t) − x(τ)) + o(|x(t) − x(τ)|2)

=
1
2
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2 + o(|t − τ |2)(5)
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with o-term being uniform in τ, t.
Since ϕ′ ′ is continuous and for all τ ∈ M

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ))) > 0,

it easily follows that with some κ > 0

|ϕ(x(t)) − ϕ(x(τ))| ≥ κ2|t − τ |2

for all τ ∈ M and |t − τ | < δ, δ being sufficiently small. On the event Bn, this
implies for all τ ∈ M and all |t − τ | < δ

ϕ(X̂n(t)) − ϕ(x(τ)) ≥ ϕ(x(t)) − ϕ(x(τ)) − (ηn|t − τ | + η2
n)

≥ κ2|t − τ |2 − Mn√
nhd−1

|t − τ | − M2
n

nhd−1
.

We can and do assume that κ < 1. As soon as

|t − τ | ≥ 4
κ2

Mn√
nhd−1

=: δn,

we have on the event Bn

(6) ϕ(X̂n(t)) − ϕ(x(τ)) ≥ κ2

2
|t − τ |2 ≥ 8

κ2

M2
n

nhd−1
.

Now we will study the asymptotic behavior of

nhd−1
(

inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))
)

= nhd−1 inf
τ ∈M

inf
t:|t−τ |≤δn

(
ϕ(X̂n(t)) − ϕ(x(τ))

)
.

Recall that Mδn is the δn-neighborhood of M . We will use representation (4) and
relationship (5). Note that

(
ϕ′(x(t)) − ϕ′(x(τ))

)∗
(X̂n(t) − x(t))

= ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))(t − τ) + r1,(7)

where

r1 :=
(
ϕ′(x(t)) − ϕ′(x(τ)) − ϕ′ ′(x(τ))(x(t) − x(τ))

)∗
(X̂n(t) − x(t))

+ϕ′ ′(x(τ))(x(t) − x(τ) − v(x(τ))(t − τ))(X̂n(t) − x(t))
+ϕ′ ′(x(τ))(v(x(τ)), (X̂n − x)(t) − (X̂n − x)(τ))(t − τ).

Using Gronwall-Bellman inequality the same way as at the beginning of the proof
of Theorem 1 in Koltchinskii et al. [2], we get with some constant C > 0

|(X̂n − x)(t) − (X̂n − x)(τ)| ≤ C|t − τ | sup
y∈Rd

|V̂n(y) − v(y)|,

where V̂n is the kernel estimate of the vector field v based on (1). This easily gives
the following bound on the remainder:

|r1| ≤ o(|t − τ |) sup
t∈[0,T ]

|X̂n(t) − x(t)| + O(|t − τ |2) sup
y∈Rd

|V̂n(y) − v(y)|
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with o and O being uniform with respect to τ, t. In addition,

1
2
ϕ′ ′

(
x(t) + θ(X̂n(t) − x(t))

)(
X̂n(t) − x(t), X̂n(t) − x(t)

)

=
1
2
ϕ′ ′(x(τ))

(
X̂n(τ) − x(τ), X̂n(τ) − x(τ)

)
+ r2,(8)

where

r2 :=
1
2

(
ϕ′ ′

(
x(t) + θ(X̂n(t) − x(t))

)
− ϕ′ ′(x(τ))

)(
X̂n(t) − x(t), X̂n(t) − x(t)

)

+ϕ′ ′(x(τ))
(
(X̂n − x)(t) − (X̂n − x)(τ), X̂n(t) − x(t)

)

+
1
2
ϕ′ ′(x(τ))

(
(X̂n − x)(t) − (X̂n − x)(τ), (X̂n − x)(t) − (X̂n − x)(τ)

)
.

As before, with some constant C > 0 we have

|r2| ≤ C

(
|t − τ | + sup

t∈[0,T ]

|X̂n(t) − x(t)|
)(

sup
t∈[0,T ]

|X̂n(t) − x(t)|
)2

+C|t − τ | sup
y∈Rd

|V̂n(y) − v(y)| sup
t∈[0,T ]

|X̂n(t) − x(t)|

+C|t − τ |2
(

sup
y∈Rd

|V̂n(y) − v(y)|
)2

.

If Mn → ∞ slowly enough, τ ∈ M and |t − τ | < δn, we get from (7) and (8)

ϕ(X̂n(t)) − ϕ(x(τ))

=
1
2
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2

+ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))(t − τ)

+
1
2
ϕ′ ′(x(τ))

(
X̂n(τ) − x(τ), X̂n(τ) − x(τ)

)
+ oP

(
1

nhd−1

)

with oP term being uniform in τ ∈ M and |t − τ | < δn. This implies that

inf
τ ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]

= inf
τ ∈M

{
inf

t:|t−τ |<δn

[
1
2
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2

+ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))(t − τ)
]

+
1
2
ϕ′ ′(x(τ))

(
X̂n(τ) − x(τ), X̂n(τ) − x(τ)

)}
+ oP

(
1

nhd−1

)
.

The minimum of the quadratic function

R � t �→ 1
2
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))(t−τ)2+ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ)−x(τ))(t−τ)

is equal to

− 1
2

(
ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))

)2

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))
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and is attained at

t0 = τ − ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))

.

Using that ϕ′ ′(x(τ)) is bounded and that ϕ′ ′(x(τ))(v(x(τ)), v(x(τ))) > 0, for this
t0 we have that with some constant D

|t0 − τ | ≤ D|X̂n(τ) − x(τ)| = OP

(
1√

nhd−1

)
= oP(δn).

Let Dn := {supt∈[0,T ] |X̂n(t) − x(t)| ≤ δn/D}.
Then P(Dc

n) → 0 and on the event Dn

inf
|t−τ |≤δn

[
1
2
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2

+ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))(t − τ)
]

= inf
t∈R

[
1
2
ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))(t − τ)2

+ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))(t − τ)
]

= − 1
2

(
ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))

)2

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))
.

As a result,

inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t)) = inf
τ ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]

= inf
τ ∈M

[
1
2
ϕ′ ′(x(τ))

(
X̂n(τ) − x(τ), X̂n(τ) − x(τ)

)

− 1
2

(
ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))

)2

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))

]

+
[

inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))
]
IDc

n
+ oP

(
1

nhd−1

)
.(9)

and since P(Dc
n) → 0, we also have that[

inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))
]
IDc

n
= oP

(
1

nhd−1

)
.

In particular, this implies that

inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t)) = inf
τ ∈M

inf
t:|t−τ |<δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]

= OP

(
1

nhd−1

)
.

On the other hand, it follows from (6) that

inf
τ ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]

≥ 8
κ2

M2
n

nhd−1
−

∣∣∣∣ inf
τ ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]∣∣∣∣IBc
n

− 8
κ2

M2
n

nhd−1
IBc

n
.
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Since P(Bc
n) → 0, we get

inf
τ ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]
≥ 8

κ2

M2
n

nhd−1
− oP

(
1

nhd−1

)
.

Since Mn → ∞, the above easily implies that

P

{
inf

t∈Mδn

ϕ(X̂n(t)) ≤ inf
τ ∈M

inf
t:δ>|t−τ |≥δn

ϕ(X̂n(t))
}

≥ P

{
inf

τ ∈M
inf

t:|t−τ |<δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]

≤ inf
τ ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]}

≥ P

{
inf

τ ∈M
inf

t:|t−τ |<δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]
≤ 4

κ2

M2
n

nhd−1

≤ inf
τ ∈M

inf
t:δ>|t−τ |≥δn

[
ϕ(X̂n(t)) − ϕ(x(τ))

]}
→ 1

as n → ∞, so, P(Ec
n) → 0 where

En :=
{

inf
t∈Mδn

ϕ(X̂n(t)) ≤ inf
τ ∈M

inf
t:δ>|t−τ |≥δn

ϕ(X̂n(t))
}

.

This leads to the relationship

inf
t∈Mδ

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))

= inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t)) +
[

inf
t∈Mδ

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))
]
IEc

n

= inf
t∈Mδn

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t)) + oP

(
1

nhd−1

)
.(10)

Finally, if we choose ε small enough so that δ(ε) < δ (recall the notations introduced
at the beginning of the proof), then we will have on the event An(ε)

inf
t∈Mδ

ϕ(X̂n(t)) = inf
t∈[0,T ]

ϕ(X̂n(t)).

Since P(An(ε)c) → 0, this yields

μn(T ) = inf
t∈Mδ

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))

+
[

inf
t∈[0,T ]

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t))
]
IAn(ε)c

= inf
t∈Mδ

ϕ(X̂n(t)) − inf
t∈[0,T ]

ϕ(x(t)) + oP

(
1

nhd−1

)
.(11)

Combining bounds (9)–(10), we get

μn(T ) = inf
τ ∈M

[
1
2
ϕ′ ′(x(τ))

(
X̂n(τ) − x(τ), X̂n(τ) − x(τ)

)

− 1
2

(
ϕ′ ′(x(τ))(v(x(τ)), X̂n(τ) − x(τ))

)2

ϕ′ ′(x(τ))(v(x(τ)), v(x(τ)))

]
+ oP

(
1

nhd−1

)
,
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which immediately implies the second statement. The proof of the last statement
is the same except that (4) simplifies to

ϕ(X̂n(t)) − ϕ(x(τ)) =
1
2
ϕ′ ′(x(τ))

(
X̂n(τ) − x(τ), X̂n(τ) − x(τ)

)
+ oP

(
1

nhd−1

)
,

which leads to further simplifications in the remaining part of the proof.
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