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An almost sure limit theorem for Wick

powers of Gaussian differences quotients

Michael B. Marcus and Jay Rosen∗
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Abstract: Let G = {G(x), x ∈ R+}, G(0) = 0, be a mean zero Gaussian

process with E(G(x)−G(y))2 = σ2(x−y). Let ρ(x) = 1
2

d2

dx2 σ2(x), x �= 0. When

ρk is integrable at zero and satisfies some additional regularity conditions,

lim
h↓0

∫
:

(
G(x + h) − G(x)

h

)k

: g(x) dx = : (G′)k : (g) a.s.

for all g ∈ B0(R+), the set of bounded Lebesgue measurable functions on R+

with compact support. Here G′ is a generalized derivative of G and : ( · )k : is
the k–th order Wick power.

1. Introduction

Let G = {G(x), x ∈ R+}, G(0) = 0, be a mean zero Gaussian process with station-
ary increments, and set

(1.1) E(G(x) − G(y))2 = σ2(x − y) = σ2(|x − y|).

(The function σ2 is referred to as the increment’s variance of G.) We assume that

(1.2) σ2(h) is a convex function that is regularly varying at zero;

(1.3) lim
h→0

h2

σ2(h)
= 0 and lim

h→0

σ2(h)
h

= 0;

(1.4)
σ2(s + h) + σ2(s − h) − 2σ2(s)

h2
≤ C

σ2(s)
s2

for h ≤ s

8
;

(1.5) σ2(s) has a second derivative for each s �= 0.

Note that by (1.2)

(1.6) ρ(s) :=
1
2

d2

ds2
σ2(s) ≥ 0.

It follows from the second condition in (1.3) that G has a continuous version; (see
[6, Lemma 6.4.6]). We work with this version. However, when limx→0 ρ(x) = ∞,
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G is not differentiable; it is not even mean square differentiable. It is a natural
question to ask whether the weak limit

(1.7) lim
h→0

∫ (
G(x + h) − G(x)

h

)
g(x) dx

exists in some sense. Here g ∈ B0(R+), the set of bounded Lebesgue measurable
functions on R+ with compact support.

We show in [7, Theorem 2.1] that when G satisfies the second condition in (1.3)
there exists a mean zero Gaussian field {G′(g), g ∈ B0(R+)} with covariance

(1.8) E (G′(g)G′(g̃)) =
∫ ∫

ρ(t − s) g(s) g̃(t) ds dt

such that

(1.9) lim
h→0

∫ (
G(x + h) − G(x)

h

)
g(x) dx = G′(g) in L2.

Because of this we think of G′ as a generalized derivative of G.
More generally, one may consider

(1.10) lim
h→0

∫ (
G(x + h) − G(x)

h

)k

g(x) dx

for any integer k ≥ 1. However, when k is even, the expectation of the square of
the integral in (1.10) contains terms in σ2(h)/h2 which goes to infinity as h goes
to zero by (1.3). To obtain a finite limit in (1.10) we replace (G(x+h)−G(x)

h )k by a
k–th order polynomial

(1.11)
k∑

j=0

aj(h)
(

G(x + h) − G(x)
h

)j

where, aj(h) is a non–random function of h, which, necessarily, has the property
that, at least for some 0 ≤ j ≤ k, limh→0 |aj(h)| = ∞. We call this process renor-
malization. The renormalization we use is known as the k–th Wick power.

The k–th Wick power of a mean zero Gaussian random variable X is

(1.12) : Xk : =
[k/2]∑
j=0

(−1)j

(
k

2j

)
E(X2j) Xk−2j .

When X = N(0, 1),

(1.13) : Xk : =
√

k! Hk(X),

where Hk is the k–th Hermite polynomial. One advantage of Wick powers over
Hermite polynomials is that they are homogeneous, i.e., for a ∈ R1,

(1.14) : (aX)k := ak : Xk : .

Therefore, when X has variance σ2
X ,

(1.15) : Xk : =
√

k! σk
XHk

(
X

σX

)
.
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When ρk is locally integrable and bounded away from the origin we construct
a k–th order Wick power Gaussian chaos from the mean zero Gaussian field G′ =
{G′(f), f ∈ B0(R+)} in the following way: For each δ ∈ (0, δ0], for some δ0 > 0,
let fδ(s) be a continuous positive symmetric function on (s, δ) ∈ R+ × (0, 1], with
support in the ball of radius δ, with

∫
fδ(y) dy = 1. That is, fδ is a continuous ap-

proximate identity. In [7, (3.25) and (3.26)] we show that for the Gaussian processes
G considered here, for all g ∈ B0(R+),

(1.16) : (G′)k : (g) := lim
δ→0

∫
: (G′(fx,δ))k : g(x) dx in L2

and

(1.17) E
(
: (G′)k : (g)

)2
= k!

∫ ∫
ρk(x − y)g(x)g(y) dx dy.

In [7, Theorem 3.1] we show that

(1.18) lim
h→0

∫
:
(

G(x + h) − G(x)
h

)k

: g(x) dx = : (G′)k : (g) in L2.

(For example, if σ2(h) = hr, in order for ρk to be locally integrable and to have
limx→0 ρ(x) = ∞ as required by the first condition in (1.3), it is necessary that
2k−1

k < r < 2.)
In this paper we obtain the rather remarkable result that, under some additional

mild regularity conditions on ρ, the limit in (1.18) is almost sure.

Theorem 1.1. Let G = {G(x), x ∈ R+}, G(0) = 0 be a mean zero Gaussian
process with stationary increments satisfying (1.1)–(1.6). Fix an integer k ≥ 1 and
assume that there exists a 0 < δ < 1/2 and an M > 0 such that

(1.19) ρ(x) ≤ CM

|x|(1−δ)/k
:= CM ϕ(|x|), 0 < |x| ≤ M

and

(1.20) |ρ(x + h) − ρ(x)| ≤ CM
|h|
|x| ρ(x), 4|h| ≤ |x| ≤ M.

Then for all g ∈ B0(R+),

(1.21) lim
h↓0

∫
:
(

G(x + h) − G(x)
h

)k

: g(x) dx = : (G′)k : (g) a.s.

(Note that by using Wick powers it is clear that (1.21) deals with a generalized
derivative of G. This point would be obscured if we expressed (1.21) in terms of
Hermite polynomials.)

For a fixed g ∈ B0(R+) both the left-hand side and right-hand side of (1.21) are
k–th order Gaussian chaoses. Let {: Xk

h : (g), h ∈ (0, 1]}, denote the left-hand side
of (1.21) and : Xk

0 : (g) denote the right-hand side of (1.21). Theorem 1.1 is the
statement that for all g ∈ B0(R+), the k-th order Gaussian chaos process

(1.22) X := {Xh, h ∈ [0, 1]} := {: Xk
h : (g), h ∈ [0, 1]},

has a continuous version. Of course there is no problem in choosing the version. The
process on the left in (1.21) is continuous in h ∈ (0, 1]. We can take : (G′)k : (g) to
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be its limit on the set of probability one for which the limit exists, and to be zero
otherwise.

Theorem 1.1 is proved in Section 4 using a majorizing measure result for the
continuity of Gaussian chaoses. Technically, this is an interesting application of this
theory, because the proof consists of obtaining continuity at a single point. To prove
(1.21) we need a majorizing measure condition for exponential Orlicz spaces based
on the function expxq − 1 for q ≤ 1. Whereas it is known that such results exist we
could not find a reference, so we provide proofs in Section 3. We prove Theorem 1.1
in Section 4

2. L2 results

We list here some L2 estimates we need in this paper that are obtained in [7]. To
better motivate these results we state the main result in [7] and explain how it led
to our consideration of Theorem 1.1 in this paper.

Theorem 2.1 (Theorem 1.1, [7]). Let f be a function with Ef2(η) < ∞, where
η = N(0, 1). Then under the hypotheses of Theorem 1.1∫ b

a

f

(
G(x + h) − G(x)

σ(h)

)
dx(2.1)

=
k∑

j=0

(h/σ(h))j E(Hj(η)f(η))√
j!

: (G′)j : (I[a,b]) + o

(
h

σ(h)

)k

in L2. Here Hj is the j-th Hermite polynomial and : (G′)j : (I[a,b]) is a j-th order
Wick power Gaussian chaos as described in (1.16).

We wondered whether (2.1) could be almost sure. In Theorem 1.1 we show that
when f( · ) = Hk( · ) it is. Note that in this case the right-hand side of (2.1) is

(2.2)
(h/σ(h))k

√
k!

: (G′)k : (I[a,b]) + o

(
h

σ(h)

)k

.

and by (1.13) and (1.14) the left-hand side of (2.1) is

(2.3)
(h/σ(h))k

√
k!

∫ b

a

:
(

G(x + h) − G(x)
h

)k

: dx.

Thus Theorem 2.1 gives the limit in L2 of (1.21) when g = I[a,b].
The next lemma which is part of [7, Lemma 4.2] provides part of the L2 metric

estimates that are needed in proof of continuity of X .

Lemma 2.1. Let G = {G(x), x ∈ R+}, G(0) = 0, be a mean zero Gaussian
process with stationary increments and set σ2(|x − y|) = E(G(x) − G(y))2. Set
ρ(s) = 1

2
d2

ds2 σ2(s). Fix an integer j0 ≥ 1 and assume that there exists a 0 < δ < 1
and an M > 0 such that (1.20) holds, and (1.19) holds with k replaced by j0. Then
for 1 ≤ j ≤ j0 and any g ∈ B0(R+),

(2.4) ‖ : Xj
h : (g)− : Xj

0 : (g)‖2 ≤ C(|h|ϕj(h))1/2.
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3. Continuity conditions for stochastic processes in exponential Orlicz
spaces

Let ‖ · ‖ψq denote the norm in the Orlicz space Lψq (dP ), where

(3.1) ψq(x) =
{

exp(xq) − 1 1 ≤ q < ∞
exp exp(x) − e q = ∞.

x ∈ R+

For 0 < q < 1, we define

(3.2) ψq(x) =

⎧⎪⎨⎪⎩
Kq x 0 ≤ x <

(
1
q

)1/q

exp(xq) − 1 x ≥
(

1
q

)1/q

where

(3.3) Kq =
exp(xq

0) − 1
x0

and x0 := x0(q) = (1/q)1/q,

so that ψq(x) is continuous.

Lemma 3.1. For 0 < q < ∞, ψq(x) is convex and increasing and there exists a
constant Cq < ∞, for which

(3.4) ψq(x) ≤ Cq (exp(xq) − 1)

and

(3.5) exp(xq) ≤ Cq (ψq(x) + 1) .

In addition Cq = 1 for 1 ≤ q < ∞.

Proof. This is trivial when 1 ≤ q < ∞. We consider the other cases. To show ψq(x)
is convex we show that its derivative is increasing. It is easy to check that the
derivative of ψq(x) from the left at x0 is less than the derivative from the right
at x0. It is also easy to check that the second derivative of ψq(x) is positive for
x ≥ ((1 − q)/q)1/q. Therefore, the derivative of ψq(x) is increasing on [x0, ∞), so
ψq(x) is convex.

Since exp(xq) − 1 ≥ xq for all x ≥ 0, we see that (3.4) holds for 0 ≤ x ≤ 1
with Cq = Kq. Similarly, choosing m so that mq ≥ 1, exp(xq) − 1 ≥ xmq/m!, so
that (3.4) holds for 1 ≤ x ≤ x0 with Cq = m!Kq. It is then clear that (3.4) with
Cq = max(m!Kq, 1) holds for all x . By further increasing Cq it is easy to see that
(3.5) also holds.

We note the following obvious relationships:

Lemma 3.2.

(3.6) ψ−1
q (x) =

{
log log(e + x) q = ∞
(log(1 + x))1/q 1 ≤ q < ∞,

and for 0 < q < 1

(3.7) ψ−1
q (x) =

{
x/Kq 0 ≤ x ≤ Kqx0

(log(1 + x))1/q
Kqx0 < x ≤ ∞.
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For each 0 < q ≤ ∞ let Lψq (Ω, P ) denote the set of random variables ξ : Ω → C
such that Eψq(|ξ|/c) < ∞ for some c > 0. Lψq (Ω, P ) is a Banach space with norm
given by

(3.8) ‖ξ‖ψq = inf {c > 0 : Eψq (|ξ|/c) ≤ 1} .

Let (T, d) be a pseudometric space. We use Bd(t, u), or simply B(t, u), to denote
a closed ball of radius u in (T, d).

Theorem 3.1. Let X = {X(t) : t ∈ T } be a measurable separable stochastic process
on a separable metric or pseudometric space (T, d) with finite diameter D. Suppose
that X(t) ∈ Lψq (Ω, P ) and ‖X(t)−X(s)‖ψq ≤ d(t, s) for all s, t ∈ T . Let 0 < q < ∞
and suppose also that there exists a probability measure μ on T such that

(3.9) sup
t∈T

∫ D

0

(
log

1
μ(B(t, u))

)1/q

du < ∞.

Then there exists a version X ′ = {X ′(t), t ∈ T } of X such that

(3.10) E sup
t∈T

X ′(t) ≤ C sup
t∈T

∫ D

0

(
log

1
μ(B(t, u))

)1/q

du

for some C < ∞. Furthermore, if

(3.11) lim
ε→0

sup
t∈T

∫ ε

0

(
log

1
μ(B(t, u))

)1/q

du = 0,

then X ′ is uniformly continuous on T almost surely and there exists a positive
random variable Z ∈ Lψq (Ω, P ) such that

(3.12) sup
s,t∈T

d(s,t)≤δ

|X ′(s, ω) − X ′(t, ω)| ≤ Z(ω) sup
s∈T

∫ δ

0

(
log

1
μ(B(s, u))

)1/q

du

almost surely. When q = ∞ the results continue to hold when the above integrands
are replaced by

(3.13) log+ log
(

1
μ(B(t, u))

)
.

(The statement Z ∈ Lψq (Ω, P ) means that ‖Z‖ψq ≤ Kq, a constant depending
only on q.)

We get the following useful corollary of Theorem 3.1

Corollary 3.1. Under the hypotheses of Theorem 3.1 there exists a constant Cq

for which

(3.14)
∥∥∥ sup

s,t∈T

d(s,t)≤δ

|X ′(s) − X ′(t)|
∥∥∥

ψq

≤ Cq sup
s∈T

∫ δ

0

(
log

1
μ(B(s, u))

)1/q

du

and for any t0 ∈ T ,

(3.15)
∥∥∥sup

s∈T
|X ′(s)| ‖ψq ≤ ‖X ′(t0)

∥∥∥
ψq

+ Cq sup
s∈T

∫ D

0

(
log

1
μ(B(s, u))

)1/q

du.
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Proof. The statement in (3.14) follows immediately from (3.12). The statement in
(3.15) follows from (3.12) by writing

sup
s∈T

|X ′(s)| ≤ sup
s∈T

|X ′(s) − X ′(t0)| + |X ′(t0)|(3.16)

≤ sup
s,t∈T

|X ′(s) − X ′(t)| + |X ′(t0)|,

and using the triangle inequality with respect to ‖ · ‖ψq .

The hypotheses of Theorem 3.1 are satisfied by Gaussian processes when q = 2.
In this case it contains ideas which originated in an important early paper by Garcia,
Rodemich and Rumsey Jr., [3] and were developed further by Preston, [9, 10] and
Fernique, [1]. The fact that it can be extended to processes in exponential Orlicz
spaces for 1 ≤ q ≤ ∞ is, no doubt, understood by many researchers in the field of
probability on Banach spaces. For lack of a suitable reference a proof was given in
[8].

In this paper we need an extension to ψq(x) for 0 < q ≤ ∞. Here too we’re
sure many researchers are aware that this can be done, but, once again, we have
no reference. When 0 < q < 1, exp(xq) − 1 is not convex, so a bit more care is
necessary. The key point is the following lemma:

Lemma 3.3. For 0 < q ≤ ∞, let X = {X(t) : t ∈ T } be a measurable separable
stochastic process on a precompact metric space (T, d) such that ‖X(t)‖ψq ≤ 1 for all
t ∈ T . Then there exists a random variable Z with ‖Z‖ψq ≤ C ′

q, such that for every
probability measure m on T and function h : T 
→ R+ with

∫
T

h(v) m(dv) < ∞∫
T

|X(t)|h(t) m(dt)(3.17)

≤ Z

∫
T

h(t)Φq

((∫
T

h(v) m(dv)
)−1

h(t)

)
m(dt)

where

(3.18) Φq =

⎧⎨⎩
log log(e + x) q = ∞
(log(1 + x))1/q 1 ≤ q < ∞
(2 log(1 + (x/Gq)))

1/q 0 ≤ q < 1,

where Gq > 0.

Proof. Define

(3.19) Z̃(ω) = inf
{

α > 0 :
∫

T

ψq(α−1|X(t)|) m(dt) ≤ 1
}

.

We first show that

(3.20) ‖Z̃‖ψq ≤ C ′
q < ∞ 0 < q ≤ ∞.

Let 0 < q < ∞; then for u ≥ 1,

(3.21) P
(
Z̃ > u

)
≤ P

(∫
T

ψq(u−1|X(t)|) m(dt) > 1
)
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and by (3.4)

P

(∫
T

ψq(u−1|X(t)|) m(dt) > 1
)

≤ P

(
Cq

∫
T

exp(u−q |X(t)|q) m(dt) > 1 + Cq

)
= P

((
Cq

∫
T

exp(u−q |X(t)|q) m(dt)
)uq

> (1 + Cq)uq

)

≤ P

(
Cuq

q

∫
T

exp(|X(t)|q) m(dt) > (1 + Cq)uq

)
≤

(
1 + Cq

Cq

)−uq

E

∫
T

exp(|X(t)|q) m(dt)

≤
(

1 + Cq

Cq

)−uq

Cq

(
E

∫
T

ψq(|X(t)|) m(dt) + 1
)

≤ 2Cq

(
1 + Cq

Cq

)−uq

.

The fourth line follows from Jensen’s inequality, the sixth from (3.5), and the last
because ‖X(t)‖ψq ≤ 1. Thus we get (3.20) when 0 ≤ q < ∞.

Now let q = ∞. Note that for each u ≥ 1, the function φu(x) = exp((log x)u) is
convex for x ≥ e. Using Jensen’s inequality again we get that for u ≥ 1

P {Z̃ > u} ≤ P

{∫
T

exp(exp(u−1|X(t)|)) m(dt) > e + 1
}

(3.22)

= P

{
φu

( ∫
T

exp(exp(u−1|X(t)|)) m(dt)
)

> φu(e + 1)
}

≤ P

{∫
T

exp(exp(|X(t)|)) m(dt) > exp(exp(cu))
}

≤ exp(− exp(cu))
∫

T

E exp(exp(|X(t)|)) m(dt)

≤ (1 + e) exp(− exp(cu))

where c = log(log(e + 1)) > 0. Thus we get (3.20) when q = ∞.
We now prove (3.17). For 1 ≤ q ≤ ∞ we have

(3.23) xy ≤ ψq(x) + yψ−1
q (y) x, y ≥ 0.

To obtain (3.23) we first note that ψ′
q(x) ≥ ψq(x). To see this set h(x) := ψ′

q(x) −
ψq(x). We get the desired inequality because h(0)=0 and h′(x) > 0 for all x ∈ R+.
To prove this last point it suffices to show that

(3.24) g(x) :=
q − 1

x
+ qxq−1 − 1 ≥ 0.

To verify (3.24) note that the minimum of g(x) takes place at x1 = (1/q)1/q and
g(x1) > 0.

The inequality in (3.23) follows from Young’s inequality since ψq(x) is con-
vex and ψ′

q(x) ≥ ψq(x). (Recall that the final term in (3.23) can be taken to be
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0
(ψ′

q)
−1(y) dy. Since ψ′

q(x) ≥ ψq(x), (ψ′
q)

−1(y) ≤ (ψq)−1(y), and since (ψq)−1(y)
is increasing we get (3.23).)

When 0 < q < 1 it follows from Lemma 3.4, which is given at the end of this
section, that

(3.25) xy ≤ ψq(x) + y (2 log(1 + y/Gq))
1/q

x, y ≥ 0,

for some constant Gq > 0. Therefore it follows from (3.23), (3.25) and Lemma 3.2
that

(3.26) xy ≤ ψq(x) + yΦq(y) x, y ≥ 0.

Let h : T 
→ R+ be as in the lemma. Putting x = Z̃−1|X(t)| and y = (
∫

T
h(v) ×

m(dv))−1h(t) in (3.26) we get

|X(t)|h(t) ≤ Z̃

∫
T

h(v) m(dv)ψq(Z̃−1|X(t)|)(3.27)

+Z̃h(t)Φq

((∫
T

h(v) m(dv)
)−1

h(t)
)

.

Integration with respect to m, and using the definition (3.19), gives∫
T

|X(t)|h(t) m(dt)(3.28)

≤ Z̃

∫
T

h(t) m(dt) + Z̃

∫
T

h(t)Φq

((∫
T

h(v) m(dv)
)−1

h(t)

)
m(dt).

It is easy to check that xΦq(x/β), or equivalently, xΦq(x), is a convex function
for all 0 ≤ q < ∞. Consequently, it follows from Jensen’s inequality that∫

T

h(t)Φq

((∫
T

h(v) m(dv)
)−1

h(t)

)
m(dt)(3.29)

≥
∫

T

h(t) m(dt)Φq(1).

Using this in (3.28) yields the inequality∫
T

|X(t)|h(t) m(dt)

≤ DqZ̃

∫
T

h(t)Φq

((∫
T

h(v) m(dv)
)−1

h(t)

)
m(dt).

where Dq = 1 + (1/Φq(1)). Changing DqZ̃ to Z gives (3.17).

Proof of Theorem 3.1. Using Lemma 3.3 it is easy to complete the proof of The-
orem 3.1 by following the proof of [2, Theorem 5.2.6] or [6, Theorem 6.3.3]. We
make some comments regarding the proof in [6, Theorem 6.3.3]. In place of (6.73)
we have that for some α < ∞

E|X(t) − Mk(t)| ≤ 1
μk(t)

∫
B(t,D2−k)

E|X(t) − X(u)| μ(du)(3.30)

≤ 1
μk(t)

∫
B(t,D2−k)

α‖X(t) − X(u)‖ψq μ(du)

≤ 1
μk(t)

∫
B(t,D2−k)

αd(u, t) μ(du) ≤ αD2−k,
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which is all we need to proceed with the proof. This follows because by Jensen’s
Inequality, for any convex function Ψ,

(3.31) EΨ
(

α|X(t) − X(u)|
E|X(t) − X(u)|

)
≥ Ψ(α) .

Let Ψ(x) = ψq(x). Therefore, when ψq(α) ≥ 1

(3.32) E|X(t) − X(u)| ≤ α‖X(t) − X(u)‖ψq .

It is easy to see that we can take α = 1 when 1 ≤ q ≤ ∞. When q < 1 the reader
can check that it suffices to take α = x0.

When 1 ≤ q ≤ ∞ the rest of the adaptation of the proof of Theorem 6.3.3 in
[6] is completely apparent. When 0 < q < 1 one gets as far as the expression on
the bottom of page 261 but with the measures multiplied by Gq, (and a different
constant following Z). We need only be concerned if Gq < 1, In this case we proceed
as in [6, (6.85)] and note that

(3.33) log
(

1 +
x

Gq

)
≤ log (1 + (2/Gq))

log 2
log x x ≥ 2.

Using this the proof can be completed.

Lemma 3.4. For 0 < q < 1, there exists a constant Gq > 0 such that

(3.34) xy ≤ ψq(x) + y (2 log(1 + y/Gq))
1/q

x, y ≥ 0.

Proof. It is easy to see that for all p > 0 there exists a constant Dp > 0 for which

(3.35)
es

sp
≥ Dp

(
es/2 − 1

)
∀s ∈ R+.

Taking s = xq this shows that there exists a constant Gq > 0 such that

(3.36)
exp(xq)
x1−q

≥ Gq

q
(exp(xq/2) − 1) ∀x ∈ R+.

By (3.2)

(3.37) ψ′
q(x) =

q exp(xq)
x1−q

x > x0.

Consequently

(3.38) ψ′
q(x) ≥ Gq (exp(xq/2) − 1) x > x0.

Let Λq(y) be the right continuous inverse of ψ′
q(x). By (3.2) we have Λq(y) = 0 for

y < Kq and Λq(y) = x0 for Kq ≤ y ≤ D+ψq(x0) = q exp(xq
0)/x1−q

0 , the right hand
derivative of ψq(x) at x0. In addition, by (3.38) we see that

(3.39) Λq(y) ≤ (2 log(1 + y/Gq))
1/q

y >
q exp(xq

0)
x1−q

0

.

Therefore, decreasing Gq if necessary, we have that

(3.40) Λq(y) ≤ (2 log(1 + y/Gq))
1/q ∀ y ∈ R+,

from which we get (3.34) by Young’s Inequality and the obvious fact that∫ y

0
Λq(s) ds ≤ yΛq(y) since Λq(s) is non-decreasing.
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4. Proof of Theorem 1.1

Consider the Gaussian chaos X = {: Xk
h : (g), h ∈ (0, 1]} defined in (1.22). It is clear

that this process is continuous on (0, 1]. Therefore, to show that it is continuous on
[0, 1] it suffices to show that it is continuous on [0, h0] for some 0 < h0 << 1. For
h, h′ ∈ [0, h0] set

(4.1) d(h, h′) := ‖ : Xk
h : (g)− : Xk

h′ : (g)‖2.

It follows from (1.18) that

(4.2) lim
h,h′ →0

d(h, h′) = 0.

Therefore, by [4, Theorem 3.2.10]

(4.3) lim
h,h′ →0

‖ : Xk
h : (g)− : Xk

h′ : (g)‖ψ2/k
= 0.

Furthermore, the same theorem states that the L2 and Lψ2/k
are equivalent. Con-

sequently

(4.4) lim
h→0

: Xk
h : (g) =: Xk

0 : (g) in Lψ2/k

and

(4.5) ‖ : Xk
h : (g)− : Xk

h′ : (g)‖ψ2/k
≤ Cd(h, h′)

for all h, h′ ∈ [0, 1].
We use Theorem 3.1 to show that X is continuous on ([0, h0], d). To do this we

need estimates for d. We get one estimate from Lemma 2.1. Th next lemma gives
another estimate for d.

Lemma 4.1. Under the hypotheses of Theorem 1.1, for any h, h′ > 0

(4.6) d(h, h′) = ‖ : Xk
h : (g)− : Xk

h′ : (g)‖2 ≤ C

(
|h − h′ |

hh′

)1/2

.

Proof. Note that by (1.12)

(4.7) Xh(g)
def
= : X1

h(g) : =
∫ (

G(x + h) − G(x)
h

)
g(x) dx.

In addition it is not hard to see that it follows from the definition of ρ in (1.6), that
for x′ ≤ x, and y′ ≤ y

(4.8) E (G(x) − G(x′)) (G(y) − G(y′)) =
∫ x

x′

∫ y

y′
ρ(t − s) ds dt.

(Details are given in [7, Lemma 2.2].) Therefore

E (Xh(g)Xh′ (g̃))(4.9)

=
1
h

1
h′

∫ ∫
E ((G(x + h) − G(x)) (G(y + h′) − G(y))) g(x) dx g̃(y) dy

=
∫ ∫ {

1
h

∫ x+h

x

1
h′

∫ y+h′

y

ρ(t − s) ds dt

}
g(x) g̃(y) dx dy.
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Let (X, Y ) be a two dimensional Gaussian random variable. By [5, Theorem 3.9]

(4.10) E(: Xk :: Y j :) = k!(E(XY ))kδk,j .

Using this and (4.9) we see that

E(: Xk
h : (g) : Xk

h′ : (g̃))(4.11)

= k!
∫ ∫ (

1
h

∫ x+h

x

1
h′

∫ y+h′

y

ρ(s − t) dt ds

)k

g(x)g̃(y) dx dy.

Set

Bz(h, h′) =
1
h

∫ h

0

1
h′

∫ h′

0

ρ(z + s − t) dt ds(4.12)

=
σ2(z + h) + σ2(z − h′) − σ2(z + h − h′) − σ2(z)

2hh′ .

By (4.11) and a change of variables we have

‖ : Xk
h : (g)− : Xk

h′ : (g)‖2
2(4.13)

=
∫ ∫ {

(Bz(h, h))k − (Bz(h, h′))k − (Bz(h′, h))k + (Bz(h′, h′))k
}

g(x)g(y) dx dy.

In addition

Bz(h, h) − Bz(h, h′)(4.14)

=
(

1
h2

− 1
hh′

)
h2Bz(h, h) +

1
hh′

(
h2Bz(h, h) − hh′Bz(h, h′)

)
=

1
2hh′

(
σ2(z + h − h′) + σ2(z − h) − σ2(z − h′) − σ2(z)

)
+

(
1

2h2
− 1

2hh′

) (
σ2(z + h) + σ2(z − h) − 2σ2(z)

)
.

We write this as

Bz(h, h) − Bz(h, h′)(4.15)

=
1

2hh′
(
σ2(z + h − h′) − σ2(z) + σ2(z − h) − σ2(z − h′)

)
+

(h − h′)
2h′h2

(
2σ2(z) − σ2(z + h) − σ2(z − h)

)
.

Since σ2 and (σ2)′ are bounded we need only use the mean value theorem, on four
differences, to see that for h, h′ > 0

(4.16) |Bz(h, h) − Bz(h, h′)| ≤ C
|h − h′ |

h′h
.

Note that

(4.17) Bk
z (h, h) − Bk

z (h, h′) =
k−1∑
j=0

Bj
z(h, h)(Bz(h, h) − Bz(h, h′))Bk−j−1

z (h, h′).
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Therefore

(4.18) |Bk
z (h, h) − Bk

z (h, h′)| ≤ C
|h − h′ |

h′h

k−1∑
j=0

Bj
z(h, h)Bk−j−1

z (h, h′).

Let fh(x) = 1
h1[0,h](x) so that the first line in the definition (4.12) of Bz(h, h′)

can be written as

(4.19) Bz(h, h′) =
∫ ∫

ρ(z + s − t)fh(s)fh′ (t) ds dt.

Using Fubini’s Theorem we see that∫ ∫
Bj

z(h, h)Bk−j−1
z (h, h′) g(x)g(y) dx dy(4.20)

=
∫ ∫ (∫

. . .

∫ ) k−1∏
i=1

ρ(x + vi − y − wi)
j∏

i=1

fh(vi)fh(wi) dvi dwi

k−1∏
i=j+1

fh(vi)fh′ (wi) dvi dwi g(x)g(y) dx dy

=
∫

. . .

∫ (∫ ∫ k−1∏
i=1

ρ(x − y + vi − wi)g(x)g(y) dx dy

)
j∏

i=1

fh(vi)fh(wi) dvi dwi

k−1∏
i=j+1

fh(vi)fh′ (wi) dvi dwi

≤ C

where C is a finite constant that is independent of h and h′. In the last step we use
the generalized Holder’s inequality and the fact that ρ ∈ Lk

loc and g ∈ B0(R+), to
get

(4.21)
∫ ∫ k−1∏

i=1

ρ(x − y + vi − wi)g(x)g(y) dx dy ≤ C.

Using (4.20) together with (4.18) we obtain

(4.22)
∫ ∫ ∣∣∣∣ (Bz(h, h))k − (Bz(h, h′))k

∣∣∣∣ g(x)g(y) dx dy ≤ C ′ |h − h′ |
h′h

.

Clearly the integral of the other two terms in (4.13) has the same bound. Thus we
get (4.6).

Proof of Theorem 1.1. It follows from (2.4) that for any h > 0

(4.23) d(h, 0) = ‖ : Xk
h : (g)− : Xk

0 : (g)‖2 ≤ Chδ/2

(The constant C actually depends on k, but we take k fixed.) We use this bound
as well as the one in (4.6).

By Theorem 3.1 to prove that X is continuous it suffices to show that

(4.24) sup
h∈[0,h0]

∫ Kh
δ/2
0

0

(
log

1
λ(Bd(h, u))

)k/2

du < ∞,
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and

(4.25) lim
ε→0

sup
h∈[0,h0]

∫ ε

0

(
log

1
λ(Bd(h, u))

)k/2

du = 0,

where λ is Lebesgue measure. (Theorem 3.1 requires a probability measure. Rather
than bothering to renormalize we need only observe that its conclusions also hold
for positive measures with mass less than one.)

We now verify (4.24) and (4.25). We pick h0 so that Kh
δ/2
0 is very small. Let

h ∈ (0, h0]. Note that by (4.6) we have h′ ∈ Bd(h, u) when |(h−h′)/(hh′)|1/2 ≤ u/C,
or, equivalently, when |h − h′ | ≤ hh′(u/C)2. (We take C ≥ 1.) Since h′ ≤ 1 and
u ≤ Kh

δ/2
0 , we see that on {h′ : |h − h′ | ≤ hh′u2} we have h′ > h/2. Therefore

(4.26) Bd(h, u) ⊇ {h′ : |h − h′ | ≤ h2u2/(2C2)},

so that the Lebesgue measure of Bd(h, u) is at least h2u2/(2C2). Consequently for
any h ∈ (0, h0] and u ≤ Kh

δ/2
0

(4.27) log
1

λ(Bd(h, u))
≤ 2

(
log

1
h

+ log
1
u

+ log C

)
.

Therefore for any h ∈ (0, h0] and w ≤ Kh
δ/2
0∫ w

0

(
log

1
λ(Bd(h, u))

)k/2

du(4.28)

≤ C ′w

(
log

1
h

+ log
1
w

+ log C

)k/2

≤ C ′ ′w

(
log

1
h

+ log
1
w

)k/2

.

Let h ∈ (0, h0] and v ≤ Kh
δ/2
0 and suppose that hδ/4 ≥ v. Then by (4.28) and

the monotonicity of log 1/h∫ v

0

(
log

1
λ(Bd(h, u))

)k/2

du ≤ Cv

(
log

1
v

)k/2

.(4.29)

(The constants are not necessarily the same at each stage.) Now suppose that
hδ/4 < v. In this case using (4.28) with w = hδ/4 we have∫ hδ/4

0

(
log

1
λ(Bd(h, u))

)k/2

du(4.30)

≤ Cδh
δ/4 (log 1/h)k/2

≤ C ′
δh

δ/4
(
log 1/hδ/4

)k/2

≤ Kδv

(
log

1
v

)k/2

.

(Here we use the monotonicity of x(log 1/x)k/2.)
Now consider

(4.31)
∫ v

hδ/4

(
log

1
λ(Bd(h, u))

)k/2

du.

Since d(h, x) < d(h, 0)+d(x, 0), we see by (4.23) that {x ∈ Bd(h, u)} when Chδ/2 +
Cxδ/2 ≤ u, or, equivalently, when x ≤ C ′(u − Chδ/2)2/δ. Since u ≥ hδ/4, we see that
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for small h, (which we can always achieve by taking Kh
δ/2
0 sufficiently small) we

have x ≤ C ′(u − Chδ/2)2/δ whenever x ≤ C ′ ′u2/δ, for some C ′ ′ > 0. Consequently
λ(Bd(h, u)) ≥ Ku2/δ and

(4.32)
∫ v

hδ/4

(
log

1
λ(Bd(h, u))

)k/2

du ≤ Cv (log 1/v)k/2
.

Using (4.23) it is elementary to see that

(4.33)
∫ v

0

(
log

1
λ(Bd(0, u))

)k/2

du ≤ Cv (log 1/v)k/2
.

Combining (4.29), (4.30), (4.32) and (4.33) we get that for any v ≤ Kh
δ/2
0

(4.34) sup
h∈[0,h0]

∫ v

0

(
log

1
λ(Bd(h, u))

)k/2

du ≤ Cv (log 1/v)k/2
.

The statements in (4.24) and (4.25) follow immediately.
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