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Abstract: The k-core decomposition is a widely studied summary statis-
tic that describes a graph’s global connectivity structure. In this paper, we
move beyond using k-core decomposition as a tool to summarize a graph
and propose using k-core decomposition as a tool to model random graphs.
We propose using the shell distribution vector, a way of summarizing the
decomposition, as a sufficient statistic for a family of exponential random
graph models. We study the properties and behavior of the model family,
implement a Markov chain Monte Carlo algorithm for simulating graphs
from the model, implement a direct sampler from the set of graphs with a
given shell distribution, and explore the sampling distributions of some
of the commonly used complementary statistics as good candidates for
heuristic model fitting. These algorithms provide first fundamental steps
necessary for solving the following problems: parameter estimation in this
ERGM, extending the model to its Bayesian relative, and developing a
rigorous methodology for testing goodness of fit of the model and model
selection. The methods are applied to a synthetic network as well as the
well-known Sampson monks dataset.

Received October 2015.

1. Introduction

Network analyses are often concerned—either directly or indirectly—with the
degrees of the nodes in the network, a natural approach since counting the
number of edges incident to a node gives a basic local measure of connectivity.
Several familiar statistical frameworks assign a probability distribution to the
set of networks on a fixed number of nodes based on their degree information,
e.g. Holland and Leinhardt (1981), Chatterjee et al. (2011), Olhede and Wolfe
(2012), and Rinaldo et al. (2013). However, despite the rich structure degree-
based models offer compared to simpler models such as Erdös-Renyi-Gilbert,
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they fail to capture certain vital connectivity information about the network.
In some applications, it matters not just to how many other nodes a particular
node in the network is connected, but also to which other nodes it is connected.
For example, a node v may seem important if it has high degree, but if all its
neighbors are themselves unimportant due to having no additional connections
(e.g., if they all have degree 1), then the “influence” or “centrality” of v within
the network is not actually all that impressive, after all. This distinction is
especially crucial in applications concerning information dispersal as in Pei et al.
(2012), the spread of infectious diseases or viruses as in Kitsak et al. (2010), or
robustness to node failure. In the social network context, this importance can be
interpreted as “celebrity status” of a node. Whereas degree-centric analyses are
not well-suited to model such situations, the core decomposition of a network
graph can capture precisely this type of information.

Cores of a graph were introduced by Seidman (1983) to study tightly-knit
groups in social networks. Since then, core decomposition has been used as a
tool for numerous applications varying from understanding protein networks
(Wuchty and Almaas, 2005), visualization of large networks (Alvarez-Hamelin
et al., 2006), and understanding the topology of the Internet graph (Carmi
et al., 2007) to name a few. In studies such as Kitsak et al. (2010) and Bae
and Kim (2014), the authors identify spreader nodes and rank them in terms
of their spreading influence, using a graph’s core decomposition. Methods for
identifying spreaders using cores were extended to dynamic networks in Mio-
randi and Pellegrini (2010) and core decomposition in general was extended to
weighted networks in Eidsaa and Almaas (2013). An important feature of a core
decomposition is that it can be computed efficiently (see, e.g., Lee et al. (2013)),
even for “uncertain graphs” which are graphs whose edges have some probabil-
ity of existing–such graphs have applications in biological networks that model,
for instance, protein interactions (see Bonchi et al. (2014)). Although core de-
composition has become an important and widely used tool as a descriptive
summary statistic of the network, it is a statistic for which there does not exist
an associated statistical model.

The goal of this paper is to place the core decomposition of a network on a
rigorous statistical foundation and present it as a tool for statistical modeling
rather than descriptive analysis. We construct a natural model based on core
decomposition by embedding the core structure of a graph in the family of expo-
nential random graph models (ERGMs) and describe its theoretical properties.
We restrict the support of the model to allow only networks with a fixed degen-
eracy to have a positive probability. We show that this eliminates certain bad
properties common to many ERGMs and expect that such support restrictions
may help improve the properties of other ERGMs as well. We study three com-
mon inference tasks as they apply to the support-restricted ERGM: sampling,
maximum likelihood estimation, and goodness-of-fit testing. More specifically,
the contributions of this paper are as follows:

1. In Section 2, we summarize the core decomposition of a network in the
form of a shell distribution, and in Section 3 we introduce a support-
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restricted exponential random graph model with the shell distribution as
a sufficient statistic.

2. In Section 4, we perform simulation studies to understand the behavior of
the model by relying on an MCMC algorithm to sample from the model
and to estimate the parameters of the model.

3. In Section 5, we present an algorithm to sample from the space of graphs
given a fixed shell distribution.

4. We return to the theoretical properties of the model in Sections 6 and 7,
where we study the space of graphs with a fixed shell distribution and
describe the marginal polytope associated with the model and conditions
for the existence of MLE, respectively.

ERGMs provide a natural framework to model networks through their suffi-
cient statistics; see Robins et al. (2007) for an introduction. Goldenberg et al.
(2009) provide a comprehensive review of various ways to model networks, in-
cluding ERGMs. ERGMs are a special case of the venerable class of exponential
families which are known to possess excellent statistical properties; see Brown
(1986) for a theoretical treatment of exponential families and Rinaldo et al.
(2009) in particular for discrete exponential family models, including ERGMs.
ERGMs have been the workhorse of many applied studies and the literature is
too vast to be surveyed here; see Snijders et al. (2006); Saul and Filkov (2007)
and Goodreau et al. (2009) for examples of studies that use ERGMs for network
modeling.

Our goal is to add to the toolbox of ERGMs the ability to model the core
structure of a graph. Doing so has two important consequences: First, it puts
the core structure of a graph, summarized by its shell distribution, on a firm
statistical footing. Second, it allows us to understand what properties of a net-
work are captured by the shell distribution. It is worth noting that any ERGM
based on a core decomposition cannot be specialized to the Erdös-Rényi model,
i.e., the Erdös-Rényi model is not a submodel of any ERGM based on the core
decomposition. In fact, the same is true for any ERGM with sufficient statistics
based on the degree sequence of the network. As such, the shell distribution
ERGM would occupy a unique space in the network literature. Models based on
the core distribution go beyond the dyadic independence assumption inherent
in the degree-sequence-based network models and are able to capture transitiv-
ity effects. These models differ from the ERGM-based subgraph counts, such as
triangles and stars, which also go beyond the dyadic independence assumption.
This is because the core structure of a network is a global sufficient statistic
in the following sense: to which core a node belongs depends in some way on
the entire network; see Section 2 for the precise definition of a core and some
examples. In contrast, subgraph counts measure local and coarse properties of
the network.

We want to point out that for all the good properties of ERGMs, they are
not without drawbacks. Recent empirical and theoretical work has brought to
light some undesirable properties of some special classes of ERGMs; these prop-
erties are often termed as “model degeneracy” (Rinaldo et al. (2009); Schwein-
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berger (2011); Chatterjee and Diaconis (2013); Hunter et al. (2008)) or “in-
consistency” (Shalizi et al. (2013)). As noted in Rinaldo et al. (2009), “model
degeneracy” is an umbrella term used to denote many undesirable properties
of ERGMs. One specific drawback to note is that it may be difficult to sample
efficiently (Bannister et al.), but that is an issue for ERGMs in general and out-
side the scope of this paper. We discuss these issues in Section 9.2 and explain
how we fix them by placing support restrictions on the class of models that
we consider. Since the word degeneracy also refers to a graph-theoretic notion
which is relevant to this work, we avoid the use of the term “model degeneracy”
and instead use the term “bad behavior” of the model.

2. Technical preliminaries: Cores and shells

We restrict our analysis to the set of simple graphs, representing networks with-
out multiple edges and self-loops. For the remainder of this manuscript, let Gn

denote the set of all simple graphs on n nodes. We are interested in distributions
over the set Gn; thus G will denote a random variable with state space Gn, and
G = g its realization. We will also consider families of subsets of Gn below.

Definition 1 (Seidman (1983)). The k-core of a graph g, denoted by Hk(g) or
simply Hk if the graph is clear from the context, is the maximal subgraph in
which every vertex has degree at least k1.

As it is often useful to think of the k-core as the output of an algorithm for
which the graph g is the input, we also use the equivalent algorithmic definition:
Hk is the subgraph obtained by iteratively deleting vertices of degree less than
k; see Algorithm 1. For example, for the particular graph G = g on the left of
Figure 1, H0(g) is just the graph itself, H1 is g without the isolated vertex, the
2-core H2 is shown in the middle, and H3 and H4 both are the graph shown on
the right. For k ≥ 5, Hk is the empty graph.

Fig 1. A small graph g (left), its 2-core (center), and its 3- and 4-core (right).

Each node is contained in several k-cores, for every k from 0 to whatever the
largest k is for that node. Thus, the following node statistic captures all core
information for a node.

1This is the usual definition of the k-core and it appropriately describes the notion of node
importance and robust degree. Seidman’s original definition also requires the subgraph to be
connected.
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Definition 2. A vertex v in a graph g has shell index i if v ∈ Hi(g) but
v /∈ Hi+1(g). Define sg : V → N as the function that maps vertices of g to the
non-negative integers according to their shell indices, so that if v has shell index
i we may write sg(v) = i. If the graph g is clear from the context, we drop the
subscript and simply write s(v) = i.

In other words, the shell index of a vertex v indicates the highest core to
which v belongs. For example, not all nodes in the 2-core H2(g) in the middle
of Figure 1 have shell index 2 in g: the six nodes on the right have shell index 4.
The vertex set V (g) of any network g can be partitioned according to the shell
indices, since the shell index exists, is well-defined and is unique for all vertices.
There are two natural ways to record all of the shell index information about
a network, and hence, record the information that captures its core structure.
First, the shell sequence s(g) of an n-vertex graph g with vertices v1, . . . , vn is a
vector of length n whose ith entry is the shell index of vertex vi. Second, if the
interest is in unlabeled graphs (i.e., exchangeable models for labeled graphs),
it is natural to summarize the sequence with a histogram as follows. The shell
distribution nS(g) of an n-vertex graph g is a vector of length n whose jth entry
nj(g) is the number of vertices of g that have shell index j, for 0 ≤ j ≤ n − 1.
Note that the shell index of a vertex is bounded above by its degree, which is
bounded above by n− 1. Thus

∑n−1
j=0 nj(g) = n. In symbols,

nS(g) := (n0(g), n1(g), . . . , nn−1(g)),

where nj(g) = |{v ∈ V (g) : s(v) = j, 0 ≤ j ≤ n− 1}| . For example, the graphs
in Figures 2(a) and 2(b) both have shell distribution (0, 8, 0, 0, 0, 0, 0, 0). The
graphs in Figures 2(c) and 2(d) have shell distributions (0, 0, 8, 0, 0, 0, 0, 0) and
(0, 0, 4, 4, 0, 0, 0, 0), respectively. These graphs illustrate the fact that the degree
and core structures of a graph are not obtainable from one another. Graph g of
Figure 1 has shell distribution (1, 5, 5, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Fig 2. The graphs in (a) and (b) have the same core structure but different degree structure.
The graphs in (c) and (d) have the same degree structure but different core structure.

Finally, the degeneracy of a graph g ∈ Gn, denoted by dgen(g), is the index of
the largest nonzero entry in the shell distribution vector nS(g). In other words,
the degeneracy of a graph is the maximum index of a non-empty shell. Thus we
may define the following subset of the set of simple n-vertex graphs Gn:

Gn,m = {g ∈ Gn : dgen(g) = m}.
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3. The shell distribution ERGM

A natural way to model random graphs using their core structure is to em-
bed summaries of their core structure in the exponential random graph model
(ERGM) framework. In what follows, we define a family of ERGMs using one
such summary, namely the shell distribution, as a sufficient statistic.

Let G = g be an instance of a random graph from the set Gn. Partitioning
the vertex set of g according to the shell indices implies that the probability of
observing g is

P (G = g; p) = (ϕ(p))−1
n−1∏
j=0

p
nj(g)
j , (1)

where pj ∈ (0, 1) is the parameter that represents the propensity of shell j to
have vertices in it, p = (p0, p1, . . . , pn−1) is the parameter vector, integers nj(g)
are the components of the shell distribution vector nS(g) as defined above, and
ϕ(p) is the partition function. [One may also think of pj as representing the
attractiveness of shell j.] Note that a feature of the model is that there is no
dyad independence assumption. Equation (1) is a most direct way to define an
ERGM based on the shell distribution. One can easily see that it can be written
in exponential family form (see Appendix 9), which allows us to take advantage
of various good properties of exponential families.

It turns out, however, that specification (1) of the model has many unde-
sirable properties, common to other ERGMs (Rinaldo et al., 2009); details are
given in Appendix 9. There are several ways to avoid these issues that arise from
specifying the model as in Equation (1); one such way is to add an additional
parameter to the model as follows. We restrict the support of the model to the
set Gn,m of all simple graphs whose degeneracy is equal to m.

P (G = g; p,m) =

{
(ϕ(p))−1

∏m
j=0 p

nj(g)
j if g ∈ Gn,m,

0 otherwise,
(2)

where

ϕ(p) =
∑

g∈Gn,m

m∏
j=0

p
nj(g)
j

is the normalizing constant (partition function). Equation (2) defines a multi-
nomial-like distribution over the partition of nodes induced by the shell distri-
bution. By limiting degeneracy, the model has a significantly reduced number
of parameters, which offers an additional advantage in estimation over the more
general model.

For each fixed value m of degeneracy, the model defined by Equation (2)
is an ERGM supported on the subset of graphs Gn,m. We have thus defined a
family of models with parameters p and m, where p = (p0, . . . , pm) ∈ Δm+1 and
m ∈ {0, . . . , n− 1}. It is a union of ERGMs, one for each distinct value of m.
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For the remainder of the paper, this support restriction is assumed to be
present and made implicit, unless otherwise mentioned, to ease notation. The
dimension of the parameter space is m + 1 and is a function of the parameter
m.

Remark 3. In this paper, we will treat m as fixed and known. When fitting the
model to real networks, m will be selected by setting it equal to the degeneracy
of the observed graph, assuming the sample size N = 1 as is most common in
applications. Estimating m and fitting the shell ERGM when N > 1 and the
observed graphs have distinct degeneracy values is an open question. The choice
of fixing m rather than treating it as an estimable parameter is both reasonable
and warranted. The degeneracy of a graph is an important metric that describes
its sparsity and is easily calculable from the data. If the degeneracy is not fixed,
the large majority of model parameters will not be estimable, as the observed
graphs are expected to be sparse (real networks usually are), with observed
degeneracy much smaller than N ; see also Section 4.1. Moreover, simulations
show that allowing m to be different from the observed degeneracy leads to a
poorly behaved model, as explained in Section 9.2. Intuitively, having pi > 0 for
large shell indices i ensure that large-index shells attract most nodes.

In order to express this model in exponential family form, define the set of nat-
ural parameters θi = log(pi/pm). Note that, by definition, θm = 0, so there are
m linearly independent parameters; we will thus denote by θ = (θ0, . . . , θm−1)
the vector of natural parameters. The shell distribution ERGM can now be
written in the following form:

P (G = g) = exp

⎧⎨
⎩

m−1∑
j=0

nj(g)θj − ψ(θ)

⎫⎬
⎭ , (3)

where ψ(θ) is the log-partition function (or the log normalizing constant), given
by

ψ(θ) = log
∑

g∈Gn,m

exp

⎧⎨
⎩

m−1∑
j=0

nj(g)θj

⎫⎬
⎭ . (4)

The m-truncated shell distribution (n0(g), . . . , nm−1(g)) is a minimal suffi-
cient statistic of the model. The natural parameter space is

Θ = {θ ∈ Rm : ψ(θ) < ∞} = Rm. (5)

Given this model specification, the overarching objective is to use it to perform
statistical inference. However, as is usually the case for ERGMs, evaluating the
log-partition function above is intractable for any reasonably sized N . This will
affect the computation of the maximum likelihood estimator (MLE), requiring
one to resort to MCMC methods, as well as testing model fit. In the remain-
der of this paper, we study three important aspects of these problems. First,
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both MLE computation and model fitting depend on our ability to sample from
the model with a given parameter value. To this end, we provide an MCMC
algorithm for sampling from the model, summarize the results of several simu-
lations, and provide an interpretation of the model parameters and the sampling
distribution of realizable graph shell structures. Second, from the theory of ex-
ponential families, we know that the MLE is unique if it exists. But the question
of existence is not often easy to address; we solve it here for the shell distribu-
tion model. Finally, testing model fit necessitates the ability to sample from the
fibers of the model, that is, the subspaces of Gn,m with given fixed values of the
shell distribution. We provide an algorithm for performing this task. We begin
with theoretical considerations, then proceed to simulation results.

3.1. Sample space restriction and degeneracy of real-world networks

In ERGMs, sample space restriction leads to an improvement in the properties
of the conditional model and estimation algorithms, as shown in Snijders and
Van Duijn (2002), Snijders (2002). A usual approach is to condition on the
degree sequence, maximum degree, or degree distribution, etc. In contrast, we
are conditioning on the observed degeneracy of the graph. This is more robust
than conditioning on the degrees, as we are allowing the degrees to be somewhat
free but are still controlling sparsity in another way.

Degeneracy of real networks tends to be small relative to the number of nodes.
A table illustrating this for the undirected graphs from the Pajek collection of
datasets (Batagelj and Mrvar) is included below.

Network Dataset #Nodes #Edges Degen. Shell Distribution
Scotland 244 256 4 (16, 26, 183, 7, 12)
Geom 7343 11898 21 (1185, 2218, 1714, 1023, 503, 248, 122, 126,

34, 27, 20, 52, 0, 1, 7, 14, 17, 0, 0, 0, 0, 22)
NDyeast 2114 2277 5 (244, 1199, 478, 169, 18, 6)

NetScience 1589 2742 19 (128, 320, 390, 281, 223, 89, 21, 60, 27,
30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20)

USpowerGrid 4941 6594 5 (0, 1588, 3122, 195, 24, 12)
Erdős 6927 11850 10 (0, 4780, 954, 466, 258, 179, 113, 73, 49, 17, 38)

Observe that the degeneracy of the graph is allowed to grow as the number
of nodes grows, but is expected to be significantly smaller than n in real-world
networks.

4. Inference and implementation of the shell distribution ERGM

Many inference problems associated with ERGMs require generating random
samples from the model at a fixed parameter value. In particular, problems such
as computing an MLE using Monte Carlo methods (Snijders (2002)), sampling
from the posterior distribution of the parameters (Caimo and Friel (2011)) and
exploring the space of graphs that have high probability under the model each
require random samples from the model. In this section, we present a commonly

http://vlado.fmf.uni-lj.si/pub/networks/data/
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used MCMC sampling algorithm to sample graphs from the shell distribution
ERGM and use this algorithm to obtain maximum likelihood estimates and to
understand the properties of random graphs that arise from the shell distribution
ERGM.

Sampling from the shell distribution ERGM: As is the case with most
ERGMs, sampling from the shell distribution ERGM is intractable and we need
to resort to Markov chain Monte Carlo (MCMC) schemes. We use a Metropolis-
Hastings algorithm with a tie-no-tie proposal (see Caimo and Friel (2011)) to
generate graphs from the model. At each iteration, the algorithm proposes a
graph g′ from the current state g and decides to accept it with probability

min

(
1,

P (g′) · P (g′ → g)

P (g) · P (g → g′)

)
= min

(
1,
∏
i

p
ni(g

′)−ni(g)
i · P (g′ → g)

P (g → g′)

)
, (6)

where {g → g′} denotes the event that the Markov chain moves from g to
g′. Note that when the proposed graph g′ has degeneracy not equal to m, by
definition of the model, P (g′) = 0, hence the acceptance probability is 0.

A simple proposal distribution that is commonly used for proposing new
graphs in the Metropolis framework is to randomly select a dyad and swap it.
However, during experiments, we found that this leads to Markov chains with
poor mixing properties. Instead, we use a “tie-no-tie” (TNT) proposal, also
used in Caimo and Friel (2011). At each iteration, the TNT proposal randomly
chooses between the set of edges and non-edges, and then swaps a randomly
chosen dyad within the selected set. But this proposal is not symmetric: Let π
be the probability of choosing the set of edges, ne(g) be the number of non-edges

in g and e(g) be the number of edges in g. Then the Hastings ratio P (g′→g)
P (g→g′) is

determined as follows:

P (g′ → g)

P (g → g′)
=

{
π

1−π
ne(g)
e(g)+1 , if g′ is obtained from g by adding an edge

1−π
π

e(g)
ne(g)+1 , if g′ is obtained from g by removing an edge.

(7)

Remark 4. Computing the acceptance probability using Equation (6) requires
one to compute the so-called vector of “change statistics” {ni(g

′) − ni(g)}, i =
1, . . . , n at each step, see Hunter and Handcock (2006). For many existing
ERGMs, the change statistics can be computed locally, i.e without resorting
to computing the sufficient statistics for proposed network g′. However, this is
not the case for the shell distribution as it is a global sufficient statistic. In order
to compute the change statistics, we need to recompute the shell distribution
for the proposed network g′ at each step of the Markov chain. This increases
the computational complexity of the algorithm, even though one can compute
the shell distribution in linear time.
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4.1. Estimating the parameters of the shell distribution ERGM

A natural starting point to estimate parameter values θ and m using a real
network is by either (a) using their observed counterparts, (b) by using a maxi-
mum likelihood estimate. We will discuss these two estimating methods for both
θ and m. Estimation of m is tricky, as it represents the model dimension, and we
observe only one graph. Also for any observed graph, allowing m to be different
from the observed degeneracy leads to many undesirable properties of the re-
sulting model. We explain this issue at length in Section 9.2. Thus for simulation
studies based on real networks we fix m to be the observed degeneracy.

Estimation of θ is more involved. One can estimate θ naively by using the
empirical shell distribution and setting θ̂j = nj/n, or one can use a more princi-
pled likelihood-based estimator (such as an MLE or a Bayes estimate). It turns
out that using the observed shell distribution as an empirical estimate leads to
a poor (or uninteresting) parameter estimate - in particular, networks sampled
from the empirical estimate do not resemble the observed network. Namely, the
model puts most of its mass on graphs with all nodes in the largest possible
shell (see also Sections 4.2 and 4.3). On the other hand, computing an MLE of θ
from the observed network is intractable due to the normalizing constant ψ(θ)
given in Equation (4). Maximizing the likelihood requires the repeated use of
Markov Chain Monte Carlo sampling, as described below, see also Hunter and
Handcock (2006) and references therein. Bayesian estimates are also intractable
due to two normalizing constants, see Caimo and Friel (2011) for more details.

We use Markov chain Monte Carlo MLE (Geyer and Thompson (1992); Sni-
jders (2002)) to estimate θ. For t = 0, 1, . . ., let θt be the parameter estimate
at iteration t. We estimate the ratio of the intractable normalizing constant
ψ(θ)
ψ(θt) using samples from θt obtained by the Markov chain algorithm presented

earlier. Specifically, let g1, . . . , gB be a random sample from the model θt, then

ψ(θ)

ψ(θt)
�

1

B

B∑
b=1

exp
{
(θ − θt)nS(gb)

}
.

Then, θt+1 is estimated by maximizing the estimated log-likelihood, given by

l̂(θ, θt) = (θ − θt)nS(gobs)− log
ψ(θ)

ψ(θt)

and the process is repeated until convergence, see Hunter and Handcock (2006)
for more details.

Estimation of the normalizing constant requires a good initial value θ0 (Hunter
and Handcock (2006)). We use a heuristic grid search to obtain a good starting
point that is close to the MLE, where closeness to the MLE is evaluated by
checking if the empirical version of the following moment equation holds:

Eθ̂[ns(g)] = ns(gobs),

where gobs is the observed graph and θ̂ is an MLE estimate.
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The behavior of the MCMC-MLE estimator depends on the choice of a good
starting point θ0. For the current simulations, we use a heuristic starting point,
but one could also consider the step length algorithm in Hummel et al. (2012)
to find a good starting point close to the MLE.

What do graphs from the shell distribution ERGM look like? We
use the MCMC algorithm described above to explore the structure of random
graphs generated by the model for fixed and estimated parameter values. In
particular, for a fixed choice of parameters θ and m of the shell distribution
ERGM, we explore the space of graphs that have high probability mass under
the model by sampling a large number of graphs {gb}Bb=1 using the MCMC
algorithm. We use these samples to find out what features of any given network
can be captured by modeling its core structure through the shell distribution
ERGM. In the simulation studies below, we employ two types of parameter
values to simulate graphs - known fixed parameters and parameters estimated
from a real-world network. For the known parameters, we always use degeneracy
m = 3. Parameter estimates based on real world networks are obtained using a
combination of a heuristic grid search (to initialize the MCMC MLE algorithm)
and MCMC MLE. To explore the sampled space of graphs, we summarize the
distribution of the sampled graphs {gb} by using several summary statistics:
boxplots of the degree distribution and shell distributions, and histograms of
number of edges, two stars, and triangles, centrality, size of largest shell and size
of the innermost shell. When the parameters are estimated using a real world
network, we also compare the distribution of these summary statistics with the
corresponding observed statistic. It may be tempting to use this comparison as
a way to assess the goodness of fit of the model, however, one must exercise
caution:

Remark 5. It is important to note that comparing the sampling distribution
of summary statistics with the observed values is not a formal goodness-of-
fit test of the model, but instead a heuristic approach to evaluate how well
the model fits the data. It follows along the lines the goodness-of-fit testing
proposed for more general ERGMs in Hunter et al. (2008). Ideally, one should
be able to either derive the asymptotic distribution of any test statistic or,
since in this case we usually observe a single network, perform an exact test.
However, doing so requires several important steps, foremost, a good choice of
a test statistic that can play the role of a generalized goodness-of-fit statistic.
In case of, say, hierarchical log-linear models for contingency tables, one can use
the chi-square statistic, and sample from the conditional distribution given the
observed sufficient statistic to approximate the exact distribution of χ2. In case
of this ERGM, however, we do not have at our disposal such a statistic that
can reliably ‘measure’ the distance of the observed network from the expected
network. The main obstacle is that the dyads are not independent in this model,
unlike the case of hierarchical models in which cells in the contingency table
(arising from the incidence matrix) are independent. To this end, we follow
the generally used strategies for ERGMs and report the sampling distributions
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Fig 3. Sampling distributions of summary statistics from the Equal Attractiveness model

of various complementary network statistics, such as the number of edges and
the number of triangles. For completeness, we explore the distribution of these
statistics when conditioning on the sufficient statistics in Section 6.

4.2. Example 1: Various fixed Shell probabilities

In this section, we study the properties of the shell distribution ERGM by
simulating graphs from various fixed parameters. We set m = 3, n = 18 and
consider two models:

1. Equal attractiveness, i.e., pi =
1
4 for all i;

2. Decaying attractiveness, i.e, pi ∝ e−i for all i.

Equal attractiveness Model: This model posits that every shell has equal
attractiveness, i.e. pi = 1

4 for all i and since θi = log pi

pm
, it follows that

θ = (0, 0, 0, 0). Hence by definition, this model places a uniform mass over the
set of all 3-degenerate graphs. The sampling distribution of various summary
statistics of graphs sampled from this model are shown in Figure 3. Note that
even though the model posits that every shell has equal attractiveness a priori,
the sampled graphs are such that most nodes tend to lie in the innermost shell
which is shell 3 in this case. This can be seen by the histogram of the size of
the innermost shell in Figure 3. There are at least three reasons for this behav-
ior, the first one related to the very definition of the shell index. Namely, the
existence of higher-index shells in a graph requires a certain minimum number
of nodes in it, and hence, a priori, higher shells have higher levels of natural
“attractiveness”, to which we refer as intrinsic graph-theoretic attractiveness.
In this sense, the innermost shell is always the most attractive. Secondly, the
model puts a uniform distribution on the space of all graphs, not on the space
of all shell distributions. For example consider the 4-truncated shell distribu-
tions (0, 0, 0, 18) and (18, 0, 0, 0): there are many graphs realizing the former,
yet exactly one graph realizing the latter, namely the empty graph. Thus, the



Statistical models for cores decomposition of an undirected random graph 1961

Fig 4. Sampling distributions of summary statistics from the Decaying Attractiveness model

sampling distribution of the shell distributions is non-uniform. Finally, there is
also an issue with the slow mixing of the Markov chain. Shell distributions with
a large number of nodes in the higher-indexed shells are “stable” in the sense
that adding or removing a single edge tends to leave the shell distribution un-
changed. On the other hand, when most nodes are in lower index shells, adding
or removing a few edges lead to large changes in the shell distribution.

It is worth noting that the second and the third issue above are, in fact,
related to each other and also to an issue that arises naturally in ERGMs in
general. Namely, ERGMs model random graphs, not sufficient statistics, thus
a uniform distribution over the set of graphs is not a uniform distribution over
the set of sufficient statistics one may care about. This is made evident by the
current example: a uniform distribution over 3-degenerate graphs induces a non-
uniform distribution on the graph statistics such as number of triangles, number
of edges, and 2-stars.

Decaying Attractiveness Model: The decaying attractiveness model posits
that the attractiveness of each shell decays exponentially with its index, i.e.
pi = ce−i, where c is some constant. This model aims to overcome the prob-
lems imposed by the intrinsic graph-theoretic attractiveness of the higher-index
shells. Figure 4 shows the sampling distributions of summary statistics of the
samples from this model. The histogram of the size of the innermost shell has
two modes, one at 16 and a second one at 4, suggesting a bimodal distribution.
The histograms of number of two stars and the number of triangles are bimodal
as well.

4.3. Example 2: Sampson monastery data

The Sampson dataset is a widely studied network of size 18 that records interac-
tions among a group of monks in a New England Monastery Sampson (1968) and
their evolution over time. The first three time periods of the original Sampson
data are commonly used (e.g., in the ergm package) and often aggregated. The
network at any of these three time periods makes for an uninteresting example
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Fig 5. A subset of the Sampson Monastery Dataset: Nodes are colored according to their shell
index: black is 1, red is 2, and green is shell index 3.

from the point of view of shells: namely all nodes are in the same shell and of
degeneracy 3, but we have already considered such networks in Section 4.2. The
aggregate network over the three time periods also has just about all nodes (all
but 4) in the highest shell and is of degeneracy 5. In order to obtain a more var-
ied shell distribution as a case study to examine the model behavior, we consider
instead an arbitrary subgraph of the aggregate network; specifically, we use the
upper triangular part of the adjacency matrix and symmetrize it. This undi-
rected network is shown in Figure 5, color-coded by shells; it has n = 18 nodes,
e = 35 edges and density of 0.23. The observed degeneracy is 3 and the observed
4-truncated shell distribution is (0, 2, 3, 13); there are 3 nonempty shells, and the
innermost shell (shell 3) contains the highest number of nodes (13).

To use this Sampson-derived network to study the properties of the shell
distribution ERGM, we set m = 3 and use MCMC MLE to estimate the value
of θ. Using a heuristic grid search, we found θ0 = (2, 1, 1, 0) to be a good

initial estimate. The estimated MLE is θ̂MLE = (−7.95, 2.79, 0.91, 0) which
corresponds to p̂MLE = (0.00, 0.82, 0.13, 0.05). Recall that θi = log pi

pm
and

hence θi can be interpreted as the log-odds of attractiveness of shell i relative
to shell m. For this dataset, attractiveness of shell 1 relative to shell 3 is almost
3 times that of shell 2, thus indicating that the network has a rich periphery
in the sense of Rombach et al. (2014). This can also be seen by noting that
p̂1 = 0.82; recall that the pi can also be interpreted as the propensity of the i-th
shell to have nodes in it beyond its intrinsic graph-theoretic attractiveness (as
explained in Section 4.2).

Next, using m = 3 and the MLE estimate θ = (−7.95, 2.79, 0.91, 0), we simu-
lated networks from the model using the MCMC algorithm presented earlier in
this Section to study what properties of the network are captured by the model.
One can think of these sampled graphs as samples from the posterior predic-
tive distribution. Convergence of a 40,000-step Markov chain was verified using
the usual diagnostics, such as trace plots and autocorrelation plots to ensure
sufficient mixing. Figures 6, 7(a), 7(b) summarize the results of the simulations.
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Fig 6. Sampling distribution of summary statistics from the model estimated from the dataset
in Figure 5. The red dashed lines indicate the observed values of the statistics.

(a) Degree Distribution (b) Shell Distribution

Fig 7. Box plots of degree distributions and shell distributions for the shell distribution model
estimated from Sampson data. The dashed lines represent the observed distributions.

Specifically, Figure 6 shows the sampling distribution of various summary
statistics in the form of a histogram and compares them with the observed val-
ues. Several interesting results emerge. The sampling distribution of the sum-
mary statistics are all unimodal and very close to the observed statistic shown
by the red line. Notice that the histogram of triangles is centered around the ob-
served value, thus the shell distribution model captures triadic effects quite well,
at least in this small example. We would like to draw a comparison with degree-
based models which do not capture triadic effects, by definition. It is widely
believed that the centrality of a network is related to its core distribution, and
the histogram of centrality provides additional support of this hypothesis. The
distribution of the size of the largest shell is also captured by the model. How-
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Table 1

The top 10 visited shell distributions

Shell Distribution Density (in %)
0.1.1.16 5.95
0.0.1.17 5.79
0.1.2.15 5.22
0.0.2.16 4.54
0.2.1.15 4.22
0.0.0.18 3.88
0.1.3.14 3.64
0.2.2.14 3.63
0.1.0.17 3.54
0.0.3.15 2.89

ever, the sampling distribution of number of edges suggests that the observed
number of edges is much smaller than what we expect under the model. This
may be due to the fact that the model has a bias towards graphs with higher-
index shells (innermost cores), and these shells tend to be densely connected. A
similar situation is true for the number of two-stars. The sampling distribution
of the size of the innermost shell indicates that it can have anywhere from 5 to
18 nodes, with two modes at 15 and 16; compare this with the observed number
of 13 nodes in shell 3. We also consider various shell distributions visited by the
Markov chain. The top 10 most frequently visited shell distributions are given
in Table 1.

Figures 7(a) and 7(b) show the box plots of degree and shell distributions,
respectively, of the sampled graphs, and include the observed degree and shell
distributions as dotted lines. Note that the sampling distribution of degree dis-
tributions is quite different from that of shell distributions, showing that the
shell distribution model captures features that go beyond the degrees, and
justifying our initial motivation for constructing the model. In addition, the
sampling distribution of the shell distribution is concentrated around the ob-
served shell distribution. This is to be expected: as we used the observed shell
distribution to estimate the model, it serves as a check that the MLE of θ
using MCMC MLE is indeed a good estimate. Recall that another definition
of the MLE is the following: If θ̂ is an MLE, then, Eθ̂[ns(g)] = ns(gobs).
Figure 7(b) serves as a visual confirmation of this equation. In fact, the ob-
served shell distribution is ns(gobs) = (0, 2, 3, 13) and the estimate of the ex-

pected shell distribution (based on the MCMC samples from θ̂) turns out to
be Êθ̂[ns(g)] = (0.00, 2.29, 3.06, 12.66). Finally, even though the general trend
in the observed degree distribution is captured by the model, as suggested by
Figure 7(a), there is a substantial deviation between the observed degree dis-
tribution and the one suggested by the model. This reinforces the observation
that the degree distribution and shell distribution capture different aspects of
the Sampson network, and the shell distribution ERGM captures properties
of the network beyond the degrees. In fact, it is well-known that degree-based
models have independent dyads, whereas the shell distribution ERGM does not.
This is further evidenced by Figure 6.
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5. A sampling algorithm for generating graphs with a given shell
distribution

In the last two decades, there have been several contributions in the graph the-
ory and computer science literature on computing cores decompositions. Given
the wide-ranging application of cores, a natural problem that arises is to find
an algorithm that randomly generates graphs with a given core structure. Such
an algorithm is presented in Baur et al. (2007) for graphs with additional re-
strictions on the number of edges between pairs of shells.

This section provides a simple algorithm (Algorithm 3) for sampling the space
of graphs with a given shell distribution (sometimes called the fiber of that
distribution), such that any graph has positive probability of being constructed
(Theorem 9). This is an independent sampler, not a Markov chain. Simulations
indicate good performance in terms of discovering new graphs at a fast pace.
While the true sampling distribution is not known, our experiments show that
reasonably long runs will give good estimates.

Algorithm 1: Compute Shell Sequence
input : a graph g
output: its shell sequence s(g) = (s1, . . . , sn)

1 Initialize s∗ = 0.
2 Repeatedly remove vertices of degree at most s∗ in g, incrementing s∗ by 1 if no eligible

vertices remain in g; quit when g is empty. The shell index of each vertex is the value of
s∗ when it was deleted.

For convenience, we restate the basic algorithm for producing the shell se-
quence of a graph as Algorithm 1. There is no need to implement it, since
the linear-time algorithm from Batagelj and Zaveršnik (2003) is already imple-
mented as the graph.coreness function from the Csardi and Nepusz (2006)
igraph package in R.

Note that the order in which the vertices of g are deleted in Algorithm 1 is
neither unique, nor arbitrary: vertices are deleted in increasing order of their
shell indices, but not all vertices with the same shell index are interchangeable.
For example, consider the graph in Figure 2(a), for which every vertex has shell
index equal to 1: the first vertex deleted will be, by necessity, one of the vertices
of degree 1, but the second vertex deleted can vary depending on the choice of
the first vertex.

Our sampling algorithm will generate graphs with vertices in an order that
is compatible with Algorithm 1, so we will need to know more about such
orderings. To that end, we give a simple condition for a graph g on vertices
{v1, . . . , vn} that determines whether Algorithm 1 could potentially process its
vertices in that order, yielding a pre-specified sorted shell sequence s1 ≤ . . . ≤ sn.

Condition 6. For all i ∈ [n]:

(i) vi has at least si neighbors vj with sj ≥ si, and
(ii) vi has at most si neighbors vj with j > i.
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Lemma 7. Consider any graph g ∈ Gn on vertices labeled v1, . . . , vn and sorted
sequence of n non-negative integers s1 ≤ . . . ≤ sn. Algorithm 1 can process the
vertices of g in the given order, yielding shell indices s(vi) = si for all i ∈ [n],
if and only if g satisfies Condition 6.

Proof. Consider Algorithm 1 on a graph g satisfying Condition 6, at the moment
when s∗ increments from s− 1 to s. The subgraph induced by {vi : si ≥ s} has
minimum degree at least s by Condition 6(i), so none of those vertices can have
been deleted yet. On the other hand, if vi is the vertex remaining in g with
smallest index i, then vi must have at least s neighbors vj with j > i, so by
Condition 6(ii), si ≥ s. Thus, the vertices remaining in g at that moment are
precisely those vi with si ≥ s. Applying the argument for any s and for s + 1
shows that the vertices vi with si = s are precisely those which Algorithm 1
deletes when s∗ = s, as required.

For the other direction, suppose that Algorithm 1 processes the vertices of
g in order, yielding s(vi) = si for all i ∈ [n]. Then Condition 6(ii) is true since
s∗ = si when vi is deleted. Suppose that Condition 6(i) is not true for some vi.
Just before s∗ increments from si − 1 to si, all vertices vj with sj < si have
been deleted, so vi has fewer than si neighbors remaining. Then vi could be
deleted, which would make its shell index si − 1 according to the algorithm, a
contradiction.

Given a sorted shell sequence s1, . . . , sn of some simple graph, we initially
aim to construct a graph g in n steps, by adding edges from vi to vj with j > i
during Step i so that Condition 6 is satisfied. At Step i, we will need to know
how many neighbors vi already has with shell index at least si—call this number
ti. Then Condition 6 can be restated as follows: vi has between si − ti and si
new neighbors added during Step i, where ti = |{vj : vjvi ∈ g, j < i, sj ≥ si}|.
These considerations are summarized in Algorithm 2.

Algorithm 2: Graph sampler: initial version
input : a sequence of non-negative integers s1 ≤ . . . ≤ sn
output: a graph g on vertices v1, . . . , vn with shell sequence s(g) = (s1, . . . , sn)

1 for i ← 1 to n do
2 Make vi adjacent to a set S of vertices vj with j > i such that si − ti ≤ |S| ≤ si
3 Update tj values as needed.

4 end

However, Algorithm 2 could get stuck if it is unable to choose S as required.
This problem will not happen as long as the number of vertices vj with i < j ≤ n
is at least si− ti. For Steps i ≤ n−sn, the number of such vertices n− i satisfies
n− i ≥ sn ≥ si ≥ si− ti, so the problem can only occur for i > n− sn. To avoid
this, we will modify those steps of the algorithm.

Consider i ≥ n− sn. Since the number of vertices vj with j > i is n− i ≤ sn
and si = sn, the condition si − ti ≤ |S| ≤ si reduces to just |S| ≥ sn − ti. The
number of vertices in {vj : j ≥ n − sn} is sn + 1, including vi, so vi has sn
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potential neighbors in that set. Thus, for such i, Condition 6 is equivalent to
Condition 8, which is as follows:

Condition 8. For all i ∈ [n] with i ≥ n− sn, vi has at most ti non-neighbors
in the set {vj : n− sn ≤ j ≤ n}.

As we process vertices vi with i ≥ n − sn, let t′i represent the maximum
number of non-neighbors allowed among unprocessed vertices. Initialize t′i = ti
for all n−sn ≤ i ≤ n. To satisfy Condition 8, each t′j decreases by 1 whenever it
is not made adjacent to the currently active vertex vi. When a t′j reaches zero,
we make it adjacent to all remaining vertices and then remove vj from further
consideration; note that this does not change t′i for any i �= j. Since no t′i will
ever go below zero, we will be able to process all vi with i ≥ n − sn so that
Condition 8 is satisfied.

Finally, recall that ti = |{vj : vjvi ∈ g, j < i, sj ≥ si}|. Since the given
sequence s1, . . . , sn is sorted in increasing order, sj > si is impossible when
j < i. Thus, an equivalent definition of ti is:

ti = |{vj : vjvi ∈ g, j < i, sj = si}|. (8)

Algorithm 3 constructs graphs within the restrictions permitted by Condi-
tion 6 (for i < n − sn) and Condition 8 (for i ≥ n − sn), choosing randomly
among all possibilities whenever there is more than one option. As we have
shown, the algorithm will never get stuck. Thus, we have the following result:

Theorem 9. For any graph g with shell sequence s(g), Algorithm 3 produces
g, up to isomorphism, with positive probability.

A comment on the running time of Algorithm 3: Since a random set R can be
chosen from a given set S in O(|S|) time, this algorithm runs in O(|V |2) time.

We conclude this section by summarizing simulation results. Algorithm 3 ran-
domly constructs both labeled graphs (which requires permuting the node labels
of the output of the algorithm) and unlabeled graphs with a given shell distri-
bution. It produces graphs in every isomorphism class of the shell distribution,
and our simulations give preliminary evidence that it also does so quite fast.

As an example, consider shell distribution (0, 2, 1, 4, 0, 0, 0) on 7 vertices. For
labeled graphs, 10,000 runs of the algorithm produced more than 7,400 distinct
graphs, which implies a very high discovery rate of the fiber. For unlabeled
graphs, discovering the 12 isomorphism classes requires only 100 calls to the
algorithm.

6. Behavior of complementary statistics on the fiber of the shell
ERGM

In this section, we explore—both theoretically and experimentally—the behav-
ior of various subgraphs on the fiber of graphs with a given shell distribution. In
the network literature, subgraphs—such as edges and triangles—are used to per-
form heuristic goodness-of-fit tests. Hence, understanding how these subgraphs
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Algorithm 3: Graph Sampler: construct a random graph with a given shell
sequence
input : a sorted integer sequence s1 ≤ . . . ≤ sn
output: a graph g with shell sequence s(g) = (s1, . . . , sn)

1 Initialize v1, . . . , vn to be the vertices of g.
2 Initialize t1 = . . . = tn = 0
3 for i ← 1 to n− sn − 1 do
4 Choose a random subset R of {vj : i < j ≤ n} with max{0, si − ti} ≤ |R| ≤ si
5 for vj ∈ R do
6 Add the edge vivj to g
7 if sj = si then tj ← tj + 1

8 end

9 end
10 Initialize S = {vj : n− sn ≤ j ≤ n}
11 for vj ∈ S do
12 if tj = 0 then
13 S ← S \ {vj}
14 Add edges from vj to all vk ∈ S in g

15 end

16 end
17 while S �= ∅ do
18 Pick any vi ∈ S
19 S ← S \ {vi}
20 Choose a random subset R of S with |R| ≥ |S| − ti
21 for vj ∈ R do
22 Add the edge vivj to g
23 end
24 for vj ∈ S \R do
25 tj ← tj − 1
26 if tj = 0 then
27 S ← S \ {vj}
28 Add edges from vj to all vk ∈ S in g

29 end

30 end

31 end

can vary across the set of graphs with a fixed shell distribution is important. We
present the results in terms of a sorted shell sequence, but note that a sorted shell
sequence is equivalent to a shell distribution, as one can be obtained from the
other uniquely. The following are lower and upper bounds on the number of edges
and triangles in a graph with a prescribed shell sequence and degeneracy m.

Proposition 10. If g is a graph with sorted shell sequence s1 ≤ . . . ≤ sn, then
the maximum number of edges in g is

(
m

2

)
+

n−m∑
i=1

si.

Proof. By Lemma 7, each vertex vi has at most si neighbors vj with j > i, and
the total number of vj with j > i is n− i. We will construct a graph so that the
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first bound is realized for vi with i ≤ n −m and the second bound is realized
for i ≥ n−m; thus, it has the maximum possible number of edges.

Begin with a complete graph G0 on the m highest indexed vertices,
vn−m+1, . . . , vn. Then for each 1 ≤ i ≤ n − m, add exactly si edges from vi
to V (G0). This yields a graph with the desired number of edges.

Proposition 11. If g is a graph with sorted shell sequence s1 ≤ . . . ≤ sn
and corresponding shell distribution nS(g) = (n0, . . . , nn−1), then the minimum
number of edges in g is

m∑
j=1

f(nj , j),

where

f(nj , j) =

{
	 jnj

2 
 if j < nj

jnj −
(
nj

2

)
if j ≥ nj .

Proof. For any 0 ≤ i ≤ m, the vertices with shell index i must have at least
i neighbors in {vj : sj ≥ i}. We will construct a graph in stages as j ranges
from m down to 0, adding vertices with shell index j during stage j, using the
minimum possible number of edges to satisfy the previous condition.

First, given any d < n, we show how to construct a graph G(n, d) with n
vertices, minimum degree d, and the fewest possible number of edges. Let the
vertex set be Zn and arrange the vertices evenly around a circle. If d is even,
make each vertex adjacent to the d/2 closest vertices to it on either side. If d is
odd and n is even, make each vertex adjacent to the (d − 1)/2 closest vertices
to it on either side and also to the vertex directly across from it. If d is odd
and n is odd, there is no d-regular graph on n vertices, but we can construct an
n-vertex graph with one vertex of degree d + 1 and all other vertices of degree
d, as follows: Begin by making each vertex adjacent to the (d − 1)/2 closest
vertices to it on each side. Then, for 0 ≤ i ≤ d−1

2 , make vertex i adjacent to

vertex i+ d+1
2 . Note that for i = d−1

2 , we get an edge from vertex d−1
2 to vertex

d ≡ 0 mod n. The degree of vertex 0 increases by two and every other vertex
degree increases by one, as required. Note that the number of edges in G(n, d)
is 	nd/2
.

Now, start with G(nm,m), which we can do since nm ≥ m + 1. Next we
consider j starting from j = m − 1 down to j = 0, adding nj vertices with
shell index j at each step as follows: If nj > j, then we add a disjoint copy of
G(nj , j). If nj ≤ j, we add a disjoint complete graph on nj vertices and, from
each of its vertices, add edges to exactly j − nj + 1 other vertices (which were
added at earlier steps).

Let f(nj , j) be the number of edges added in Step j. Then f(nj , j) = 	jnj/2

when j < nj and

f(nj , j) =

(
nj

2

)
+ nj(j − nj + 1) = jnj −

(
nj

2

)

when j ≥ nj .
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The minimum number of edges is thus
∑k

j=1 f(nj , j).

The following proposition provides a sharp upper bound on the number of
triangles.

Proposition 12. The maximum number of triangles for a graph with sorted
shell sequence s1 ≤ . . . ≤ sn = m is

(
m

3

)
+

n−m∑
i=1

(
si
2

)
.

Proof. The construction in the proof of Proposition 10 produces a graph with
the correct number of triangles and the argument is similar.

Obtaining an explicit lower bound for the number of triangles is difficult.
Instead, we construct graphs with the given shell sequence with relatively few
triangles, thus providing an upper bound for the minimum number of triangles
for graphs with the specified shell sequence. The first construction begins with
a complete graph on m vertices but then minimizes additional edges added in
subsequent steps.

Lemma 13. Let s1 ≤ . . . ≤ sn be a sorted shell sequence. Then, there exists a
graph g with this shell sequence and exactly A triangles, where

A =

(
sn
3

)
+

n−sn∑
i=max(1,n−2sn+1)

(
si
2

)
.

Proof. Start with a complete graph on vertices S0 := {vi : n− sn + 1 ≤ i ≤ n}.
Let S1 := {vi : max(1, n − 2sn + 1) ≤ i ≤ n − sn} and for each vi ∈ S1, add
exactly si edges from vi to S0. Finally, for 1 ≤ i ≤ n− 2sn, add to the graph a
vertex vi and exactly si edges from vi to S1.

The idea in the next construction is to grow a (nearly balanced) bipartite
graph with partite sets S, S′ rapidly. However, it may be impossible to make a
bipartite graph, so we maintain another set S0 for the vertices that cannot be
placed into S or S′. Every triangle will have at least one vertex in S0.

Fix any sorted shell sequence s1 ≤ . . . ≤ sn = m. If nm ≥ 2m, let S0 = ∅, let
S, S′ be sets of sizes nm/2�, 	nm/2
, and let G be the complete bipartite graph
with partite sets S, S′.

Otherwise, m+1 ≤ nm < 2m. Let a0 = 2sn−nm and let am = a′m = nm−sn,
then let S0, S, S

′ be vertex sets of sizes a0, am, a′m respectively. Initialize G to
be the union of a complete graph on S0 and the complete tripartite graph with
partite sets S0, S, S

′. Note that G has nm vertices and minimum degree sn.
Starting with j = m − 1 and decreasing j after each step, add nj vertices

to S ∪ S′, split so that that |S| − |S′| is 0 or ±1. Make each new vertex in S
adjacent to j vertices in S′ if |S′| ≥ j. Otherwise, make each new vertex in S
adjacent to every vertex in S′ and also adjacent to j − |S′| vertices in S0; this

adds
(
j−|S′|

2

)
triangles per new vertex in S. Similarly add j edges from each new
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vertex of S′ to vertices in S if possible or to vertices in S ∪ S0 otherwise, which
adds

(
j−|S|

2

)
triangles per new vertex of S′. Let B be the number of triangles in

the graph obtained.
Although we cannot give a simple formula for B, we can compute B directly,

without actually constructing the graph: If nm ≥ 2n, then B = 0. Otherwise,
m + 1 ≤ nm < 2m. In that case, we use aj , a

′
j to represent the sizes of S, S′

after step j, where j is initialized to be m and then decreases after each step.
The number of new vertices in S, S′ in each step is represented by x, x′. Then
the computation can be performed as written in Algorithm 4.

Algorithm 4: Compute B, the number of triangles in the above graph
construction
if nm ≥ 2n then B ← 0
else

Initialize j ← m, a0 ← 2sn − nm, am = a′m ← nm − sn, and
B ←

(a0
3

)
+

(a0
2

)
(am + a′m) + a0ama′m

while j > 1 do
Let j ← j − 1
if nj is even then x ← nj/2 and x′ ← nj/2
else if aj+1 > a′j+1 then x ← �nj/2	 and x′ ← 
nj/2�
else x ← 
nj/2� and x′ ← �nj/2	
aj ← aj+1 + x and a′j ← a′j+1 + x′

B ← B + x
(j−a′

j
2

)
+ x′(j−aj

2

)
/* where

(k
2

)
= 0 whenever k < 2 */

end

Moreover, if ever min(j−a′j , j−aj) < 2, then B will remain fixed thereafter,
since j is decreasing and aj and a′j are increasing evenly. Thus, the algorithm
can be terminated early if min(j − a′j , j − aj) < 2.

Proposition 14. Let s1 ≤ . . . ≤ sn be a sorted shell sequence. Then, the
minimum number of triangles in a graph with this shell sequence is at most
min{A,B}.
Proof. This follows immediately from Lemma 13 and the previous construc-
tion.

In order to further understand the behavior of these subgraph counts on
the fibers of the model, we simulated graphs using Algorithm 3 with the shell
distribution corresponding to the Sampson network studied above. Here, we
summarize the results of those simulations.

Recall that the 4-truncated shell distribution of the Sampson network is
(0, 2, 3, 13). The network has 35 edges and 14 triangles. Simulating 50,000 graphs
with this shell distribution using Algorithm 3 produced graphs with as many as
41 and as few as 27 edges. Propositions 10 and 11 show that the maximum and
minimum number of edges for graphs with this shell distribution are 44 and 24,
respectively. The maximum number of triangles among the simulated graphs
was 30, and the minimum was 0. The upper bound for the number of triangles
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in a graph with this shell distribution, as given by Proposition 12, is 34. The
value A in Lemma 13 is 0, which coincides exactly with the minimum number
of triangles observed in the simulations.

It is worth noting that, among the 50,000 simulated graphs with shell distri-
bution corresponding to that of the Sampson network, no two were isomorphic.
In other words, 50,000 calls to Algorithm 3 produced 50,000 distinct graphs.
This again suggests that Algorithm 3 discovers the fiber of graphs with a fixed
shell structure at a high rate.

7. Existence of MLE and the model polytope

It is well-known from the theory of exponential families (e.g., classical text
Brown (1986)) that the MLE of the natural parameters of the model exists
if and only if the average sufficient statistic of the sample lies in the interior
of the convex polyhedron from the following definition. For discrete exponen-
tial families, and ERGMs in particular, Rinaldo et al. (2009) offer details on
the relevance of this polyhedron to the problem of maximum likelihood esti-
mation and study its properties from both theoretical and algorithmic point of
view.

Definition 15. The model polytope (or marginal polytope) for the shell dis-
tribution ERGM defined in Equations (3) and (4) with the sufficient statistic
vector (n0(g), . . . , nm−1(g)) is the convex hull of all possible vectors of minimal
sufficient statistics:

Pn,m = conv{(n0(g), . . . , nm−1(g))|g ∈ Gn,m} ⊂ Rm.

Of course, each value of m gives rise to a different polytope, but each turns
out to be a subpolytope (in fact, a face, as explained below) of the one with un-
restricted degeneracy m ≤ n−1. Thus we define it as a special case and study its
geometry first. For simplicity of notation, denote the minimal sufficient statis-
tic vector of the unrestricted model (i.e., the truncated shell distribution) by
n∗
S(g) = (n0(g), . . . , nn−2(g)).

Definition 16. The model polytope for the shell distribution ERGM with un-
restricted degeneracy is

Pn := conv{n∗
S(g)|g ∈ Gn} ⊂ Rn−1.

Denote by n̄∗
S the average sufficient statistic of the sample g1, . . . , gN ; its jth

entry is 1
N

∑N
j=1 n

∗
j (gi).

Proposition 17. For a sample of size N = 1, n̄∗
S never lies in the interior of

Pn; that is, the MLE never exists.

Proof. Determining whether n̄∗
S lies in the relative interior of Pn or on its bound-

ary requires an explicit description of the polytope. We will show that Pn is a
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dilate of a simplex. To this end, let us consider the polytope of non-truncated
shell distributions:

Pn = conv{(n0, . . . , nn−1) :

(n0, . . . , nn−1) = nS(g) for some g ∈ Gn}.

We claim that (n0, . . . , nn−1) = nS(g) for some g ∈ Gn if and only if nm ≥ m+1
and

∑
nj = n, where m = dgen(g).

That nm ≥ m+1 is a necessary condition is clear by definition. To show that
it is sufficient, it suffices to construct a graph g with this sequence. But this is
straightforward: starting with Km, add nm − m vertices and connect each of
them with every vertex of Km. This gives the m-shell. Then, to construct the
j-shell for all other j, simply add as many vertices as are necessary in the shell,
and connect each of them with j edges to some subset of the original Km.

Listing all integer points of this polytope, it is not difficult to see that it is
simply an n-dilate of the simplex, Pn = conv{nei} = nΔn−1 ⊂ Rn, where ei is
the i-th standard unit vector in Rn. Finally, to obtain the polytope Pn with the
truncated sequences, simply omit the last coordinate from Pn. The only effect
this has on the polytope is that it interprets the simplex Δn−1 as living in Rn−1,
instead of the way it is written above, as a polytope in Rn but embedded in the
hyperplane

∑
j nj = n.

Finally, note that all realizable integer points (i.e., those corresponding to
a shell distribution) lie on the boundary of this polytope, and not its relative
interior, since any realizable integer point must have a 0 in some component, as
is evident from the necessary and sufficient conditions for shell distribution real-
izability given above. Thus, the MLE never exists for a single observation g.

Remark 18. In case of larger samples, the MLE may or may not exist. The
decision requires checking if the average sufficient statistic is on the boundary
of Pn.

We have shown that the polytope for unrestricted degeneracy model, Pn, is
just a dilate of the simplex, and all of the realizable sufficient statistics lie on
its boundary. But the simple structure of Pn also implies that Pn,m ⊂ Pn for
each m ≤ n− 1, where Pn,m denotes the embedding of Pn,m into Rn−1. Indeed,
any point p ∈ Pn,m ⊂ Rm corresponds to a point p ∈ Rn−1 which is clearly a
realizable shell distribution vector. Thus p is a point in the polytope Pn that
lies on the face cut out by the equations that set all coordinates other than the
m-th one to zero.

Remark 19. Setting the degeneracy parameter m to be equal to the degen-
eracy of the observed graph and using the corresponding ERGM defined in
Equations (3) and (4) with sample space Gn,m behaves better than using un-
restricted degeneracy m ≤ n − 1 in general. In particular, many of the points
that lie on the boundary of Pn lie on the relative interior of a face of some
Pn,m, thus the MLE has a positive probability of existing. The asymptotics of
this construction are of interest to the behavior of the MLE problem, but are
beyond the scope of the present paper.
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8. Discussion

Cores have been widely used to study and summarize networks. In this paper
we study the core decomposition of a network with an eye towards statisti-
cal inference. We embed the core structure of a network as captured by its
shell distribution in the exponential random graph framework. We examine the
theoretical properties of the model and study the problem of inference in the
model which boils down to three tasks–existence of the MLE, sampling from
the model and sampling from the fiber. The existence of MLE question is an-
swered by characterizing the model polytope. To enable maximum likelihood
estimation, we introduce a new type of support restriction that avoids bad be-
havior of the model common to many other classes of ERGMs. We develop an
MCMC algorithm to sample from the model and apply this algorithm to esti-
mate the MLE and perform heuristic goodness-of-fit tests. We also study the
fibers of the model, i.e., spaces of graphs given a fixed shell distribution, and
develop a sampling algorithm that can generate any graph with a predefined
core structure with positive probability. Further, we describe the fiber in detail
by computing bounds on subgraph counts induced by fixing the core structure
of a network.

Our experiments and theoretical results indicate that the shell distribution
model captures information beyond the degree distribution and, in particular,
the triadic effects quite well. The model support is obtained by conditioning
on the degeneracy of a graph. Conditioning is common in ERGMs, as it im-
proves model properties and stability of estimation algorithms. The choice of
degeneracy and thus the specific shell ERGM depends on the data and is meant
to provide a way to improve not only the model’s stability, but also its inter-
pretability.

There are several interesting extensions of this work worth pursuing. Infer-
ence in the shell distribution ERGM gives rise to several important problems
that deserve attention. One of the first considerations is computational: even
though the shell distribution of a network can be computed in linear time, when
embedded in an MCMC algorithm to compute change statistics, this process is
very slow. In contrast, the change statistics of most ERGMs can be computed
locally, without the need of recomputing the new sufficient statistic of the entire
graph. A natural question to ask is if one can compute the change statistics of
the shell distribution more efficiently. In particular, the following is of critical
interest: is there a way to use the local change in the network, such as adding
or deleting edges, to re-compute the shell distribution?

A related question is on the proposal distribution used in the MCMC algo-
rithm. Since we restrict the support of the model to graphs with degeneracy
equal to m, it would be useful to find proposal distributions that generate net-
works that are always in this set. We considered one type of summary statistic
of the core distribution, namely the shell distribution and studied the associated
ERGM thoroughly. Other interesting ways to summarize the core structure can
be used to develop ERGMs. As mentioned, ERGMs based on the core distri-
bution go beyond the dyadic assumption that is inherent in the degree-based
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analysis. An interesting summary statistic to consider is the degree of a node in
its core.

In a different direction, for many datasets, including the Sampson dataset, the
network in question is directed. Notions of core decomposition can be defined for
such generalizations of graphs as well: for example, the (k, l)-core of Giatsidis
et al. (2013) for directed graphs. It is not difficult to extend our model and
algorithms to this notion of core decomposition, and it would be interesting to
see how that model would perform.

Finally, the support restriction applied to the core ERGM may be useful
in other contexts, but a natural question to ask is how does one select the
degeneracy parameter m.

9. Appendix A

This appendix deals with the case when graph degeneracy m is not restricted to
one value for all graphs under the model. In other words, the unrestricted model
gives positive probability to networks of degeneracy less than or equal to any
fixed value of m ≤ n− 1. For simplicity, we will refer to this as the unrestricted
model, motivated by the sample space restrictions placed in defining the core
distribution ERGM in Section 3. We will see that the choice of any particular
such m ≤ n − 1 does not affect the behavior of the model; instead, problems
arise when allowing degeneracy to vary within the graphs in the model. Sec-
tion 9.1 introduces the unrestricted model, which is ill-behaved (cf. Remark 3).
Section 9.2 explains this behavior.

9.1. The model with unrestricted degeneracy

For completeness, let us re-derive the model, from first principles, for the unre-
stricted case m ≤ n− 1, for which the sample space is the set of all graphs with
n nodes, Gn.

Again, to take advantage of the theory of exponential families, we rewrite
Equation (1) in exponential family form by re-parameterizing P (G = g) in terms
of normalized probabilities p̃j =

pj

pn−1
. (Our notation very closely follows Sadeghi

and Rinaldo (2014).)

Observe that pn−1 = 1
1+

∑n−2
j=1 p̃j

, and thus P (G = g) can be written as

P (G = g) = ϕ(p)

n−1∏
j=0

(p̃jpn−1)
nj(g) = ϕ(p)p

∑n−1
j=0 nj(G)

n−1

n−1∏
j=0

p̃
nj(g)
j

= ϕ(p)pnn−1

n−1∏
j=0

p̃
nj(g)
j ,

or, more compactly, using that p̃n−1 = 1 and renaming the constant ϕ(p) to
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φ(p̃) to reflect the re-parametrization:

P (G = g) =
φ(p̃)(

1 +
∑n−2

j=1 p̃j

)n

n−2∏
j=0

p̃
nj(g)
j . (9)

Next, let θj = log p̃j and define the normalizing constant in terms of θ as

ψ(θ) = n log(1 +
∑n−2

j=0 exp(θj))− log(φ(p̃)). With this, we can write P (G = g)
in exponential family form:

P (G = g) = exp

⎧⎨
⎩

n−2∑
j=0

nj(g)θj − ψ(θ)

⎫⎬
⎭ . (10)

For this version of the model, the minimal sufficient statistic is given by the
truncated shell distribution n∗

S(g) = (n0(g), . . . , nn−2(g)). As before, it is not
difficult to see that the natural parameter space Θ for the model is Θ = Rn−1.

To obtain the log-partition function ψ(θ) in closed form, for fixed n, consider
the set of graphs on n nodes as an ordered list, Gn = {g1 = Kn, . . . , gi, . . . , gM =
K̄n}, where the graphs are listed in non-increasing order in terms of the number

of edges, and where M = 2(
n
2). Note that in the empty graph gM , every vertex

has shell index 0, while in the complete graph g1 = Kn, the shell indices are
s(v) = n− 1 for all v ∈ V (Kn). Therefore,

P (G = gM ) =
φ(p̃)(

1 +
∑n−2

j=0 p̃j

)n · p̃n0 , (11)

and

P (G = g1) =
φ(p̃)(

1 +
∑n−2

j=0 p̃j

)n . (12)

For any other arbitrary graph gi ∈ Gn \ {K̄n,Kn},

P (G = gi) =
φ(p̃)(

1 +
∑n−2

j=1 p̃j

)n

n−2∏
j=0

p̃
nj(gi)
j . (13)

Using
∑M

i=1 P (G = gi) = 1 and Equations (11) and (13), the normalizing con-
stant φ(p̃) can be rewritten as:

φ(p̃) =

(
1 +

∑n−2
j=0 p̃j

)n

1 + . . .+
∏n−2

j=0 p̃
nj(gi)
j + . . .+ p̃n0

. (14)

Finally, θj = log p̃j and the second equality in (11) provide ψ(θ) = log(1+ . . .+∏n−2
j=0 p̃

nj(gi)
j + . . .+ p̃n0 ) = log(1 + . . .+ e

∑n−2
j=0 nj(gi)θj + . . .+ enθ0).
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Fig 8. Truncated shell distributions of all non-isomorphic simple graphs on 3 vertices.

Example 20. Determining ψ(θ) for the case n = 3 depends on counting simple
graphs on three nodes up to isomorphism. Namely, there are 4 non-isomorphic
simple graphs on 3 vertices (see Figure 8): Gn consists of 1 copy of g1, 3 isomor-
phic copies of g2, 3 isomorphic copies of g3 and 1 copy of g4. For g1 = K3, each
vertex has shell index 2, so n∗

S(g1) = (0, 0). For g2, each vertex has shell index
1 and therefore n∗

S(g2) = (0, 3). Two vertices of g3 have shell index 1 while the
remaining vertex has shell index 0, so n∗

S(g3) = (1, 2), and n∗
S(g4) = (3, 0) as

every vertex of g4 = K̄3 has shell index 0. Therefore, the log-partition function
for n = 3 is ψ(θ) = log(1 + 3p̃31 +3p̃0p̃

2
1 + p̃30) = log(1 + 3e3θ1 +3e2θ1+θ0 + e3θ0).

9.2. Bad behavior of the unrestricted model

In this subsection we illustrate how the model misbehaves if the degeneracy m
is not controlled. The model with unrestricted degeneracy allows, for any fixed
m, the support of the model to contain graphs with degeneracy less than or
equal to m, i.e. the sample space of the model is defined as follows:

Gn,≤m = {g ∈ Gn : dgen(g) ≤ m}.

Note that a special case is when Gn,≤n−1 = Gn, that is, a graph with any
degeneracy is allowed with positive probability under the model.

If we allow the model to put positive mass on graphs with degeneracy less
than or equal to m, then for any generic point in the parameter space Θ, the
following behavior occurs: The likelihood function has many modes, and the
local modes of the model corresponding to graphs where all nodes lie in the shells
that are most popular (with respect to the mth shell). Example 21 illustrates
this point, followed by Lemma 22 that makes this intuitive explanation of the
model behavior precise.

Example 21. Let m = 4 and consider the unrestricted shell ERGM supported
on the sample space Gn,≤4, i.e., the model puts a positive mass on all graphs with
degeneracy less than or equal to 4. Let θ = (θ0, . . . , θ4) be a parameter vector of
this model. Recall that θi = log pi

pm
and hence θ4 = 0. Without significant loss

of generality, let us assume that θ3 > θ0, θ1, θ2. Hence amongst shells 0, 1, 2 and
3, the 3rd shell has the highest attractiveness, relative to the 4th shell. Consider
the set of graphs whose degeneracy is less than m = 4, i.e. Gn,≤3. Let g be any
graph in Gn,≤3, then ns(g) = (n0(g), n1(g), n2(g), n3(g), 0). Let g

∗ be any graph
in Gn,≤3, where all nodes lie in the shell 3, which is the most attractive shell,
i.e., ns(g

∗) = (0, 0, 0, n, 0).
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Then P (g∗) > P (g). Indeed, the following inequalities are straightforward:

log
P (g∗)

P (g)
=

m−1∑
i=0

θi(ni(g
∗)− ni(g))

= −
m−2∑
i=0

θini(g) + θm−1 (n− nm−1(g))

= −
m−2∑
i=0

θini(g) + θm−1

(
m−2∑
i=0

ni(g)

)

=

m−2∑
i=0

ni(g)(θm−1 − θi) > 0.

This should be interpreted as follows: Among the set of all graphs with degen-
eracy less than or equal to 3, the most likely graph will be such that all nodes
are in the shell index corresponding to the largest θ. Thus, in some sense, the
local mode is a “degenerate” mode (no pun intended!).

In the above example, we could have chosen any θk, k �= m, to be the most
attractive shell, and the shell distribution of g∗ should be modified accordingly,
i.e. nk(g

∗) = n and ni(g
∗) = 0 for all i �= k. Moreover, we could have considered

the mode over any restricted sample space, not just Gn,≤3. Lemma 22 illustrates
this point by generalizing the example in several directions, in particular, by
allowing there to be more than one ‘popular’ shell. Let m be the degeneracy of
the model, let θ = (θ0, . . . , θm−1) be the parameter vector of the shell ERGM.
Define [m] = {0, 1, . . . ,m− 1}.

Lemma 22. Consider the shell ERGM on the sample space Gn,≤m with param-
eter vector (θ0, . . . , θm), where θm = 0 by definition. Let g be any graph in Gn,≤d

with degeneracy d < m, i.e., ni(g) = 0 for all i > d. Let Ld = {l ∈ [d] : θl =
maxi∈[d] θi}. Let Lc

d = [d]\Ld. Let g∗ be any network with degeneracy d such
that nodes exist only in the most popular shells, i.e. ni(g

∗) = 0 for all i /∈ Ld.
Then, P (g∗) > P (g).

Proof. Let θ∗ = maxi∈[d] θi, and consider the following, as in Example 21:

log
P (g∗)

P (g)
=

∑
i∈[d]

θi(ni(g
∗)− ni(g))

=
∑
i∈Lc

d

θi(0− ni(g)) +
∑
i∈Ld

θi (ni(g
∗)− ni(g))

= −
∑
i∈Lc

d

θini(g) + θ∗
∑
i∈Ld

(ni(g
∗)− ni(g))

= −
∑
i∈Lc

d

θini(g) + θ∗

(
n−

∑
i∈Ld

ni(g)

)
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= −
∑
i∈Lc

d

θini(g) + θ∗

⎛
⎝∑

i∈Lc
d

ni(g)

⎞
⎠

=
∑
i∈Lc

d

ni(g)(θ
∗ − θi) > 0.

The fourth equality holds since ni(g
∗) = 0 for all i ∈ Lc

d. The fifth equality
holds because

∑
i∈[d] ni(g) = n.

As an additional example of behavior explained in Lemma 22, let m = 5, d =
3 and let θ = (a, α, b, α, c, 0) where α > a, b, c. By Lemma 22, among all graphs
with degeneracy at most 3, graphs with shell distribution (0, k, 0, n − k, 0, 0)
are the modes, where n− k ≥ 4. Thus, among d-degenerate graphs, only graphs
where all nodes lie in the most popular shells are modes. These graphs are vastly
different from each other in terms of their topological properties (e.g. density,
number of triangles), yet they occur as modes of the same parameter vector.

The reason why such a behavior occurs is that allowing graphs with degen-
eracy less than m introduces a linear constraint on the shell distributions of
these graphs. Thus to eliminate such a behavior, we define the model so that
any graph with degeneracy less than m has 0 probability. Two consequences
of this fact are that when fitting the shell ERGM to an observed graph, (1) m
cannot be larger than the observed degeneracy, and (2) graphs with degeneracy
less than the observed degeneracy have 0 probability.

To see why (1) holds, let g be an observed graph with shell distribution
ns(g) and degeneracy m̂. Consider fitting the shell ERGM to g by allowing
m > m̂. If the sample space is Gn,m, the observed graph has 0 probability under
the model! On the other hand, if we let the sample space be Gn,≤m and we
have m̂ < m, the observed network lies in the set Gn,≤m̂ � Gn,≤m. Lemma
22 can be applied to show that the model has an undesirable property. Let
supp(nS) = {i ∈ [m] : ni(g) �= 0} be the support of nS . Let Θg be a subset
of the parameter space such that indices of largest value of θ correspond to
supp(nS), i.e.,

Θg = {θ ∈ Θ : ∀s ∈ supp(nS), θs = max
i∈[m]

θi}

By Lemma 22, any parameter in Θg will have the observed graph g as one of
its modes. Moreover, these models will have several other modes that have shell
distributions quite different from the observed graph.

The above discussion shows that if we allow m > m̂, there exist a large subset
of the parameter space where the model misbehaves. A natural question to ask
is the converse - does there exists a parameter vector for which the observed
graph is the only mode? An easy algebraic calculation in Example 23 shows
even a weaker requirement of having the model assign higher mass to graphs
with shell distributions vastly different from the observed shell distribution is
not possible.
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Example 23. Let the observed shell distribution be nS(g) = (0, k, 0, n−k), with
n−k ≥ 4 and k > 0. Hence the observed degeneracy is m̂ = 3. Consider the shell
ERGM with m = 3 and sample space Gn,≤4. Consider two graphs g1 and g2 with
shell distributions (0, 0, n, 0) and (0, n, 0, 0). We will show that there does not
exist any point in the parameter space such that P (g) > P (g1) and P (g) > P (g2)
simultaneously. To this end, let θ = (θ0, θ1, θ2, 0) be any point in the parameter

space. Note that log P (g)
P (g1)

= (θ1−θ3)k and log P (g)
P (g2)

= (θ3−θ1)(n−k). For both

these terms to be positive at the same time, we need θ1 > θ3 and θ3 > θ1 which
is impossible. Moreover if θ1 = θ3, then the model places equal probability on
the observed graph g and g1 and g2, which is undesirable.
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