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Abstract: The objective of this work is to propose a new algorithm to
fit a sphere on a noisy 3D point cloud distributed around a complete or a
truncated sphere. More precisely, we introduce a projected Robbins-Monro
algorithm and its averaged version for estimating the center and the radius
of the sphere. We give asymptotic results such as the almost sure conver-
gence of these algorithms as well as the asymptotic normality of the aver-
aged algorithm. Furthermore, some non-asymptotic results will be given,
such as the rates of convergence in quadratic mean. Some numerical exper-
iments show the efficiency of the proposed algorithm on simulated data for
small to moderate sample sizes and for modeling an object in 3D.
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1. Introduction

Primitive shape extraction from data is a recurrent problem in many research
fields such as archeology [35], medicine [38], mobile robotics [24], motion capture
[34] and computer vision [30, 23]. This process is of primary importance since
it provides a high level information on the data structure.

First works focused on the case of 2D shapes (lines, circles), but recent tech-
nologies enable to work with three dimensional data. For instance, in computer
vision, depth sensors provide 3D point clouds representing the scene in addition
to usual color images. In this work, we are interested in the estimation of the
center μ ∈ R

3 and the radius r > 0 of a sphere from a set of 3D noisy data.
In practical applications, only a discrete set of noisy measurements is available.
Moreover, sample points are usually located only near a portion of the spherical
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surface. Two kinds of problem can be distinguished: shape detection and shape
fitting.

Shape detection consists in finding a given shape in the whole data without
any prior knowledge on which observations belong to it. In that case, the data
set may represent several objects of different nature and may therefore contain
a high number of outliers. Two main methods are used in practise to solve this
problem. The Hough transform [1] performs a discretization of the parameter
space. Each observation is associated to a set of parameters corresponding to all
possible shapes that could explain the sample point. Then, a voting strategy is
applied to select the parameter vectors of the detected shapes. The advantage of
this method is that several instances of the shape can be detected. However, a
large amount of memory is required to discretize the parameter space, especially
in the case of three dimensional models. The RANSAC (RANdom SAmple Con-
sensus) paradigm [15, 33] is a probabilistic method based on random sampling.
Observations are randomly selected among the whole data set and candidate
models are generated. Then, shapes can be detected thanks to an individual
scoring scheme. The success of the method depends on a given probability re-
lated to the number of sampling and the fraction of points belonging to the
shape.

The shape fitting problem assumes that all the data points belong to the
shape. For example, spherical fitting techniques have been used in several do-
mains such as industrial inspection [18], GPS localization [3], robotics [37]
and 3D modelling [36]. Geometric and algebric methods have been proposed
[22, 32, 2] for parameters estimation. Moreover, let us note that fitting methods
are generally applied for shape detection as a post-processing step in order to
refine the parameters of the detected shapes [36].

In a recent paper, Brazey and Portier [8] introduced a new spherical prob-
ability density function belonging to the family of elliptical distributions, and
designed to model points spread near a spherical surface. This probability den-
sity function depends on three parameters, namely a center μ ∈ R

3, a radius
r > 0 and a dispersion parameter σ > 0. In their paper, the model is formulated
in a general form in R

d. To estimate μ and r, a backfitting algorithm (see e.g.
[9]) similar to the one used in [22] is employed. A convergence result is given in
the case of the complete sphere. However, no result is established in the case of
a truncated sphere while simulations showed the efficiency of the algorithm.

The objective of this work is to propose a new algorithm to fit a sphere on
a noisy 3D point cloud distributed around a complete or a truncated sphere.
We shall assume that the observations are independent realizations of a random
vector X defined as

X = μ+ rW UΩ, (1.1)

where W is a positive real random variable such that E [W ] = 1, UΩ is uniformly
distributed on a measurable subset Ω of the unit sphere of R3, W and UΩ are
independent. Parameters μ ∈ R

3 and r > 0 are respectively the center and
the radius of the sphere we are trying to adjust to the point cloud. Random
variable W allows to model the fluctuations of points in the normal direction of
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the sphere. When Ω coincides with the complete sphere, then the distribution
of X is spherical (see e.g. [26]). Indeed, if we set Y = (X − μ)/r, then the
distribution of Y is rotationally invariant.

We are interested in estimating center μ and radius r. As ‖UΩ‖ = 1, we easily
deduce from (1.1) that

μ = E

[
X − r

(X − μ)

‖X − μ‖

]
(1.2)

r = E [‖X − μ‖] . (1.3)

It is clear that from these two equations, we cannot deduce explicit estimators of
parameters μ and r using the method of moments since each parameter depends
on the other. To overcome this problem, we can use a backfitting type algorithm
(as in [8]) or introduce a recursive stochastic algorithm, which seems well-suited
for this problem since equations (1.2) and (1.3) can also be derived from the
local minimization of the following quadratic criteria

G(μ, r) :=
1

2
E
[
(‖X − μ‖ − r)2

]
. (1.4)

Stochastic algorithms, and more precisely Robbins-Monro algorithms, are
effective and fast methods (see e.g. [14, 20, 31]). They do not need too much
computational efforts and can easily be updated, which make of them good can-
didates to deal with big data for example. However, usual sufficient conditions to
prove the convergence of this kind of algorithm are sometimes not satisfied and
it is necessary to modify the basic algorithm. We can, for example, introduce
a projected version of the Robbins-Monro algorithm which consists in keeping
the usual estimators in a nice subspace with the help of a projection. Such an
algorithm has been recently considered in [4] and [21].

In this paper, due to the non global convexity of function G, we estimate pa-
rameters μ and r using a projected Robbins-Monro algorithm. We also propose
an averaged algorithm which consists in averaging the projected algorithm. In
general, this averaged algorithm allows to improve the rate of convergence of the
basic estimators, or to reduce the variance, or not to have to make a good choice
of the step sequence, which can be as exhaustive as to estimate the parameters.
It is widely used when having to deal with Robbins-Monro algorithms (see [29]
or [27] amoung others).

This paper is organized as follows. In Section 2, we specify the framework and
assumptions. After a short explanation on the non-convergence of the Robbins-
Monro algorithm, the projected algorithm and its averaged version are intro-
duced in Section 3. Section 4 is concerned with the convergence results. Some
simulation experiments are provided in Section 5, showing the efficiency of the
algorithms. Finally, a real example which consists in modeling an object in
3D is given in Section 6. Proofs of the different results are postponed in Ap-
pendix.
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2. Framework and assumptions

We consider in this paper a more general framework than the one described in
the introduction. Let X be a random vector of Rd with d ≥ 2. Let F denotes
the distribution of X. We assume that X can be decomposed under the form

X = μ+ rW UΩ. (2.1)

where μ ∈ R
d, r > 0, W is a positive real continuous random variable (and

with a bounded density if d = 2), UΩ is uniformly distributed on a measurable
subset Ω of the unit sphere of Rd. Moreover, let us suppose that W and UΩ are
independent.

Model (2.1) allows to model a point cloud of Rd spread around a complete
or truncated sphere of center μ ∈ R

d and radius r > 0. Random vector UΩ

defines the position of the points on the sphere and random variable W defines
the fluctuations in the normal direction of the sphere. As mentioned in the
introduction, when Ω is the complete unit sphere, then the distribution of X is
spherical.

When W satisfies the condition E [W ] = 1, the radius r is identifiable and
can be directly estimated. Indeed, since ‖UΩ‖ = 1, then ‖X − μ‖ = rW and
E [‖X − μ‖] = rE [W ] = r, where ‖.‖ is the usual euclidean norm. However,
this condition is sometimes not satisfied (as in [8]) and only r� := rE [W ]
can be estimated. Therefore, in what follows, we are interested in estimating

θ :=
(
μT , r�

)T
, which will be denoted by (μ, r�) for the sake of simplicity.

We suppose from now that the following assumptions are fulfilled:

• Assumption [A1]. The random vector X is not concentrated around μ:

E

[
‖X − μ‖−2

]
< ∞.

• Assumption [A2]. The random vector X admits a second moment:

E

[
‖X − μ‖2

]
< ∞.

These assumptions ensure that the values of X are concentrated around the
sphere and not around the center μ, without in addition too much dispersion.
This framework totally corresponds to the real situation that we want to model.
Moreover, using (2.1), Assumptions [A1] and [A2] reduce to assumptions on W .
More precisely, [A1] reduces to E

[
W−2

]
< ∞ and [A2] to E

[
W 2

]
< ∞.

Let us now introduce two examples of distribution allowing to model points
spread around a complete sphere and satisfying assumptions [A1] and [A2].

Example 2.1. Let us consider a random vector X taking values in R
d with a

distribution absolutely continuous with respect to the Lebesgue measure, with a
probability density function fδ defined for all δ > 0 by

fδ(x) =
Cd

‖x− μ‖d−1
1{‖x− μ‖ /r ∈ [1− δ , 1 + δ]}, (2.2)
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where Cd is the normalization constant. Then, we can rewrite X under the form
(2.1) with UΩ = U , W ∼ U([1− δ, 1 + δ]) and E [W ] = 1 for any δ > 0.

Example 2.2. Let us consider the probability density function introduced in
[8]. It is defined for any x ∈ R

d by

f(x) = Kd exp

(
− 1

2σ2

(
‖x− μ‖ − r

)2)
, (2.3)

where Kd is the normalization constant. Then, a random vector X with proba-
bility density function f can be rewritten under the form (2.1), with E [W ] �= 1,
but E [W ] is closed to 1 when the variance σ is negligible compared to the radius
r.

To obtain points distributed around a truncated sphere, it is sufficient to
modify the previous densities by considering densities of the form fΩ(x) =
CΩf(x)1{(x−μ)∈Ω} where Ω is the set of points of Rd whose polar coordinates

are given by (ρ, θ1, . . . , θd−1 ∈ R
∗
+ × Θ) where Θ defines the convex part Ω of

the surface of the unit sphere of Rd we want to consider.

3. The algorithms

We present in this section two algorithms for estimating the unknown parameter
θ which can be seen as a local minimizer (under conditions) of a function.
Indeed, let us consider the function G : R

d × R −→ R defined for all
y = (z, a) ∈ R

d × R
∗
+ by

G(y) :=
1

2
E
[
(‖X − z‖ − a)2

]
=

1

2
E [g (X, y)] , (3.1)

where we denote by g the function defined for any x ∈ R
d and y = (z, a) ∈

R
d×R

∗
+ by g(x, y) := (‖x− z‖ − a)

2
. The function G is Frechet-differentiable

and we denote by Φ its gradient, which is defined for all y = (z, a) ∈ R
d×R

∗
+

by

Φ(y) := ∇G(y) = E [∇yg(X, y)] =

⎛⎝z − E [X]− aE

[
z −X

‖z −X‖

]
a− E [‖z −X‖] .

⎞⎠ (3.2)

From (2.1) and definition of θ = (μ, r�), we easily verify that ∇G(θ) = 0.
Therefore, since θ is a local minimizer of function G (under assumptions) or a
zero of ∇G, an idea could be to introduce a stochastic gradient algorithm for
estimating θ.

3.1. The Robbins-Monro algorithm

Let (Xn)n≥1 be a sequence of independent and identically distributed random
vectors of R

d following the same law as X and let (γn)n≥1 be a decreasing
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sequence of positive real numbers satisfying the usual conditions∑
n≥1

γn = ∞ and
∑
n≥1

γ2
n < ∞. (3.3)

When the functional G is convex or verifies nice properties, a usual way to
estimate the unknown parameter θ is to use the following recursive algorithm

θn+1 = θn − γn ∇yg(Xn+1, θn), (3.4)

with θ1 chosen arbitrarily bounded. The term ∇yg (Xn+1, θn) can be seen as
an estimate of the gradient of G at θn, and the step sequence (γn) controls the
convergence of the algorithm.

The convergence of such an algorithm is often established using the Robbins-
Siegmund’s theorem (see e.g. [14]) and a sufficient condition to get it, is to
verify that for any y ∈ R

d ×R
∗
+, 〈Φ(y), y − θ〉 > 0 where 〈., .〉 denotes the usual

inner product and ‖.‖ the associated norm. However, we can show that this
condition is only satisfied for y belonging to a subset of Rd×R

∗
+ to be specified.

Thus, if at time (n+ 1), the update of θn (using (3.4)) leaves this subset, then
it does not necessarily converge. Therefore, we have to introduce a projected
Robbins-Monro algorithm.

3.2. The projected Robbins-Monro algorithm

Let K be a compact and convex subset of Rd × R
∗
+ containing θ = (μ, r∗) and

let π : Rd × R
∗
+ −→ K be a projection satisfying{

∀y, y′ ∈ R
d × R

∗
+, ‖π(y)− π(y′)‖ ≤ ‖y − y′‖

∀y /∈ K, π(y) ∈ ∂K (3.5)

where ∂K is the frontier of K. An example will be given later.
Then, we estimate θ using the following Projected Robbins-Monro algorithm

(PRM), defined recursively by

θ̂n+1 = π
(
θ̂n − γn∇yg

(
Xn+1, θ̂n

))
, (3.6)

where θ̂1 is arbitrarily chosen in K, and (γn) is a decreasing sequence of positive
real numbers satisfying (3.3).

Of course the choice of subset K and projector π is crucial. It is clear that
if K is poorly chosen for a given projector, the convergence of the projected
algorithm towards θ will be slower, even if from a theoretical point of view,
we shall see in the next section dedicated to the theoretical results, that this
algorithm is almost the same as the traditional Robbins-Monro algorithm since
the updates of θ̂n, ie. the quantities

(
θ̂n − γn ∇y g

(
Xn+1, θ̂n

))
, leave K only a

finite number of times.
Let us now discuss the choice of K and π. The choice of K is directly related to

the following assumption that we introduce to ensure the existence of a compact
subset on which the scalar product 〈Φ(y), y − θ〉 is positive.
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• Assumption [A3]. There are two positive constants Rμ and Rr such that

for all y = (z, a) ∈ B(μ,Rμ)× B(r∗, Rr),

sup
z∈B(μ,Rμ)

λmax

(
Γ(z)

)
<

1− ‖E [UΩ]‖2 /A
r∗ + 3

2Rr

, (3.7)

with A such that ‖E [UΩ]‖2 < A < 1, and λmax(M) denotes the largest
eigenvalue of matrix M , and

Γ(z) := E

[
1

‖X − z‖

(
Id −

(X − z)(X − z)T

‖X − z‖2

)]
.

Remark 3.1. The less the sphere is truncated, the more ‖E [UΩ]‖ is close to 0
and the constraints on Rμ and Rr are relaxed. In particular, when the sphere is
complete, ie. UΩ = U where U denotes the random vector uniformly distributed
on the whole unit sphere of Rd, then E [UΩ] = 0 and Assumption [A3] reduces
to

sup
z∈B(μ,Rμ)

λmax

(
Γ(z)

)
<

1

r∗ + 3
2Rr

.

The main consequence of Assumption [A3] is the following proposition which
is one of the key point to establish the convergence of the PRM algorithm.

Proposition 3.1. Assume that [A1] to [A3] hold. Then, there is a positive
constant c such that for all y ∈ B(μ,Rμ)× B(r∗, Rr),

〈Φ(y), y − θ〉 ≥ c ‖y − θ‖2 .

Proof. The proof is given in Appendix A.

Assumption [A3] is therefore crucial but only technical. It reflects the fact
that the sphere is not too much truncated and that the points are not too far
away from the sphere which corresponds to the real situations we want to model.

In a general framework, this technical assumption is difficult to verify since it
requires to specify the distribution of X. In the case of distribution of Example
2.1 with δ < 1/10, we can easily exhibit constant Rμ and Rr. Indeed taking
Rμ = Rr = r∗/10, then assumption [A3] holds. When the distribution of X is
compactly supported with a support included in [1 − δ, 1 + δ], it is fairly easy
to find the constants provided that δ is small enough. It is quite more difficult
when dealing with distribution of Example 2.2. Nevertheless, topological results
can ensure that these constants exist.

From constants Rμ and Rr of Assumption [A3], it is then possible to simply
define a projector π which satisfies condition (3.5). Indeed, let us setK = Kμ×Kr

with Kμ = B(μ,Rμ) and Kr = B(r∗, Rr), and define for any y = (z, a) ∈ R
d×R

∗
+

by π(y) := (πμ(z), πr(a)), with

πμ(z) :=

⎧⎨⎩ z if z ∈ Kμ

μ+Rμ
(z − μ)

‖z − μ‖ otherwise
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and

πr(a) :=

⎧⎨⎩ a if a ∈ Kr

r +Rr
(a− r�)

|a− r�| otherwise

Such projector satisfies the requested conditions. However, it is clear that this
projector can not be implemented since μ and r∗ are unknown. We shall see in
the simulation study how to overcome this problem.

We suppose from now that K is a compact and convex subset of B(μ,Rμ)×
B(r∗, Rr) such that θ ∈ K, but θ /∈ ∂K, where ∂K is the frontier of K, i.e there
is a positive constant dmin such that B (θ, dmin) ⊂ K.

3.3. The averaged algorithm

Averaging is a usual method to improve the rate of convergence of Robbins-
Monro algorithms, or to reduce the variance, or finally not to have to make a
good choice of the step sequence (see [29]), but for the projected algorithms,
this method is not widespread in the literature. In this paper, we improve the
estimation of θ by adding an averaging step to the PRM algorithm. Starting
from the sequence (θ̂n)n≥1 given by (3.6), we introduce for any n ≥ 1,

θn =
1

n

n∑
k=1

θ̂k,

which can also be recursively defined by

θn+1 = θn +
1

n+ 1

(
θ̂n+1 − θn

)
, and θ1 = θ̂1. (3.8)

Remark that this estimate is known, theoretically, not to be much sensitive to
the choice of the stepsequence (γn). One can be convinced by the simulation
study in [11], for the special case of the geometric median. We shall see in the
following two sections, the gain provided by this algorithm.

4. Convergence properties

We now give asymptotic properties of the algorithms. All the proofs are post-
poned in Appendix B. The following theorem gives the strong consistency of
the PRM algorithm as well as properties on the number of times we really use
the projection.

Theorem 4.1. Let (Xn) be a sequence of iid random vectors following the same
law as X. Assume that [A1] to [A3] hold, then

lim
n→∞

‖θ̂n − θ‖ = 0 a.s.

Moreover, the number of times the random vectors θ̂n − γn∇yg
(
Xn+1, θ̂n

)
do

not belong to K is almost surely finite.
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The following theorem gives the rate of convergence in quadratic mean and
the Lp rates of convergence of the PRM algorithm (under conditions) as well as
an upper bound of the probability that the random vector

θ̂n − γn∇yg
(
Xn+1, θ̂n

)
does not belong to K.

Theorem 4.2. Let (Xn) be a sequence of iid random vectors following the same
law as X. Assume that [A1] to [A3] hold and consider a step sequence (γn) of
the form γn = cγn

−α, with cγ > 0 and α ∈]1/2, 1[. Then, there is a positive
constant C1 such that for all n ≥ 1,

E

[∥∥∥θ̂n − θ
∥∥∥2] ≤ C1

nα
.

Moreover, for all positive integer p such that E

[
‖X − μ‖2p

]
< ∞, there is a

positive constant Cp such that for all n ≥ 1,

E

[∥∥∥θ̂n − θ
∥∥∥2p] ≤ Cp

npα
,

and for all n ≥ 1,

P

[
θ̂n − γn∇yg

(
Xn+1, θ̂n

)
/∈ K

]
≤ Cp

d2pmin n
pα

,

where dmin := infy∈∂K {‖y − θ‖} and ∂K is the frontier of K.

We now focus on the asymptotic behavior of the averaged algorithm. First of
all, applying Theorem 4.1 and Toeplitz’s lemma for example, we easily obtain
the strong consistency of the averaged estimator θn. Introducing the following
assumption, we can specify its rate of convergence in quadratic mean as well as
its asymptotic normality.

• Assumption [A4]. The Hessian of G at θ = (μ, r∗), denoted by Γθ and
defined by

Γθ :=

⎛⎜⎜⎜⎝
Id − E

[
r∗

‖X − μ‖

(
Id −

(X − μ)⊗ (X − μ)

‖X − μ‖2

)]
E

[
X − μ

‖X − μ‖

]
E

[
X − μ

‖X − μ‖

]T
1

⎞⎟⎟⎟⎠
is a positive definite matrix.

Note that thanks to topological results, this assumption also implies Propo-
sition 3.1 but is not useful to obtain the constants Rμ and Rr. Nevertheless, this
assumption is crucial to establish the results of the two following theorems but
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it is satisfied as soon as the sphere is not too much truncated and the dispersion
around the sphere not too important which corresponds to the real situations
encountered. Using model (2.1), Γθ rewrites under the form

Γθ =

(
(Id − β

(
Id − E

[
UΩ UT

Ω

])
E [UΩ]

E
[
UT
Ω

]
1

)
with β = E [W ]E

[
W−1

]
.

(4.1)
When the sphere is complete, ie. UΩ = U , then E [UΩ] = 0, E

[
UΩ UT

Ω

]
= (1/d)Id

and λmin(Γθ) > 0 as soon as β < d/(d − 1). In the case of distribution of
Example 2.1, we have β = (log(1 + δ) − log(1 − δ))/(2δ) and [A4] is satisfied
as soon as δ is small enough. In the case of distribution of Example 2.2, [A4]
is satisfied as soon as r >> σ. When the sphere is not complete, we can easily
show that a sufficient condition to ensure [A4] is λmin (Var [UΩ]) < 1 − 1/β,
where Var [UΩ] is the covariance matrix of the random variable UΩ. In the case
of the half sphere and d = 3, we have λmin (Var [UΩ]) = 1/12 and Γθ is definite
positive as soon as β < 12/11. This condition holds for distribution of Example
2.1 with δ < 0.4 for instance, and distribution of Example 2.2 as soon as r >> σ.

Theorem 4.3. Let (Xn) be a sequence of iid random vectors following the same
law as X. Assume that [A1] to [A4] hold and consider a step sequence (γn) of
the form γn = cγn

−α, with cγ > 0 and α ∈]1/2, 1[. Moreover, suppose that

E[‖X − μ‖12] < ∞. Then there is a positive constant C such that for all n ≥ 1,

E

[∥∥θn − θ
∥∥2] ≤ C

n
.

With respect to results of Theorem 4.2, we clearly improve the rate of con-
vergence in quadratic mean. Note that the computed rate is the optimal one for
such stochastic algorithms. We finally give a central limit theorem which can be
useful to build confidence balls for the different parameters of the sphere.

Theorem 4.4. Let (Xn) be a sequence of iid random vectors following the same
law as X and let us choose the step sequence (γn) of the form γn = cγn

−α,
with cγ > 0 and α ∈]1/2, 1[. Assume that [A1] to [A4] hold and suppose that

E[‖X − μ‖12] < ∞. Then
(
θn
)
satisfies

√
n
(
θn − θ

) L−→
n→∞

N
(
0,Γ−1

θ ΣΓ−1
θ

)
(4.2)

with

Σ := E

⎡⎢⎣
⎛⎝μ−X − r∗

(μ−X)

‖μ−X‖
r∗ − ‖μ−X‖

⎞⎠⎛⎝μ−X − r∗
(μ−X)

‖μ−X‖
r∗ − ‖μ−X‖

⎞⎠T
⎤⎥⎦ . (4.3)

From result (4.2) of Theorem 4.4, we easily derive that

√
nΣ−1/2Γθ

(
θn − θ

) L−→
n→∞

N (0, Id+1) . (4.4)



1900 A. Godichon-Baggioni and B. Portier

Therefore, in order to build confidence balls or statistical tests for the parameters
of the sphere, matrices Γθ and Σ must be estimated.

Let us decompose θn under the form (Zn, An) where Zn ∈ R
d estimates

the center μ and An ∈ R
∗
+ the radius r∗, and let us denote Un := (Xn −

Zn)/
∥∥Xn − Zn

∥∥. Then we can estimate Γθ and Σ by Γ̂n and Σ̂n iteratively as
follows

nΓ̂n = (n− 1)Γ̂n−1 +

( (
1− An

‖Xn−Zn‖

)
Id +

An

‖Xn−Zn‖Un U
T
n Un

UT
n 1

)
,

nΣ̂n = (n− 1)Σ̂n−1 +

(
Xn − Zn +An Un

An − ‖Xn − Zn‖

)(
Xn − Zn +An Un

An − ‖Xn − Zn‖

)T

,

where Σ̂1 = Id+1 and Γ̂1 = Id+1 to avoid usual problems of invertibility. It is

not hard to show that Γ̂n and Σ̂n respectively converge to Γθ and Σ and then
deduce that

Qn :=
√
n Σ̂−1/2

n Γ̂n

(
θn − θ

) L−→
n→∞

N (0, Id+1) . (4.5)

The simulation study of the next section will illustrate the good approximation
of the distribution of Qn by the standard gaussian for moderate sample sizes.

5. Some experiments on simulated data

We study in this section the behavior of the PRM and averaged algorithms
on simulated data in the case d = 3, for small to moderate sample sizes. This
section first begins with the specification of the compact set involved in the
definition of the PRM algorithm which is of course a crucial point. We then
study the performance of the two algorithms in the case of the whole sphere
with the distributions of Examples 2.1 and 2.2. Finally, we consider the case of
the truncated sphere (a half-sphere) and we compare our strategy with the one
proposed by [8].

In this simulation study, we shall always consider the same sphere defined by
its center μ = (0, 0, 0)T and its radius r = 50. In addition, to reduce sampling
effects, our results are based on 200 samples of size n. Finally, let us mention
that simulations were carried out using the statistical software R (see R Core
Team, 2013).

5.1. Choice of the compact set and of the projection

We discuss here the crucial point of the choice of the compact set K and of the
projection π involved in the definition of the PRM algorithm. The main problem
is to find a compact set containing the unknown parameter θ. We propose to
build a preliminary estimation of θ, using a geometric approach which consists in
finding the center and the radius of a sphere of R3 from 4 non-coplanar distinct
points. We denote by (μ0, r0) this initial estimate of θ. From this estimate, we
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define the compact set K by K := Kμ0 ×Kr0 with Kμ0 := B(μ0, r0/10) and

Kr0 := B(r0, r0/10), where the choice of the value r0/10 for the radius of the
balls is justified by the discussion about Assumption [A3] in Section 3.2. We
then define the projector π as follows: for any y = (z, a) ∈ R

3 × R
∗
+, we set

π(y) := (πμ0(z), πr0(a)) with

πμ0(z) :=

⎧⎨⎩ z if z ∈ Kμ0

μ0 +
r0
10

(z − μ0)

‖z − μ0‖
otherwise

and

πr0(a) :=

⎧⎨⎩ a if a ∈ Kr0

r0 +
r0
10

(a− r0)

|a− r0|
otherwise

With this strategy, we can raisonnably hope that if our initial estimate is not
too poor, then the true parameter belongs to K and the quadratic criteria G
is convex on K. We will see below that even if this preliminary estimation is
rough, the true parameter belongs to K and the PRM algorithm improves the
estimation of θ.

Let us now describe our strategy to obtain a preliminary estimation of the
parameter θ = (μ, r�). Since the data points are spread around the sphere,
the estimation of the parameters from only one quadruplet of points is not
robust to random fluctuations. In order to make the estimation more robust,
we consider instead N quadruplets sampled with replacement from the first K
points of the sample X1, . . . , Xn. For each quadruplet, we calculate the center
of the sphere which passes through these four points, which gives a sequence
of centers (μ̂i)1≤i≤N . The initial estimate of the center, denoted by μ0, is then
computed as the median point. Finally, we obtain an estimation of the radius
by calculating the empirical mean of the sequence (‖Xi − μ0‖)1≤i≤50.

A simulation study carried out for various values of K and N in the case of
the whole and truncated sphere, shows that by taking K = 50 and N = 200,
we obtain a preliminary estimation of θ sufficiently good to ensure that the
compact K contains θ.

To close this section, let us mention that although the initial estimate is
quite accurate, it is necessary to project the Robbins-Monro algorithm to ensure
the convergence of the estimator. Indeed, taking a step sequence of the form
γn = cγn

−α, the results given in Table 1 show that for some values of cγ and
α, the parameter θ is poorly estimated by the Robbins-Monro algorithm, while
the PRM algorithm (Table 2) is less sensitive to the step sequence choice.

In the sequel of the simulation study, we take a step sequence of the form
γn := n−2/3 (α = 2/3 is often considered as the optimal choice in the literature).

5.2. Case of the whole sphere

In what follows, we are interested in the behavior of the PRM and averaged
algorithms when samples are distributed on the whole sphere according to the
distribution of Example 2.1 with δ = 0.1.
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Table 1

Robbins-Monro algorithm. Errors in quadratic mean of the 200 estimations of the center μ
for samples of size n = 2000 in the case of the distribution of Example 2.1.

α
0.51 0.6 0.66 0.75 0.99

1 0.27 0.14 0.09 0.06 0.23
cγ 5 108 106 105 104 105

10 1031 1018 1014 1010 106

Table 2

PRM algorithm. Errors in quadratic mean of the 200 estimations of the center μ for
samples of size n = 2000 in the case of the distribution of Example 2.1.

α
0.51 0.6 0.66 0.75 0.99

1 0.28 0.15 0.09 0.05 0.24
cγ 5 1.55 0.76 0.48 0.24 0.05

10 3.22 1.35 0.94 0.43 0.08

Fig 1. Whole sphere with distribution of Example 2.1. From the left to the right, boxplots of
estimates of μx, μy , μz and r obtained with the PRM algorithm for different sample sizes.

Figure 1 shows that the accuracy of the estimations increases with the sample
size. In particular, as expected, the PRM algorithm significantly improves the
initial estimations of the center and the radius (see the first boxplots which
correspond to the initial estimations). Moreover, as expected in the case of
the “whole sphere”, we can see that the three components of the center μ are
estimated with the same accuracy.

Let us now examine the gain provided by the use of the averaged algorithm.
Figure 2 shows that for small sample sizes, the performances of the two algo-
rithms are comparable, but when n is greater than 500, the averaged algorithm
is more accurate than the PRM algorithm. We can even think that by forget-
ting the first estimates of the PRM algorithm, we improve the behavior of the
averaged algoritm when the sample size is small.

Finally, let us study the quality of the Gaussian approximation of the dis-
tribution of Qn for a moderate sample size. This point is crucial for building
confidence intervals or statistical tests for the parameters of the sphere.

Figure 3 shows that this approximation is reasonable when n = 2000. Indeed,
we can see that the estimated density of each component of Qn is well super-
imposed with the density of the N (0, 1). To validate these approximations, we
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Fig 2. Whole sphere with distribution of Example 2.1. Boxplots of estimates of μy (left) and
r (right) obtained with the PRM algorithm (in red) and with the averaged algorithm (in blue)
for different sample sizes.

Fig 3. From the left to the right, estimated densities of each components of Q2000 superim-
posed with the standard gaussian density.

perform a Kolmogorov-Smirnov test at level 5%. The test enables us to conclude
that the normality is not rejected for each component of Qn.

5.3. Comparison with a backfitting-type algorithm in the case of a
half-sphere

In this section, we compare the performances of the averaged algorithm with the
ones of the backfitting algorithm introduced by [8]. In what follows, we consider
samples coming from the distribution of Example 2.2, with σ = 1, in the case
of the half sphere defined by the set of points whose y-component is positive.

Results obtained with the two algorithms are presented in Figure 4. We focus
on parameter μy for the center since it is the more difficult to estimate. We
can see that even if the backfitting (BF for short) algorithm is better than
the averaged algorithm, the performances are globally good, which validates
the use of our algorithm for estimating the parameters of a sphere from 3D-
points distributed around a truncated sphere. Recall that convergence results
are available for our algorithm in the case of the truncated sphere, contrary to
the backfitting algorithm for which no theoretical result is available in that case.
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Fig 4. Comparison of averaged and BF algorithms. Boxplots of the estimates of μy (on the
left) and r (on the right), obtained with the BF algorithm (in blue) and with the averaged
algorithm (in red) for the half sphere in the case of Example 2.2.

Fig 5. Comparison of averaged, WAv and BF algorithms. Boxplots of the estimates of μy (on
the left) and r (on the right), obtained with the BF algorithm (in green), the WAv algorithm
(in blue), and with the averaged algorithm (in red) for the half sphere in the case of Example
2.2.

Figure 4 illustrates the fact that the averaged algorithm, for moderate sample
sizes, can be quite sensitive to a bad initialization. One way to overcome this
is to consider a weighted averaged algorithm (see [12] for instance), denoted by
WAv for short, and defined for all n ≥ 1 by

θ̃n =
1∑n

k=1 ωk

n∑
k=1

ωkθ̂k, (5.1)

where (ωk)k≥1 is an increasing sequence of positive numbers. For instance, one

can consider a weight sequence of the form ωk := cβk
β , with cβ , β > 0. This

allows to take more into acount the last estimations (or to forget the first ones)
obtained with the PRM algorithm. Remark that with analogous proofs, one can
obtain the rates of convergence in quadratic mean as well as the asymptotic
normality of this algorithm, and verify that it increases the asymptotic vari-
ance. Finally, Figure 5 shows that, for moderate sample sizes, it represents a
competitive approach compare to the BF algorithm.
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Fig 6. From the left to the right, original color image, depth image containing the ball, depth
reference frame, and difference image.

6. Application on a real example

We now apply our algorithm to model a soccer ball from 3D data. Computing an
object 3D model is a precious information in robotics, especially in the context
of robot grasping [5, 6, 7]. The estimation of the shape can be used to compute
the movement of a robot to grasp an object.

In this work, data are acquired from a Kinect structured light depth sensor
[25]. The sensor provides 640× 480 color and depth images at 30 fps.The depth
image contains for each pixel the distance between the sensor and the objects.
Given the sensor intrinsinc parameters, this per-pixel distance information that
can be converted into a 3D point cloud representing the scene. The system
provides geometric information in addition to photometric information. In our
experiment only the depth component is considered for processing.

In order to extract pixels belonging to the ball, we apply a simple frame dif-
ferencing algorithm. A reference image containing only the background of the
scene is captured and stored. This image is then substracted from the following
images containing objects to model. Connected components of pixels are iden-
tified and filtered based on their size to keep only the region corresponding to
the ball. This process is illustrated in Figure 6.

Then, 3D data are computed from pixel values using the sensor intrinsinc
parameters, namely known focal length. In this experiment, we obtain a sequence
of 14261 3D points whose coordinates are in milimiter units (see Figure 7).
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Fig 7. 3D point cloud representing the truncated ball

Fig 8. Modelling a ball from 3D data

Applying the averaged algorithm with the step sequence (γn) defined for
n ≥ 1 by γn = 2n−2/3, and initialized as described in the previous section, we
obtain an estimated value of 103 mm for the radius and (−121,−59, 875) for
the center. This value of the radius leads to a diameter of about 21 cm which
is in the range of soccer ball values (22 to 23 cm). Remark that we obtain the
same results applying the back-fitting algorithm. Figure 8 shows the point cloud
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fitted by the estimated ball. It is clear that our algorithm behaves very well on
this real problem.

7. Conclusion

We presented in this work a new stochastic algorithm for estimating the center
and the radius of a sphere from a sample of points spread around the sphere,
the points being distributed around the complete sphere or only around a part
of the sphere.

We shown on simulated and real data that this algorithm is efficient, and
a small modification, in the case of moderate sample size, allows to be com-
petitive with regards to the backfitting algorithm proposed in [8], for which no
convergence result is available for the case of the truncated sphere. Therefore,
our main contribution is to have proposed an algorithm for which we have given
asymptotic results such as its strong consistency and its asymptotic normality
which can be useful to build confidence balls or statistical tests for example,
as well as non asymptotic results such as the rates of convergence in quadratic
mean.

A possible extension of this work could be to extend the obtained results to
the case of the finite mixture model. This framework has been considered in
[8] but no convergence result is established. Proposing a stochastic algorithm
for estimating the different parameters of the model and obtaining convergence
results would be a nice challenge.

Appendix A: Some convexity results and proof of proposition 3.1

The following lemma ensures that the Matrix in Assumption [A3] is well defined
and that the Hessian of G exists for all y ∈ R

d × R.

Lemma A.1. Assume [A1] holds. If d ≥ 3, there is a positive constant C such
that for all z ∈ R

d,

E

[
1

‖X − z‖

]
≤ C.

Moreover, suppose that W admits a bounded density, then for all d ≥ 2, there
is a positive constant C such that for all z ∈ R

d,

E

[
1

‖X − z‖

]
≤ C.

Note that for the sake of simplicity, we denote by the same way the two
constants.

Proof of Lemma A.1. Step 1: d ≥ 3

By continuity and applying Assumption [A1], there are positive constants
ε, C ′ such that for all z ∈ B (μ, ε),

E

[
1

‖X − z‖

]
≤ C ′.
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Moreover, let z ∈ R
d such that ‖z − μ‖ ≥ ε, we have

E

[
1

‖X − z‖

]
=

∫ +∞

0

P

[
‖X − z‖ ≤ 1

t

]
dt

=

∫ M

0

P
[
‖X − z‖ ≤ t−1

]
dt+

∫ ∞

M

P
[
‖X − z‖ ≤ t−1

]
dt

≤ M +

∫ ∞

M

P
[
‖X − z‖ ≤ t−1

]
dt,

with M positive and defined later. Moreover, let t ≥ M ,

P
[
‖X − z‖ ≤ t−1

]
= P

[
‖μ+ rWUΩ − z‖ ≤ t−1

]
≤P

[
−1

t
+ ‖z − μ‖ ≤ rW ≤ 1

t
+ ‖z − μ‖ , (μ+ rWUΩ) ∩ B(z, 1

t
) �= ∅

]
taking M = 2

ε . With previous condition on rW , calculating P
[
(μ+ rWUΩ) ∩

B
(
z, t−1

)
�= ∅

]
consists in measuring the intersection between a truncated

sphere with radius bigger than ε/2 with a ball of radius 1
t , with

1
t ≤ ε

2 . This is
smaller than the surface of the frontier of the ball (see the following figure).

Thus, there is a positive constant k such that for all t ≥ M ,

P
[
‖X − z‖ ≤ t−1

]
≤ k

td−1
. (A.1)
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Finally,

E

[
1

‖X − z‖

]
≤ 2

ε
+

∫ +∞

2
ε

k
1

td−1
dt

=
2

ε
+ k

εd−2

2d−2(d− 2)
.

We conclude the proof taking C = max
{
C ′, 2

ε + k εd−2

2d−2(d−2)

}
.

Step 2: d = 2 and W admits a bounded density

Let fmax be a bound of the density function of W . As in previous case, let
z ∈ R

d such that ‖z − μ‖ ≥ ε,

P
[
‖X − z‖ ≤ t−1

]
≤ P

[
−t−1 + ‖z − μ‖ ≤ rW ≤ t−1 + ‖z − μ‖ , (μ+ rWUΩ) ∩ B

(
z, t−1

)
�= ∅

]
= P

[
(μ+ rWUΩ) ∩ B

(
z, t−1

)
�= ∅

∣∣∣− t−1 + ‖z − μ‖ ≤ rW ≤ t−1 + ‖z − μ‖
]

× P
[
−t−1 + ‖z − μ‖ ≤ rW ≤ t−1 + ‖z − μ‖

]
.

As in previous case, if t ≥ 2
ε , there is a positive constant k such that for all

t ≥ 2
ε ,

P

[
(μ+ rWUΩ) ∩ B

(
z, t−1

)
�= ∅

∣∣∣−1

t
+ ‖z − μ‖ ≤ rW ≤ 1

t
+ ‖z − μ‖

]
≤ k

t
.

Moreover, since fmax is a bound of the density function of W ,

P

[
−1

t
+ ‖z − μ‖ ≤ rW ≤ 1

t
+ ‖z − μ‖

]
≤ 2rfmax

t

Thus, for all t ≥ 2
ε ,

P
[
‖X − z‖ ≤ t−1

]
≤ 2rfmaxk

t2
,

and in a particular case,

E

[
1

‖X − z‖

]
≤ 2

ε
+ krfmaxε, (A.2)

and one can conclude the proof taking C = max
{
C ′, 2ε−1 + krfmaxε

}
.

Proof of Proposition 3.1. We want to show there is c > 0 such that for any
y = (z, a) ∈ B(μ, εμ) × B(r∗, εr), P (y) := 〈y − θ , Φ(y)〉 ≥ c ‖y − θ‖. We
have

P (y) = P (z, a) =

〈(
z − μ
a− r∗

)
,

⎛⎝z − E [X]− aE

[
z −X

‖z −X‖

]
a− E [‖X − z‖]

⎞⎠〉. (A.3)
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For any z ∈ R
d, let us set F (z) := E [‖X − z‖] and f(z) := E [(z −X)/ ‖z −X‖].

Note that f is the gradient of F . Using (2.1), we deduce that F (μ) = r∗,
f(μ) = − E [UΩ] and E [X] = μ− r�f(μ). Then, (A.3) can be rewritten as

P (y) = ‖z − μ‖2 + r∗〈z − μ, f(μ)〉 − a〈z − μ, f(z)〉+ (a− r∗)2

− (a− r∗)(F (z)− F (μ))

= ‖z − μ‖2 − (a− r�) 〈z − μ, f(μ)〉 − a 〈z − μ, f(z)− f(μ)〉+ (a− r�)2

− (a− r�)(F (z)− F (μ)).

Moreover, using the following Taylor’s expansions,

F (z) = F (μ) + 〈z − μ, f(μ)〉+ 1

2
(z − μ)T∇f(c)(z − μ),

f(z) = f(μ) + 〈∇f(c′), z − μ〉,

with c, c′ ∈ [z, μ]. We get

P (y) = ‖z − μ‖2 − 2(a− r�) 〈z − μ, f(μ)〉 − a(z − μ)T∇f(c′)(z − μ) (A.4)

+ (a− r∗)2 − 1

2
(a− r�)(z − μ)T∇f(c)(z − μ)

Now, remarking that for any positive constant A and real numbers x, y, we have
2xy ≤ A x2 + y2/A, we derive

P (y) ≥ ‖z − μ‖2 −A(a− r∗)2 − 1

A
‖z − μ‖2 ‖f(μ)‖2 − a ‖∇f(c)‖op ‖z − μ‖2

+ (a− r∗)2 − 1

2
|a− r�| ‖∇f(c′)‖op ‖z − μ‖2 .

Let us denote by λM = sup
z∈B(μ,εμ)

λmax∇f(z) and choose A such that ‖f(μ)‖2 =

‖E [UΩ]‖2 < A < 1. Then, for any z ∈ B(μ, εμ) and a ∈ B(r∗, εr), we have

P (y) ≥
(
1− 1

A
‖f(μ)‖2 − (r∗ +

3

2
εr)λM

)
‖z − μ‖2 + (1−A) (a− r∗)2

Finally, using assumption [A3], we close the proof.

In order to linearize the gradient in the decompositions of the PRM algorithm
and get a nice decomposition of the averaged algorithm, we introduce the Hes-
sian matrix of G, denoted, for all y = (z, a) ∈ R

d×R, by Γy : Rd×R −→ R
d×R

and defined by :

Γy =

⎛⎜⎜⎜⎜⎝
Id − aE

[
1

‖X − z‖

(
Id −

(X − z)⊗ (X − z)

‖X − z‖2
)]

E

[
X − z

‖X − z‖

]

E

[
X − z

‖X − z‖

]T
1

⎞⎟⎟⎟⎟⎠ ,

with, for all z, z′, z′′ ∈ R
d, z ⊗ z′(z′′) = 〈z, z′′〉z′. Applying Lemma A.1, the

Hessian matrix exists for all y ∈ R
d+1.
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Proposition A.1. Suppose [A1] to [A3] hold, there is a positive constant Cθ

such that for all y ∈ K,

‖Φ(y)− Γθ (y − θ)‖ ≤ Cθ ‖y − θ‖2 .

Proof of Proposition A.1. Under Assumption [A1], by continuity, there are pos-
itive constants C ′, ε′ such that for z ∈ B (μ, ε′),

E

[
1

‖X − y‖2

]
≤ C ′.

Moreover, note that for all y ∈ K,

Φ(y) =

∫ 1

0

Γθ+t(y−θ)(y − θ)dt.

Thus, with analogous calculus to the ones in the proof of Lemma 5.1 in [10], one
can check that there is a positive constant C ′′ such that for all y ∈ B (θ, ε′)∩K,

‖Φ(y)− Γθ‖ ≤ C ′′ ‖y − θ‖2 .

Moreover, for all y = (z, a) ∈ K and y′ = (z′, a′) ∈ R
d × R,

Γy(y
′) =

⎛⎜⎜⎝z′ − yE

[
1

‖X−z‖

(
z − 〈X−z,z′〉(X−z)

‖X−z‖2

)]
+ a′E

[
X−z

‖X−z‖

]
E

[
〈X−z,z′〉
‖X−z‖

]
+ a′

⎞⎟⎟⎠ .

Thus, applying Cauchy-Schwarz’s inequality,

‖Γy(y
′)‖2

=

∥∥∥∥∥z′ − aE

[
1

‖X − z‖

(
z′ − 〈X − z, z′〉 (X − z)

‖X − z‖2

)]
+ a′E

[
X − z

‖X − z‖

]∥∥∥∥∥
2

+

∥∥∥∥E [ 〈X − z, z′〉
‖X − z‖

]
+ a′

∥∥∥∥2
≤ 3 ‖z′‖2 + 3 ‖a‖2 ‖z′‖2 E

[
1

‖X − z‖

]2
+ 3 ‖a′‖2 + 2 ‖z′‖2 + 2 ‖a′‖2

Thus, applying Lemma A.1, there are positive constants A1, A2 such that

‖Γy(y
′)‖ ≤ A1 ‖y′‖+A2 ‖y‖ ‖y′‖

Note that since K is compact and convex, there is a positive constant CK such
that for all y ∈ K and t ∈ [0, 1], ‖θ + t(y − θ)‖ ≤ CK, and in a particular case,∥∥Γθ+(y−θ)(y − θ)

∥∥ ≤ (A1 +A2CK) ‖y − θ‖ .
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Thus, for all y ∈ K such that ‖y − θ‖ ≥ ε′,

‖Φ(y)− Γθ (y − θ)‖ ≤
∫ 1

0

∥∥Γθ+t(y−θ) (y − θ)
∥∥ dt

≤ (A1 +A2CK) ‖y − θ‖

≤ 1

ε′
(A1 +A2CK) ‖y − θ‖2 .

Thus, we conclude the proof taking Cθ = max
{
C ′′, 1

ε′ (A1 +A2CK)
}
.

Appendix B: Proof of Section 4

Proof of Theorem 4.1. Let us recall that there is a positive constant c such that
for all y ∈ K, 〈Φ(y), y − θ〉 ≥ c ‖y − θ‖2. The aim is to use previous inequality
and the fact that the projection is 1-lipschitz in order to get an upper bound

of E

[∥∥∥θ̂n+1 − θ
∥∥∥2 |Fn

]
and apply Robbins-Siegmund theorem to get the almost

sure convergence of the algorithm.

Almost sure convergence of the algorithm: Since π is 1-lipschitz,∥∥∥θ̂n+1 − θ
∥∥∥2 =

∥∥∥π (θ̂n − γn∇yg
(
Xn+1, θ̂n

))
− π (θ)

∥∥∥2
≤
∥∥∥θ̂n − γn∇yg

(
Xn+1, θ̂n

)
− θ

∥∥∥2
=
∥∥∥θ̂n − θ

∥∥∥2 − 2γn

〈
∇yg

(
Xn+1, θ̂n

)
, θ̂n − θ

〉
+ γ2

n

∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2
Thus, since θ̂n is Fn-measurable,

E

[∥∥∥θ̂n+1 − θ
∥∥∥2 |Fn

]
≤
∥∥∥θ̂n − θ

∥∥∥2 − 2γn

〈
E

[
∇yg

(
Xn+1, θ̂n

) ∣∣∣Fn

]
, θ̂n − θ

〉
+ γ2

nE

[∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2 ∣∣∣Fn

]
=
∥∥∥θ̂n − θ

∥∥∥2 − 2γn

〈
Φ(θ̂n), θ̂n − θ

〉
+ γ2

nE

[∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2 |Fn

]
≤
∥∥∥θ̂n − θ

∥∥∥2 − 2cγn

∥∥∥θ̂n − θ
∥∥∥2 + γ2

nE

[∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2 |Fn

]
Moreover, let θ̂n := (Zn, An) with Zn ∈ R

d and An ∈ R, we have

E

[∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2 |Fn

]
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= E

[∥∥∥∥Zn −Xn+1 −An
Zn −Xn+1

‖Zn −Xn+1‖

∥∥∥∥2 ∣∣∣Fn

]
+ E

[
|An − ‖Zn −Xn+1‖|2 |Fn

]
≤ 4E

[
‖Zn −Xn+1‖2

∣∣Fn

]
+ 4 (An)

2

≤ 8‖Zn − μ‖2 + 8(r�)2 + 8 (An − r�)
2
+ 8E

[
‖μ−Xn+1‖2|Fn

]
= 8

∥∥∥θ̂n − θ
∥∥∥2 + 8(r�)2 + 8r2E

[
W 2

]
.

Let M := 8(r�)2 + 8r2E
[
W 2

]
, we have

E

[∥∥∥θ̂n − θ
∥∥∥2 |Fn

]
≤
(
1 + 8γ2

n

) ∥∥∥θ̂n − θ
∥∥∥2 − 2cγn

∥∥∥θ̂n − θ
∥∥∥2 + γ2

nM. (B.1)

Applying Robbins-Siegmund’s theorem (see [14] for instance),
∥∥∥θ̂n − θ

∥∥∥2 con-

verges almost surely to a finite random variable, and in a particular case,

∞∑
k=1

γk

∥∥∥θ̂k − θ
∥∥∥2 < +∞.

Thus, since
∑

k≥1 γk = +∞,

lim
n→+∞

∥∥∥θ̂n − θ
∥∥∥2 = 0 a.s. (B.2)

Number of times the projection is used

Let Nn :=
∑n

k=1 1{θ̂k−γk∇y(Xk+1,θ̂k)/∈K}. This sequence is non-decreasing,

and suppose by contradiction that Nn goes to infinity. Thus, there is a subse-
quence (nk) such that (Nnk

) is increasing, i.e for all k ≥ 1,

θ̂nk
− γn∇yg

(
Xnk+1, θ̂nk

)
/∈ K,

and in a particular case, θ̂nk+1 ∈ ∂K, where ∂K is the frontier of K. Let us
recall that θ is in the interior of K, i.e let dmin := infy∈∂K ‖θ − y‖, we have
dmin > 0. Thus, ∥∥∥θ̂nk+1 − θ

∥∥∥ ≥ dmin a.s,

and,

lim
k→∞

∥∥∥θ̂nk+1 − θ
∥∥∥ = 0 ≥ dmin > 0 a.s,

which leads to a contradiction.

Proof of Theorem 4.2. Convergence in quadratic mean
The aim is to obtain an induction relation for the quadratic mean error. Let

us recall inequality (B.1),

E

[∥∥∥θ̂n+1 − θ
∥∥∥2 |Fn

]
≤
(
1 + 8γ2

n

) ∥∥∥θ̂n − θ
∥∥∥2 − 2cγn

∥∥∥θ̂n − θ
∥∥∥2 + γ2

nM.
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Then we have

E

[∥∥∥θ̂n+1 − θ
∥∥∥2] ≤

(
1− cγn + 8γ2

n

)
E

[∥∥∥θ̂n − θ
∥∥∥2]+Mγ2

n,

and one can conclude the proof with the help of an induction (see [17] for
instance) or applying a lemma of stabilization (see [13]).

Lp rates of convergence

Let p ≥ 2, we now prove with the help of a strong induction that for all
integer p′ ≤ p, there is a positive constant Cp′ such that for all n ≥ 1,

E

[∥∥∥θ̂n − θ
∥∥∥2p′]

≤ Cp′

np′α
.

This inequality is already checked for p′ = 1. Let p′ ≥ 2, we suppose from now
that for all integer k < p′, there is a positive constant Ck such that for all n ≥ 1,

E

[∥∥∥θ̂n − θ
∥∥∥2k] ≤ Ck

nkα
.

We now search to give an induction relation for the L2p′
-error. Let us recall that∥∥∥θ̂n+1 − θ

∥∥∥2 ≤
∥∥∥θ̂n − θ

∥∥∥2 − 2γn

〈
∇yg

(
Xn+1, θ̂n

)
, θ̂n − θ

〉
+ γ2

n

∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2 .
We suppose from now that E

[
W 2p

]
< +∞ (and in a particular case, E

[
W k

]
<

+∞ for all integer k ≤ 2p) and let Un+1 := ∇yg
(
Xn+1, θ̂n

)
. We have

∥∥∥θ̂n+1 − θ
∥∥∥2p′

≤
(∥∥∥θ̂n − θ

∥∥∥2 + γ2
n ‖Un+1‖2

)p′

− 2p′γn
〈
θ̂n − θ, Un+1

〉(∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−1

+

p′∑
k=2

(
p′

k

)
γk
n

∣∣∣〈θ̂n − θ, Un+1

〉∣∣∣k (∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−k

.

(B.3)

The aim is to bound each term on the right-hand side of previous inequality. In
this purpose, we first need to introduce some technical inequalities.

‖Un+1‖2 ≤ 2
∥∥∥∇yg

(
Xn+1, θ̂n

)∥∥∥2 + 2E

[∥∥∥∇yg
(
Xn+1, θ̂n

)∥∥∥2 ∣∣∣Fn

]
≤ 16

(
2
∥∥∥θ̂n − θ

∥∥∥2 + 2 (r�)
2
+ ‖μ−Xn+1‖2 + r2E

[
W 2

])
.
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Thus, applying Lemma A.1 in [17] for instance, for all integer k ≤ p′,

‖Un+1‖2k

≤ 4k−116k
(
2k
∥∥∥θ̂n − θ

∥∥∥2k + 2k (r�)
2k

+ ‖Xn+1 − μ‖2k + r2k
(
E
[
W 2

])k)
.

In a particular case, since for all k ≤ p, E
[
W 2k

]
< +∞, there are positive

constants A1,k, A2,k such that for all n ≥ 1,

E

[
‖Un+1‖2k

∣∣∣Fn

]
≤ 43k−1

(
2k
∥∥∥θ̂n − θ

∥∥∥2k + 2k (r�)
2k

+ r2kE
[
W 2k

]
+ r2k

(
E
[
W 2

])k)
≤ A1,k

∥∥∥θ̂n − θ
∥∥∥2k +A2,k. (B.4)

We can now bound the expectation of the three terms on the right-hand side of
inequality (B.3). First, since θ̂n is Fn- measurable, applying inequality (B.4),
let

(∗) := E

[(∥∥∥θ̂n − θ
∥∥∥+ γ2

n ‖Un+1‖2
)p′]

= E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+

p′∑
k=1

(
p′

k

)
γ2k
n E

[
‖Un+1‖2k

∥∥∥θ̂n − θ
∥∥∥2p′−2k

]
≤ E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+

p′∑
k=1

(
p′

k

)
γ2k
n E

[(
A1,k

∥∥∥θ̂n − θ
∥∥∥2k +A2,k

)∥∥∥θ̂n − θ
∥∥∥2p′−2k

]

Let B :=
∑p′

k=1 c
2k−2
γ A1,k, using previous inequality and by induction,

(∗) ≤
(
1 +Bγ2

n

)
E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+

p′∑
k=1

(
p′

k

)
γ2k
n A2,kE

[∥∥∥θ̂n − θ
∥∥∥2p′−2k

]

≤
(
1 +Bγ2

n

)
E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+

p′∑
k=1

(
p′

k

)
c2kγ A2,k

Ck

n(p′+k)α

≤
(
1 +Bγ2

n

)
E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+O
(
γp′+1
n

)
. (B.5)

In the same way, applying Cauchy-Schwarz’s inequality, let

(∗∗) := −2p′γnE

[〈
θ̂n − θ, Un+1

〉(∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−1

]
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≤ −2p′γnE

[〈
θ̂n − θ, Un+1

〉∥∥∥θ̂n − θ
∥∥∥2p′−2

]

+ 2p′γnE

⎡⎣∥∥∥θ̂n − θ
∥∥∥ ‖Un+1‖

p′−1∑
k=1

(
p′ − 1

k

)
γ2k
n ‖Un+1‖2k

∥∥∥θ̂n − θ
∥∥∥2p′−2k

⎤⎦ .

Moreover, since θ̂n is Fn-measurable, applying Proposition 3.1,

−2p′γnE

[〈
θ̂n − θ, Un+1

〉∥∥∥θ̂n − θ
∥∥∥2p′−2

]
= −2p′γnE

[〈
θ̂n − θ,E [Un+1|Fn]

〉∥∥∥θ̂n − θ
∥∥∥2p′−2

]
= −2p′γnE

[〈
θ̂n − θ,Φ(θ̂n)

〉∥∥∥θ̂n − θ
∥∥∥2p′−2

]
≤ −2p′cγnE

[∥∥∥θ̂n − θ
∥∥∥2p′]

.

Moreover, since 2ab ≤ a2 + b2, let

(∗∗′) := 2p′γnE

⎡⎣∥∥∥θ̂n − θ
∥∥∥ ‖Un+1‖

p′−1∑
k=1

(
p′ − 1

k

)
γ2k
n ‖Un+1‖2k

∥∥∥θ̂n − θ
∥∥∥2p′−2k

⎤⎦
≤ p′γnE

⎡⎣(∥∥∥θ̂n − θ
∥∥∥2 + ‖Un+1‖2

) p′−1∑
k=1

(
p′ − 1

k

)
γ2k
n ‖Un+1‖2k

∥∥∥θ̂n − θ
∥∥∥2p′−2k

⎤⎦
≤ p′γn

p′−1∑
k=1

(
p′ − 1

k

)
γ2k
n(

E

[
‖Un+1‖2k+2

∥∥∥θ̂n − θ
∥∥∥2p′−2k

]
+ E

[
‖Un+1‖2k

∥∥∥θ̂n − θ
∥∥∥2p′+2−2k

])
.

With analogous calculus to the ones for inequality (B.5), one can check that
there is a positive constant B′ such that for all n ≥ 1,

(∗∗′) ≤ B′γ2
nE

[∥∥∥θ̂n − θ
∥∥∥2p′]

+O
(
γ(p′+1)α
n

)
.

Thus,

−2γnE

[
γn

〈
θ̂n − θ, Un+1

〉(∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−1

]
(B.6)

≤
(
−2cp′γn +B′γ2

n

)
E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+O
(
γ(p′+1)α
n

)
. (B.7)
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Finally, applying Lemma A.1 in [17] and since |〈a, b〉| ≤ 1
2 ‖a‖

2
+ 1

2 ‖b‖
2
, let

(∗ ∗ ∗) :=
p′∑

k=2

(
p′

k

)
γk
nE

[∣∣∣〈θ̂n − θ, Un+1

〉∣∣∣k (∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−k

]

≤
p′∑

k=2

(
p′

k

)
γk
n

E

[(
1

2

∥∥∥θ̂n − θ
∥∥∥2 + 1

2
‖Un+1‖2

)k (∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−k

]

≤
p′∑

k=2

(
p′

k

)
2p

′−k−2γk
n

E

[(∥∥∥θ̂n − θ
∥∥∥2k + ‖Un+1‖2k

)(∥∥∥θ̂n − θ
∥∥∥2p′−2k

+ γ2p′−2k
n ‖Un+1‖2p

′−2k

)]
Thus, with analogous calculus to the ones for inequality (B.5), one can check
that there is a positive constant B′′ such that for all n ≥ 1,

p′∑
k=2

(
p′

k

)
γk
nE

[∣∣∣〈θ̂n − θ, Un+1

〉∣∣∣k (∥∥∥θ̂n − θ
∥∥∥2 + γ2

n ‖Un+1‖2
)p′−k

]

≤ B′′γ2
nE

[∥∥∥θ̂n − θ
∥∥∥2p′]

+O
(
γp′+1
n

)
. (B.8)

Finally, applying inequalities (B.5) to (B.8), there are positive constants B1, B2

such that for all n ≥ 1,

E

[∥∥∥θ̂n+1 − θ
∥∥∥2p′]

≤
(
1− 2p′cγn +B1γ

2
n

)
E

[∥∥∥θ̂n − θ
∥∥∥2p′]

+B2γ
p′+1
n . (B.9)

Thus, with the help of an induction on n or applying a lemma of stabilization
(see [13] for instance), one can check that there is a positive constant Cp′ such
that for all n ≥ 1,

E

[∥∥∥θ̂n − θ
∥∥∥2p′]

≤ Cp′

np′α
,

which concludes the induction on p′ and the proof.

Bounding P

[
θ̂n − γn∇yg

(
Xn+1, θ̂n

)
/∈ K

]
Let us recall that dmin = infy∈∂K ‖y − θ‖ > 0 and that if W admits a 2p-th

moment, there is a positive constant Cp such that for all n ≥ 1, E

[∥∥∥θ̂n − θ
∥∥∥2p] ≤

Cp

npα . Thus, for all n ≥ 1,

Cp

(n+ 1)pα
≥ E

[∥∥∥θ̂n+1 − θ
∥∥∥2p]
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≥ E

[∥∥∥θ̂n+1 − θ
∥∥∥2p 1{θ̂n−γn∇yg(Xn+1,θ̂n)/∈K}

]
≥ d2pminP

[
θ̂n − γn∇yg

(
Xn+1, θ̂n

)
/∈ K

]
.

Finally,

P

[
θ̂n − γn∇yg

(
Xn+1, θ̂n

)
/∈ K

]
≤ Cp

d2pmin

1

(n+ 1)pα
≤ Cp

d2pmin

1

npα
.

Proof of Theorem 4.3. The aim is, in a first time, to exhibit a nice decompo-
sition of the averaged algorithm. In this purpose, let us introduce this new
decomposition of the PRM algorithm

θ̂n+1 − θ = θ̂n − θ − γnΦ
(
θ̂n

)
+ γnξn+1 + rn, (B.10)

with

ξn+1 := −∇yg
(
Xn+1, θ̂n

)
+Φ

(
θ̂n

)
,

rn := π
(
θ̂n − γn∇yg

(
Xn+1, θ̂n

))
− θ̂n + γn∇yg

(
Xn+1, θ̂n

)
.

Remark that (ξn) is a sequence of martingale differences adapted to the filtra-

tion (Fn) and rn is equal to 0 when θ̂n − γn∇yg
(
Xn+1, θ̂n

)
∈ K. Moreover,

linearizing the gradient, decomposition (B.10) can be written as

θ̂n+1 − θ = (IRd×R − γnΓθ)
(
θ̂n − θ

)
+ γnξn+1 − γnδn + rn, (B.11)

where δn := Φ
(
θ̂n

)
−Γθ

(
θ̂n − θ

)
is the remainder term in the Taylor’s expan-

sion of the gradient. This can also be decomposed as

Γθ

(
θ̂n − θ

)
=

θ̂n − θ

γn
− θ̂n+1 − θ

γn
− δn +

rn
γn

+ ξn+1.

As in [28], summing these equalities, applying Abel’s transform and dividing by
n,

Γθ

(
θn − θ

)
=

1

n

(
θ̂1 − θ

γ1
− θ̂n+1 − θ

γn
+

n∑
k=2

(
1

γk
− 1

γk−1

)(
θ̂k − θ

)
−

n∑
k=1

δk

)

+
1

n

n∑
k=1

rk
γk

+
1

n

n∑
k=1

ξk+1. (B.12)

We now give the rate of convergence in quadratic mean of each term using
Theorem 4.2. In this purpose, let us recall the following technical lemma.
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Lemma B.1 ([17]). Let Y1, ..., Yn be random variables taking values in a normed
vector space such that for all positive constant q and for all k ≥ 1, E [‖Yk‖q] <
∞. Thus, for all constants a1, ..., an and for all integer p,

E

[∥∥∥∥∥
n∑

k=1

akYk

∥∥∥∥∥
p]

≤
(

n∑
k=1

|ak| (E [‖Yk‖p])
1
p

)p

(B.13)

The remainder terms: First, one can check that

1

n2
E

⎡⎣∥∥∥∥∥ θ̂1 − θ

γ1

∥∥∥∥∥
2
⎤⎦ = o

(
1

n

)
. (B.14)

In the same way, applying Theorem 4.2,

1

n2
E

⎡⎣∥∥∥∥∥ θ̂n+1 − θ

γn

∥∥∥∥∥
2
⎤⎦ =

1

c2γ

1

n2−2α
E

[∥∥∥θ̂n+1 − θ
∥∥∥2]

≤ C1

c2γ

1

n2−α

= o

(
1

n

)
. (B.15)

Moreover, since γ−1
k − γ−1

k−1 ≤ 2αc−1
γ kα−1, applying Lemma B.1,

1

n2
E

⎡⎣∥∥∥∥∥
n∑

k=2

(
1

γk
− 1

γk−1

)(
θ̂k − θ

)∥∥∥∥∥
2
⎤⎦

≤ 1

n2

(
n∑

k=2

(
1

γk
− 1

γk−1

)√
E

[∥∥∥θ̂k − θ
∥∥∥2])2

(B.16)

≤
4α2c−2

γ C1

n2

(
n∑

k=2

1

k1−α/2

)2

= O

(
1

n2−α

)
= o

(
1

n

)
. (B.17)

Thanks to Lemma A.1, there is a positive constant Cθ such that for all n ≥ 1,

‖δn‖ ≤ Cθ

∥∥∥θ̂n − θ
∥∥∥2 .

Thus, applying Lemma B.1 and Theorem 4.2, there is a positive constant C2

such that

1

n2
E

⎡⎣∥∥∥∥∥
n∑

k=1

δk

∥∥∥∥∥
2
⎤⎦ ≤ 1

n2

(
n∑

k=1

√
E

[
‖δk‖2

])2
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≤ C2
θ

n2

(
n∑

k=1

√
E

[∥∥∥θ̂k − θ
∥∥∥4])2

≤ C2
θC2

n2

(
n∑

k=1

1

kα

)2

= O

(
1

n2α

)
= o

(
1

n

)
.

Let Un+1 := ∇yg
(
Xn+1, θ̂n

)
, note that if θ̂n−γnUn+1 ∈ K, then rn = 0. Thus,

applying Lemma B.1 and Cauchy-Schwarz’s inequality,

1

n2
E

⎡⎣∥∥∥∥∥
n∑

k=1

rk
γk

∥∥∥∥∥
2
⎤⎦ ≤ 1

n2

(
n∑

k=1

1

γk

√
E

[
‖rk‖2

])2

=
1

n2

(
n∑

k=1

1

γk

√
E

[
‖rk‖2 1θ̂k−γkUk+1 /∈K

])2

≤ 1

n2

(
n∑

k=1

1

γk

(
E

[
‖rk‖4

]) 1
4
(
P

[
θ̂k − γkUk+1 /∈ K

]) 1
4

)2

.

Moreover, since π is 1-lipschitz,

‖rn‖4 =
∥∥∥π (θ̂n − γnUn+1

)
− θ + θ − θ̂n + γnUn+1

∥∥∥4
≤
(∥∥∥π (θ̂n − γnUn+1

)
− π (θ)

∥∥∥+ ∥∥∥θ̂n − γnUn+1 − θ
∥∥∥)4

≤
(
2
∥∥∥θ̂n − θ − γnUn+1

∥∥∥)4
≤ 27

∥∥∥θ̂n − θ
∥∥∥4 + 27γ4

n ‖Un+1‖2 .

Thus, applying inequality (B.4), there are positive constants A1, A2 such that
for all n ≥ 1,

E

[
‖rn‖4

∣∣∣Fn

]
≤ A1

∥∥∥θ̂n − θ
∥∥∥4 +A2γ

4
n.

In a particular case, applying Theorem 4.2, there is a positive constant A3 such
that for all n ≥ 1,

E

[
‖rn‖4

]
≤ A3

n2α
.

Moreover, applying Theorem 4.2, there is a positive constant C6 such that for
all n ≥ 1,

P

[
θ̂n − γnUn+1 /∈ K

]
≤ C6

d12minn
6α

.
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Then,

1

n2
E

⎡⎣∥∥∥∥∥
n∑

k=1

rk
γk

∥∥∥∥∥
2
⎤⎦ ≤

√
C6A3

d6mincγn
2

(
n∑

k=1

1

kα

)2

= O

(
1

n2α

)
= o

(
1

n

)
. (B.18)

The martingale term: Since (ξn) is a sequence of martingale differences
adapted to the filtration (Fn),

1

n2
E

⎡⎣∥∥∥∥∥
n∑

k=1

ξk+1

∥∥∥∥∥
2
⎤⎦ =

1

n2

n∑
k=1

E

[
‖ξk+1‖2

]
+

2

n2

n∑
k=1

n∑
k′=k+1

E [〈ξk+1, ξk′+1〉]

=
1

n2

n∑
k=1

E

[
‖ξk+1‖2

]
+

2

n2

n∑
k=1

n∑
k′=k+1

E [〈ξk+1,E [ξk′+1|Fk′ ]〉]

=
1

n2

n∑
k=1

E

[
‖ξk+1‖2

]
.

Moreover,

E

[
‖ξn+1‖2

]
= E

[
‖Un+1‖2 − 2E

[〈
E [Un+1|Fn] ,Φ(θ̂n

〉]
+ E

[∥∥∥Φ(θ̂n)∥∥∥2]
= E

[
‖Un+1‖2

]
− E

[∥∥∥Φ(θ̂n)∥∥∥2]
≤ E

[
‖Un+1‖2

]
.

Finally, applying inequality (B.4) and Theorem 4.2, there is a positive constant
M such that

E

[
‖ξn+1‖2

]
≤ A1,1E

[∥∥∥θ̂n − θ
∥∥∥2]+A2,1

≤ M.

Then,

1

n2
E

⎡⎣∥∥∥∥∥
n∑

k=1

ξk+1

∥∥∥∥∥
2
⎤⎦ ≤ 1

n2

n∑
k=1

M
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=
M

n
,

which concludes the proof.

Proof of Theorem 4.4. Let us recall that the averaged algorithm can be written
as follows

√
nΓθ

(
θn − θ

)
=

1√
n

(
θ̂1 − θ

γ1
− θ̂n+1 − θ

γn
+

n∑
k=2

(
1

γk
− 1

γk−1

)(
θ̂k − θ

))

− 1√
n

n∑
k=1

δk +
1√
n

n∑
k=1

rk
γk

+
1√
n

n∑
k=1

ξk+1.

We now prove that the first terms on the right-hand side of previous equality
converge in probability to 0 and apply a Central Limit Theorem to the last one.

The remainder terms: Applying inequalities (B.14) to (B.18),

1√
n

θ̂1 − θ

γ1

P−−−−→
n→∞

0,

1√
n

θ̂n+1 − θ

γn

P−−−−→
n→∞

0,

1√
n

n∑
k=2

(
1

γk
− 1

γk−1

)(
θ̂k − θ

)
P−−−−→

n→∞
0,

1√
n

n∑
k=1

rk
γk

P−−−−→
n→∞

0.

The martingale term Let θ̂n = (Zn, An) ∈ R
d ×R, then ξn+1 can be written

as ξn+1 = ξ′n+1 + εn+1 + ε′n+1, with

ξ′n+1 :=

(
μ−Xn+1 − E [μ−Xn+1|Fn]− r�

(
μ−Xn+1

‖μ−Xn+1‖ − E

[
μ−Xn+1

‖μ−Xn+1‖
∣∣Fn

])
r� − ‖μ−Xn+1‖ − r� + E

[
‖μ−Xn+1‖

∣∣Fn

] )

εn+1 := −
(
(An − r�)

(
Zn−Xn+1

‖Zn−Xn+1‖ − E

[
Zn−Xn+1

‖Zn−Xn+1‖
∣∣Fn

])
Rn

)

ε′n+1 := −
(
r�
(

Zn−Xn+1

‖Xn+1−Zn‖ − μ−Xn+1

‖μ−Xn+1‖ − E

[
Zn−Xn+1

‖Xn+1−Zn‖ − μ−Xn+1

‖μ−Xn+1‖

∣∣∣Fn

])
0

)
Rn := ‖Zn −Xn+1‖−E [‖Zn −Xn+1‖Fn]−‖μ−Xn+1‖+E

[
‖μ−Xn+1‖

∣∣Fn

]
Note that (ξn) , (εn) , (ε

′
n) are martingale differences sequences adapted to the

filtration (Fn). Thus, , one can check that

E

[
‖εn+1‖2 |Fn

]
≤ E

⎡⎣∥∥∥∥∥
(

− (An − r�) Zn−Xn+1

‖Zn−Xn+1‖
‖Zn −Xn+1‖ − ‖μ−Xn+1‖

)∥∥∥∥∥
2 ∣∣∣Fn

⎤⎦
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≤ ‖An − r�‖2 + ‖Zn − μ‖2

=
∥∥∥θ̂n − θ

∥∥∥2 .
Thus, applying Theorem 4.2,

1

n
E

⎡⎣∥∥∥∥∥
n∑

k=1

εk+1

∥∥∥∥∥
2
⎤⎦ =

1

n

n∑
k=1

E

[
‖εk+1‖2

]

≤ 1

n

n∑
k=1

E

[∥∥∥θ̂n − θ
∥∥∥2]

≤ 1

n

n∑
k=1

C ′

nα

= O

(
1

nα

)
.

As a particular case,

1√
n

n∑
k=1

εk+1
P−−−−→

n→∞
0.

Similarly, since
∥∥∥ Zn−Xn+1

‖Zn−Xn+1‖ − μ−Xn+1

‖μ−Xn+1‖

∥∥∥ ≤ 2,

E

[∥∥ε′n+1

∥∥2 |Fn

]
≤ E

⎡⎣∥∥∥∥∥
(
r�
(

Zn−Xn+1

‖Xn+1−Zn‖ − μ−Xn+1

‖μ−Xn+1‖

)
0

)∥∥∥∥∥
2 ∣∣∣Fn

⎤⎦
≤ 2 (r�)

2
E

[∥∥∥∥ Zn −Xn+1

‖Xn+1 − Zn‖
− μ−Xn+1

‖μ−Xn+1‖

∥∥∥∥ ∣∣∣Fn

]
.

This last term is closely related to the gradient of the function we need to
minimize to get the geometric median (see [19] for example) and it is proved in
[10] that since Lemma A.1 is verified, then

E

[∥∥∥∥ Zn −Xn+1

‖Xn+1 − Zn‖
− μ−Xn+1

‖μ−Xn+1‖

∥∥∥∥ ∣∣∣Fn

]
≤ C ‖Zn − μ‖ ≤ C

∥∥∥θ̂n − θ
∥∥∥ .

Thus,

E

[
‖εn+1‖2 |Fn

]
≤ 2C (r�)

2
∥∥∥θ̂n − θ

∥∥∥ .
Finally, since (εn) is a sequence of martingale differences adapted to the filtration
(Fn), applying Theorem 4.2 and Cauchy-Schwarz’s inequality,

1

n
E

⎡⎣∥∥∥∥∥
n∑

k=1

ε′k+1

∥∥∥∥∥
2
⎤⎦ =

1

n

n∑
k=1

E

[∥∥ε′k+1

∥∥2]
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≤ 2C (r�)
2 1

n

n∑
k=1

E

[∥∥∥θ̂n − θ
∥∥∥]

≤ 2C (r�)
2
√
C1

1

n

n∑
k=1

1

kα/2

= O

(
1

nα/2

)
.

Note that with more assumptions on W , we could get a better rate but this one
is sufficient. Indeed, thanks to previous inequality,

1√
n

n∑
k=1

ε′k+1
P−−−−→

n→∞
0.

Finally, applying a Central Limit Theorem (see [14] for example), we have the
convergence in law

1√
n

n∑
k=1

ξ′k+1
L−−−−→

n→∞
N (0,Σ) , (B.19)

with

Σ := E

[(
μ−X − r� μ−X

‖μ−X‖
r� − ‖μ−X‖

)
⊗
(
μ−X − r� μ−X

‖μ−X‖
r� − ‖μ−X‖

)]
,

which also can be written as

Σ = E

[(
r�UΩ − rWUΩ

r� − rW

)
⊗
(
r�UΩ − rWUΩ

r� − rW

)]
.

Thus, we have the convergence in law

√
nΓθ

(
θn − θ

) L−−−−→
n→∞

N (0,Σ) ,

and in a particular case,

√
n
(
θn − θ

) L−−−−→
n→∞

N
(
0,Γ−1

θ ΣΓ−1
θ

)
.
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