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On the longest increasing subsequence for

finite and countable alphabets

Christian Houdré1 and Trevis J. Litherland1

Georgia Institute of Technology

Abstract: Let X1, X2, . . . , Xn, . . . be a sequence of iid random variables with
values in a finite ordered alphabet {α1, . . . , αm }. Let LIn be the length of the
longest increasing subsequence of X1, X2, . . . , Xn. Properly centered and nor-
malized, the limiting distribution of LIn is expressed as various functionals of
m and (m − 1)-dimensional Brownian motions. These expressions are then re-
lated to similar functionals appearing in queueing theory, allowing us to further
describe asymptotic behaviors when, in turn, m grows without bound. The fi-
nite alphabet results are then used to treat the countable (infinite) alphabet
case.

1. Introduction

The pursuit of a robust understanding of the asymptotics of the length of the
longest increasing subsequence Lσn of a random permutation of length n – often
known as “Ulam’s Problem” – has given rise to a remarkable collection of results.
The work of Logan and Shepp [22], and Vershik and Kerov [32], first showed that
ELσn/

√
n → 2. Following this fundamental asymptotic result, Baik, Deift, and Jo-

hansson, in their landmark paper [2], determined the limiting distribution of Lσn,
properly centered and normalized. This problem has thus emerged as a nexus of
once seemingly unconnected mathematical ideas. Indeed, the latter paper is, in par-
ticular, quite remarkable for the sheer breadth of mathematical machinery required,
machinery calling upon an understanding of random matrix theory, the asymptotics
of Toeplitz operators, Riemann-Hilbert Theory, as well as the Robinson-Schensted-
Knuth correspondence, to obtain the limiting Tracy-Widom distribution.

Initial approaches to the problem relied heavily on combinatorial arguments.
Most work of the last decade, however, such as Seppäläinen [28], have instead
used interacting particle processes and so-called “hydrodynamical arguments” to
show that Lσn/

√
n → 2 in expectation and in probability. Building on these ideas,

Cator and Groeneboom [5] prove that ELσn/
√

n → 2 in a way that avoids both
ergodic decomposition arguments and the subadditive ergodic theorem. Aldous and
Diaconis [1] also connect these particle process concepts to the card game solitaire.
Finally, Seppäläinen [29] uses these particle processes to solve an open asymptotics
problem in queueing theory. Moving beyond the asymptotics of ELσn, Cator and
Groeneboom [6] use particle processes to directly obtain the cube-root asymptotics
of the variance of Lσn. Further non-asymptotic results for ELσn are to be found in
Pilpel [26] and Groeneboom [12].
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186 C. Houdré and T. J. Litherland

The related problem of the asymptotics of LIn, the length of the longest increas-
ing subsequence of a sequence drawn independently and identically from a finite
alphabet of size m, has developed along parallel lines. Tracy and Widom [31] as well
as Johannson [19] have shown, in the uniform case, that the limiting distribution
again enjoys a direct connection to the distribution of the largest eigenvalue in the
Gaussian Unitary Ensemble paradigm. Its, Tracy, and Widom [17, 18] have further
examined this problem in the inhomogeneous case, relating the limiting distribu-
tion to certain direct sums of GUEs. In another direction, Chistyakov and Götze
[7] have solved the two-letter Markov case.

Problems from statistical physics have long inspired a lot of the research into
these topics. Kuperberg [20], for instance, shows that certain quantum spin matrices
are, in law, asymptotically equal to a traceless GUE matrix. The standard general
overview of the subject of random matrices is Mehta [23], a work motivated and
influenced by some of the origins of the subject in physics.

While the above achievements have undoubtedly stimulated further inquiry, one
might still suspect that a more direct route to the limiting distribution of LIn

might be had, one whose methods reflect the essentially probabilistic nature of the
problem. This paper proposes a step towards such an approach for the independent
finite or infinite countable alphabet case, calling only upon some very well-known
results of classical probablity theory described. Indeed, the sequel will show that
the limiting distribution of LIn can be constructed in a most natural manner as a
Brownian functional. In the context of random growth processes, Gravner, Tracy,
and Widom [11] have already obtained a Brownian functional of the form we derive.
This functional appeared first in the work of Glynn and Whitt [10], in queueing
theory, and its relation to the eigenvalues of the GUE has also been elucidated
by Baryshnikov [3]. It is, moreover, remarked in [11] that the longest increasing
subsequence problem could also be studied using a Brownian functional formulation.

We begin our study of this problem, in the next section, by expressing LIn as
a simple algebraic expression. Using this simple characterization, we then briefly
determine, in Section 3, the limiting distribution of LIn in the case of an m-letter
alphabet with each letter drawn independently. Our result is expressed as a func-
tional of an (m − 1)-dimensional Brownian motion with correlated coordinates.
Using certain natural symmetries, this limiting distribution is further expressed as
various functionals of (standard) multidimensional Brownian motion. Some connec-
tions with the Brownian functional originating with the work of Glynn and Whitt in
queueing theory are also investigated. This easily leads, from known random matrix
results, to various asymptotic limits as m grows. Section 5 is devoted to developing
the corresponding results for infinite countable alphabets. In Section 6, we finish
the paper by indicating some open questions and future directions for research.

2. Combinatorics

Let X1, X2, . . . , Xn, . . . be a sequence of values taken from an m-letter ordered
alphabet, α1 < α2 < · · · < αm. Let ar

k be the number of occurrences of αr among
X1, X2, . . . , Xk, 1 ≤ k ≤ n. Each increasing subsequence of X1, X2, . . . , Xn consists
simply of runs of identical values, with the values of each successive run forming
an increasing subsequence of αr. Moreover, the number of occurrences of αr ∈
{α1, . . . , αm} among Xk+1, . . . , X�, where 1 ≤ k < � ≤ n, is simply ar

� − ar
k. The
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length of the longest increasing subsequence of X1, X2, . . . , Xn is then given by

(2.1) LIn = max
0≤k1≤···

≤km−1≤n

[(a1
k1

− a1
0) + (a2

k2
− a2

k1
) + · · · + (am

n − am
km−1

)],

i.e.,

(2.2) LIn = max
0≤k1≤···

≤km−1≤n

[(a1
k1

− a2
k1

) + (a2
k2

− a3
k2

) + · · · + (am−1
km−1

− am
km−1

) + am
n ],

where ar
0 = 0. For i = 1, . . . , n and r = 1, . . . , m − 1, let

(2.3) Zr
i =

⎧⎪⎨
⎪⎩

1, if Xi = αr,

−1, if Xi = αr+1,

0, otherwise,

and let Sr
k =

∑k
i=1 Zr

i , k = 1, . . . , n, and also Sr
0 = 0. Then clearly Sr

k = ar
k − ar+1

k .
Hence,

(2.4) LIn = max
0≤k1≤···

≤km−1≤n

{S1
k1

+ S2
k2

+ · · · + Sm−1
km−1

+ am
n }.

Since a1
k, . . . , am

k must evidently sum to k, we have

n =
m∑

r=1

ar
n

=
m−1∑
r=1

⎛
⎝am

n +
m−1∑
j=r

Sj
n

⎞
⎠+ am

n

=
m−1∑
r=1

rSr
n + mam

n .

Solving for am
n gives us

am
n =

n

m
− 1

m

m−1∑
r=1

rSr
n.

Substituting into (2.4), we finally obtain

(2.5) LIn =
n

m
− 1

m

m−1∑
r=1

rSr
n + max

0≤k1≤···
≤km−1≤n

{S1
k1

+ S2
k2

+ · · · + Sm−1
km−1

}.

The expression (2.5) is of a purely combinatorial nature or, in more probabilistic
terms, is of a pathwise nature. We now analyze (2.5) in light of the probabilistic
nature of the sequence X1, X2, . . . , Xn.
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3. Probabilistic Development

We consider first the simpler case in which X1, X2, . . . , Xn, . . . are iid, with each
letter drawn uniformly from A = {α1, . . . , αm}.

Proposition 3.1. Let X1, X2, . . . , Xn, . . . be a sequence of iid random variables
drawn uniformly from the ordered finite alphabet A = {α1, . . . , αm}. Then

(3.1)
LIn − n/m√

2n/m
⇒ − 1

m

m−1∑
i=1

iB̃i(1) + max
0≤t1≤···

≤tm−1≤1

m−1∑
i=1

B̃i(ti),

where (B̃1(t), . . . , B̃m−1(t))0≤t≤1 is an (m − 1)-dimensional (centered) Brownian
motion with covariance matrix given by

(3.2) t

⎛
⎜⎜⎜⎜⎜⎝

1 −1/2 ©
−1/2 1 −1/2

. . . . . . . . .
© −1/2 1 −1/2

−1/2 1

⎞
⎟⎟⎟⎟⎟⎠ .

Proof. For each fixed letter r, the sequence Zr
1 , Zr

2 , . . . Zr
n, . . . as defined in (2.3)

is also formed of iid random variables with P(Zr
1 = 1) = P(Zr

1 = −1) = 1/m, and
P(Zr

1 = 0) = 1 − 2/m. Thus EZr
1 = 0, and E(Zr

1 )2 = 2/m, and so, VarSr
n = 2n/m,

for r = 1, 2, . . . , m − 1. Defining B̂r
n(t) = 1√

2n/m
Sr

[nt] +
1√

2n/m
(nt − [nt])Zr

[nt]+1, for

0 ≤ t ≤ 1, and noting that the local maxima of B̂i
n(t) occur at t = k/n, k = 0, . . . , n,

we have from (2.5) that

(3.3)
LIn − n/m√

2n/m
= − 1

m

m−1∑
i=1

iB̂i
n(1) + max

0≤t1≤···
≤tm−1≤1

[B̂1
n(t1) + · · · + B̂m−1

n (tm−1)].

We can now invoke Donsker’s Theorem since the measures Pn generated by
(B̂1

n(t), . . . , B̂m−1
n (t)) satisfy Pn(A) → P∞(A), for all Borel subsets A of the space of

continuous functions C([0, 1]m−1) for which P∞(∂A) = 0, where P∞ is the (m − 1)-
dimensional Wiener measure. Thus, by Donsker’s Theorem and the Continuous
Mapping Theorem we have that (B̂1

n(t), . . . , B̂m−1
n (t)) ⇒ (B̃1(t), . . . , B̃m−1(t)),

where the Brownian motion on the right has a covariance structure which we now
describe. First, Cov(Zr

1 , Zs
1) = EZr

1Zs
1 = 0, for |r − s| ≥ 2, and Cov(Zr

1 , Zr+1
1 ) =

EZr
1Zr+1

1 = −1/m, for r = 1, 2, . . . , m − 1. Then, as already noted, for each fixed
r, Zr

1 , Zr
2 , . . . Zr

n, . . . are iid, and for fixed k, Z1
k , Z2

k , . . . , Zm−1
k are dependent but

identically distributed random variables. Moreover, it is equally clear that for any
r and s, 1 ≤ r < s ≤ m − 1, the sequences (Zr

k)k≥1 and (Zs
� )�≥1 are also identi-

cal distributions of the Zr
k and that Zr

k and Zs
� are independent for k 	= �. Thus,

Cov(Sr
n, Ss

n) = nCov(Zr
1 , Zs

1). This result, together with the 2n/m normalization
factor gives (3.2) as covariance matrix of (B̃1(t), . . . , B̃m−1(t)).

Next, the functional in (3.3) is a bounded continuous functional on C([0, 1]m−1).
(This type of facts will be used throughout the paper.) Hence, by a final application
of the Continuous Mapping Theorem,

(3.4)
LIn − n/m√

2n/m
⇒ − 1

m

m−1∑
i=1

iB̃i(1) + max
0≤t1≤···

≤tm−1≤1

m−1∑
i=1

B̃i(ti).
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Remark 3.1. (i) Above, we obtained the limiting distribution of LIn as a Brownian
functional. Tracy and Widom [31] already obtained the limiting distribution of LIn

as the law of the largest eigenvalue of the traceless Gaussian Unitary Ensemble
(GUE) of m × m Hermitian matrices. Johansson [19] generalized this result to
encompass all m eigenvalues. Gravner, Tracy, and Widom [11] in their study of
random growth processes make a connection between the distribution of the largest
eigenvalue in the m × m GUE and a Brownian functional essentially equivalent,
up to a normal random variable, to the right hand side of (3.4). (This will become
clear as we refine our understanding of (3.4) in the sequel.)
(ii) For m = 2, (3.1) simply becomes

(3.5)
LIn − n/2√

n
⇒ − 1

2
B(1) + max

0≤t≤1
B(t),

where B is standard one-dimensional Brownian motion. A well-known result of
Pitman [27] implies that, up to a factor of 2, the functional in (3.5) is identical in
law to the radial part of a three-dimensional standard Brownian motion at time
t = 1. Specifically, Pitman shows that the two processes (2 max0≤s≤t B(s)−B(t))t≥0

and (
√

(B1(t))2 + (B2(t))2 + (B3(t))2)t≥0, have the same law, where (B1(t), B2(t),
B3(t))t≥0 is a standard 3-dimensional Brownian motion.

It is trivial to show that the functional in (3.5) does indeed have the same
distribution as that of the largest eigenvalue of a 2 × 2 matrix of the form(

X Y + iZ
Y − iZ −X

)
,

where X, Y , and Z are centered independent normal random variables, all with
variance 1/4.

It is instructive to express (3.1) in terms of an (m − 1)-dimensional standard
Brownian motion (B1(t), . . . , Bm−1(t)). It is not hard to check that we can express
B̃i(t), i = 1, . . . , m − 1, in terms of the Bi(t) as follows:

(3.6) B̃i(t) =

{
B1(t), i = 1,√

i+1
2i Bi(t) −

√
i−1
2i Bi−1(t), 2 ≤ i ≤ m − 1.

Substituting (3.6) back into (3.1), we obtain a more symmetric expression for
our limiting distribution:

(3.7)
LIn − n/m√

n
⇒ 1√

m
max

0≤t1≤···
≤tm−1≤tm=1

m−1∑
i=1

[
−
√

i

i + 1
Bi(ti+1) +

√
i + 1

i
Bi(ti)

]
.

The above Brownian functional is similar to one introduced by Glynn and Whitt
[10], in the context of a queueing problem:

(3.8) Dm = max
0=t0≤t1≤···

≤tm−1≤tm=1

m∑
i=1

[
Bi(ti) − Bi(ti−1)

]
,

where (B1(t), . . . , Bm(t)) is an m-dimensional standard Brownian motion. Gravner,
Tracy, and Widom [11], in studying a one-dimensional discrete space and discrete
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time process, have shown that its limiting distribution is equal to both that of
Dm and also that of the largest eigenvalue λ

(m)
1 of an m × m Hermitian matrix

taken from a GUE. That is, Dm and λ
(m)
1 are in fact identical in law. Indepen-

dently, Baryshnikov [3], studying closely related problems of queueing theory and
of monotonous paths on the integer lattice, has shown that the process (Dm)m≥1

has the same law as the process (λ(m)
1 )m≥1, where λ

(m)
1 is the largest eigenvalue of

the matrix consisting of the first m rows and m columns of an infinite matrix in
the Gaussian Unitary Ensemble.

Remark 3.2. It is quite clear that LIn ≥ n/m, since at least one of the m letters
must lie on a substring of length at least n/m. Hence, the limiting functional in
(3.1) must be supported on the positive real line. We can also see directly that the
functional on the right hand side of (3.7) is non-negative. Indeed, for consider the
more general Brownian functional of the form

max
0≤t1≤···

≤tm−1≤tm=1

m−1∑
i=1

[
βiB

i(ti+1) − ηiB
i(ti)

]
,

where 0 ≤ βi ≤ ηi, for i = 1, 2, . . . , m − 1. Now for any fixed ti+1 ∈ (0, 1], i =
1, . . . , m − 1, max0≤ti ≤ti+1 [βiB

i(ti+1)−ηiB
i(ti)] is at least as large as the maximum

value at the two extremes, that is, when ti = 0 or ti = ti+1. These two values are
simply βiB

i(ti+1) and (βi − ηi)Bi(ti+1). Since 0 ≤ βi ≤ ηi, at least one of these
two values is non-negative. Hence, we can successively find tm−1, tm−2, . . . , t1 such
that each term of the functional is non-negative. Thus the whole functional must
be non-negative. Taking βi =

√
i/(i + 1) and ηi =

√
(i + 1)/i, the result holds for

(3.7). The functional of Glynn and Whitt in (3.8) does not succumb to the same
analysis since the i = 1 term demands that t0 = 0.

Let us now turn our attention to the m-letter case wherein each letter αr ∈ A oc-
curs with probability 0 < pr < 1, independently, and the pr need not be equal as in
the previous uniform case. For the non-uniform case, Its, Tracy, and Widom in [17]
and [18] obtained the limiting distribution of LIn. Reordering the probabilities such
that p1 ≥ p2 ≥ · · · ≥ pm, and grouping those probabilities having identical values
p(j) of multiplicity kj , j = 1, . . . , d, (so that

∑d
j=1 kj = m and

∑d
j=1 p(j)kj = 1),

they show that the limiting distribution is identical to the distribution of the
largest eigenvalue of the direct sum of d mutually independent kj × kj GUEs,
whose eigenvalues (λ1, λ2, . . . , λm) = (λk1

1 , λk1
2 , . . . , λk1

k1
, . . . , λkd

1 , λkd
2 , . . . , λkd

kd
) sat-

isfy
∑m

i=1

√
piλi = 0. With the above ordering of the probabilities, the limiting

distribution simplifies to an integral involving only p1 and k1.
We now state our own result in terms of functionals of Brownian motion. The

form of the functional described, right below, is rather heavy. It is however this
form which is needed to tackle, in the next section, the countable alphabet case.
Nicer representations involving independent Brownian motions and more akin to
those coming out of random matrix theory will be obtained afterwards. These nicer
representations will also permit to transfer to our framework, and as m grows,
asymptotic results available in random matrix theory.

Theorem 3.1. Let X1, X2, . . . , Xn, . . . be a sequence of iid random variables taking
values in an ordered finite alphabet A = {α1, . . . , αm}, such that P(X1 = αr) = pr,
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for r = 1, . . . , m, where 0 < pr < 1 and
∑m

r=1 pr = 1. Then

(3.9)
LIn − npmax√

n
⇒ − 1

m

m−1∑
i=1

iσiB̃
i(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑
i=1

σiB̃
i(ti),

where pmax = max1≤r≤m pr, σ2
r = pr + pr+1 − (pr − pr+1)2, r = 1, . . . , m − 1,

I∗ = {r ∈ {1, . . . , m} : pr < pmax}, and where (B̃1(t), . . . , B̃m−1(t))0≤t≤1 is an
(m − 1)-dimensional Brownian motion with covariance matrix given by

t

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ1,2 ρ1,3 · · · ρ1,m−1

ρ2,1 1 ρ2,3 · · · ρ2,m−1

...
...

. . . . . .
...

...
... 1 ρm−2,m−1

ρm−1,1 ρm−1,2 · · · ρm−1,m−2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with

ρr,s =

⎧⎪⎨
⎪⎩

− pr+μrμs

σrσs
, s = r − 1,

− ps+μrμs

σrσs
, s = r + 1,

− μrμs

σrσs
, |r − s| > 1, 1 ≤ r, s ≤ m − 1,

and with μr = pr − pr+1, 1 ≤ r ≤ m − 1.

Proof. As before, we begin with the expression for LIn displayed in (2.5), noting
that for each letter αr, 1 ≤ r ≤ m − 1, (Zr

k)k≥1 forms a sequence of iid random
variables, and that moreover Zr

k and Zs
� are independent for k 	= �, and for any r

and s. Now, however, for each fixed k, the Zr
k are no longer identically distributed;

indeed,

(3.10)

{
μr := EZr

1 = pr − pr+1, 1 ≤ r ≤ m − 1,
σ2

r := VarZr
1 = pr + pr+1 − (pr − pr+1)2, 1 ≤ r ≤ m − 1.

Since 0 < pr < 1, we have σ2
r > 0 for all 1 ≤ r ≤ m − 1. We are thus led to define

our Brownian approximation by
(3.11)

B̂r
n(t) :=

Sr
[nt] − μr[nt]

σr
√

n
+ (nt − [nt])

Zr
[nt]+1 − μr

σr
√

n
, 0 ≤ t ≤ 1, 1 ≤ r ≤ m − 1.

Again noting that the local maxima of B̂i
n(t) occur on the set {t : t = k/n, k =

0, . . . , n}, (2.5) becomes

LIn =
n

m
− 1

m

m−1∑
i=1

i
[
σiB̂

i
n(1)

√
n + μin

]

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

{
m−1∑
i=1

[
σiB̂

i
n(ti)

√
n + μitin

]}
.(3.12)
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Next,

m−1∑
i=1

iμi =
m−1∑
i=1

m−1∑
j=i

μj =
m−1∑
i=1

m−1∑
j=i

(pj − pj+1)

=
m−1∑
i=1

(pi − pm) = (1 − pm) − (m − 1)pm

= 1 − mpm.

Hence, (3.12) becomes

LIn =
n

m
− (1 − mpm)n

m
− 1

m

m−1∑
i=1

iσiB̂
i
n(1)

√
n

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

m−1∑
i=1

[
σiB̂

i
n(ti)

√
n + μitin

]
,(3.13)

and, dividing through by
√

n, we obtain

LIn√
n

= pm

√
n − 1

m

m−1∑
i=1

iσiB̂
i
n(1)

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

m−1∑
i=1

[
σiB̂

i
n(ti) + μiti

√
n
]
.(3.14)

Let t0 = 0, and let Δi = ti − ti−1, i = 1, . . . , m − 1. Since

m−1∑
i=1

μiti =
m−1∑
i=1

μi

i∑
j=1

Δj =
m−1∑
i=1

Δi

m−1∑
j=i

μj =
m−1∑
i=1

Δi(pi − pm),

(3.14) becomes

LIn√
n

= pm

√
n − 1

m

m−1∑
i=1

iσiB̂
i
n(1)

+ max
Δi ≥0∑m−1

i=1
Δi ≤1

{
m−1∑
i=1

σiB̂
i
n(ti) +

√
n

m−1∑
i=1

Δi(pi − pm)

}
,(3.15)

where ti =
∑i

j=1 Δj .
Recalling that tm := 1, and setting Δm = 1 − tm−1, (3.15) enjoys a more sym-

metric representation as

LIn√
n

= − 1
m

m−1∑
i=1

iσiB̂
i
n(1)

+ max
Δi ≥0∑m

i=1
Δi=1

[
m−1∑
i=1

σiB̂
i
n(ti) +

√
n

m∑
i=1

Δipi

]
.(3.16)
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Next,

LIn − npmax√
n

= − 1
m

m−1∑
i=1

iσiB̂
i
n(1)

+ max
Δi ≥0∑m

i=1
Δi=1

[
m−1∑
i=1

σiB̂
i
n(ti) +

√
n

m∑
i=1

Δi(pi − pmax)

]
,(3.17)

where pmax = max1≤i≤m pi. Clearly, if Δi > 0 for any i such that pi < pmax, then

√
n

m∑
i=1

Δi(pi − pmax) a.s.−→ −∞.

Intuitively, then, we should demand that Δi = 0 for i ∈ I∗ := {i ∈ {1, 2, . . . , m} :
pi < pmax}. Indeed, we now show that in fact

(3.18)
LIn − npmax√

n
= − 1

m

m−1∑
i=1

iσiB̂
i
n(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑
i=1

σiB̂
i
n(ti) + En,

where the remainder term En is a random variable converging to zero in probability
as n → ∞.

To see this, let us introduce the following notation. Writing
t = (t1, t2, . . . , tm−1, tm), let T = {t : 0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm = 1} and let
T ∗ = {t ∈ T : ti = ti−1, i ∈ I∗ }. Setting Cn(t) =

∑m−1
i=1 σiB̂

i
n(ti) and R(t) =∑m

i=1(ti − ti−1)(pmax − pi), we can rewrite the terms involving max in (3.17) and
(3.18) as

max
t∈T

[
Cn(t) −

√
nR(t)

]
and

max
t∈T ∗

Cn(t).

By the compactness of T and T ∗ and the continuity of Cn(t) and R(t), we see that
for each n and each ω ∈ Ω, there is a τn ∈ T and a τn

∗ ∈ T ∗ such that

Cn(τn) −
√

nR(τn) = max
t∈T

[
Cn(t) −

√
nR(t)

]
,

and
Cn(τn

∗ ) = max
t∈T ∗

Cn(t).

(Note that the piecewise-linear nature of Cn(t) and the linear nature of R(t) im-
ply that the arguments maximizing the above must lie on a finite set; thus, the
measurability of τn and τn

∗ is trivial.)
Now we first claim that the set of optimizing arguments {τn} ∞

n=1 a.s. does not
have an accumulation point lying outside of T ∗. Suppose the contrary, namely that
for each ω in a set A of positive measure, there is a subsequence (τnk)∞

k=1 of (τn)∞
n=1

such that d(τnk , T ∗) > ε, for some ε > 0, where the metric d is the one induced by
the L∞-norm over T , i.e., by ‖t‖∞ = max1≤i≤m |ti|.

Then, since T ∗ ⊂ T , it follows that, for all n,

Cn(τn) −
√

nR(τn) ≥ Cn(τn
∗ ).
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Now if pmax = pm, then t = (0, . . . , 0, 1) ∈ T ∗, and if for some 1 ≤ j ≤ m − 1 we
have pmax = pj > maxj+1≤i≤m pi, then t = (0, . . . , 0, 1, . . . , 1) ∈ T ∗, where there
are j − 1 zeros in t. Hence Cnk

(τnk∗ ) ≥ Cnk
(0, . . . , 0, 1, . . . , 1) =

∑m−1
i=j σiB̂

i
nk

(1),
where the sum is taken to be zero for j = m. Given 0 < δ < 1, by the Central Limit
Theorem, we can find a sufficiently negative real α such that

P (Cnk
(τnk) − √

nkR(τnk) ≥ α) ≥ P (Cnk
(τnk

∗ ) ≥ α)

≥ P

⎛
⎝m−1∑

i=j

σiB̂
i
nk

(1) ≥ α

⎞
⎠

> 1 − δ,

for nk large enough. In particular, this implies that

(3.19) P (A ∩ {Cnk
(τnk) − √

nkR(τnk) ≥ α}) >
1
2

P(A),

for nk large enough.
Next, note that for any t ∈ T , we can modify its components ti to obtain an

element of T ∗, by collapsing certain consecutive tis to single values, where i ∈
{j − 1, j, . . . , �} and {j, j + 1, . . . , �} ⊂ I∗. With this observation, it is not hard to
see that by replacing such maximal consecutive sets of components {ti}�

i=j−1 with
their median values, we must have

d(τnk , T ∗) = max
{(j,�):{j,j+1,...,�} ⊂I∗ }

(τnk

� − τnk
j−1)

2
.

Writing p(2) for the largest of the pi < pmax, we see that for all k, and for almost
all ω ∈ A,

R(τnk) =
m∑

i=1

(τnk
i − τnk

i−1)(pmax − pi)

=
∑
i∈I∗

(τnk
i − τnk

i−1)(pmax − pi)

≥ (pmax − p(2))
∑
i∈i∗

(τnk
i − τnk

i−1)

≥ 2(pmax − p(2))d(τnk , T ∗) ≥ 2(pmax − p(2))ε.

Now by Donsker’s Theorem and the Continuous Mapping Theorem, we have that

max
t∈T

Cn(t) ⇒ max
t∈T

m−1∑
i=1

σiB̃
i(ti),

as nk → ∞, where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional Brownian mo-
tion described in greater detail below. The point here is simply that this limiting
functional exists. Moreover,

max
t∈T

Cn(t) ≥ Cn(τn),

hence, given 0 < δ < 1, if M is chosen large enough, then

P (Cnk
(τnk) ≤ M) ≥ P

(
max
t∈T

Cnk
(t) ≤ M

)
> 1 − δ,
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for nk large enough.
We can next see how the boundedness of R(τnk) on A influences that of the

whole expression Cnk
(τnk) − √

nkR(τnk) via the following estimates. Given M > 0
as above, if k is large enough, then

nk ≥ ((M − α + 1)/(2(pmax − p(2))ε))2,

and also

P (A ∩ {Cnk
(τnk) − √

nkR(τnk) ≤ α − 1})
= P (A ∩ {Cnk

(τnk) ≤ α − 1 +
√

nkR(τnk)})

≥ P
(
A ∩ {Cnk

(τnk) ≤ α − 1 +
√

nk(2(pmax − p(2))ε)}
)

≥ P (A ∩ {Cnk
(τnk) ≤ M })

>
1
2

P(A).

But this contradicts (3.19); thus, our optimal parameter sequences (τn)∞
n=1 must

a.s. have their accumulation points in T ∗.
Thus, given ε > 0, there is an integer Nε such that the set An,ε = {d(τk, T ∗) <

ε3, k ≥ n} satisfies P(An,ε) ≥ 1 − ε, for all n ≥ Nε. Now for each τn define τ̂n ∈ T ∗

to be the (not necessarily unique) point of T ∗ which is closest in the L∞-distance
to τn. Recalling that

En = Cn(τn) −
√

nR(τn) − Cn(τn
∗ ) ≥ 0,

and noting that R(t) ≥ 0, for all t ∈ T , we can estimate the remainder term En as
follows: for n ≥ Nε,

P (En ≥ ε) = P ({En ≥ ε} ∩ An,ε) + P
(

{En ≥ ε} ∩ Ac
n,ε

)
≤ P ({En ≥ ε} ∩ An,ε) + P

(
Ac

n,ε

)
≤ P ({En ≥ ε} ∩ An,ε) + ε

= P
(

{Cn(τn) −
√

nR(τn) − Cn(τn
∗ ) ≥ ε} ∩ An,ε

)
+ ε

≤ P
(

{Cn(τn) −
√

nR(τn) − Cn(τ̂n) ≥ ε} ∩ An,ε

)
+ ε

≤ P ({Cn(τn) − Cn(τ̂n) ≥ ε} ∩ An,ε) + ε

≤ P

(∣∣∣∣∣
m−1∑
i=1

σi(B̂i
n(τn

i ) − B̂i
n(τ̂n

i ))

∣∣∣∣∣ ≥ ε

)
+ ε.(3.20)

To further bound the right-hand side of (3.20), note that for all n ≥ 1 and all
1 ≤ i ≤ m − 1, we have Var(B̂i

n(ti) − B̂i
n(si)) = |ti − si|. Then, let (s, t) ∈ T × T be

such that ‖t − s‖∞ ≤ ε3. Using the Bienaymé-Chebyshev inequality, we find that
for n large enough,

P

(∣∣∣∣∣
m−1∑
i=1

σi(B̂i
n(ti) − B̂i

n(si))

∣∣∣∣∣ ≥ ε

)
≤ ε−2(m − 1)2 max

1≤i≤m−1
σ2

i ‖t − s‖∞

≤ ε−2(m − 1)2 max
1≤i≤m−1

σ2
i ε3

= ε(m − 1)2 max
1≤i≤m−1

σ2
i .
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Since ‖τn − τ̂n‖ < ε3, for n ≥ Nε, this can be used to bound (3.20):

P (|En| ≥ ε) < P

(∣∣∣∣∣
m−1∑
i=1

σi(B̂i
n(τn

i ) − B̂i
n(τ̂n

i ))

∣∣∣∣∣ ≥ ε

)
+ ε

≤ ε

{
(m − 1)2 max

1≤i≤m−1
σ2

i + 1
}

.

Finally, ε being arbitrary, we have indeed shown that En → 0 in probability.
Applying Donsker’s Theorem, the Continuous Mapping Theorem, and Slutsky’s

(or the converging-together) Theorem, e.g., see [4, 8], to (3.18) we finally have:

(3.21)
LIn − pmaxn√

n
⇒ − 1

m

m−1∑
i=1

iσiB̃
i(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑
i=1

σiB̃
i(ti),

where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional Brownian motion covariance
matrix, t(ρr,s)r,s, where

ρr,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, r = s,

− pr+μrμs

σrσs
, s = r − 1,

− ps+μrμs

σrσs
, s = r + 1,

− μrμs

σrσs
, |r − s| > 1, 1 ≤ r, s ≤ m − 1.

Now for t = �/n, and 1 ≤ r ≤ s ≤ m − 1, the covariance structure above is
computed as follows:

Cov(B̂r
n(t), B̂s

n(t)) = Cov

(
�∑

i=1

Zr
i − μr

σr
√

n
,

�∑
i=1

Zs
i − μs

σs
√

n

)

=
1

nσrσs
Cov

(
�∑

i=1

(Zr
i − μr),

�∑
i=1

(Zs
i − μs)

)

=
1

nσrσs

�∑
i=1

Cov(Zr
i − μr, Z

s
i − μs)

=
�

nσrσs
Cov(Zr

1 − μr, Z
s
1 − μs)

= t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σrσs

σrσs, s = r,
1

σrσs
(0 − μrμs − μrμs + μrμs), s > r + 1,

1
σrσs

(−ps − μrμs − μrμs + μrμs), s = r + 1,

= t

⎧⎪⎨
⎪⎩

1 s = r,

− μrμs

σrσs
s > r + 1,

− (ps+μrμs)
σrσs

s = r + 1,

using the properties of the Zr
k noted at the beginning of the proof.

We now study (3.9) on a case-by-case basis. First, let I∗ = ∅, that is, let pi = 1/m,
for i = 1, . . . , m. Then σ2

i = 2pi = 2/m, for all i ∈ {1, 2, . . . , m}. Hence, simply
rescaling (3.9) by

√
2/m recovers the uniform result in (3.1).
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Next, consider the case where pmax = pj , for precisely one j ∈ {1, . . . , m}. We
then have I∗ = {1, 2, . . . , m} \ {j}. This forces us to set 0 = t0 = t1 = · · · = tj−1

and tj = tj+1 = · · · = tm−1 = tm = 1, in the maximizing term in (3.9) . Then,
(LIn −npmax)/

√
n converges to a centered normal random variable. Intuitively, this

result is not surprising since the longest increasing subsequence is, asymptotically,
a string consisting primarily of the most frequently occurring letter, a string whose
length is approximated by a binomial random variable with parameters n and pmax.
The variance of the limiting normal distribution is, in fact, equal to pmax(1 − pmax).

Corollary 3.1. If pmax = pj for precisely one j ∈ {1, . . . , m}, then

(3.22)
LIn − npmax√

n
⇒ − 1

m

m−1∑
i=1

iσiB̃
i(1) +

m−1∑
i=j

σiB̃
i(1),

where the last term in (3.22) is not present if j = m.

To consolidate our analysis, we treat the general case for which pmax occurs
exactly k times among {p1, p2, . . . , pm}, where 2 ≤ k ≤ m − 1. Not only will we
recover the natural analogues of the previous cases, but we will also express our
results in terms of another functional of Brownian motion which is more symmetric.
Combining the 2 ≤ k ≤ m−1 case at hand with the k = 1 case previously examined,
we have the following:

Corollary 3.2. Let pmax = pj1 = pj2 = · · · = pjk
for 1 ≤ j1 < j2 < · · · < jk ≤ m,

for some 1 ≤ k ≤ m − 1, and let pi < pmax, otherwise. Then

(3.23)
LIn − npmax√

n
⇒
√

pmax(1 − pmax) max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

[
B̃�(t�) − B̃�(t�−1)

]
,

where the k-dimensional Brownian motion (B̃1(t), B̃2(t), . . . , B̃k(t))0≤t≤1 has co-
variance matrix

(3.24) t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ · · · ρ

ρ 1 ρ
...

...
. . . . . . . . .

...
... ρ 1 ρ
ρ · · · · · · ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with ρ = −pmax/(1 − pmax).

Proof. Let pmax = pj1 = pj1 = · · · = pjk
, with 1 ≤ j1 < j2 < · · · < jk ≤ m and

2 ≤ k ≤ m − 1, i.e., let I∗ = {1, 2, . . . , m} \ {j1, j2, . . . , jk }. Set j0 = 1 and jk+1 = m.
Then (3.18) becomes

LIn − npmax√
n

= − 1
m

m−1∑
i=1

iσiB̂
i
n(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑
i=1

σiB̂
i
n(ti) + En

= − 1
m

m−1∑
i=1

iσiB̂
i
n(1) + max

0=tj0 ≤tj1 ≤···
≤tjk

≤tjk+1=1

k∑
�=0

j�+1−1∑
i=j�

σiB̂
i
n(tjl

) + En
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= − 1
m

m−1∑
i=1

iσiB̂
i
n(1)

+ max
0=tj0 ≤tj1 ≤···

≤tjk
≤tjk+1=1

⎡
⎣k−1∑

�=1

j�+1−1∑
i=j�

σiB̂
i
n(tj�

) +
m−1∑
i=jk

σiB̂
i
n(1)

⎤
⎦+ En

=

⎡
⎣− 1

m

m−1∑
i=1

iσiB̂
i
n(1) +

m−1∑
i=jk

σiB̂
i
n(1)

⎤
⎦

+ max
0=tj0 ≤tj1 ≤···

≤tjk
≤tjk+1=1

k−1∑
�=1

j�+1−1∑
i=j�

σiB̂
i
n(tj�

) + En.(3.25)

We immediately recognize that the first term on the right hand side of (3.25)
corresponds to k = 1 and a binomial random variable. Using the definition of the
B̂i

n in (3.11), (3.25) can then be rewritten as

ajk
n − npmax√

n
+ max

0=tj0 ≤tj1 ≤···
≤tjk

≤tjk+1=1

k−1∑
�=1

j�+1−1∑
i=j�

σiB̂
i
n(tj�

) + En

=
ajk

n − npmax√
n

+ max
0=tj0 ≤tj1 ≤···

≤tjk
≤tjk+1=1

k−1∑
�=1

j�+1−1∑
i=j�

σi

⎛
⎝Si

[ntj� ]
− μi [ntj�

]

σi
√

n

⎞
⎠+ En

=
ajk

n − npmax√
n

+
1√
n

max
0=tj0 ≤tj1 ≤···

≤tjk
≤tjk+1=1

k−1∑
�=1

((
aj�

[ntj� ]
− a

j�+1

[ntj� ]

)
− [ntj�

]
(
pj�

− pj�+1

))
+ En

(3.26)

Setting a
jk+1
n = n−

∑k
�=1 aj�

n , we note that the random vector (aj1
n , aj2

n , . . . , a
jk+1
n )

has a multinomial distribution with parameters n and (pmax, pmax, . . . , pmax, 1 −
kpmax). It is thus natural to introduce a new Brownian motion approximation as
follows:

(3.27) B̌�
n(t) =

aj�

[ntj� ]
− [ntj�

] pmax√
npmax(1 − pmax)

, 1 ≤ � ≤ k.

Substituting (3.27) into (3.26) gives

√
pmax(1 − pmax)

⎧⎪⎨
⎪⎩B̌k

n(1) + max
0=t0≤t1≤···

≤tk−1≤tk=1

k−1∑
�=1

[
B̌�

n(t�) − B̌�+1
n (t�)

]
⎫⎪⎬
⎪⎭+ En

=
√

pmax(1 − pmax) max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

[
B̌�

n(t�) − B̌�
n(t�−1)

]
+ En.(3.28)
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By Donsker’s Theorem, (B̌1
n(t), B̌2

n(t), . . . , B̌k
n(t)) converges jointly to a k-dimen-

sional Brownian motion (B̃1(t), B̃2(t), . . . , B̃k(t)). This Brownian motion has the
covariance structure given by (3.24), with ρ = −pmax/(1 − pmax), a fact which
follows immediately from the covariance of the multinomial distribution, where the
covariance of any two distinct aj�

r is simply −rp2
max, for 1 ≤ r ≤ n. This, together

with our analysis of the unique pmax case, proves the corollary.

Remark 3.3. The above results provide a Brownian functional equivalent to the
GUE result of Its, Tracy, and Widom [17] (described in detail in the comments
preceding Theorem 3.1). Note that the limiting distribution in (3.23) depends only
on k and pmax; neither the specific values of j1, j2, . . . , jk nor the remaining values of
pi are material, a fact already noted in [17]. Also, it follows from generic results on
Brownian functionals that this limiting law has a density, which in the uniform case
is supported on the positive real line, while supported on all of R in the non-uniform
case.

We have already seen in (3.7) that the limiting distribution for the uniform
case has a nice representation as a functional of standard Brownian motion. We
now also express the limiting distribution in (3.23) as a functional of standard
Brownian motion. This new functional extends to the uniform case, although its
form is different from that of (3.7). This limiting random variable can be viewed
as the sum of a normal one and of a maximal eigenvalue type one.

Corollary 3.3. Let pmax = pj1 = pj2 = · · · = pjk
, for 1 ≤ j1 < j2 < · · · < jk ≤ m,

and some 1 ≤ k ≤ m, and let pi < pmax, otherwise. Then

LIn − npmax√
n

⇒ √
pmax

{√
1 − kpmax − 1

k

k∑
j=1

Bj(1)

+ max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

[
B�(t�) − B�(t�−1)

]}
,(3.29)

where (B1(t), B2(t), . . . , Bk(t))0≤t≤1 is a standard k-dimensional Brownian motion.

Proof. Let us first examine the non-uniform case 1 ≤ k ≤ m − 1. Recall that ρ =
−pmax/(1−pmax). Now the covariance matrix in (3.24) has eigenvalues λ1 = 1−ρ =
1/(1−pmax) of multiplicity k−1 and λ2 = 1+(k−1)ρ = (1−kpmax)/(1−pmax) < λ1

of multiplicity 1. From the symmetries of the covariance matrix, it is not hard to see
that we can write each Brownian motion B̃i(t) as a linear combination of standard
Brownian motions (B1(t), . . . , Bk(t)) as follows:

B̃i(t) = βBi(t) + η

k∑
j=1,j �=i

Bj(t), i = 1, . . . , k,(3.30)

where

β =
(k − 1)

√
λ1 +

√
λ2

k
,

(3.31)
η =

−
√

λ1 +
√

λ2

k
.
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Substituting (3.30) and (3.31) into (3.23), and noting that β − η =
√

λ1 =
1/

√
1 − pmax, we find that

√
pmax(1 − pmax) max

0=t0≤t1≤···
≤tk−1≤tk=1

k∑
�=1

[
B̃�(t�) − B̃�(t�−1)

]

=
√

pmax(1 − pmax) max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

{
β
[
B�(t�) − B�(t�−1)

]

+ η

k∑
j=1,j �=�

[
Bj(t�) − Bj(t�−1)

]}

=
√

pmax(1 − pmax) max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

{
(β − η)

[
B�(t�) − B�(t�−1)

]

+ η

k∑
j=1

[
Bj(t�) − Bj(t�−1)

]}

=
√

pmax(1 − pmax) max
0=t0≤t1≤···

≤tk−1≤tk=1

{ k∑
�=1

(β − η)
[
B�(t�) − B�(t�−1)

]

+ η

k∑
�=1

k∑
j=1

[
Bj(t�) − Bj(t�−1)

]}

=
√

pmax(1 − pmax)
{

η

k∑
j=1

Bj(1) + (β − η) max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

[
B�(t�) − B�(t�−1)

]}

=
√

pmax

{√
1 − kpmax − 1

k

k∑
j=1

Bj(1) + max
0=t0≤t1≤···

≤tk−1≤tk=1

k∑
�=1

[
B�(t�) − B�(t�−1)

]}
.

(3.32)

To complete the proof, let k = m. Then from Proposition 3.1,

(3.33)
LIn − n/m√

n
⇒
√

2
m

{
− 1

m

m−1∑
i=1

iB̃i(1) + max
0≤t1≤···

≤tm−1≤1

m−1∑
i=1

B̃i(ti)
}

,

where the (m − 1)-dimensional Brownian motion (B̃1(t), . . . , B̃m−1(t)) has a tridi-
agonal covariance matrix given by (3.2). Now, this last Brownian motion can be
obtained from a standard m-dimensional Brownian motion (B1(t), . . . , Bm(t)) via
the a.s. transformations

B̃i(t) =
1√
2
(Bi(t) − Bi+1(t)), 1 ≤ i ≤ m − 1.

It is easily verified that (B̃1(t), . . . , B̃m−1(t)) so obtained does indeed have the
covariance structure given by (3.2). Substituting these independent Brownian mo-
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tions into (3.33), gives the following a.s equalities:

LIn − n/m√
n

⇒
√

2
m

{
− 1

m

m−1∑
i=1

iB̃i(1) + max
0≤t1≤···

≤tm−1≤1

m−1∑
i=1

B̃i(ti)
}

=

√
1
m

{
− 1

m

m−1∑
i=1

i[Bi(1) − Bi+1(1)]

+ max
0≤t1≤···

≤tm−1≤1

m−1∑
i=1

[Bi(ti) − Bi+1(ti)]
}

=

√
1
m

{
− 1

m

m∑
i=1

Bi(1) + Bm(1)

+ max
0≤t1≤···

≤tm−1≤1

m∑
i=1

[Bi(ti) − Bi(ti−1)] − Bm(1)
}

=

√
1
m

{
− 1

m

m∑
i=1

Bi(1) + max
0≤t1≤···

≤tm−1≤1

m∑
i=1

[Bi(ti) − Bi(ti−1)]
}

,(3.34)

which give (3.29), with k = m and pmax = 1/m.

We have already obtained several representations for the limiting law in the
uniform case. Yet one more pleasing functional for the limiting distribution of LIn

is described in the following

Theorem 3.2. Let pmax = p1 = p2 = · · · = pm = 1/m. Then

LIn − n/m√
n

⇒ H̃m√
m

,

where

(3.35) H̃m =

√
m − 1

m
max

0=t0≤t1≤···
≤tm−1≤tm=1

m∑
i=1

[
B̃i(ti) − B̃i(ti−1)

]
,

and where (B̃1(t), B̃2(t), . . . , B̃m(t))0≤t≤1 is an m-dimensional Brownian motion
having covariance matrix (3.24), with ρ = −1/(m − 1), and thus such that∑m

i=1 B̃i(t) = 0, for all 0 ≤ t ≤ 1.

Proof. We show that the functional being maximized in (3.35) has the same covari-
ance structure as the functional being maximized in (3.7), a result which we restate
as:

(3.36)
LIn − n/m√

n
⇒ 1√

m
max

0≤t1≤···
≤tm−1≤tm=1

m−1∑
i=1

[
βiB

i(ti+1) − ηiB
i(ti)

]
,

where βi =
√

i/(i + 1) and ηi =
√

(i + 1)/i. From this it will immediately follow
that the maxima, over all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ 1, in both expressions have
the same law, clinching the proof.

Let (B̃1(t), B̃2(t), . . . , B̃m(t)) be an m-dimensional Brownian motion with a
permutation-invariant covariance matrix described by Cov(B̃i(t), B̃j(t)) = −t/
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(m − 1), i 	= j, and VarB̃i(t) = t. Then, E(
∑m

i=1 B̃i(t))2 = 0, for all 0 ≤ t ≤ 1, so
that

∑m
i=1 B̃i(t) is identically equal to zero.

Let t = (t1, t2, . . . , tm−1) be a fixed collection of ti from the Weyl chamber
T = {(t1, t2, . . . , tm−1) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ 1}. Setting tm = 1, and also
setting

(3.37) Xt =

√
m − 1

m

m∑
i=1

[
B̃i(ti) − B̃i(ti−1)

]
,

we then have

Cov(Xt, Xs) =
m − 1

m

∑
1≤i,j≤m

Cov(B̃i(ti) − B̃i(ti−1), B̃j(sj) − B̃j(sj−1))

=
m − 1

m

m∑
i=1

[ti ∧ si − ti ∧ si−1 − ti−1 ∧ si + ti−1 ∧ si−1]

− 1
m

∑
i �=j

[ti ∧ sj − ti ∧ sj−1 − ti−1 ∧ sj + ti−1 ∧ sj−1] .(3.38)

We can rewrite (3.38) in a clear way by setting T1 = [0, t1] and Ti = (ti, ti+1],
i = 2, . . . , m − 1, and similarly S1 = [0, s1] and Si = (si, si+1], i = 2, . . . , m − 1.
Letting Leb denote the Lebesgue measure on [0, 1], a case-by-case analysis of the
relative positions of ti, ti−1, si, and si−1 quickly yields that

Cov(Xt, Xs) =
m − 1

m

m∑
i=1

Leb(Ti ∩ Si) − 1
m

∑
i �=j

Leb(Ti ∩ Sj)

=
m − 1

m

m∑
i=1

Leb(Ti ∩ Si) − 1
m

[
1 −

m∑
i=1

Leb(Ti ∩ Si)

]

= − 1
m

+
m∑

i=1

Leb(Ti ∩ Si).(3.39)

To complete the proof, we show that

(3.40) Yt =
m−1∑
i=1

[
βiB

i(ti+1) − ηiB
i(ti)

]
,

has the same covariance structure as Xt, where βi =
√

i/(i + 1) and ηi =√
(i + 1)/i. Using the independence of the components of the Brownian motion,

we also have

Cov(Yt, Ys) =
m−1∑
i=1

Cov
(
βiB

i(ti+1) − ηiB
i(ti), βiB

i(si+1) − ηiB
i(si)

)

=
m−1∑
i=1

[
i

i + 1
(ti+1 ∧ si+1) − ti+1 ∧ si − ti ∧ si+1 +

i + 1
i

(ti ∧ si)
]

=
m∑

i=1

i − 1
i

ti ∧ si −
m−1∑
i=1

[
ti+1 ∧ si + ti ∧ si+1 − i + 1

i
ti ∧ si

]

=
m − 1

m
−

m−1∑
i=1

[ti+1 ∧ si + ti ∧ si+1 − 2(ti ∧ si)] .(3.41)
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As before, a simple case-by-case analysis of the summands in (3.41) reveals that

Cov(Yt, Ys) =
m − 1

m
−
[
1 −

m∑
i=1

Leb(Ti ∩ Si)

]

= − 1
m

+
m∑

i=1

Leb(Ti ∩ Si),(3.42)

completing the proof.

We are now at a point where we can more clearly see the similarities between
the functional Dm of Glynn and Whitt in (3.8) and that of (3.7), which we have
shown to have the same law as H̃m in (3.35). Indeed, the only difference between
the functionals is simply that in (3.8) the Brownian motions are independent, while
in (3.35) they are subject to the zero-sum constraint. Gravner, Tracy, and Widom
[11] have already remarked that random words could be studied via such Brownian
functionals. In fact, a restatement of Corollary 3.3 shows that, in law, Dm and H̃m

differ by a centered normal random variable, as indicated by the next proposition
and corollary. This, in turn, will allow us to clearly state (in the next section)
asymptotic results for H̃m from the known corresponding results for Dm.

Proposition 3.2. Let

(3.43) Hm =
√

2

⎧⎪⎨
⎪⎩− 1

m

m−1∑
i=1

iB̃i(1) + max
0≤t1≤···

≤tm−1≤1

m−1∑
i=1

B̃i(ti)

⎫⎪⎬
⎪⎭ ,

m ≥ 2, and let H1 ≡ 0 a.s., where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional
Brownian motion with tridiagonal covariance matrix given by (3.2). Let

Dm = max
0=t0≤t1≤···

≤tm−1≤tm=1

m∑
i=1

[
Bi(ti) − Bi(ti−1)

]
,

where (B1(t), . . . , Bm(t))0≤t≤1 is a standard m-dimensional Brownian motion, re-
lated to (B̃1(t), . . . , B̃m−1(t))0≤t≤1 by the almost sure identities

B̃i(t) =
1√
2
(Bi(t) − Bi+1(t)), 1 ≤ i ≤ m − 1.

Then Dm = Zm + Hm a.s., where Zm is a centered normal random variable with
variance 1/m, which is given by Zm = (1/m)

∑m
i=1 Bi(1).

Combining the previous proposition with Proposition 3.1 and Theorem 3.2, the
following is immediate:

Corollary 3.4. For each m ≥ 1, H̃m
L= Dm − Zm, where L denotes equality in

distribution.

Finally, the above relationship between H̃m (resp., Hm) and Dm as well as Corol-
lary 3.3 allows to further express the limiting distribution in a rather compact form.

Proposition 3.3. Let pmax = pj1 = pj2 = · · · = pjk
, for 1 ≤ j1 < j2 < · · · < jk ≤

m, and some 1 ≤ k ≤ m, and let pi < pmax, otherwise. Then

LIn − npmax√
n

⇒ √
pmaxHk +

√
pmax(1 − kpmax)Zk.(3.44)
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Remark 3.4. One can also write the limiting law of Proposition 3.3 in terms of
the functional Dk. Indeed, we have

LIn − npmax√
npmax

⇒ Dk + (
√

1 − kpmax − 1)Zk,

so that the limiting law is expressed as the sum of a centered normal random
variable and of the maximal eigenvalue of a k × k element of the GUE.

The covariance structure of Xt =
√

(m − 1)/m
∑m

i=1(B̃
i(ti)−B̃i(ti−1)), as given

in (3.39), gives the L2-distance between any Xt and Xs:

E(Xt − Xs)2 = 2

[
1 −

m∑
i=1

Leb(Ti ∩ Si)

]
.(3.45)

In turn, (3.45) is useful, in applying entropy bounds, e.g., see Section 14 of Lifshits
[21], to show that

E

⎛
⎜⎝ max

0=t0≤t1≤···
≤tm−1≤tm=1

Xt

⎞
⎟⎠ ≤ K

√
m − 1,

for some absolute constant K. A lower bound of similar order (
√

m − 1) can also
be obtained by directly minimizing the above maximum.

In ways much deeper than the bounds just described, the behavior of Dm has
been well-studied. In particular, it is known that Dm/

√
m → 2 a.s. and in L1, as

m → ∞ (see [3, 9, 10, 13, 24, 25, 29]), and that (Dm −2
√

m)m1/6 ⇒ F2, as m → ∞,
where F2 is the Tracy-Widom distribution (see [3, 11, 31, 30]). From these results,
the decompositions of the previous section and some standard tools such as the
Gaussian concentration inequality, asymptotics of Hm or H̃m follow.

Proposition 3.4. We have that

Hm√
m

→ 2

a.s. and in L1, as m → ∞. Moreover,

(3.47)
(

Hm√
m

− 2
)

m2/3 ⇒ F2,

where F2 is the Tracy-Widom distribution. The same statements hold for H̃m in
place of Hm.

Remark 3.5. (i) In the conclusion to [31], Tracy and Widom already derived (3.47)
by applying a scaling argument to the limiting distribution of the uniform alphabet
case. In our case we can moreover assert that a.s. and in the mean,

lim
k→+∞

lim
n→+∞

LIn − npmax√
knpmax

= 2,

and that (
LIn − npmax√

knpmax
− 2
)

k2/3 ⇒ F2,

where the weak limit is first taken over n and then over k, and where pmax depends
on k, and necessarily decreases to zero, as k → ∞.
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(ii) Using scaling, subadditivity, and concentration arguments found in Hambly,
Martin, and O’Connell [13] and in O’Connell and Yor [24], one could prove directly
that H̃m/

√
m → 2 a.s. This could be accomplished by studying, as do these authors,

a process version of H̃m.

4. Countable Infinite Alphabets

Let us now study the problem of describing LIn for an ordered, countably infinite
alphabet A = {αn}n≥1, where α1 < α2 < · · · < αm < · · · . Let (Xi)n

i=1, Xi ∈ A, be
an iid sequence, with P(X1 = αr) = pr > 0, for r ≥ 1.

The central idea in the first part of our approach is to introduce two new se-
quences derived from (Xi)n

i=1. Fix m ≥ 1. The first sequence, which we shall term
the capped sequence, is defined by taking Tm

i = Xi ∧ αm, for i ≥ 1. The second one,
(Y m

i )Nn,m

i=1 , the reduced sequence, consists of the subsequence of (Xi)n
i=1 of length

Nn,m, for which Xi ≤ αm, for i ≥ 1. Thus, the capped sequence (Tm
i )n

i=1 is ob-
tained by setting to αm all letter values greater than αm, while the reduced sequence
(Y m

i )Nn,m

i=1 is obtained by eliminating letter values greater than αm altogether.
Let LIcap

n,m and LIred
n,m to be the lengths of the longest increasing subsequence

of (Tm
i )n

i=1 and (Y m
i )Nn,m

i=1 , respectively. Now on the one hand, any subsequence
of the reduced sequence is again a subsequence of the original sequence (Xi)n

i=1.
On the other hand, any increasing subsequence of (Xi)n

i=1 is again an increasing
subsequence of the capped one. These two observations lead to the pathwise bounds

(4.1) LIred
n,m ≤ LIn ≤ LIcap

n,m,

for all m ≥ 1 and n ≥ 1.
These bounds suggest that the behavior of the iid infinite case perhaps mirrors

that of the iid finite-alphabet case. Indeed, we do have the following result, which
amounts to an extension of Theorem 3.1 (or, more precisely, of Proposition 3.3) to
the iid infinite-alphabet case.

Theorem 4.1. Let (Xi)i≥1 be a sequence of iid random variables taking values
in the ordered alphabet A = {αn}n≥1. Let P(X1 = αj) = pj , for j ≥ 1. Let
pmax = pj1 = pj2 = · · · = pjk

, 1 ≤ j1 < j2 < · · · < jk, k ≥ 1, and let pi < pmax,
otherwise. Then

LIn − npmax√
n

⇒ √
pmaxHk +

√
pmax(1 − kpmax)Zk := R(pmax, k).

The proof of the theorem relies on an understanding of the limiting distributions
of LIred

n,m and LIcap
n,m. To this end, let us introduce some more notation. For a finite

m-alphabet, and for V1, . . . , Vn iid with P(V1 = αr) = qr > 0, let LIn(q) :=
LIn(q1, . . . , qm) denote the length of the longest increasing subsequence of (Vi)n

i=1.
For each m ≥ 1, let also πm =

∑m
r=1 pr.

First, let us choose m large enough so that 1 − πm−1 < pmax. Next, observe that,
from the capping at αm, LIcap

n,m is distributed as LIn(p̃), where p̃ = (p1, . . . , pm−1, 1−
πm−1). But since m is chosen large enough, the maximal probability among the
entries of p̃ is then pmax, of multiplicity k, as for the original infinite alphabet. By
Theorem 3.1, we thus have

(4.2)
LIn(p̃) − npmax√

n
⇒ R(pmax, k),
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as n → ∞.
Turning to LIred

n,m, suppose that the number of elements Nn,m of the reduced
subsequence (Y m

i )Nn,m

i=1 is equal to j. Since only the elements of (Xi)n
i=1 which are

at most αm are left, LIred
n,m must be distributed as LIj(p̂), where p̂ = (p1/πm, . . . ,

pm/πm). From the way m is chosen, the maximal probability among the entries of
p̂ is then pmax/πm, of multiplicity k. Invoking again the finite-alphabet result of
Theorem 3.1, we find that

(4.3)
LIn(p̂) − n(pmax/πm)√

n
⇒ R

(
pmax

πm
, k

)
,

as n → ∞.
We now relate the two limiting expressions in (4.2) and (4.3) by the following

elementary lemma.

Lemma 4.1. Let k ≥ 1 be an integer, and let (qm)∞
m=1 be a sequence of reals in

(0, 1/k] converging to q ≥ 0. Then R(qm, k) ⇒ R(q, k), as m → ∞.

Proof. Assume q > 0. Then

R(qm, k) =
√

qm

{√
1 − qmkZk + Hk

}
=

√
qm{

√
1 − qkZk + Hk }

+
√

qm{
√

1 − qmk −
√

1 − qk}Zk

=
√

qm

q
R(q, k) + cmZk,(4.4)

where cm =
√

1 − qmk −
√

1 − qk. Since qm → q as m → ∞, cm → 0, and so
cmZk ⇒ 0, as m → ∞. This gives the result. The degenerate case, q = 0, is
clear.

The main idea developed in the proof of Theorem 4.1 is now to use the basic
inequality (4.1) in conjunction with a conditioning argument for LIred

n,m, in order
to apply Lemma 4.1, i.e., to use R(pmax/πm, k) ⇒ R(pmax, k), as m → ∞, since
πm → 1.

Proof of Theorem 4.1. First, fix an arbitrary s > 0. As previously noted in Re-
mark 3.3, R(pmax, k) is absolutely continuous, with density supported on R (R+ in
the uniform case), and so s is a continuity point of its distribution function. Next,
choose 0 < ε1 < 1, and 0 < δ < 1, and again note that (1 + δ)s is also necessarily a
continuity point for R(pmax, k).

With this choice of ε1, pick β > 0 such that P(Z ≥ β) < ε1/2, where Z is a stan-
dard normal random variable. Finally, pick ε2 such that 0 < ε2 < ε1P(R(pmax, k) <
(1 + δ)s). Such a choice of ε2 can always be made since the support of R(pmax, k)
includes R

+.
We have seen that, for m large enough, we can bring some finite-alphabet results

to bear on the infinite case. In fact, we need a few more technical requirements to
complete our proof. Setting σ2

m = πm(1 − πm), we choose large enough m so that:

(i) 1 − πm−1 < pmax,

(ii) (s + pmaxβσm/πm)/
√

πm − βσm < (1 + δ)s, and
(iii) |P(R(pmax, k) < (1 + δ)s) − P(R(pmax/πm, k) < (1 + δ)s)| < ε2/2.
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The conditions (i) and (ii) are clearly satisfied, since πm → 1 and σm → 0, as
m → ∞. The condition (iii) is also satisfied, as seen by applying Lemma 4.1 to
R(pmax/πm, k), with πm → 1, and since (1 + δ)s is also a continuity point for
R(pmax, k).

Now recall that LIcap
n,m is distributed as LIn(p̃), where p̃ = (p1, . . . , pm−1, 1 −

πm−1). Hence, we have from (4.1) and (4.2) that

LIn − npmax√
n

≤
LIcap

n,m − npmax√
n

⇒ R(pmax, k),(4.5)

as n → ∞, and so

P

(
LIn − npmax√

n
≤ s

)
≥ P

(
LIcap

n,m − npmax√
n

≤ s

)
→ P(R(pmax, k) ≤ s),(4.6)

as n → ∞.
More work is required to make use of the left-hand minorization in (4.1) (i.e.,

LIred
n,m ≤ LIn.) Recall that if the length Nn,m of the reduced sequence is equal

to j, then LIred
n,m must be distributed as LIj(p̂), where p̂ = (p1/πm, . . . , pm/πm).

Now the essential observation is that Nn,m is distributed as a binomial random
variable with parameters πm and n. It is thus natural to focus on the values of j
close to ENn,m = nπm. Writing the variance of Nn,m as nσ2

m, where, as above,
σ2

m = πm(1 − πm), and setting

γn,m,j := P(Nn,m = j) =
(

n
j

)
πj

m(1 − πm)n−j ,

we have

P

(
LIred

n,m − npmax√
n

≤ s

)

=
n∑

j=0

P

(
LIred

n,m − npmax√
n

≤ s|Nn,m = j

)
γn,m,j

=
n∑

j=0

P

(
LIj(p̂) − npmax√

n
≤ s

)
γn,m,j

=
n∑

j=0

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

≤
n∑

j=
nπm −βσm
√

n�

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

+

nπm −βσm

√
n� −1∑

j=0

γn,m,j

<

n∑
j=
nπm −βσm

√
n�

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

+ ε1,(4.7)
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for sufficiently large n, where (4.7) follows from the Central Limit Theorem and
our choice of β, and where, as usual, � · � is the ceiling function.

Next, note that for �nπm − βσm
√

n� ≤ j ≤ n, and making use of the condi-
tion (ii),

√
n

j

(
s +

pmax√
n

(
n − j

πm

))

<

√
n

nπm − βσm
√

n

(
s +

pmax√
n

(
n − nπm − βσm

√
n

πm

))

=
1√

πm − βσm/
√

n

(
s +

pmaxβσm

πm

)

≤ 1√
πm − βσm

(
s +

pmaxβσm

πm

)
< s(1 + δ).(4.8)

Hence, for sufficiently large n, we have

n∑
j=
nπm −βσm

√
n�

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

+ ε1

≤
n∑

j=
nπm −βσm
√

n�

P

(
LIj(p̂) − pmax

πm
j

√
j

≤ s(1 + δ)

)
γn,m,j + ε1.(4.9)

Now from the condition (iii), and from the weak convergence, as j → ∞, of
(LIj(p̂) − (pmax/πm)j)/

√
j to R(pmax/πm, k), we find that, for j large enough,

∣∣∣∣∣P
(

LIj(p̂) − pmax

πm
j

√
j

≤ (1 + δ)s

)
− P(R(pmax, k) ≤ (1 + δ)s)

∣∣∣∣∣
≤
∣∣∣∣∣P
(

LIj(p̂) − pmax

πm
j

√
j

≤ (1 + δ)s

)
− P

(
R

(
pmax

πm
, k

)
≤ (1 + δ)s

)∣∣∣∣∣
+
∣∣∣∣P(R(pmax, k) ≤ (1 + δ)s) − P

(
R

(
pmax

πm
, k

)
≤ (1 + δ)s

)∣∣∣∣
<

ε2
2

+
ε2
2

< ε1P(R(pmax, k) ≤ (1 + δ)s),(4.10)

and so,

(4.11) P

(
LIj(p̂) − pmax

πm
j

√
j

≤ (1 + δ)s

)
≤ (1 + ε1)P (R(pmax, k) ≤ (1 + δ)s) .

Now since �nπm − βσm
√

n� → ∞, as n → ∞, with the help of (4.9) and (4.11),
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(4.7) becomes

P

(
LIred

n,m − npmax√
n

≤ s

)

≤
n∑

j=
nπm −βσm
√

n�

(1 + ε1)P (R(pmax, k) ≤ (1 + δ)s) γn,m,j + ε1

≤ (1 + ε1)P (R(pmax, k) ≤ (1 + δ)s) + ε1.(4.12)

From (4.1) we know that LIred
n,m ≤ LIn a.s., and so

P

(
LIn − npmax√

n
≤ s

)
≤ P

(
LIred

n,m − npmax√
n

≤ s

)

≤ (1 + ε1)P (R(pmax, k) ≤ (1 + δ)s) + ε1,(4.13)

for large enough n. But since ε1 and δ are arbitrary, (4.13) and (4.6) together show
that

P

(
LIn − npmax√

n
≤ s

)
→ P(R(pmax, k) ≤ s),(4.14)

for all s > 0.
The proof for s < 0 is similar. Indeed, since necessarily pmax < 1/k, R(pmax, k)

describes the limiting distribution of the longest increasing subsequence for a non-
uniform alphabet, and so is supported on R. Then, one needs only to examine
quantities of the form P(R(pmax, k) ≤ (1 −δ)s), instead of P(R(pmax, k) ≤ (1+δ)s),
as we have done throughout the proof for s > 0. These changes lead to the resulting
statement.

Remark 4.1. As an alternative to the above proof, one could certainly adopt
the finite-alphabet development of the previous sections so as to express LIn, for
countable infinite alphabets, in terms of approximations to functionals of Brownian
motion. More precisely,

LIn = sup
m≥2

max
0≤k1≤···

≤km−1≤n

{
S1

k1
+ S2

k2
+ · · · + Sm−1

km−1
+ am

n

}

= sup
m≥2

⎧⎪⎨
⎪⎩

n

m
− 1

m

m−1∑
r=1

rSr
n + max

0≤k1≤···
≤km−1≤n

m−1∑
r=1

Sr
kr

⎫⎪⎬
⎪⎭ ,

where am
n counts the number of occurrences of the letter αm among (Xi)1≤i≤n, and

Sr
k =

∑k
i=1 Zr

i is the sum of independent random variables defined as in (2.3). After
centering and normalizing the Sr

k, as was done to obtain (3.12) in the non-uniform
finite alphabet development, one could then try to apply Donsker’s Theorem to
obtain a Brownian functional, which we now know to be distributed as R(pmax, k).

5. Concluding Remarks

Our development of the general finite-alphabet case leads us to consider several
new directions in which to pursue this method and raises a number of interesting
questions. These include the following.
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• Extending our fixed finite-alphabet case to that of having each Xn take val-
ues in {1, 2, . . . , mn} is an important first step. Fruitful approaches to such
asymptotic questions would nicely close the circle of ideas initiated here. Such
a study is already under consideration (see [15]).

• As we have noted throughout the paper, there is a pleasing if still rather
mysterious connection between our limiting distribution results and those of
random matrix theory. This connection deserves to be further explored. Re-
call, for instance, Baryshnikov’s observation [3] that the process (Dm)m≥1 is
identical in law to the process (λ(m)

1 )m≥1 consisting of the largest eigenval-
ues of the m × m minors of an infinite GUE matrix. This fact is consistent
with an interleaving-eigenvalue result from basic linear algebra, namely, that
if λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of an n×n symmetric matrix A, and
if μ1 ≥ μ2 ≥ · · · ≥ μn−1 are the eigenvalues of the matrix consisting of the
first (n − 1) rows and columns of A, then λ1 ≥ μ1 ≥ λ2 ≥ · · · ≥ μn−1 ≥ λn.
We thus see the consistency between the Dm ≤ Dm+1 a.s. fact noted above
and that of λ1 ≥ μ1.

• Pursuing our analysis further, one might hope to find ways in which we can
derive the densities of our limiting functionals in a direct manner. Its, Tracy,
and Widom [17] have obtained clear expressions of the limiting distributions.
While we have obtained our limiting distributions in a straightforward way,
in turn, these densities do not clearly follow from our approach.

• In another direction, our independent-letter paradigm can be extended to
various types of dependent cases, foremost of which would be the Markov
case. This will be presented elsewhere [16], where the framework of [14] is,
moreover, further extended.

• Various other types of subsequence problems can be tackled by the methodolo-
gies used in the present paper. To name but a few, comparisons for unimodal
sequences, alternating sequences, and sequences with blocks will deserve fur-
ther similar studies.
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[29] Seppäläinen, T. (1997). A scaling limit for queues in series. Ann. Appl.

Probab. 7 855–872.
[30] Tracy, C. and Widom, H. (1994). Level-spacing distributions and the Airy

kernel. Comm. Math. Phys. 159 151–174.
[31] Tracy, C. and Widom, H. (2001). On the distributions of the lengths of the

longest monotone subsequences in random words. Probab. Theory and Related
Fields 119 350–380.

[32] Vershik, A. and Kerov, S. (1977). Asymptotics of the Plancherel measure
of the symmetric group and the limiting form of Young tables. Soviet Math.
Dokl. 18 527–531.


