A note on positive definite norm dependent functions

Alexander Koldobsky

University of Missouri-Columbia

Abstract: Let K be an origin symmetric star body in \mathbb{R}^n . We prove, under very mild conditions on the function $f : [0, \infty) \to \mathbb{R}$, that if the function $f(||x||_K)$ is positive definite on \mathbb{R}^n , then the space $(\mathbb{R}^n, ||\cdot||_K)$ embeds isometrically in L_0 . This generalizes the solution to Schoenberg's problem and leads to progress in characterization of *n*-dimensional versions, i.e. random vectors $X = (X_1, \ldots, X_n)$ in \mathbb{R}^n such that the random variables $\sum a_i X_i$ are identically distributed for all $a \in \mathbb{R}^n$, up to a constant depending on $||a||_K$ only.

1. Introduction

In 1938, Schoenberg [26] posed the problem of finding the exponents $0 for which the function <math>\exp(-\|x\|_q^p)$ is positive definite on \mathbb{R}^n , where

$$||x||_q = (|x_1|^q + \dots + |x_n|^q)^{1/q}$$

is the norm the space ℓ_q^n with $2 < q \leq \infty$. Recall that a complex valued function f defined on \mathbb{R}^n is called *positive definite* on \mathbb{R}^n if, for every finite sequence $\{x_i\}_{i=1}^m$ in \mathbb{R}^n and every choice of complex numbers $\{c_i\}_{i=1}^m$, we have

$$\sum_{i=1}^{m} \sum_{j=1}^{m} c_i \bar{c}_j f(x_i - x_j) \ge 0.$$

For $q = \infty$, the problem was solved in 1989 by Misiewicz [21], and for $2 < q < \infty$, the answer was given in [11] in 1991 (note that, for $1 \le p \le 2$, Schoenberg's question was answered earlier by Dor [5], and the case n = 2, $0 was established in [7, 9, 16]). The answers turned out to be the same in both cases: the function <math>\exp(-||x||_q^p)$ is not positive definite if the dimension of the space is greater than 2, and for n = 2 the function is positive definite if and only if 0 . Different and independent proofs of Schoenberg's problems were given by Lisitsky [17] and Zastavnyi [28, 29] shortly after the paper [11] appeared.

For an origin symmetric star body K in \mathbb{R}^n , let $E_K = (\mathbb{R}^n, \|\cdot\|_K)$ be the space whose unit ball is K, where $\|x\||_K = \min\{a \ge 0 : x \in aK\}$ is the Minkowski functional of K. Note that the class of star bodies includes convex bodies, and E_K is a normed space if and only if K is convex (see [12], p. 13). Denote by $\Phi(K) = \Phi(E_K)$ the class of continuous functions $f: [0, \infty) \to \mathbb{R}$ for which $f(\|\cdot\|_K)$ is a positive definite function on \mathbb{R}^n .

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, e-mail: koldobskiya@missouri.edu

The classes $\Phi(K)$ admit an interesting probabilistic interpretation. Following Eaton [6], we say that a random vector X in \mathbb{R}^n is an *n*-dimensional version if all linear combinations of its coordinates have the same distribution, up to a constant, namely for any vector $a \in \mathbb{R}^n$ the random variables

$$\sum_{i=1}^{n} a_i X_i \quad \text{and} \quad \|a\|_K X_1$$

are identically distributed. The result of Eaton is that a random vector is an *n*dimensional version if and only if its characteristic functional has the form $f(||x||_K)$. Hence, by Bochner's theorem, the problem of finding all *n*-dimensional versions is equivalent to characterizing the classes $\Phi(K)$. Note that, by the classical result of P. Lévy [15], if K is the unit ball of a finite dimensional subspace of L_q , $0 < q \leq 2$, then the function $\exp(-|t|^q) \in \Phi(K)$, and the corresponding *n*-dimensional versions are the classical *q*-stable vectors.

The classes $\Phi(K)$ have been studied by a number of authors. Schoenberg [27] proved that $f \in \Phi(B_2^n)$ if and only if

$$f(t) = \int_0^\infty \Omega_n(tr) \ d\lambda(r)$$

where B_2^n is the unit Euclidean ball in \mathbb{R}^n , $\Omega_n(|\cdot|_2)$ is the Fourier transform of the uniform probability measure on the sphere S^{n-1} , and λ is a finite measure on $[0, \infty)$. In the same paper, Schoenberg proved an infinite dimensional version of this result: $f \in \Phi(\ell_2)$ if and only if

$$f(t) = \int_0^\infty \exp(-t^2 r^2) \ d\lambda(r)$$

Bretagnolle, Dacunha-Castelle and Krivine [2] proved a similar result for the classes $\Phi(\ell_q)$ for all $q \in (0, 2)$ (one just has to replace 2 by q in the formula), and showed that for q > 2 the classes $\Phi(\ell_q)$ (corresponding to infinite dimensional ℓ_q -spaces) are trivial, i.e. contain constant functions only. Cambanis, Keener and Simons [3] obtained a similar representation for the classes $\Phi(B_1^n)$. Richards [24] partially characterized the classes $\Phi(B_q^n)$ for 0 < q < 2. Aharoni, Maurey and Mityagin [1] proved that if E is an infinite dimensional Banach space with a symmetric basis $\{e_n\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \frac{\|e_1 + \dots + e_n\|}{n^{1/2}} = 0,$$

then the class $\Phi(E)$ is trivial. Misiewicz [21] proved that for $n \geq 3$ the classes $\Phi(\ell_{\infty}^n)$ are trivial, and Lisitsky [17] and Zastavnyi [28, 29] proved the same the classes $\Phi(\ell_q^n)$, q > 2, $n \geq 3$. One can find more detailed information and references in [23, 22, 4, 8, 12].

In all the results mentioned above the classes $\Phi(K)$ appear to be non-trivial only if K is the unit ball of a subspace of L_q with $0 < q \leq 2$. It was conjectured by Misiewicz [20] that the latter condition on K is necessary for $\Phi(K)$ to be nontrivial. In support of this conjecture, Misiewicz [20] and Kuritsyn [14] proved that if $f \in \Phi(K)$ is a non-constant function and its inverse Fourier transform ν (which is a finite measure on \mathbb{R} , by Bochner's theorem) has a finite moment or the order $q \in (0, 2]$, then K is the unit ball of a subspace of L_q . Lisitsky [18] showed that if $f \in \Phi(K)$ is a non-constant function and $\int_{\mathbb{R}} |\log |t|| d\nu(t) < \infty$ then, $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 (the definition of embedding in L_0 was given later in [10]; see below), and formulated a weaker conjecture that if $\Phi(K)$ is non-trivial then K is the unit ball of a subspace of L_0 .

The purpose of this note is to provide simple conditions on the function f itself (rather than on its inverse Fourier transform) under which $f(\|\cdot\|_K)$ can be positive definite only if K is the unit ball of a subspace of L_q , $0 \le q \le 2$. We prove that if f is a continuous non-constant function satisfying $|f(0) - f(t)| \le C|t|^q$ in a neighborhood of the origin, where C > 0, $q \in (0, 2)$, and $f(\|\cdot\|_K)$ is positive definite, then K is the unit ball of a subspace of L_q . We also prove that if $\lim_{t\to\infty} t^{\epsilon}|f(t)| < \infty$ for some $\epsilon \in (0, 1)$, and $f(\|\cdot\|_K)$ is positive definite, then K is the unit ball of a subspace of L_0 . This shows that, in order to defy the conjectures of Misiewicz and Lisitsky, the function f must exhibit rather odd behaviour at both the origin and infinity. Finally, we combine these facts with known results about embedding in L_q to further generalize the solution of Schoenberg's problem.

2. Proofs and examples

As usual, we denote by $\mathcal{S}(\mathbb{R}^n)$ the space of infinitely differentiable rapidly decreasing functions on \mathbb{R}^n (Schwartz test functions), and by $\mathcal{S}'(\mathbb{R}^n)$ the space of distributions over $\mathcal{S}(\mathbb{R}^n)$. If $\phi \in \mathcal{S}(\mathbb{R}^n)$ and $f \in \mathcal{S}'(\mathbb{R}^n)$ is a locally integrable function with power growth at infinity, then

$$\langle f, \phi \rangle = \int_{\mathbb{R}^n} f(x)\phi(x) \ dx.$$

We say that a distribution is positive (negative) outside of the origin in \mathbb{R}^n if it assumes non-negative (non-positive) values on non-negative Schwartz's test functions with compact support outside of the origin.

The Fourier transform of a distribution f is defined by $\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle$ for every test function ϕ .

We need a Fourier analytic criterion of embedability in L_q that applies to every q > 0 which is not an even integer; see [K], Th. 6.10.

Proposition 1. Let K be an origin-symmetric star body in \mathbb{R}^n , and q > 0 is not an even integer. Then the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds isometrically in L_q if and only if $\Gamma(-q/2)(\|\cdot\|_K^q)^{\wedge}$ is a positive distribution on $\mathbb{R}^n \setminus \{0\}$.

We now prove our first result.

Theorem 1. Let K be an origin symmetric star body in \mathbb{R}^n , and f a non-constant continuous function on $[0, \infty)$. Suppose that there exist C > 0, 0 < q < 2, u > 0 such that

$$(1) \qquad \qquad |f(0) - f(t)| \le Ct^q$$

for every $t \in (0, u)$. If $f(\|\cdot\|_K)$ is a positive definite function, then the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds isometrically in L_q .

Proof. A positive definite function $f(||x||_K)$ has absolute maximum at zero (see [19] or [25], p. 21) and is bounded on \mathbb{R}^n , hence $f(0) \ge f(t)$ for every t > 0 and f is bounded on $[0, \infty)$.

Let $0 < \alpha < q$. The condition (1) and the remark above imply that the integral

$$c = \int_0^\infty t^{-1-\alpha} (f(0) - f(t)) dt$$

converges and is positive (f is not a constant).

Making a change of variables $u = t ||x||_K$, we see that for every $x \in \mathbb{R}^n \setminus \{0\}$

(2)
$$c\|x\|_{K}^{\alpha} = \int_{0}^{\infty} t^{-1-\alpha} \left(f(0) - f(t\|x\|_{K})\right) dt.$$

Let ϕ be an even non-negative test function supported outside of the origin. Then

(3)
$$\int_{\mathbb{R}^n} \hat{\phi}(x) \, dx = (2\pi)^n \phi(0) = 0.$$

Applying the definition of the Fourier transform of a distribution and equalities (2) and (3), we get

$$\begin{split} \langle \left(\|\cdot\|_{K}^{\alpha}\right)^{\wedge},\phi\rangle &= \langle \|x\|_{K}^{\alpha},\hat{\phi}\rangle = \int_{\mathbb{R}^{n}} \|x\|_{K}^{\alpha}\hat{\phi}(x) \ dx\\ &= -\frac{1}{c}\int_{0}^{\infty}t^{-1-\alpha}\left(\int_{\mathbb{R}^{n}}f(t\|x\|_{K})\hat{\phi}(x) \ dx\right)dt\\ &= -\frac{1}{c}\int_{0}^{\infty}t^{-1-\alpha}\langle \left(f(t\|\cdot\|_{K})\right)^{\wedge},\phi\rangle dt \leq 0, \end{split}$$

because $f(t \| \cdot \|_K)$ is a positive definite function on \mathbb{R}^n for every fixed $t \in \mathbb{R}$, and, by Bochner's theorem, $(f(t \| \cdot \|_K))^{\wedge}$ is a finite measure on \mathbb{R}^n .

For every $0 < \alpha < q$ and $x \in \mathbb{R}^n$, we have

$$||x||_{K}^{\alpha} |\hat{\phi}(x)| \le \max(1, ||x||_{K}^{q}) |\hat{\phi}(x)|,$$

where the function of $x \in \mathbb{R}^n$ in the right-hand side is integrable, so by the dominated convergence theorem,

$$\begin{split} \langle \left(\|\cdot\|_{K}^{q} \right)^{\wedge}, \phi \rangle &= \int_{\mathbb{R}^{n}} \|x\|_{K}^{q} \hat{\phi}(x) \ dx \\ &= \lim_{\alpha \to q} \int_{\mathbb{R}^{n}} \|x\|_{K}^{\alpha} \hat{\phi}(x) \ dx = \lim_{\alpha \to q} \langle \left(\|\cdot\|_{K}^{\alpha} \right)^{\wedge}, \phi \rangle \leq 0. \end{split}$$

Now the result follows from Proposition 1 with 0 < q < 2.

The concept of embedding in L_0 was introduced in [10].

Definition 1. We say that a space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 if there exist a finite Borel measure μ on the sphere S^{n-1} and a constant $C \in \mathbb{R}$ so that, for every $x \in \mathbb{R}^n$,

(4)
$$\ln \|x\|_{K} = \int_{S^{n-1}} \ln |(x,\xi)| d\mu(\xi) + C.$$

Embedding in L_0 also admits a Fourier analytic characterization, as established in [10], Th. 3.1.

Proposition 2. Let K be an origin symmetric star body in \mathbb{R}^n . The space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 if and only if the Fourier transform of $\ln \|x\|_K$ is a negative distribution outside of the origin in \mathbb{R}^n .

We use the latter statement to prove our next result.

Theorem 2. Let K be an origin symmetric star body in \mathbb{R}^n , and f a continuous function on $[0, \infty)$ such that

(5)
$$\lim_{t \to \infty} t^{\epsilon} |f(t)| = 0$$

for some $\epsilon \in (0,1)$. If $f(\|\cdot\|_K)$ is a positive definite function, then the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 .

Proof. By the condition (5) and since f is a bounded function, for every $0 < \delta < \epsilon$, the integral

$$c = \int_0^\infty t^{-1+\delta} f(t) \ dt$$

converges absolutely. We need to show that c > 0. In fact, making a change of variables z = tu and expressing the resulting integral in terms of the Γ -function, we get

$$\int_0^\infty u^{-\delta} \exp(-t^2 u^2/2) \ du = t^{-1+\delta} \Gamma((1-\delta)/2).$$

The function $f(|\cdot|)$ is positive definite on \mathbb{R} as the restriction to \mathbb{R} of a positive definite function. By Bochner's theorem, $f(|\cdot|) = \hat{\nu}$ for some finite measure ν on \mathbb{R} . We have

$$c = \frac{1}{\Gamma((1-\delta)/2)} \int_0^\infty u^{-\delta} \langle f(|t|), \exp(-t^2 u^2/2) \rangle du$$
$$= \frac{1}{\Gamma((1-\delta)/2)} \int_0^\infty u^{-\delta} \langle \nu, (\exp(-t^2 u^2/2))^{\wedge} \rangle du > 0,$$

since ν is a non-negative measure and the Fourier transform of a Gaussian density is also a Gaussian density, up to a positive constant.

Now for any $x \in \mathbb{R}^n \setminus \{0\}$, we have

$$c\|x\|_{K}^{-\delta} = \int_{0}^{\infty} t^{-1+\delta} f(t\|x\|_{K}) dt$$

For every even non-negative test function ϕ ,

$$\begin{split} \langle \|x\|_{K}^{-\delta}, \hat{\phi} \rangle &= \frac{1}{c} \int_{0}^{\infty} t^{-1+\delta} \langle f(t\|\cdot\|_{K}), \hat{\phi} \rangle dt \\ &= \frac{1}{c} \int_{0}^{\infty} t^{-1+\delta} \langle (f(t\|\cdot\|_{K}))^{\wedge}, \phi \rangle dt \ge 0, \end{split}$$

since the function $f(t \| \cdot \|_K)$ is positive definite for any fixed $t \in \mathbb{R}$.

Suppose that, in addition, ϕ is supported outside of the origin, then by (3)

$$\left\langle \frac{\|x\|_{K}^{-\delta} - 1}{\delta}, \hat{\phi} \right\rangle = \frac{1}{\delta} \langle \|x\|_{K}^{-\delta}, \hat{\phi} \rangle \ge 0.$$

Sending δ to zero, we get that

$$-\langle \log \|x\|_K, \hat{\phi} \rangle = -\langle (\log \|\cdot\|_K)^{\wedge}, \phi \rangle \ge 0,$$

and by Proposition 2, the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 .

Let us show several applications. For normed spaces X and Y and $q \in \mathbb{R}$, $q \ge 1$, the q-sum $(X \oplus Y)_q$ of X and Y is defined as the space of pairs $\{(x, y) : x \in X, y \in Y\}$ with the norm

$$||(x,y)|| = (||x||_X^q + ||y||_Y^q)^{1/q}$$

It was proved in [13] (see also [12], Th. 6.11, Th. 4.21) that if q > 2 and X is any two-dimensional normed space, then the three dimensional space $(X \oplus \mathbb{R})_q$ does not embed in L_p , 0 . Combining this fact with Theorem 1, we get

Corollary 1. If a function f satisfies the conditions of Theorem 1 and $(\mathbb{R}^n, \|\cdot\|)$ is a space containing a three-dimensional subspace $(X \oplus \mathbb{R})_q$, where q > 2 and X is any two-dimensional normed space, then the function $f(\|\cdot\|)$ is not positive definite.

Recall that an Orlicz function M is a non-decreasing convex function on $[0, \infty)$ such that M(0) = 0 and M(t) > 0 for every t > 0. The norm $\|\cdot\|_M$ of the *n*dimensional Orlicz space ℓ_M^n is defined implicitly by the equality $\sum_{k=1}^n M(|x_k|/|x_k|) = 1$, $x \in \mathbb{R}^n \setminus \{0\}$. It was proved in [13] that the spaces ℓ_M^n , $n \ge 3$ do not embed in L_p , $0 if the Orlicz function <math>M \in C^2([0,\infty))$ satisfies the condition M'(0) = M''(0) = 0.

Corollary 2. If a function f satisfies the conditions of Theorem 1 and $(\mathbb{R}^n, \|\cdot\|)$ is a space containing ℓ_M^3 , where M is an Orlicz function such that $M \in C^2([0,\infty))$ and M'(0) = M''(0) = 0, then the function $f(\|\cdot\|)$ is not positive definite.

The concept of embedding of a normed space in L_0 was studied in [10]. In particular, every finite dimensional subspace of L_p , $0 embeds in <math>L_0$. Every three-dimensional normed space embeds in L_0 . On the other hand, every space that embeds in L_0 also embeds in every L_p , p < 0.

It follows from the latter fact, combined with Theorems 4.21 and 4.22 from [12], that

Corollary 3. If a function f satisfies the conditions of Theorem 2 and $(\mathbb{R}^n, \|\cdot\|)$ is a space containing a four-dimensional space $(X \oplus \mathbb{R})_q$, where q > 2 and X is any three-dimensional normed space, or $(\mathbb{R}^n, \|\cdot\|)$ contains a space ℓ_M^4 , where Mis an Orlicz function such that $M \in C^2([0,\infty))$ and M'(0) = M''(0) = 0, then the function $f(\|\cdot\|)$ is not positive definite.

Corollaries 1-3 generalize the solution of Schoenberg's problem.

References

- AHARONI, I., MAUREY, B. AND MITYAGIN, B. (1985). Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces. *Israel J. Math.* 52 251–265.
- [2] BRETAGNOLLE, J., DACUNHA-CASTELLE, D. AND KRIVINE, J. L. (1966). Lois stables et espaces L_p . Ann. Inst. H. Poincaré Probab. Statist. 2 231–259.
- [3] CAMBANIS, S., KEENER, R. AND SIMONS, G. (1983). On α-symmetric multivariate distributions. J. Multivariate Analysis 13 213–233.
- [4] DILWORTH, S. AND KOLDOBSKY, A. (1995). The Fourier transform of order statistics with applications to Lorentz spaces. *Israel J. Math.* **92** 411–425.
- [5] DOR, L. (1976). Potentials and isometric embeddings in L_1 . Israel J. Math. **24** 260–268.
- [6] EATON, M. (1981). On the projections of isotropic distributions. Ann. Stat. 9 391–400.

- [7] FERGUSON, T. S. (1962). A representation of the symmetric bivariate Cauchy distributions. Ann. Math. Stat. 33 1256–1266.
- [8] GNEITING, T. (1998). On α-symmetric multivariate characteristic functions. J. Multivariate Anal. 64 131–147.
- [9] HERZ, C. (1963). A class of negative definite functions. Proc. Amer. Math. Soc. 14 670–676.
- [10] KALTON, N. J., KOLDOBSKY, A., YASKIN, V. AND YASKINA, M. (2007). The geometry of L₀. Canad. J. Math. **59** 1029–1049.
- [11] KOLDOBSKY, A. (1991). The Schoenberg problem on positive-definite functions. Algebra i Analiz 3 78–85. Translation in St. Petersburg Math. J. 3 (1992), 563–570.
- [12] KOLDOBSKY, A. (2005). Fourier Analysis in Convex Geometry. Amer. Math. Soc., Providence, RI.
- [13] KOLDOBSKY, A. AND LONKE, Y. (1999). A short proof of Schoenberg's conjecture on positive definite functions. Bull. London Math. Soc. 31 693–699.
- [14] KURITSYN, YU. G. (1989). Multidimensional versions and two problems of Schoenberg. In *Problems of Stability of Stochastic Models* 72–79. VNIISI, Moscow.
- [15] LÉVY, P. (1937). Théorie de l'addition de variable aléatoires. Gauthier-Villars, Paris.
- [16] LINDENSTRAUSS, J. (1964). On the extension of operators with finite dimensional range. *Illinois J. Math.* 8 488–499.
- [17] LISITSKY, A. (1991). One more proof of Schoenberg's conjecture. Unpublished manuscript.
- [18] LISITSKY, A. (1997). The Eaton problem and multiplicative properties of multivariate distributions. *Theor. Probab. Appl.* 42 618–632.
- [19] LUKACS, E. (1958). Characteristic Functions. Griffin, London.
- [20] MISIEWICZ, J. (1988). On norm dependent positive definite functions. Bull. Acad. Sci. Georgian SSR 130 253–256.
- [21] MISIEWICZ, J. (1989). Positive definite functions on ℓ_{∞} . Stat. Probab. Let. 8 255–260.
- [22] LISITSKY, A. (1996). Substable and pseudo-isotropic processes—connections with the geometry of subspaces of L_{α} -spaces. Dissertationes Math. (Rozprawy Mat.) **358**.
- [23] MISIEWICZ, J. AND SCHEFFER, C. L. (1990). Pseudo isotropic measures. Nieuw Arch. Wisk. 8 111–152.
- [24] RICHARDS, D. ST. P. (1986). Positive definite symmetric functions on finite dimensional spaces. 1. Applications of the Radon transform. J. Multivariate Anal. 19 280–298.
- [25] SASVARI, Z. (1994). Positive Definite and Definitisable Functions. Akademie Verlag, Berlin,
- [26] SCHOENBERG, I. J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 522–536.
- [27] SCHOENBERG, I. J. (1938). Metric spaces and completely monotone functions. Annals of Math. 39 811–841.
- [28] ZASTAVNYI, V. (1992). Positive definite norm dependent functions. Dokl. Russian Acad. Nauk. 325 901–903.
- [29] ZASTAVNYI, V. (1993). Positive definite functions depending on the norm. Russian J. Math. Phys. 1 511–522.