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Abstract: This paper introduces a local optimization-based approach to
test statistical hypotheses and to construct confidence intervals. This ap-
proach can be viewed as an extension of bootstrap, and yields asymptot-
ically valid tests and confidence intervals as long as there exist consistent
estimators of unknown parameters. We present simple algorithms includ-
ing a neighborhood bootstrap method to implement the approach. Several
examples in which theoretical analysis is not easy are presented to show
the effectiveness of the proposed approach.
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1. Introduction

More and more complex datasets call for sophisticated statistical methods in the
modern era. Compared with other fields for analyzing data such as computer
science and applied mathematics, statistics can quantify the uncertainty of a
phenomenon via hypothesis testing and/or interval estimation, which solidifies
the unique feature of this discipline. In conventional frenquentist statistics, for
testing a hypothesis or constructing a confidence interval, we need to find proper
test statistic or pivotal quantity whose distribution satisfies certain properties
[32]. However, this is quite difficult for many complex problems. The bootstrap
method [12] relaxes the above requirement on test statistics or pivotal quantities
via its ability in distribution approximation, and thus strengthens the power of
conventional frequentist inference. Another advantage of bootstrap is that it
provides explicit resampling-based solutions if the underlying model is well es-
timated. Consequently, bootstrap has been well received in statistics and other
fields. The frequentist properties of bootstrap inferential procedures such as the
bootstrap interval estimation can be guaranteed by the consistency of bootstrap
distribution estimation [41]. This is also true for related methods like subsam-
pling [40]. Generally speaking, it is more difficult to prove such a consistency
than to derive the asymptotic distribution of the corresponding test statistic or
pivotal quantity.

From the above discussion it can be seen that we have to do considerable the-
oretical work before claiming that the proposed method is a frequentist one. This
is not easy for complex problems, and thus hampers the frequentist approach
from being more applicable. In this paper we provide a very general approach
based on local optimization to complement current frequentist inference. Our
approach can be viewed as an extension of the classical bootstrap method, and
reduces to it when the region for optimization shrinks to the center. On the the-
oretical aspect, the tests and confidence intervals constructed by our approach
possess asymptotic frequentist properties as long as we have consistent estima-
tors of unknown parameters. This feature indicates that we do not need to derive
any (asymptotic) distribution or to prove the consistency of distribution estima-
tion before using the proposed approach. In addition, with a proper region for
optimization, the proposed approach is first order asymptotically equivalent to
the bootstrap method for regular problems. On the computational aspect, our
approach only requires the optimal objective value of an optimization problem
over a local region, which can be reached by standard optimization techniques.
We also present simple experimental design-based algorithms including a neigh-
borhood bootstrap method to solve the optimization problem. These algorithms
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are easy to implement for practitioners, and produce satisfactory results in our
simulations.

The rest of this paper is organized as follows. Sections 2 and 3 introduce lo-
cal optimization-based hypothesis testing and interval estimation, respectively.
Their asymptotic frequentist properties are studied in Section 4. Some imple-
mentation issues are discussed in Section 5. Section 6 presents four non-regular
examples including a high-dimensional problem and a nonparametric regres-
sion problem to illustrate the proposed approach. We end the paper with some
discussion in Section 7.

2. Local optimization-based hypothesis testing

Let the random sample X be drawn from a distribution F (·, θ), where θ lies in
the parameter space Θ. Here Θ can be a subset of an Euclidean space or an
infinite-dimensional space. We are interested in testing

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ \Θ0, (2.1)

where Θ0 is a close subset of Θ. Let T = T (X) ∈ R be a test statistic. Suppose
that T tends to take a large value when H0 does not hold. It is known that the
p-value for testing (2.1) is defined as

P = sup
φ∈Θ0

Pr(T ∗
φ � T | T ), (2.2)

where T ∗
φ = T (X∗) and X∗ is an independent copy of X from F (·, φ) [20]. Given

a significance level α ∈ (0, 1), we will reject H0 if P < α. This test can strictly
control the Type I error within the Neyman-Pearson framework, as shown in
the following proposition [46].

Proposition 2.1. Under H0,

Pr(P < α) � α

Proof. Let G denote the cumulative distribution function (c.d.f.) of −T , i.e.,
G(x) = Pr(−T � x). Denote

G−1(t) = inf{x : G(x) > t}. (2.3)

For θ ∈ Θ0, we have

Pr(P < α)

= Pr

(
sup
φ∈Θ0

Pr(T ∗
φ � T | T ) < α

)
� Pr

(
Pr(T ∗

θ � T | T ) < α
)

(2.4)

= Pr
(
G(−T ) < α

)
� Pr

(
− T < G−1(α)

)
� α.

This completes the proof.
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Proposition 2.1 is a general result, which does not require any assumption on
T . From Proposition 2.1, a test is obtained by solving an stochastic optimization
problem in (2.2), which can be rewritten as

P = sup
φ∈Θ0

∫
I(T (x) � t)dF (x, φ), (2.5)

where I is the indicator function and t is the realization of T . In principle, any
hypothesis testing problem can be solved by this way as long as the correspond-
ing optimization problem in (2.5) is solvable. In limited trivial cases, the problem
in (2.5) has obvious solution; an example is to test simple null hypothesis

H0 : θ = θ0. (2.6)

Sometimes T is distribution-free for all θ ∈ Θ0, and then it is unnecessary to
solve the optimization problem in computing P . However, except for these cases,
this method faces some difficulties in computation: the stochastic optimization
problem is generally very hard to solve, especially when Θ0 is an unbounded
set.

In the literature, a commonly used strategy to overcome these difficulties is
based on the asymptotic distribution of the test statistic T . The optimization
problem in (2.5) is often solvable when replacing the distribution of T by the
asymptotic distribution. For example, with a T whose asymptotic distribution
is free of unknown parameters, it is trivial to solve (2.5). For complex problems,
it is often not easy to derive the asymptotic distribution, or to find such a T
whose asymptotic distribution has the desirable properties. A Bayesian remedy
is Meng’s posterior predictive p-value [36], which averages the objective func-
tion in (2.5) over the posterior distribution of the parameter under the null
hypothesis.

Here we provide a more general strategy without any requirement on the
distribution of T . Suppose that H0 holds. For the true parameter θ ∈ Θ0, it
suffices to obtain a p-value that controls the Type I error by optimizing the
objective function in (2.2) over any set that contains θ, instead of over the
whole Θ0; see the inequality in (2.4). Consequently, we need to compute

P0 = max
φ∈N (θ)∩Θ0

∫
I(T (x) � t)dF (x, φ), (2.7)

where N (θ) is a closed neighborhood of θ containing θ. Here “sup” in (2.5) is
replaced by “max” if we assume that N (θ) ∩ Θ0 is a compact subset of Θ0 on
which

∫
I(T (x) � t)dF (x, φ) is continuous with respect to φ. In practice, we use

a consistent estimator θ̂ of θ under H0 to replace θ in (2.7), and obtain

PLOT = max
φ∈N (θ̂)∩Θ0

∫
I(T (x) � t)dF (x, φ). (2.8)

If the probability of θ ∈ N (θ̂) tends to one (this is easy to achieve for consistent

θ̂; see Section 5.1), then the test based on the p-value in (2.8) is asymptoti-
cally valid. We call this test local optimization-based test (LOT) throughout the
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Table 1

Comparison of three tests

How to control the Difficulty level in
Type I error implementation

Fisher’s significance test always high
LOT under weak conditions moderate
Efron’s bootstrap test under strong conditions low

paper. LOT only requires the maximum value of the objective function over a
neighborhood of θ̂, which can be achieved by standard optimization techniques.
This feature makes LOT work for many complex problems, in which it is hard
to analyze the distribution of T .

When N (θ̂) shrinks to θ̂, (2.8) becomes

PB =

∫
I(T (x) � t)dF (x, θ̂), (2.9)

which is the p-value of the bootstrap test [11]. Therefore, LOT can be viewed
as an extension of the bootstrap test. The bootstrap p-value can be easily cal-
culated by resampling from F (x, θ̂), and LOT needs more computational cost.
On the theoretical aspect, LOT controls the Type I error asymptotically under
weak conditions, say, if θ̂ is a consistent estimator, whereas the bootstrap test
can fail for non-regular cases where the bootstrap distribution estimator is in-
consistent [1, 3]. From (2.2), (2.8), to (2.9), LOT is a bridge connecting Fisher’s
significance test and Efron’s bootstrap test. Table 1 presents a rough description
of the three tests with a given test statistic.

The above discussion mainly focuses on the case where the test statistic T is
given. In current frenquentist methods including bootstrap, it is often a problem
to choose a test statistic with both intuitive appeal and required distributional
properties. Compared with them, LOT appears much more flexible on this point
since asymptotically valid LOTs can be constructed based on any intuitively
reasonable test statistic as long as we have consistent estimator of θ.

It should be emphasized that for the situations where the p-value in (2.2) is
easy to compute. it is unnecessary to use complicated methods like the bootstrap
and LOT. An example of such situations is to test simple hypothesis (2.6). The
goal of our method is to provide reasonable solutions for complex hypothesis
testing problems.

3. Local optimization-based interval estimation

The idea of approximating the p-value via local optimization can be modified
to construct confidence intervals. Suppose that the parameter of interest is ξ =
ξ(θ) ∈ R, and that ξ̂ = ξ̂(X) is an estimator of ξ. Let Hθ denote the c.d.f.

of the “pivotal quantity” ξ − ξ̂, i.e., Hθ(x) = Pr(ξ − ξ̂ � x). It should be

pointed out that the (asymptotic) distribution of ξ − ξ̂ is allowed to depend
on unknown parameters, and this is different from the standard definition of a
pivotal quantity in textbooks. Define H−1

θ as in (2.3).



2300 S. Xiong

Proposition 3.1. For all θ ∈ Θ and α ∈ (0, 1),

Pr

(
ξ � ξ̂ + sup

φ∈Θ
H−1

φ (1− α)

)
� 1− α, (3.1)

Pr

(
ξ � ξ̂ + inf

φ∈Θ
H−1

φ (α)

)
� 1− α. (3.2)

Proof. We have

Pr

(
ξ � ξ̂ + sup

φ∈Θ
H−1

φ (1− α)

)
� Pr

(
ξ − ξ̂ � H−1

θ (1− α)
)

(3.3)

= Hθ

(
H−1

θ (1− α)
)

� 1− α.

This completes the proof of (3.1), and that of (3.2) is similar.

By Proposition 3.1, the upper and lower 1−α confidence bounds of ξ are given
by ξ̂+supφ∈Θ H−1

φ (1−α) and ξ̂+infφ∈Θ H−1
φ (α), respectively. The equal-tailed

1−α confidence interval of ξ is
[
ξ̂+infφ∈Θ H−1

φ (α/2), ξ̂+supφ∈Θ H−1
φ (1−α/2)

]
.

These interval limits all need to solve an optimization problem

sup
φ∈Θ

H−1
φ (γ) or inf

φ∈Θ
H−1

φ (γ)

for some γ ∈ (0, 1), which is often difficult. Like (2.7), Proposition 3.1 also holds
if we take supremum over an arbitrary region containing the true value of θ; see
(3.3). Suppose that θ̂ is a consistent estimator of θ. Under some mild conditions,
we can get asymptotically valid confidence limits through solving

sup
φ∈N (θ̂)

H−1
φ (γ) or inf

φ∈N (θ̂)
H−1

φ (γ). (3.4)

Specifically, the upper and lower 1 − α confidence bounds of ξ are
ξ̂+supφ∈N (θ̂) H

−1
φ (1−α) and ξ̂+infφ∈N (θ̂) H

−1
φ (α), respectively, and the equal-

tailed 1 − α confidence interval of ξ is
[
ξ̂ + infφ∈N (θ̂) H

−1
φ (α/2), ξ̂ +

supφ∈N (θ̂) H
−1
φ (1 − α/2)

]
. Here “sup” (or “inf”) can be replaced by “max”

(or “min”) if N (θ̂) is a compact subset of Θ on which H−1
φ is continuous with

respect to φ. We call these confidence intervals local optimization-based confi-
dence intervals (LOCIs) throughout the paper. When N (θ̂) shrinks to θ̂, LOCIs
become the bootstrap hybrid confidence intervals [41].

4. Asymptotic properties

This section discusses asymptotic properties of the proposed local optimization-
based methods. Further results involving some computational method are de-
ferred in the Appendix. Here we only consider one-sided LOCIs, and similar
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results also hold for two-sided LOCIs and LOTs. Some notation and defini-
tions are needed. The parameter space Θ is assumed to be a metric space with
metric ρ. For A ⊂ Θ, let |A| denote max{ρ(a, b) : a, b ∈ A}. For two c.d.f.’s
F1 and F2, the Kolmogorov distance between them is defined as dK(F1, F2) =
supx∈R

|F1(x) − F2(x)|. We allow the neighborhood N (·) to depend on n and
denote Nn(·) for clarity. We use “→d” to denote “converge in distribution”, and
let “a.s.” be the abbreviation for “almost surely”. As in Section 3, let Hθ denote
the c.d.f. of ξ − ξ̂. Since Nn(θ̂) is a random set, for φ ∈ Nn(θ̂), Hφ is actually

a random c.d.f., i.e., Hφ(x) = Pr
(
ξ(φ) − ξ̂(X∗) � x|X

)
, where the conditional

distribution of X∗ conditional on X is F (·, φ).

Assumption 4.1. As n → ∞, Pr
(
θ ∈ Nn(θ̂)

)
→ 1 for all θ ∈ Θ.

If θ̂ is consistent, then Nn(θ̂) is easy to construct to satisfy Assumption 4.1;
see (5.1) in Section 5.1. We can immediately have the following theorem.

Theorem 4.1. Under Assumption 4.1, for all θ ∈ Θ and α ∈ (0, 1),

lim inf
n→∞

Pr

(
ξ � ξ̂ + sup

φ∈Nn(θ̂)

H−1
φ (1− α)

)
� 1− α. (4.1)

Theorem 4.1 indicates that LOCIs are asymptotically valid confidence in-
tervals under Assumption 4.1, which is fairly weak. It is easy to find Nn(θ̂)

satisfying this assumption for consistent θ̂; see Section 5.1.
We next show that LOCIs are first order asymptotically equivalent to the

bootstrap confidence intervals under regularity conditions. Specifically, if the
bootstrap distribution estimator of ξ− ξ̂ is consistent, then “�” in (4.1) can be
replaced by “=”. Several assumptions are needed.

Assumption 4.2. As n → ∞, |Nn(θ̂)| → 0 (a.s.).

Assumption 4.3. As n → ∞, θ̂ → θ (a.s.) for all θ ∈ Θ.

Assumption 4.4. (i) There exists a series of numbers an → ∞ such that

an(ξ− ξ̂) →d K, where K is a continuous c.d.f. and is strictly increasing on its
support.
(ii) For φ ∈ Nn(θ̂), dK(H̄φ,K) → 0 (a.s.), where H̄φ(x) = Pr

(
an[ξ(φ)−ξ̂(X∗)] �

x|X
)
and X∗ is the bootstrap sample drawn from F (·, φ).

Assumption 4.4 indicates that the bootstrap distribution estimator of an(ξ−
ξ̂) is consistent [41]. We can use the conditional distribution of an[ξ(θ̃)− ξ̂(X∗)]

conditional on X to approximate that of an(ξ − ξ̂), and this approximation
leads to asymptotically valid confidence intervals for ξ. Assumption 4.4 holds
for general regular cases. We present two simple examples.

Example 4.1. Let Xn be a random number from a binomial distribution
BN(n, π) with parameter π ∈ (0, 1). Consider the pivotal quantity π −Xn/n. It
is clear that

√
n(π−Xn/n) →d K, where K is the c.d.f. of N(0, π(1−π)). This
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result also holds for any strongly consistent estimator π̃n of π. Specifically, with
X∗

n ∼ BN(n, π̃n), we can easily prove that dK(H̄π̃,K) → 0 (a.s.) by the central
limit theorem for triangle arrays, where H̄π̃(x) = Pπ

(√
n(π̃n−X∗/n) � x|Xn

)
,

and then Assumption 4.4 holds.

Example 4.2. Let X1, . . . , Xn be i.i.d. random variables from a c.d.f. F with
EX4

1 < ∞. Here we do not assume a parametric form for F . Then the parameter
space Θ = {F ∈ F :

∫
x4dF (x) < ∞} is an infinite-dimensional metric space

with metric dK, where F denotes the set of all c.d.f.’s on R. A strongly consistent
estimator of F is the empirical distribution F̂ (x) =

∑n
i=1 I(Xi � x)/n. Suppose

that the parameter of interest is μ = EX1. Let X̄n denote the sample mean.
Consider the pivotal quantity μ−X̄n. First, we have

√
n(μ−X̄n) →d Φ

(
·/v(F )

)
,

where Φ is the c.d.f. of N(0, 1) and v(F ) =
∫ (

x −
∫
xdF (x)

)2
dF (x). Second,

take

Nn(F̂ ) = {G ∈ Θ : dK(G, F̂ ) < 1/n1/3, |v(G)− v(F̂ )| < 1/n1/3}. (4.2)

It is easy to verify Assumptions 4.1–4.3. Furthermore, for Fn ∈ Nn(F̂ ) and
X∗

1 , . . . , X
∗
n i.i.d. from Fn, through verifying the Lindeberg condition in the cen-

tral limit theorem for triangle arrays, we have that dK(H̄
s
Fn

,Φ
)
→ 0 (a.s.),

where H̄s
Fn

(x) = Pr
(√

n(EX∗
1 −X̄∗

n)/v(Fn) � x|X1, . . . , Xn

)
. Denote H̄Fn(x) =

Pr
(√

n(EX∗
1 − X̄∗

n) � x|X1, . . . , Xn

)
. By (4.2), dK

(
H̄Fn(·),Φ

(
· /v(F )

))
→ 0

(a.s.). Then Assumption 4.4 holds.

Theorem 4.2. Under Assumptions 4.1–4.4, for all θ ∈ Θ and α ∈ (0, 1),

lim
n→∞

Pr

(
ξ � ξ̂ + sup

φ∈Nn(θ̂)

H−1
φ (1− α)

)
= 1− α.

Proof. For any n, there exists θ∗n ∈ Nn(θ̂) such that supφ∈Nn(θ̂)
H̄−1

φ (1 − α) <

H̄−1
θ∗
n
(1 − α) + 1/n. Under Assumptions 4.2 and 4.3, θ∗n → θ0 (a.s.). Therefore,

by Assumption 4.4, H̄−1
θ∗
n
(1− α) → K−1(1− α) (a.s.). We have

Pr

(
ξ � ξ̂ + sup

φ∈Nn(θ̂)

H−1
φ (1− α)

)
= Pr

(
an(ξ − ξ̂) � sup

φ∈Nn(θ̂)

H̄−1
φ (1− α)

)

� Pr
(
an(ξ − ξ̂) � H̄−1

θ∗
n
(1− α) + 1/n

)
= Pr

(
an(ξ − ξ̂) � K−1(1− α) + o(1)

)
= H̄θ

(
K−1(1− α) + o(1)

)
→ 1− α,

where H̄θ is the c.d.f. of an(ξ − ξ̂) that converges to K by Assumption 4.4 (i).
Combining this result with Theorem 4.1, we complete the proof.

When applying bootstrap to a specific problem, we need to verified Assump-
tions 4.3 and 4.4 to guarantee its frequentist properties. Theorems 4.1 and 4.2
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indicate that we do not need to do such theoretical work when using LOCI.
With a proper Nn(θ̂), LOCI possesses both the basic frequentist property in
(4.1) and a potential bonus: it enjoys the same first order frequentist property
as the bootstrap method when the two assumptions hold (although we may
not know this). It can be expected that, under much stronger conditions, LOCI
has some high-order asymptotic properties like bootstrap [25]. We do not dis-
cuss this in the paper since it is difficult to verify such conditions for complex
problems.

5. Implementation

This section discusses how to implement LOT and LOCI. We focus on the cases
where Θ is a subset of an Euclidean space. Therefore, it suffices to solve finite-
dimensional optimization problems in LOT and LOCI. For some problems with
infinite-dimensional parameter spaces, LOT or LOCI is still available through
rational simplification; see Section 6.4.

5.1. Specification of N (θ̂)

The first issue is to determine the neighborhood N (θ̂) in (2.8) and (3.4) over
which we solve the optimization problem. Suppose that the dimension of Θ is
q and θ̂ = (θ̂1, . . . , θ̂q)

′ is a consistent estimator of θ = (θ1, . . . , θq)
′. The basic

principle is to select N (θ̂) satisfying Assumption 4.1. A simple choice of N (θ̂)
is [

θ̂1 − δ, θ̂1 + δ
]
× · · · ×

[
θ̂q − δ, θ̂q + δ

]
(5.1)

for some small constant δ > 0. If we know further the convergence rate of θ̂, then
the second principle is to selectN (θ̂) satisfying Assumption 4.2. By Theorem 4.2,
this selection can make the local optimization-based method asymptotically
equivalent to bootstrap if the bootstrap distribution estimator is consistent. For
example, with ‖θ̂−θ‖ = Op(1/

√
n), a selection ofN (θ̂) simultaneously satisfying

Assumptions 4.1 and 4.2 is[
θ̂1−δ log(n)/

√
n, θ̂1+δ log(n)/

√
n
]
×· · ·×

[
θ̂q−δ log(n)/

√
n, θ̂q+δ log(n)/

√
n
]

(5.2)
for some constant δ > 0. The constant δ in (5.1) or (5.2) can be specified em-

pirically. For complex problems, the convergence rate of θ̂ is difficult to exactly
know. We will see in Section 6 that, LOT or LOCI has good finite-sample perfor-
mance even with a simple N (θ̂) like in (5.1) that only satisfies Assumption 4.1.

It seems more reasonable if the variances of θ̂j ’s are used to construct N (θ̂).
When the variance estimators are not straightforward, the jackknife, bootstrap
[41], or even Bayesian methods can be used to estimate the variances. However,
such methods will add extra theoretical and computational work, and there are
still some constants, which need to be specified empirically, in the final form of
N (θ̂). Therefore, we suggest using the variance estimators only when they are
straightforward.
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5.2. Importance sampling-based approach

Suppose that F (·, θ) has a probability density function (p.d.f.) f(·, θ) with re-
spect to a σ-finite measure ν, and that {f(·, θ) : φ ∈ Θ0} has a common support.
We use an importance sampling-based approach to solve the stochastic optimiza-
tion problem in (2.8). First we approximate the objective function in (2.8) by
importance sampling. Note that

u(φ) =

∫
I(T (x) � t)

f(x, φ)

f(x, θ̂)
f(x, θ̂)d ν(x) = E

{
I(T (X∗) � t)

f(X∗, φ)

f(X∗, θ̂)

}
,

where X∗ ∼ f(·, θ̂). According to the sample averaging approximation method
in stochastic optimization [42], we compute the p-value as

PIS = max
φ∈N (θ̂)∩Θ0

û(φ), (5.3)

where

û(φ) =
1

M

M∑
m=1

{
I(T (X∗

m) � t)
f(X∗

m, φ)

f(X∗
m, θ̂)

}
, (5.4)

is the approximation of u(θ) based on X∗
1, . . . ,X

∗
M i.i.d. from f(·, θ̂) with the

Monte Carlo sample size M . With sufficiently large M , PIS can be arbitrarily
close to P in (2.8). There are many available iterative algorithms for solving the
deterministic optimization problem in (5.3) such as the interior point method [5].

We can also use an experimental design-based method to approximate the
p-value in (5.3). Take L points φ1, . . . , φL uniformly spaced over N (θ̂)∩Θ0, and
then compute

PIS−D = max
{
û(θ̂), û(φ1), . . . , û(φL)

}
, (5.5)

where û is defined in (5.4). We call these points trial points throughout this
paper, which can be constructed from so-called space-filling designs in exper-
imental design; see Section 5.4. Since N (θ̂) is a small neighborhood, PIS−D

often performs well with a moderate L. The design-based method is very easy
to implement, and is suitable for those who are not familiar with optimization
methods. More sophisticated space-filling design-based optimization method can
be found in [18].

For LOCI, we have the following importance sampling-based method to com-
pute the interval limits when F (·, θ) has a p.d.f. f(·, θ) and {f(·, θ) : θ ∈ Θ} has a
common support. Here we only consider the computation of upper limits, i.e., the
first optimization problem in (3.4). Let ϕ = H−1

φ (γ) and S(φ, ϕ) = Hφ(ϕ). Sup-

pose that Hφ is continuous and strictly increasing on its support for φ ∈ N (θ̂).
The problem (3.4) is equivalent to the constrained optimization problem

max
φ∈N (θ̂)

ϕ subject to S(φ, ϕ) = γ. (5.6)
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For q-dimensional space Θ, the problem optimizes q+1 variables. Similar to the
importance sampling-based sample averaging approximation method in (5.4),
we use an approximation of S,

Ŝ(φ, ϕ) =
1

M

M∑
m=1

{
I
(
ξ(φ)− ξ̂(X∗

m) � ϕ
)f(X∗

m, φ)

f(X∗
m, θ̂)

}
,

where X∗
1, . . . ,X

∗
M are i.i.d. from f(·, θ̂) with the Monte Carlo sample size M .

The solution to

max
φ∈N (θ̂)

ϕ subject to Ŝ(φ, ϕ) = γ (5.7)

can be used to approximate that to (5.6). Note that Ŝ(φ, ϕ) may not equal γ
exactly in (5.7). In practice we handle an equivalent problem

max
φ∈N (θ̂)

ϕ subject to Ŝ(φ, ϕ) � γ (5.8)

instead of (5.7). A design-based method similar to (5.5) can also be used to solve

(5.8). Since (5.8) has not straightforward solution even for a given φ ∈ N (θ̂),
we do not recommend such a method. A more simple and general method for
computing LOCIs is to directly compute the quantiles of Hφ for a given φ. This
method will be discussed in the next subsection.

5.3. Neighborhood bootstrap

This subsection discusses a general method, called neighborhood bootstrap, to
implement LOT and LOCI. This method still works for the cases where the im-
portance sampling-based approach in Section 5.2 fails. We first consider LOT.
Like the design-based p-value in (5.5), take L trial points φ1, . . . , φL uniformly

spaced over N (θ̂)∩Θ0. The difference from (5.5) is that the neighborhood boot-
strap method directly approximates the objective value in (2.8) by the Monte
Carlo method. Specifically, for each φl, l = 0, 1, . . . , L, generate X∗

l,1, . . . ,X
∗
l,M

i.i.d. from F (·, φl), where φ0 = θ̂. Then the p-value in (2.8) can be approximated
by

PNB = max
l=0,...,L

{
1

M

M∑
m=1

I
(
T (X∗

l,m) � t
)}

.

For LOCI, we still consider the computation of upper limits in (3.4). With

{φ1, . . . , φL} uniformly spaced over N (θ̂), take bootstrap sample X∗
l,1, . . . ,X

∗
l,M

i.i.d. from F (·, φl) for l = 0, 1, . . . , L. Let Ĥ−1
φl

(γ) denote the sample γ-quantile

of ξ(φl)− ξ̂(X∗
l,1), . . . , ξ(φl)− ξ̂(X∗

l,M ). Consequently, supφ∈N (θ̂) H
−1
φ (γ) can be

approximated by

max
l=0,...,L

{
Ĥ−1

φl
(γ)

}
. (5.9)
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Neighborhood bootstrap is a very general method. In principle, it can be
applied to infinite-dimensional parameter spaces if there are well-defined space-
filling designs for such spaces. Another advantage of neighborhood bootstrap is
its easy implement, especially for computing LOCIs. For LOT, neighborhood
bootstrap is slightly more time-consuming than the importance sampling-based
approach.

5.4. Selection of trial points

The design-based p-value in (5.5) and the neighborhood bootstrap method in

Section 5.3 both need L trial points φ1, . . . , φL uniformly spaced over N (θ̂). This

subsection presents some discussion on the design of these points. Usually N (θ̂)
is selected as a q-dimensional hypercube like (5.1) or (5.2). Specifically, suppose

that N (θ̂) = [L1, U1] × · · · × [Lq, Uq]. For ψi = (ψi1, . . . , ψiq)
′ ∈ [0, 1]q, i =

1, . . . , L, let φij = Lj + ψij(Uj − Lj), i = 1, . . . , L, j = 1, . . . , q, and we have

φi = (φi1, . . . , φiq)
′ ∈ N (θ̂) for i = 1, . . . , L. Therefore, it suffices to consider the

design of ψ1, . . . , ψL in [0, 1]q, called initial design in the following. As mentioned
in Section 5.2, the initial design can be constructed from space-filling designs
in [0, 1]q. Such designs include grids, Latin hypercube designs (LHD) [35], and
uniform designs [19], among others. A simple grid is given by{

1

2U
, . . . ,

2U − 1

2U

}
× · · · ×

{
1

2U
, . . . ,

2U − 1

2U

}
, (5.10)

where U is a positive integer. There are L = Uq points in the grid, and this leads
to unaffordable computations for large q. LHDs are easy to construct for any
L and q. The LHD is spaced uniformly in each dimension, and its space-filling
properties over the whole [0, 1]q can be improved by iterative algorithms [38].
There are functions for generating LHDs in both MATLAB and R.

Note that in fact we need to design φ1, . . . , φL in N (θ̂) ∩ Θ0 for LOT or in

N (θ̂)∩Θ for LOCI. For irregular or constrained parameter spaces, this problem

becomes complicated. A feasible solution is to design more points in N (θ̂) and
then to keep those in the intersection.

6. Illustrative examples

This section presents four examples to illustrate LOT and LOCI, in which the
(asymptotic) distributions of the test statistics or pivotal quantities are non-
regular or unclear.

6.1. Interval estimation for the maximum cell probability of the
multinomial distribution

Let (Xn1, . . . , Xnk)
′ be the cell frequencies from a multinomial distribution,

MNk(n;π), where
∑k

i=1 Xni = n, with the parameter π = (π1, . . . , πk)
′, πi >
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0, i = 1, . . . , k, and
∑k

i=1 πi = 1. We consider interval estimation for πmax =
max{π1, . . . , πk}. This problem is related to some real applications including
the diversity of ecological populations [39] and favorable numbers on a roulette
wheel [14], and has been studied by Gelfand et al. [22], Glaz and Sison [24], and
Xiong and Li [49], among others.

The maximum likelihood estimator (MLE) of π is (Xn1/n, . . . , Xnk/n)
′, and

that of πmax is max1�i�k Xni/n. To avoid extreme values in the estimators, we
use the Bayesian estimator π̂ = (π̂1, . . . , π̂k)

′ =
(
(Xn1 + 1/2)/(n + k/2), . . . ,

(Xnk + 1/2)/(n + k/2)
)′

from the Jeffrey prior [23]. The corresponding esti-
mator of πmax is π̂max = max1�i�k π̂i, whose asymptotic properties are the
same as the MLE. Xiong and Li [49] showed that, when the numbers in {i =
1, . . . , k : πi = πmax} are more than one, π̂max is not asymptotically normal
and the corresponding bootstrap distribution estimator is inconsistent. A rem-
edy is to use m-out-of-n bootstrap [2]. This method takes bootstrap sample
(X∗

m1, . . . , X
∗
mk)

′ from MNk(m; π̂) with m = o(n), and then approximates the
distribution of

√
n(π̂max − πmax) by its bootstrap analogue

√
m(π̂∗

max − π̂max),
where π̂∗

max = max1�i�k

{
(X∗

mi + 1/2)/(m + k/2)
}
. Xiong and Li [50] proved

that this approximation is consistent, and thus results in asymptotically valid
confidence intervals for πmax.

The LOCI of πmax can be easily constructed by the neighborhood bootstrap
method in (5.9), where the pivotal quantity is πmax − π̂max. We next conduct a
simulation study to compare the LOCI with the ordinary bootstrap and m-out-
of-n bootstrap methods. Here we focus on two-sided 1− α confidence intervals
with α = 0.05. In our simulation study, k is fixed as 5, and n = 30 and 60 are
considered. We use six vectors of cell probabilities; see Table 2. In the m-out-
of-n bootstrap method, m is set as the integer part of 2

√
n. The neighborhood

N (π̂) is

[
π̂1 − δ log(n)/

√
n, π̂1 + δ log(n)/

√
n
]

× · · · ×
[
π̂k − δ log(n)/

√
n, π̂k + δ log(n)/

√
n
]

where two values, 0.1 and 0.5, of δ are used. it is clear that N (π̂) satisfies
Assumptions 4.1 and 4.2. We use two grids in (5.10) to design the trial points
with U = 3 for δ = 0.1 and U = 5 for δ = 0.5. Note that there is a constraint∑k

i=1 πi = 1 in the parameter space. There are 51 and 101 trial points in
the two grids, respectively. The bootstrap sample size is 5000 in all the above
methods.

We repeat 5000 times to compute the coverage rates (CRs), mean lengths
(MLs), and standard deviations of lengths (SDLs) of the confidence intervals.
The simulation results are shown in Table 2. We can see that the bootstrap
interval usually has low CR. For dispersed π, the m-out-of-n bootstrap method
lacks efficiency with longer ML, whereas two LOCIs perform better. As expected,
the LOCI with δ = 0.5 is more conservative than that with δ = 0.1. In summary,
it can be concluded that the LOCI is at least comparable to the m-out-of-n
bootstrap interval.
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Table 2

Simulation results in Section 6.1

π = (0.7, 0.075, 0.075, 0.075, 0.075)′

n = 30 n = 60

CR ML SDL CR ML SDL

Bootstrap 0.927 0.299 0.023 0.932 0.222 0.014

Bootstrap (m < n) 0.920 0.389 0.054 0.945 0.377 0.037

LOCI (δ = 0.1) 0.950 0.325 0.021 0.940 0.228 0.013

LOCI (δ = 0.5) 0.961 0.345 0.020 0.954 0.236 0.012

π = (0.5, 0.15, 0.15, 0.1, 0.1)′

n = 30 n = 60

CR ML SDL CR ML SDL

Bootstrap 0.846 0.297 0.040 0.912 0.237 0.011

Bootstrap (m < n) 0.881 0.368 0.065 0.955 0.362 0.038

LOCI (δ = 0.1) 0.897 0.321 0.033 0.931 0.244 0.008

LOCI (δ = 0.5) 0.967 0.350 0.018 0.967 0.259 0.008

π = (0.3, 0.175, 0.175, 0.175, 0.175)′

n = 30 n = 60

CR ML SDL CR ML SDL

Bootstrap 0.738 0.175 0.075 0.702 0.147 0.058

Bootstrap (m < n) 0.748 0.187 0.093 0.722 0.164 0.090

LOCI (δ = 0.1) 0.939 0.210 0.075 0.832 0.172 0.054

LOCI (δ = 0.5) 0.991 0.296 0.046 0.990 0.217 0.032

π = (0.3, 0.3, 0.2, 0.1, 0.1)′

n = 30 n = 60

CR ML SDL CR ML SDL

Bootstrap 0.893 0.207 0.064 0.909 0.168 0.035

Bootstrap (m < n) 0.913 0.234 0.081 0.955 0.210 0.065

LOCI (δ = 0.1) 0.954 0.248 0.064 0.944 0.205 0.036

LOCI (δ = 0.5) 0.979 0.327 0.036 0.966 0.241 0.023

π = (0.24, 0.24, 0.24, 0.24, 0.04)′

n = 30 n = 60

CR ML SDL CR ML SDL

Bootstrap 0.935 0.170 0.065 0.924 0.134 0.041

Bootstrap (m < n) 0.956 0.184 0.074 0.986 0.149 0.057

LOCI (δ = 0.1) 0.943 0.210 0.064 0.949 0.174 0.042

LOCI (δ = 0.5) 0.976 0.305 0.032 0.970 0.220 0.024

π = (0.2, 0.2, 0.2, 0.2, 0.2)′

n = 30 n = 60

CR ML SDL CR ML SDL

Bootstrap 0.906 0.135 0.063 0.946 0.095 0.049

Bootstrap (m < n) 0.982 0.136 0.074 0.996 0.088 0.059

LOCI (δ = 0.1) 0.950 0.175 0.064 0.963 0.127 0.047

LOCI (δ = 0.5) 0.937 0.280 0.038 0.963 0.195 0.028
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6.2. Interval estimation for the location parameter of the
three-parameter Weibull distribution

The Weibull distribution is widely used in many fields such as survival analysis
[8] and reliability [37]. Let X1, . . . , Xn be i.i.d. observations from the Weibull
distribution Wbl(a, b, τ), whose p.d.f. is

f(x; a, b, τ) =
b

a

(
x− τ

a

)b−1

exp

[
−

(
x− τ

a

)b
]

(6.1)

for x > τ , a > 0, b > 0, and τ ∈ R. The parameters a, b, and τ are known as
the scale, shape, and location parameters, respectively. If τ is known, then the
likelihood-based inference for the parameters is straightforward [37]. With an
unknown τ , the standard method faces difficulties since the distributions have
not a common support [4]. Estimation for the parameters of the three-parameter
Weibull distribution is still an active topic in recent years, and many estimators
have been proposed [33, 7, 44]. Since the (asymptotic) distributions of these
estimators are difficult to derive, there is limited results on interval estimation
for the parameters.

This subsection constructs LOCIs for τ based on the maximum product of
spacings (MPS) estimation [6]. Obviously our method is also applicable for other

parameters. The MPS estimators â, b̂, and τ̂ are constructed by maximizing

S(a, b, τ) =

n+1∏
i=1

∫ X(i)

X(i−1)

f(x; a, b, τ)dx,

where X(1) � · · · � X(n) are order statistics, X(0) = τ , and X(n+1) = ∞. For all
a, b, and τ , the MPS estimators are consistent [6]. Furthermore, for b > 2, they
have the same asymptotic distributions as the MLEs; if 0 < b � 2, then â− a =
Op(1/

√
n), b̂− b = Op(1/

√
n), and τ̂ − τ = Op(1/n

1/b). It is not straightforward
to construct confidence intervals of τ by the asymptotic properties of τ̂ since b is
unknown. Furthermore, the validity of the corresponding bootstrap confidence
interval is unclear.

We use neighborhood bootstrap to construct two-sided 1 − α confidence in-
tervals of τ , and conduct a simulation study to evaluate their performance. The
pivotal quantity is τ − τ̂ . The initial design is the grid in (5.10) with U = 3 that
corresponds to L = 27. Since the results are sensitive to the value of b, we set
the neighborhood N (â, b̂, τ̂) as[

â− δn, â+ δn
]
×

[
b̂− δn, b̂+ δn

]
×

[
τ̂ − δn, τ̂ + δn

]
,

where δn = 4 exp
(
− (1/b̂)5

)
log(n)/

√
n. It is clear that N (â, b̂, τ̂) satisfies As-

sumptions 4.1 and 4.2 for all a, b, and τ by the asymptotic properties of the
MPSs. For τ = 1, two values of n, and several combinations of (a, b), the simu-
lation results based on 1000 repetitions are reported in Table 3 with α = 0.05.
The bootstrap sample sizes used in the bootstrap interval and LOCI are both
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Table 3

Simulation results in Section 6.2

a = 0.5, b = 0.5
n = 10 n = 20

CR ML SDL CR ML SDL

Bootstrap 0.970 0.112 0.075 0.945 0.023 0.017

LOCI 0.979 0.129 0.190 0.946 0.024 0.020

a = 2.5, b = 0.5
n = 10 n = 20

CR ML SDL CR ML SDL

Bootstrap 0.946 0.336 0.223 0.940 0.072 0.057

LOCI 0.946 0.343 0.234 0.940 0.073 0.060

a = 0.5, b = 1.5
n = 10 n = 20

CR ML SDL CR ML SDL

Bootstrap 0.410 0.072 0.042 0.230 0.024 0.012

LOCI 0.949 1.013 0.546 0.982 0.789 0.316

a = 2.5, b = 1.5
n = 10 n = 20

CR ML SDL CR ML SDL

Bootstrap 0.210 0.240 0.133 0.098 0.055 0.029

LOCI 0.876 1.081 0.644 0.921 1.166 0.542

a = 0.5, b = 2.5
n = 10 n = 20

CR ML SDL CR ML SDL

Bootstrap 0.289 0.104 0.042 0.121 0.038 0.014

LOCI 0.958 1.454 0.472 0.972 1.246 0.189

a = 2.5, b = 2.5
n = 10 n = 20

CR ML SDL CR ML SDL

Bootstrap 0.014 0.221 0.068 0.010 0.038 0.020

LOCI 0.881 1.392 0.671 0.950 1.614 0.379

1000. We can see that, for b = 0.5, the CR of the bootstrap interval is satisfac-
tory, and the LOCI has similar performance to it with slightly longer ML. For
larger b, the bootstrap interval performs poorly, and the LOCI is much better
in terms of CR.

6.3. Testing whether all the coefficients in the high-dimensional
regression are nonnegative

High-dimensional data analysis that deals with models where the number of
parameters is larger than the sample size is a very active research area in recent
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years, We consider the regression model

y = Xβ + ε, (6.2)

where X = (xij) is the n × p regression matrix, y = (y1, . . . , yn)
′ is the re-

sponse vector, β = (β1, . . . , βp)
′ is the vector of regression coefficients and

ε = (ε1, . . . , εn)
′ is a vector of i.i.d. normal random errors with zero mean and fi-

nite variance σ2. Let p0 denote the number in {j = 1, . . . , p : βj �= 0}. For p � n,
we make the sparsity assumption of p0 
 n. Many methods have been proposed
to estimate the sparse β in (6.2) such as the lasso [45], the smoothly clipped
absolute deviation method [16], and the minimax concave penalty method [51].
Under the assumption that all the coefficients are known to be nonnegative,
Efron et al. [13] introduced a nonnegative lasso method to estimate β, which
solves

min
β

‖y −Xβ‖2 + λ

p∑
j=1

βj subject to βj � 0, j = 1, . . . , p, (6.3)

where λ > 0 is a tuning parameter. Applications of this method can be found
in [21, 47]. In this subsection we use the data to test whether the assumption in
the nonnegative lasso method is reasonable, i.e., test the following hypotheses

H0 :βj � 0, j = 1, . . . , p ↔ H1 : There exists j0 ∈ {1, . . . , p} such that βj0 < 0.
(6.4)

In classical n > p settings, the problem to test (6.4) has been discussed by the
likelihood ratio test [43]. However, this method cannot be dirrectly extended to
the high-dimensional case since the MLEs perform very poorly for such a case.
Here we borrow the idea of the generalized likelihood ratio test in nonparametric
statistics [17], and construct the test statistic

T =
‖y −Xβ̂H0‖2

‖y −Xβ̂H1‖2
,

where β̂H0 and β̂H1 are the estimators of β under H0 and H1, respectively. A
natural choice is to use the nonnegative lasso estimator in (6.3) and the lasso

estimator as β̂H0 and β̂H1 , respectively. Since the distribution of T under H0 is
unclear, we use LOT to test (6.4).

First of all we need to estimate all the unknown parameters under H0. Wu,
Yang, and Liu [47] showed that the nonnegative lasso estimator in (6.3) is con-

sistent under H0. By [15], a consistent estimator of σ2 is σ̂2 = ‖y −Xβ̂LS‖2/n,
where β̂LS is the ordinary least squares estimator of β under the submodel se-
lected by the nonnegative lasso. Since p is large, the neighborhood N (β̂H0 , σ̂

2)
should be selected elaborately to avoid high-dimensional optimization. We select
N (β̂H0 , σ̂

2) as

N (β̂H0,1)× · · · × N (β̂H0,p)×N (σ̂2), (6.5)

where β̂H0,j ’s are components of β̂H0 , N (β̂H0,j) = {0} for β̂H0,j = 0 and

N (β̂H0,j) =
[
β̂H0,j − δσ̂, β̂H0,j + δσ̂

]
otherwise, N (σ̂2) = [σ̂2 − δ, σ̂2 + δ], and
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δ > 0 is a constant. By the importance sampling-based approach in Section 5.2,
the p-value of the LOT for (6.4) is given by (5.3). Note that the asymptotic re-
sults in Section 4 cannot be dirrectly applied for diverging p. However, it is not
hard to show that, if H0 holds, then Pr

(
(β, σ2) ∈ N (β̂H0 , σ̂

2)
)
→ 1 as n → ∞

under regularity conditions by selection consistency properties of the nonneg-
ative lasso [47]. Therefore, similar to Theorem 4.1, the asymptotic frequentist
property of the LOT can be guaranteed.

We conduct a simulation study to compare the above LOT and the bootstrap
test whose p-value is given in (2.9). In the simulation the rows of X in (6.2) are
i.i.d. from a multivariate normal distribution N(0,Σ) whose covariance matrix
Σ = (σij)p×p has entries σii = 1, i = 1, . . . , p and σij = 0.1, i �= j. The random
errors ε1, . . . , εn i.i.d. ∼ N(0, 1). We use three configurations of n and p, (n, p) =
(20, 40), (n, p) = (40, 80), and (n, p) = (60, 120). We take the tuning parameter
λ = 4

√
log(p)/n in the lasso and nonnegative lasso estimator recommended by

Wu, Yang, and Liu [47]. In the LOT, δ is set as 0.03 in (6.5), and we compute
the p-value in (5.5) with 30 trial points. Here the initial design of the trial points

is an LHD, whose dimension is the number of non-zero β̂H0,j ’s; see (6.5). In the
two methods, the bootstrap sample sizes are both 2000. The significance levels
α = 0.05 and α = 0.1 are considered.

Table 4

Type I errors in Section 6.3

n = 20, p = 40
α = 0.05 α = 0.1

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

Bootstrap 0.084 0.094 0.096 0.092 0.176 0.199 0.186 0.192

LOT 0.048 0.056 0.056 0.050 0.099 0.119 0.108 0.122

n = 40, p = 80
α = 0.05 α = 0.1

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

Bootstrap 0.134 0.172 0.160 0.168 0.248 0.302 0.282 0.308

LOT 0.052 0.062 0.062 0.060 0.110 0.126 0.116 0.126

n = 60, p = 120
α = 0.05 α = 0.1

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

Bootstrap 0.206 0.216 0.194 0.239 0.372 0.378 0.362 0.376

LOT 0.066 0.054 0.060 0.051 0.128 0.126 0.100 0.136

Four vectors of the coefficients under H0 are used: (i) β1 = · · · = βp = 0;
(ii) β1 = 2 and βj = 0 for other j; (iii) β1 = β2 = 2 and βj = 0 for other
j; (iv) β1 = β2 = β3 = 2 and βj = 0 for other j. To compute the power, we
consider β1 = 2, β2 = c < 0, and βj = 0 for other j. For each model, we
simulate 2000 data sets, and report the Type I errors and powers in Table 4 and
Figure 1, respectively. It can be seen that the bootstrap test cannot control the
Type I error well, and that the LOT has reasonable performance in terms of
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Fig 1. Powers of the LOT in Section 6.3 (n = 40, p = 80).

the Type I error and power. The power performance of the LOT is similar for
other parameter configurations.

6.4. Interval estimation for the minimum of an unknown function

Consider the nonparametric regression model

y = r(x) + ε, (6.6)

where r is a continuous function defined on [0, 1] and ε ∼ N(0, σ2) is the random
error. For given x1, . . . , xn ∈ [0, 1], the responses are denoted by y1, . . . , yn,
respectively, where yi = r(xi) + εi and ε1, . . . , εn are independent. Assume that
r has a unique minimum ξ in [0, 1], i.e., r(ξ) < r(x) for all x ∈ [0, 1] with x �= ξ.
We are interested in constructing confidence intervals of ξ = ξ(r). Without
the random error, some related problems have been discussed in the literature
[10, 11]. However, to the best of the author’s knowledge, there is no result on
interval estimation for ξ in the regression setting.

In model (6.6), the unknown parameter r lies in an infinite-dimensional space.
We shall show that, with a fixed design for x1, . . . , xn, the problem of construc-
tion confidence intervals for ξ can be simplified to a finite-dimensional problem,
and thus can be solved by the approaches in Section 5. Here we only focus
on the upper 1 − α confidence interval for α ∈ (0, 1). Let r̂ and σ̂ be estima-

tors of r and σ. We use ξ̂(X) = argminx∈[0,1] r̂(x) as an estimator of ξ with

X = (y1, . . . , yn)
′, and consider the pivotal quantity ξ(r) − ξ̂(X) with the c.d.f.

H(r,σ)(x) = Pr
(
ξ(r) − ξ̂(X) � x

)
. For a ∈ [0, 1], b1, . . . , bn ∈ R, and c > 0, let

X∗ = (y∗1 , . . . , y
∗
n) denote the set of independent random variables y∗i ∼ N(bi, c

2)

for i = 1, . . . , n. Let θ = (a, b1, . . . , bn, c)
′ and H̃θ(x) = Pr

(
a− ξ̂(X∗) � x

)
. De-

note by Nn(θ̂) ⊂ Rn+2 a neighborhood of θ̂ =
(
ξ̂, r̂(x1), . . . , r̂(xn), σ̂

)′
. Since

H(r,σ)(x) = H̃(ξ(r), r(x1),...,r(xn), σ)′(x), the following proposition is straightfor-
ward.
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Fig 2. Four regression functions in simulations in Section 6.4.

Proposition 6.1. For all r and σ, if Pr
(
(ξ, r(x1), . . . , r(xn), σ)

′ ∈ Nn(θ̂)
)
→ 1,

then

lim inf
n→∞

Pr

(
ξ � ξ̂ + sup

φ∈Nn(θ̂)

H̃−1
φ (1− α)

)
� 1− α.

Table 5

Simulation results in Section 6.4

(I)
n = 20 n = 30

CR ML SDL CR ML SDL

Bootstrap 0.635 0.264 0.066 0.643 0.243 0.060

LOCI 0.933 0.487 0.062 0.948 0.457 0.055

(II)
n = 20 n = 30

CR ML SDL CR ML SDL

Bootstrap 0.749 0.189 0.176 0.766 0.161 0.159

LOCI 0.935 0.281 0.220 0.950 0.251 0.199

(III)
n = 20 n = 30

CR ML SDL CR ML SDL

Bootstrap 0.710 0.272 0.091 0.656 0.233 0.069

LOCI 0.973 0.573 0.127 0.963 0.490 0.095

(IV)
n = 20 n = 30

CR ML SDL CR ML SDL

Bootstrap 0.721 0.486 0.203 0.721 0.446 0.175

LOCI 0.927 0.794 0.192 0.957 0.787 0.161

By Proposition 6.1, we can obtain LOCIs of ξ which have the asymptotic fren-
quentist properties through optimizing the quantiles of H̃φ over a local region.
In the following, let r̂ be the Nadaraya-Watson estimator with kernel function K
and bandwidth h [28]. Under regularity conditions, supx∈[0,1] |r̂(x)− r(x)| → 0

in probability [27], which implies that ξ̂ is a consistent estimator of ξ. Addi-
tionally, a consistent estimator σ̂2 of σ2 can be given from the residual sum of
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squares of r̂. A choice of Nn(θ̂) satisfying the condition in Proposition 6.1 is[
ξ̂ − δσ̂, ξ̂ + δσ̂

]
×

[
r̂(x1)− δσ̂, r̂(x1) + δσ̂

]
× · · · ×

[
r̂(xn)− δσ̂, r̂(xn) + δσ̂

]
×

[
σ̂ − δ, σ̂ + δ

]
, (6.7)

where δ > 0 is a constant.
We next conduct a simulation study to compare the bootstrap two-sided 1−α

confidence intervals and LOCIs with α = 0.05. Four regression functions in (6.6)
are considered:

(I) : r(x) = 2(2x− 1)2; (II) : r(x) = 2/(x+ 1);

(III) : r(x) = sin(2πx+ 3π/4)/2; (IV) : r(x) = |x− 1/2|;

see Figure 2. For these functions, the values of ξ are 1/2, 1, 3/8, and 1/2,
respectively. We fix σ2 = 1/4, and xi = (2i − 1)/(2n) for i = 1, . . . , n. The
kernel function K in r̂ is the Epanechnikov kernel, and the bandwidth h is set as
n−1/5/5. In LOCIs, we use δ = 0.25 in (6.7), and take 60-run LHDs as the initial
designs of trial points for implementing neighborhood bootstrap. The bootstrap
sample size is 5000. Based on 5000 repetitions, we report the simulation results
in Table 5. It can be seen that the bootstrap method performs poorly in terms
of CR, and that the LOCI is much better for all the cases.

7. Discussion

In this paper we have introduced the local optimization-based inference in-
cluding LOT and LOCI. The main advantage of our approach is that, unlike
current frequentist approach, it does not require hard work in deriving (asymp-
totic) distributions since its asymptotic frequentist properties hold as long as
we have consistent estimators of the unknown parameters. The implementation
of our approach is based on standard computational methods such as impor-
tance sampling and Monte Carlo, which are easy to master for practitioners.
Local optimization-based inference can be viewed as an extended bootstrap
that complements current frequentist inference. It can fast provide frequentist
solutions to complex problems in practice, and has broadly potential applica-
tions. Illustrative examples have shown these to some extent. Although local
optimization-based inference does not overshoot for regular problems (see The-
orem 4.2), it is more suitable for non-regular problems in which the theoretical
derivation is difficult. The local optimization-based method may not be very ac-
curate or efficient, but can act as the last method when we cannot derive other
frequentist methods.

We give a further discussion on the specification of the neighborhood N (θ̂)

here. Generally speaking, the choice of N (θ̂) is flexible; see Section 6. In real
applications, for a dataset with fixed sample size n, it is not hard to find a
proper N (θ̂) that guarantees that LOT or LOCI has satisfactory performance
via empirical evaluations. Besides the methods in Section 5.1, we can also use
informative priors, if any, to inform the construction of N (θ̂). This provides a
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way to associate our approach with Bayesian statistics, and is valuable to study
in the future. A related problem to the specification of N (θ̂) is that it is difficult
to get the exact solution or to know how close an approximate one to it even for
a small N (θ̂). This problem is not very serious in practice since our terminal is
inference instead of optimization. Simulation results in Section 6 show that the
design-based approximation with a moderate L yields satisfactory finite-sample
performance of LOT and LOCI even for high-dimensional N (θ̂). In fact, when
bootstrap gives aggressive results, local optimization-based inference can always
improve its performance, even with a relatively poor optimization algorithm.

The local optimization-based inference uses computer-intensive methods to
solve complex hypothesis testing and interval estimation problems. A disadvan-
tage of such methods is high computational cost. We can replace the Monte
Carlo method in the implementation with LHD sampling or quasi Monte Carlo
to improve the computational efficiency [29]. Iterative algorithms such as stochas-
tic approximation [31] are also available to solve the stochastic programming
problem in (2.8). In addition, the local optimization-based method is cumber-
some when θ is a high-dimensional parameter due to the curse of dimensionality,
and is hardly feasible in a nonparametric setting due to the difficulty of infinite-
dimensional optimization. It is a possible future topic to study how to overcome
these difficulties. Combinations of our method with other inferential methods
[26, 48, 34] are also valuable to study in the future.

Appendix A: Asymptotic properties of the design-based algorithm

As mentioned in Section 5, maxl=1,...,Ln H−1
φl

(1−α) can be used to approximate

the upper limit supφ∈Nn(θ̂)
H−1

φ (1−α) in LOCI, where {φ1, . . . , φLn} is a dense

subset of Nn(θ̂). We next prove frequentist properties of this approximation.
These results are less important in practice since we can obtain an approxi-
mation as accurate as possible with a powerful computer. We place them here
because they may be still of interest in theory.

Assumption A.1. Let {an} be a series of positive numbers. Denote H̄φ(x) =

Pr
(
an[ξ(φ)−ξ̂(X∗)] � x|X

)
, where X∗ is drawn from F (·, φ) given X. As n → ∞,

max
φ∈Nn(θ̂)

min
l=1,...,Ln

∣∣H̄−1
φ (1− α)− H̄−1

φl
(1− α)

∣∣ = op(1).

Assumption A.2. As n → ∞ and δ → 0, H̄θ

(
H̄−1

θ (1− α)− δ
)
→ 1− α.

Note that the limits of H̄ϕ1 and H̄ϕ2 can be different for ϕ1, ϕ2 ∈ Nn(θ̂).
Assumption A.1 requires that {φ1, . . . , φLn} should be dense enough so that
any value of H̄−1

φ (1 − α) can be approximated accurately by some element

in {H̄−1
φl

(1 − α)}l=1,...,Ln . Assumption A.1 holds under Assumptions 4.2–4.4,

and relates to some space-filling criterion [30]. Assumption A.2 says that H̄θ is
asymptotically continuous at H̄−1

θ (1− α). Under Assumption 4.4 (i), Assump-
tion A.2 holds.
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Theorem A.1. Under Assumptions 4.1, A.1, and A.2,

lim inf
n→∞

Pr

(
ξ � ξ̂ + max

l=1,...,Ln

H−1
φl

(1− α)

)
� 1− α.

Proof. For any n, there exists θ∗n ∈ Nn(θ̂) such that supφ∈Nn(θ̂)
H̄−1

φ (1 − α) <

H̄−1
θ∗
n
(1−α)+1/n. Denote l∗ = argminl=1,...,Ln

∣∣H̄−1
φl

(1−α)− H̄−1
θ∗
n
(1−α)

∣∣. We

have maxl=1,...,Ln H̄−1
φl

(1 − α) � H̄−1
φl∗

(1 − α) � H̄−1
θ∗
n
(1 − α) − |H̄−1

φl∗
(1 − α) −

H̄−1
θ∗
n
(1− α)|. Therefore,

Pr

(
ξ � ξ̂ + max

l=1,...,Ln

H−1
φl

(1− α)

)

= Pr

(
an(ξ − ξ̂) � max

l=1,...,Ln

H̄−1
φl

(1− α)

)

� Pr
(
an(ξ − ξ̂) � H̄−1

θ∗
n
(1− α)− |H̄−1

φl∗
(1− α)− H̄−1

θ∗
n
(1− α)|

)

� Pr

(
an(ξ − ξ̂) � sup

φ∈Nn(θ̂)

H̄−1
φ (1− α) + op(1)− 1/n

)

� Pr
(
an(ξ − ξ̂) � H̄−1

θ (1− α) + op(1)
)
− Pr

(
θ ∈ Nn(θ̂)

)
= 1− α+ o(1)− Pr

(
θ ∈ Nn(θ̂)

)
→ 1− α,

which completes the proof.

The following theorem is straightforward.

Theorem A.2. Under Assumptions 4.1–4.4, A.1, and A.2, for all θ ∈ Θ and
α ∈ (0, 1),

lim
n→∞

Pr

(
ξ � ξ̂ + max

l=1,...,Ln

H−1
φl

(1− α)

)
= 1− α.
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[27] Härdle, W. and Luckhaus, S. (1984). Uniform consistency of a
class of regression function estimators. Annals of Statistics 12 612–623.
MR0740915

[28] Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests.
Springer, New York. MR1461272

[29] Homem-de-Mello T. (2008). On rates of convergence for stochastic opti-
mization problems under non-independent and identically distributed sam-
pling. SIAM Journal on Optimization 19 524–551. MR2425028

[30] Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990). Minimax
and maximin distance designs. Journal of Statistical Planning and Inference
26 131–148. MR1079258

[31] Kushner, H. J. and Yin, G. G. (1997). Stochastic Approximation Algo-
rithms and Applications. Springer, New York. MR1453116

[32] Lehmann, E. L. and Romano, J. P. (2006). Testing Statistical Hypothe-
ses, 3rd., Springer, Science & Business Media. MR2135927

[33] Lockhart, R. A. and Stephens, M. A. (1994). Estimation and tests
of fit for the three-parameter Weibull distribution. Journal of the Royal
Statistical Society, Ser. B 56 491–500. MR1278222

[34] Martin, R. (2012). Plausibility functions and exact frequentist infer-
ence. Journal of the American Statistical Association 110 1552–1561.
MR3449054

[35] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A com-
parison of three methods for selecting values of input variables in the analy-
sis of output from a computer code, Technometrics 21 239–245. MR0533252

[36] Meng, X-L. (1994). Posterior predictive p-values. Annals of Statistics 22
1142–1160. MR1311969

http://www.ams.org/mathscinet-getitem?mr=0131909
http://www.ams.org/mathscinet-getitem?mr=2522109
http://www.ams.org/mathscinet-getitem?mr=2247439
http://www.ams.org/mathscinet-getitem?mr=1736447
http://www.ams.org/mathscinet-getitem?mr=1145237
http://www.ams.org/mathscinet-getitem?mr=2268043
http://www.ams.org/mathscinet-getitem?mr=0740915
http://www.ams.org/mathscinet-getitem?mr=1461272
http://www.ams.org/mathscinet-getitem?mr=2425028
http://www.ams.org/mathscinet-getitem?mr=1079258
http://www.ams.org/mathscinet-getitem?mr=1453116
http://www.ams.org/mathscinet-getitem?mr=2135927
http://www.ams.org/mathscinet-getitem?mr=1278222
http://www.ams.org/mathscinet-getitem?mr=3449054
http://www.ams.org/mathscinet-getitem?mr=0533252
http://www.ams.org/mathscinet-getitem?mr=1311969


2320 S. Xiong

[37] Murthy, D. N. P., Xie, M., and Jiang, R. (2004). Weibull Models. John
Wiley & Sons, Hoboken, New Jersey. MR2013269

[38] Park, J. S. (2001). Optimal Latin-hypercube designs for computer exper-
iments. Journal of Statistical Planning Inference 39 15–111. MR1266995

[39] Patil, G. P. and Taillie, C. (1979). An overview of diversity. Ecological
Diversity in Theory and Practice, ed. by Grassle, J. F. et al. International
Co-operative Publishing House. Fairland, MD.

[40] Politis, D. N., Romano, J. P., and Wolf, M. (1999). Subsampling.
Springer, New York. MR1707286

[41] Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer, New
York. MR1351010

[42] Shapiro, A. (2003). Monte Carlo sampling methods, in Stochastic Pro-
gramming. Handbook in OR & MS, Vol. 10, ed. by Ruszczyński, A. and
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