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Conditional expectations and martingales

in the fractional Brownian field

Vladimir Dobrić1 and Francisco M. Ojeda2

Lehigh University and Universidad Simón Boĺıvar

Abstract: Conditional expectations of a fractional Brownian motion with
Hurst index H respect to the filtration of a fractional Brownian motion with

Hurst index H
′
, both contained in the fractional Brownian field, are studied.

A stochastic integral representation of those processes is constructed from the
covariance structure of the underlying fractional Brownian field. As processes,
the conditional expectations contain martingale components and for dual pairs
of Hurst indices the processes become pure martingales which, up to a mul-
tiplicative constant, coincide with the fundamental martingales of fractional
Brownian motions.

1. Introduction

In this paper all fractional Brownian motions (ZH(t))t≥0, H ∈ (0, 1) are imbedded
in the fractional Gaussian field

Z = (ZH(t))(t,H)∈[0,∞)×(0,1)

whose covariance is given by

(1) E (ZH (t) ZH′ (s)) = aH,H′

⎧⎨⎩ |t|H+H
′

+ |s|H+H
′

− |t − s|H+H
′

2

⎫⎬⎭ ,

where for H + H
′ �= 1

aH,H′ = −2

√
Γ (2H + 1) sin (πH)

√
Γ (2H ′ + 1) sin (πH ′ )

π

× Γ
(

−
(
H + H

′
))

cos
((

H
′ − H

) π

2

)
cos

((
H + H

′
) π

2

)
,

and for H + H
′
= 1

(2) aH,H′ =
√

Γ (2H + 1) Γ (3 − 2H) sin2 (πH) =: aH = aH′ .

In the case when H + H
′
= 1, a pair (H, H

′
) will be called dual pair. Existence of

that field was established by Dobric and Ojeda [4].
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This paper focuses on processes defined by

(3) XH,H′ =
(
XH,H′ (t)

)
t≥0

=
(
E

(
ZH (t) | F H

′
t

))
t≥0

,

where F H
′

t = σ(ZH′ (r) : 0 ≤ r ≤ t). Essentially the same proof as in [4] for even
and odd fractional Gaussian fields can be used to show that XH,H′ is a centered
Gaussian H-selfsimilar process, and when (H, H

′
) is a dual pair then XH,H′ is a

(F H
′

t )t≥0 martingale (alternative proofs for these assertions are provided at the end
of the present article).

In this paper we have obtained a stochastic integral representation of the processes
(XH,H′ (t))t≥0 = (E(ZH(t) | F H

′
t ))t≥0 for an arbitrary pair of (H, H

′
) ∈ (0, 1)2. In

the case of dual pairs, integrands in the stochastic representations are constructed
directly from the definition of the process. This study was triggered by our discov-
ery that in the case when (H, H

′
) is a dual pair, the conditional expectation process

(E(ZH(t) | F H
′

t ))t≥0 is a martingale. The proof of that fact follows directly from (3)
using (1). It turned out that the dual pair martingale XH,H′ is in fact, up to a multi-
plicative constant, the fundamental martingale of Molchan ([8], [9]). Norros, Valkeila
and Virtamo [10] have rediscovered that martingale while studying Girsanov for-
mula for fractional Brownian motions. Results in [8], [9] and [10] were obtained by
considering a single fractional Brownian motion process. Since any Gaussian mar-
tingale has independent increments, reformulated, our results state that when the
process (ZH(t))t≥0 is orthogonally projected to the increasing sequence of Hilbert

spaces (HH′

t )t≥0, where HH
′

t = L{ZH′ (r) | 0 ≤ r ≤ t}, its increments decorrelate.
Therefore the pair (ZH(t), ZH′ (t))t≥0 contains information sufficient to transform
each of them to a new process with independent increments. In particular, this
implies that the covariance structure of Z contains additional information about
(ZH(t))t≥0 which comes into light by studying (ZH(t))t≥0 as a subfamily of Z. It
is natural to ask what happens to XH,H′ if (H, H

′
) is not a dual pair. In that case,

as we expected, XH,H′ decomposes into a martingale and an additional process,
which is getting closer to a martingale when H + H

′
approaches to 1.

The paper is organized as follows: In the second section we have concentrated
our attention to the dual pair (martingale case) and built the kernel of a stochastic
integral representation for this martingale directly from the definition. Hypergeo-
metric functions turn out to be the main tool for the construction. The proof does
not depend on whether H is greater or less than 1/2. We have taken a step further
and decomposed each fractional Brownian motion into the sum of two processes one
being Gaussian-Markov process. For H > 0.4 the Gaussian Markov process approx-
imates fractional Brownian motion surprisingly well. A discussion in this direction
is contained in [10].

The last section of the paper is devoted to deriving a stochastic integral repre-
sentation for the general case of XH,H′ . Proof is based on the theory of fractional
integrals and derivatives and hypergeometric functions.

Samko et al. [12] is the main source for all properties of fractional integrals and
derivatives used in this paper, while Abramowitz and Stegun [1] and Andrews et
al. [2] are the source for properties of hypergeometric functions.

2. Martingale case

Fundamental martingale of fractional Brownian motion was discovered by Molchan
([8], [9]) at the end of 1960s as a stochastic integral respect to time dependent ker-
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nel. Norros, Valkeila and Virtamo [10] have obtained fundamental martingales while
studying Girsanov formula for fractional Brownian motions. In this section, from
the definition of dual pair martingales, we have built the kernel, which when inte-
grated with respect to a fractional Brownian motion recovers, up to a constant, the
fundamental martingale of Molchan associated to that fractional Brownian motion.

Let MH = (MH(t))t≥0 be the process defined by

(4) MH(t) = E(ZH′ (t) | F H
t )

where H + H
′

= 1. As already mentioned that process is a martingale. In this
section our attention is focused on projections of a fractional Brownian motion. In
order to simplify notation we have exchanged the roles of H and H

′
. In the section

that follows we will return to the original notation. Since MH(t) is a conditional
expectation of ZH′ (t) respect to F H

t , it is an element of the Gaussian space gen-
erated by {ZH(s) | 0 ≤ s ≤ t}. Any element of the Gaussian space determined by
{ZH(s) | 0 ≤ s < ∞} is a stochastic integral∫ ∞

0

f(u) dZH(u)

of some f in an appropriate Hilbert space ΓH (see Huang and Cambanis [6]).
Therefore, for every t > there is ft ∈ ΓH so that

MH(t) =
∫ ∞

0

ft(u) dZH(u).

Our goal is to identify ft. Since (MH(t))t∈[0,∞) is a martingale respect to the
filtrations (F H

t )t∈[0,∞), ft(u) = 0 when u > t.
An important property of ft is easily derived by considering finite-dimensional

approximations of E(ZH′ (t) | F H
t ). For a fixed t let n be an integer, Δu = t/n,

ui = iΔu, i = 0, 1, . . . , n. Since

MH,n(t) = E (ZH′ (t) | ZH(ui), i = 0, . . . , n)
= E (ZH′ (t) | ZH(ui) − ZH(ui−1), i = 1, . . . , n) ,

we have

MH,n(t) =
n∑

i=1

α∗
i (ZH(ui) − ZH(ui−1)),

where α∗ = (α∗
i ) is an element of R

n for which the minimum, defined by

min

⎧⎨⎩E

⎛⎝ZH′ (t) −
n∑

i=1

αi(ZH(ui) − ZH(ui−1))

)2
∣∣∣∣∣∣ (α1, . . . , αn) ∈ R

n

⎫⎬⎭ ,

is achieved. That minimum is a solution of the system of linear equations
n∑

j=1

α∗
jE ((ZH(ui) − ZH(ui−1))(ZH(uj) − ZH(uj−1))))

= E(ZH′ (t)(ZH(ui) − ZH(ui−1)), i = 1, . . . , n.

That system can be rewritten as
(5)

n∑
j=1

α∗
j

(
|i − j − 1|2H + |i − j + 1|2H

2
− |i − j|2H

)
= aHΔu1−2H , i = 1, . . . , n.
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The equations i and n − i of that system do not change if (α∗
i ) and replaced by

(α∗
n−i). Since the matrix

A =

[
|i − j − 1|2H + |i − j + 1|2H

2
− |i − j|2H

]
n×n

is regular, the solution of the system (5) is unique and consequently (α∗
i ) = (α∗

n−i).
So, if 0 < u < u + Δu < t, the contribution of ZH(u + Δu) − ZH(u) to MH(t) is
the same as of ZH(t − u) − ZH(t − u − Δu), which implies that

(6) ft(u) = ft(t − u), u ∈ (0, t).

Since (
E

(
ZH(s)

∫ t

0

ft(u)dZH(u)
))2

≤ s2HE

(∫ t

0

ft(u)dZH(u)
)2

and

E (ZH(s)(ZH(ti) − ZH(ti−1)))

=
1
2
(t2H

i − |ti − s|2H −
(
t2H
i−1 − |ti−1 − s|2H

)
= H

(
u2H−1

i + sgn(s − ui) |s − ui|2H−1
)

(ti − ti−1)

for some ui ∈ [ti−1, ti], and all intervals not containing s, it follows, with some care,
that
(7)

E

(
ZH(s)

∫ t

0

ft(u)dZH(u)
)

= H

∫ t

0

ft(u)
(
u2H−1 + sgn(s − u) |s − u|2H−1

)
du.

When s ≤ t then

E(MH(t)ZH(s)) = E((ZH′ (t) | F H
t )ZH(s)) = E(ZH′ (t)ZH(s)) = aHs,

and the equation (7) becomes

(8) aHs = H

∫ t

0

ft(u)
(
u2H−1 + sgn(s − u) |s − u|2H−1

)
du.

Setting s = t in (8) and applying (6) yields

aHt = H

∫ t

0

ft(u)
(
u2H−1 + |t − u|2H−1

)
du = 2H

∫ t

0

ft(u)u2H−1du.

Therefore determining ft boils down to solving the following integral equation

(9) aH

(
s − t

2

)
= H

∫ t

0

ft(u)sgn(s − u) |s − u|2H−1
du.

Equation (9) can be further simplified. Since (MH(t))t≥0 is a (1 − H)-selfsimilar
process, that is,

MH(ht) d= h1−HMH(t),
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or

MH(ht) =
∫ ht

0

fht(u)dZH(u) =
∫ ht

0

fht(hv)dZH(hv) d= h1−H

∫ t

0

ft(v)dZH(v),

and since (ZH(t))t≥0 is H-selfsimilar we have

hH

∫ t

0

fht(hv)dZH(v) d= h1−H

∫ t

0

ft(v)dZH(v).

The last equation holds true if

(10) fht(hv) = h1−2Hft(v).

Based on (6), one of possible candidates for ft is of the form cH(t − u)pup, and if so
p = 1

2 − H (by (10)). We are left to prove that for any v ∈ [0, 1], and some constant
c = aH/HcH , the following is true

(11)
∫ 1

0

(1 − u)
1
2 −H

u
1
2 −Hsgn(v − u) |v − u|2H−1

du = c(v − 1
2
).

The last equation can be transformed, which is done below, into a hypergeometric
function identity. The subject of hypergeometric function identities is more than 250
years old. There are thousand of hypergeometric identities, hundreds of them having
simple right-hand side expression. We have consulted the most common handbooks
that include hypergeometric identities (Abramowitz and Stegun [1], Gradshteyn
and Ryznik [5]), searched the web, but have found none matching our equation
(11). The following result might be a new hypergeometric identity.

Theorem 1 (Hypergeometric identity). For any v, 0 ≤ v ≤ 1, the following
identity holds ∫ 1

0

(1 − u)
1
2 −H

u
1
2 −Hsgn(v − u) |v − u|2H−1

du

= 2Γ (3/2 − H) Γ (H + 1/2)
(

v − 1
2

)
.

Proof. The main tool that connects different expected values associated to frac-
tional Brownian motions and hypergeometric functions 2F1 is the famous Euler’s
Integral Representation. Proved in 1769, it states that for Re (c) >Re(b) and
z ∈ C \ [1, ∞) (see [1] formula 15.3.1) the following holds

(12) 2F1 (a, b, c; z) =
Γ (c)

Γ (b) Γ (c − b)

∫ 1

0

yb−1 (1 − y)c−b−1 (1 − zy)−a
dy.

All hypergeometric functions in this paper are 2F1 functions, and therefore we will
suppress indices in F . For the proof we will need the following hypergeometric
identities:

a) ([1], formula 15.3.7)

F (a, b, c; z) =
Γ (c) Γ (b − a)
Γ (b) Γ (c − a)

(−z)−a
F

(
a, 1 − c + a, 1 − b + a;

1
z

)
+

Γ (c) Γ (a − b)
Γ (a) Γ (c − b)

(−z)−b
F

(
b, 1 − c + b, 1 − a + b;

1
z

)
,(13)

which holds for | arg(−z)| < π, z /∈ (0, 1),
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b) the well known Pfaff identity from 1797 ([1], formula 15.3.4)

(14) F (a, b, c; z) = (1 − z)−a
F

(
a, c − b, c;

z

z − 1

)
,

c) ([1], formula 15.4.1)

(15) F (−m, b, c; z) =
m∑

n=0

(−m)n(b)n

(c)n

zn

n!
,

and
d) ([1], formula 15.3.3)

(16) F (a, b, c; z) = (1 − z)c−a−b
F (c − a, c − b, c; z) .

Set

I =
∫ v

0

(1 − u)
1
2 −H

u
1
2 −H(v − u)2H−1du

−
∫ 1

v

(1 − u)
1
2 −H

u
1
2 −H (u − v)2H−1

du

= I1 − I2.

Substituting u = tv in I1, and then applying Euler’s representation (12), we obtain

I1 = vH+1/2

∫ 1

0

t1/2−H (1 − vt)1/2−H (1 − t)2H−1
dt

=
Γ (3/2 − H) Γ (2H)

Γ (H + 3/2)
vH+1/2F (H − 1/2, 3/2 − H, H + 3/2; v).

Transformation of I2 into a hypergeometric function is done by substitutions, u =
x + v first, then x = (1 − v)y, followed by the Euler’s Representation formula,
yielding

I2 = (1 − v)H+1/2
∫ 1

0

((1 − v) t + v)1/2−H (1 − t)1/2−H
t2H−1dt

= (1 − v)H+1/2
v1/2−H

∫ 1

0

t2H−1 (1 − t)1/2−H

(
1 − t

v − 1
v

)1/2−H

dt

=
Γ (2H) Γ (3/2 − H)

Γ (H + 3/2)
(1 − v)H+1/2

v1/2−H ×(17)

F

(
H − 1/2, 2H, H + 3/2;

v − 1
v

)
.

The hypergeometric function in the above formula, when H ∈ (0, 1) \ {1/2}, by
identity (13) can be rewritten as

F

(
H − 1/2, 2H, H + 3/2;

v − 1
v

)
(18)

=
Γ

(
H + 3

2

)
Γ

(
H + 1

2

)
Γ (2H)

(
1 − v

v

) 1
2 −H

F

(
H − 1

2
, −1,

1
2

− H;
v

v − 1

)
+

Γ
(
H + 3

2

)
Γ

(
− 1

2 − H
)

Γ
(
H − 1

2

)
Γ

(
3
2 − H

) (
1 − v

v

)−2H

F

(
2H, H − 1

2
,
3
2

+ H;
v

v − 1

)
.
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An application of the Euler’s reflection formula

Γ (z) Γ (1 − z) =
π

sin (πz)
,

yields
Γ (H + 3/2) Γ (−1/2 − H)
Γ (H − 1/2) Γ (3/2 − H)

=
π

sin(π(H+3/2))
π

sin(π(H−1/2))

= 1.

One of elementary properties of hypergeometric functions F (a, b, c; z) = F (b, a, c; z)
together with (15) simplifies the second hypergeometric function in (18) to

F

(
H − 1/2, −1, 1/2 − H;

v

v − 1

)
=

1∑
n=0

(−1)n(H − 1/2)n

(1/2 − H)n

(
v

v−1

)n

n!
= 1 +

v

v − 1
.

By Pfaff’s formula (14)

F

(
2H, H − 1/2, 3/2 + H;

v

v − 1

)
= (1 − v)2H

F (2H, 2, 3/2 + H; v) ,

and an application of (16) assures that

F (2H, 2, 3/2 + H; v) = vH+1/2F (3/2 − H, H − 1/2, 3/2 + H; v)
= vH+1/2F (H − 1/2, 3/2 − H, 3/2 + H; v) .

After all transformations performed on I2, for H ∈ (0, 1) \ { 1
2 }, we have

I2 = −Γ (3/2 − H) Γ (H + 1/2) (2v − 1)

+
Γ (2H) Γ (3/2 − H)

Γ (H + 3/2)
vH+1/2F (H − 1/2, 3/2 − H, 3/2 + H; v)

= −Γ (3/2 − H) Γ (H + 1/2) (2v − 1) + I1,

and in the light of I = I1 − I2 the proof follows.

Therefore we have proved the following Theorem:

Theorem 2. Let H + H
′
= 1.Then

MH(t) = E(ZH′ (t) | F H
t ) = cH

∫ t

0

(1 − u)
1
2 −H

u
1
2 −HdZH(u)

where

cH =
aH

2HΓ (3/2 − H) Γ (H + 1/2)
=

√
Γ (3 − 2H) Γ (2H + 1) sin2(πH)
2HΓ (3/2 − H) Γ (H + 1/2)

.

The kernel in the theorem above turns out to be the same as in [10] except for
the constant. Our constant is (2H)2aH times larger.

2.1. Gaussian Markov processes inside fractional Brownian motion

In the Gaussian field (ZH(t))(t,H)∈[0,∞)×(0,1) dual pairs (H, H
′
), H + H

′
= 1 play

an important role. Orthogonal projection of (ZH′ (t))t≥0 to (F H
t )t≥0 decorrelates in-

crements of (ZH(t))t≥0. But, how “much of the Markovian” property of (ZH(t))t≥0
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does (ZH′ (t))t≥0 encode? The answer is surprising, a lot. Let us make this statement
more specific.

The function αH : [0, ∞) → R defined by

αH(t) =
E(ZH(t)MH(t))

EM2
H(t)

.

minimizes
E (ZH(t) − α(t)MH(t))2 .

Since

(19) E(ZH(t)MH(t)) = E(ZH(t)ZH′ (t)) = aHt,

and
EM2

H(t) = E(MH(t)ZH′ (t)),

by Theorem 2 and substitution u = tv it follows
(20)

EM2
H(t) = cHaHt2−2H

∫ 1

0

u
1
2 −H(t − u)

1
2 −Hdu = cHaHB

(
3
2

− H,
3
2

− H

)
t2−2H .

Therefore by (19) and (20)

αH(t) =
Γ(3 − 2H)

cHΓ2( 3
2 − H)

t2H−1.

Set
YH(t) = ZH(t) − αH(t)MH(t),

and note that by equations (19) and (20)

EY 2
H(t) = t2H − (E(ZH(t)MH(t)))2

EM2
H(t)

= t2H

(
1 − aHΓ(3 − 2H)

cHΓ2( 3
2 − H)

)
= t2Hd2

H .

Recall

aH = 2HcHB

(
1
2

+ H,
3
2

− H

)
,

which establishes

d2
H = 1 − 2H

Γ
(

1
2 + H

)
Γ(3 − 2H)

Γ
(

3
2 − H

) .

The graph of dH is shown on Figure 1.
For H ∈ (0.4, 1) the Gaussian-Markov process

GH = (GH(t))t≥0 = (αH(t)MH(t))t≥0

approximates ZH with a relative L2 error of at most 12%. As H decreases below
0.4 the approximation worsens. The connection between GH(t) and ZH(t) has been
observed in [10].

Let us find the covariance of YH . If t > s, by the martingale property of MH ,

E(YH(s)YH(t)) = E(YH(s)ZH(t)) = E(ZH(s)ZH(t)) − αH(s)E(MH(s)ZH(t)).
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Fig 1. Graph of dH .

Using Theorem 2 we obtain

E(MH(s)ZH(t)) = cHH

∫ s

0

u
1
2 −H(s − u)

1
2 −H

(
u2H−1 + (t − u)2H−1

)
du.

By substitution u = sv, and the Euler’s representation formula (12) it readily
follows

E(ZH(t)MH(s)) = cHHs

∫ 1

0

v
1
2 −H(1 − v)

1
2 −Hv2H−1dv

+cHHs2−2H

∫ 1

0

v
1
2 −H(1 − v)

1
2 −H(t − sv)2H−1dv

= cHHs

(
B

(
H +

1
2
,
3
2

− H

)
+

(s

t

)1−2H Γ2
(

3
2 − H

)
Γ (3 − 2H)

F

(
1 − 2H,

3
2

− H, 3 − 2H;
s

t

))
,

and consequently the second term in the correlation expression becomes

αH(s)E(ZH(t)MH(s)) = s2HH

(
Γ(3 − 2H)Γ(H + 1

2 )
Γ( 3

2 − H)

+
(s

t

)1−2H

F

(
1 − 2H,

3
2

− H, 3 − 2H;
s

t

))
= s2HH

Γ(3 − 2H)Γ(H + 1
2 )

Γ
(

3
2 − H

) + s2HfH

(s

t

)
.

So the covariance of YH is given by

E(YH(s)YH(t)) = E(YH(s)YH(t)) − (s ∧ t)2HH
Γ(3 − 2H)Γ

(
H + 1

2

)
Γ

(
3
2 − H

)
−s2HfH

(
s ∧ t

s ∨ t

)
.
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Notice that middle term of the covariance of YH is a martingale part.
It is trivial to prove, but worthwhile to observe, that the decomposition

ZH(t) = GH(t) + YH(t)

of a fractional Brownian motion into the Gaussian-Markov process GH and the YH

process has one interesting feature, namely for each t the processes (YH(s))s∈[0,t]

and (GH(s))s∈[t,∞) are independent.

3. General pairs

This section is devoted to finding, for an arbitrary pair (H, H
′
) ∈ (0, 1) × (0, 1), an

explicit representation of the process XH,H′ (t) = E(ZH(t) | F H
′

t ).

It is possible to find a Brownian motion WH
′

such that the filtration (F H
′
)t≥0,

up to sets of measure zero, coincides with the filtration (σ(WH
′

s | 0 ≤ s ≤ t))t≥0,
and such that ZH′ (t) can be expressed as

ZH′ (t) =
∫ t

0

CH′

⎛⎝(
t

s

)H
′ − 1

2

(t − s)H
′ − 1

2(21)

−
(

H
′ − 1

2

)
s

1
2 −H

′
∫ t

s

uH
′ − 3

2 (u − s)H
′ − 1

2 du

)
dWH

′

s ,

where CH′ is a suitable constant (see for example [10]). Moreover, the kernel is
equal to

(22) CH′ (t − s)H
′ − 1

2 F

(
1
2

− H
′
, H

′ − 1
2
, H

′
+

1
2
, 1 − t

s

)
,

where F = 2F1 is the Gauss Hypergeometric function (see Decreusefond [3]). The
kernel can be rewritten in terms of fractional integrals too, see Pipiras and Taqqu
[11], and then ZH′ (r), for 0 ≤ r ≤ t, can be expressed as

ZH′ (r) = σH′

∫ t

0

s
1
2 −H

′

I
H

′ − 1
2

t−

(
(·)H

′ − 1
2 1[0,r)

)
(s) dWH

′

s

= σH′

∫ r

0

s
1
2 −vI

H
′

− 1
2

r−

(
(·)H

′ − 1
2

)
(s) dWH

′

s ,(23)

where

σ2
H′ =

π
(
H

′ − 1
2

) (
2

(
H

′ − 1
2

)
+ 1

)
Γ

(
1 − 2

(
H ′ − 1

2

))
sin

(
π

(
H ′ − 1

2

)) .

For each t there is exist a unique function gH,H′ (·, t) ∈ L2[0, t], such that

(24) XH,H′ (t) =
∫ t

0

gH,H′ (s, t)dWH
′

s .

From definition (3), equations (23), (24), and the covariance of the the fractional
Brownian field (1) it follows that, for 0 ≤ r ≤ t,

E
(
XH,H′ (t) ZH′ (r)

)
= σH′

∫ r

0

gH,H′ (s, t) s
1
2 −H

′

I
H

′ − 1
2

r−

(
(·)H

′ − 1
2

)
(s) ds

= aH,H′
tH+H

′
+ rH+H

′
− (t − r)H+H

′

2
.(25)
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Uniqueness of conditional expectations assures that a function gH,H′ (·, t) solving
(25) is unique.

Theorem 3. The process XH,H′ can be represented as

XH,H′ (t) =
∫ t

0

gH,H′ (s, t)dWH
′

s ,

where for 0 ≤ r ≤ t,

gH,H′ (r, t) = αH,H′ rH
′ − 1

2 I
1
2 −H

′

0+

(
uH− 1

2 + u
1
2 −H

′

(t − u)H+H
′ −1

)
(r) ,

and

(26) αH,H′ =

(
H + H

′
)

aH,H′

2σH′
.

Proof. When H
′
= 1

2 , it is straightforward to verify that gH,H′ given by the previous
expression satisfies equation (25).
Proof for H

′
> 1/2

First step toward solving the integral equation (25) is to rewrite the integral in
(25) by applying the fractional integration by parts formula (see equation (2.20)
in [12]). Conditions for applying the formula are met since s → gH,H′ (s)s

1
2 −H

′

is in L1[0, r] (by Cauchy-Schwarz), and s → sH
′ − 1

2 is in Lq[0, r] for all q ≥ 1. In
particular s → sH

′ − 1
2 is in Lq[0, r] for q satisfying 1

1+ 1
q < 1+(H

′ − 1
2 ). Consequently

E
(
XH,H′ ZH′ (r)

)
= σH′

∫ r

0

sH
′ − 1

2 I
H

′ − 1
2

0+

(
(·)

1
2 −H′

gH,H′ (·)
)

(s) ds, 0 ≤ r ≤ t,

and after differentiation respect to r, the equation (25) turns into the following a.e.
identity
(27)

I
H

′ − 1
2

0+

(
(·)

1
2 −H

′

gH,H′ (·, t)
)

(r) = αH,H′
rH+H

′ −1 + (t − r)H+H
′ −1

rH′ − 1
2

, r ∈ [0, t] ,

where αH,H′ is given by equation (26). It is left to invert the integral opera-

tor I
H

′ − 1
2

0+ . Since (·) 1
2 −H

′
gH,H′ (·, t) ∈ L1[0, t], by Theorem 2.4 [12] I

1
2 −H

′

0+ inverts

I
H

′ − 1
2

0+ , consequently for 0 ≤ r ≤ t

(28) gH,H′ (r, t) = αH,H′ rH
′ − 1

2 I
1
2 −H

′

0+

(
uH− 1

2 + u
1
2 −H

′

(t − u)H+H
′ −1

)
(r) .

Proof for H
′
< 1/2

This case will be proved by verifying that gH,H′ defined by (28) satisfies (25). Set
g̃ to be the right-hand-side of (28). First, let us show that g̃ ∈ L2[0, t]. By formula
(2.44) in [12]

(29) I
1
2 −H

′

0+

(
uH− 1

2

)
(r) =

Γ
(
H + 1

2

)
Γ (1 + H − H ′ )

rH−H
′

,
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and therefore

rH
′ − 1

2 I
1
2 −H

′

0+

(
uH− 1

2

)
(r) =

Γ
(
H + 1

2

)
Γ (1 + H − H ′ )

rH− 1
2 ∈ L2 [0, t] .

We are left to establish that the second summand of g̃,

r → rH
′ − 1

2 I
1
2 −H′

0+

(
u

1
2 −H

′

(t − u)H+H′ −1
)

(r)

belongs to L2[0, t]. For that step hypergeometric functions are the right tool. By
formula (2.46) in [12] for 0 < r < t,

I
1
2 −H

′

0+

(
u

1
2 −H

′

(t − u)H+H
′ −1

)
(r) = tH+H

′ −1
Γ

(
3
2 − H

′
)

Γ (2 − 2H ′ )
r1−2H

′

×F

(
1 − H − H

′
,
3
2

− H ′, 2 − 2H
′
;
r

t

)
(30)

and hence the problem boils down to the study of

(31) hH(r) = r
1
2 −H

′

F

(
1 − H − H

′
,
3
2

− H
′
, 2 − 2H

′
;
r

t

)
, 0 < r < t.

A hypergeometric series

F (a, b, c; z) =
∞∑

n=0

(a)n(b)n

(c)n
zn

converges absolutely for |z| < 1 and by Theorem 2.1.2 in [2] if c − a − b > 0 for
|z| ≤ 1. For hypergeometric function factor in (31) c − a − b = H − 1/2. Therefore,
if H > 1/2, hH ∈ L2[0, t], since its hypergeometric factor is continuous on [0, t]
and r

1
2 −H

′
∈ L2[0, t]. The case c − a − b = H − 1/2 < 0 is a bit more complex.

Theorem 2.1.3 in [2] states that if c − a − b < 0 then

lim
x→1−

F (a, b, c; x)
(1 − x)c−a−b

=
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
,

and if c − a − b = 0 then

lim
x→1−

F (a, b, c; x)
log(1/(1 − x))

=
Γ(a + b)
Γ(a)Γ(b)

.

Consequently when H < 1/2 the hypergeometric function in (31), when r is close
to t, r < t, behaves like (t − r)H−1/2, hence hH ∈ L2[0, t]. For H = 1/2, the function
F (1 − H − H

′
, 3

2 − H
′
, 2 − 2H

′
; r

t ) behaves as log(1 − r
t ) for r is close to t, r < t,

implying hH ∈ L2[0, t]. So it is verified that g̃ ∈ L2[0, t].
It is left to check that g̃ satisfies (25). Note that

E

(∫ t

0

g̃ (s) dWsdZH′ (r)
)

= σ
H

′ αH,H′

∫ r

0

I
1
2 −H

′

0+

(
uH− 1

2 + u
1
2 −H

′

(t − u)H+H
′ −1

)
(s)

×I
H

′ − 1
2

r−

(
uH

′ − 1
2

)
(s) ds.(32)
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Our goal is to apply the formula of fractional integration by parts to move the

integral I
1
2 −H

′

0+ . This formula can be applied in (32) if

uH− 1
2 + u

1
2 −H

′

(t − u)H+H′ −1 ∈ Lp [0, r] ,

I
H

′ − 1
2

r−

(
uH

′ − 1
2

)
(s) ∈ Lq [0, r] ,

and

(33)
1
p

+
1
q

≤ 1 +
1
2

− H
′
.

By formula (3.4) and Lemma 3.4 in Jost [7]

I
H

′ − 1
2

r−

(
uH

′ − 1
2

)
(s) =

1
Γ

(
H ′ + 1

2

) (r − s)H
′ − 1

2 rH
′ − 1

2(34)

×F

(
1
2

− H
′
, 1, H

′
+

1
2
;
r − s

r

)
.

For the hypergeometric factor in (34) c − a − b = 2H
′ − 1 < 0, so by Theorem 2.1.3

in [2]

lim
s→0+

F
(

1
2 − H

′
, 1, H

′
+ 1

2 ; r−s
r

)
(1 − r−s

r )2H′ −1
=

Γ(H
′
+ 1

2 )Γ(1 − 2H
′
)

Γ( 1
2 − H ′ )

,

s → I
H

′ − 1
2

r− (uH
′ − 1

2 )(s) behaves as s2H
′ −1 when s is close to 0. Since the hypergeo-

metric function in (34) it is bounded when s is away from 0,

s → I
H

′ − 1
2

r−

(
uH

′ − 1
2

)
(s) ∈ Lq[0, r]

for any q, 0 < q < min{1/(1 − 2H
′
), 2}. Observe that, for 0 < r < t,

u → uH− 1
2 + u

1
2 −H

′

(t − u)H+H
′ −1 ∈ L2 [0, r] .

Choosing q so that
1

1 − H ′ < q < min
{

1
1 − 2H ′ , 2

}
assures that both condition (33) and 0 < q < 1/(1−2H

′
) are satisfied. Applying the

fractional integration by parts formula to the right-hand side of (32) that expression
becomes

σH′ αH,H′

∫ r

0

(
sH− 1

2 + s
1
2 −H

′

(t − s)H+H
′ −1

)
I

1
2 −H

′

r− I
H

′ − 1
2

r−

(
uH

′ − 1
2

)
(s) ds,

and it is further simplified by formula (3.9) in [7] to

σH′ αH,H′

∫ r

0

(
sH− 1

2 + s
1
2 −H

′

(t − s)H+H
′ −1

)
sH

′ − 1
2 ds

=
σH′ αH,H′

H + H ′

(
rH+H

′

+ tH+H
′

− (t − r)H+H′ )
.

Recalling that αH,H′ =
(H+H

′
)a

H,H
′

2σ
H

′
completes the proof of the theorem.
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3.1. An alternative expression for the kernel

Using identities (29) and (30), valid for 0 < H
′
, H < 1, the kernel gH,H′ (r, t),

0 ≤ r ≤ t, can be rewritten as

gH,H′ (r, t) = αH,H′
Γ

(
H + 1

2

)
Γ (1 + H − H ′ )

rH− 1
2(35)

+αH,H′

Γ
(

3
2 − H

′
)

Γ (2 − 2H ′ )

×tH+H
′ −1r

1
2 −H

′

F

(
1 − H − H ′,

3
2

− H
′
, 2 − 2H

′
;
r

t

)
.

Remark 4. Since XH,H′ (t) = E(ZH(t) | F H
′

t ) =
∫ t

0
gH,H′ (r, t) dWH

′

r holds for
any pair (H, H

′
) ∈ (0, 1)2, setting H = H

′
, gives XH,H′ (t) = ZH′ (t). Therefore,

by uniqueness, gH′,H′ coincides with the kernel that represents fBm as a stochastic
integral on a finite interval (see equations (21), (22) and (23)). This statement could
also be verified using special functions identities.

Remark 5. As we have seen in section 2, in the case H = 1 − H
′
, XH,H′ (t) is, up

to a constant multiple, the fundamental martingale of ZH′ . This also follows from
(35). Recall that the fundamental martingale of a fBm ZH′ given by (21) is the

process MH′ (t) = γH′
∫ t

0
s

1
2 −H

′
dWH

′

s , where γH′ is a suitable constant (see [10]).
To see that X1−H′ ,H′ is the fundamental martingale, up to a constant multiple, it
is enough to substitute H = 1 − H

′
in (35) and observe that F (0, 3

2 − H
′
, 2 − 2H

′
; r

t )
is a constant.

Remark 6. It is straightforward to see using (35) that the centered Gaussian
process XH,H′ is H-selfsimilar.

Remark 7. From equation (35) it follows that XH,H′ decomposes into a sum of
two processes, one of them being a martingale.
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