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Abstract: Casella and Hwang, 1983, JASA, introduced a broad class of
recentered confidence spheres for the mean θ of a multivariate normal dis-
tribution with covariance matrix σ2I, for σ2 known. Both the center and
radius functions of these confidence spheres are flexible functions of the
data. For the particular case of confidence spheres centered on the positive-
part James-Stein estimator and with radius determined by empirical Bayes
considerations, they show numerically that these confidence spheres have
the desired minimum coverage probability 1 − α and dominate the usual
confidence sphere in terms of scaled volume. We shift the focus from the
scaled volume to the scaled expected volume of the recentered confidence
sphere. Since both the coverage probability and the scaled expected vol-
ume are functions of the Euclidean norm of θ, it is feasible to optimize the
performance of the recentered confidence sphere by numerically computing
both the center and radius functions so as to optimize some clearly spec-
ified criterion. We suppose that we have uncertain prior information that
θ = 0. This motivates us to determine the center and radius functions of
the confidence sphere by numerical minimization of the scaled expected vol-
ume of the confidence sphere at θ = 0, subject to the constraints that (a)
the coverage probability never falls below 1 − α and (b) the radius never
exceeds the radius of the standard 1 − α confidence sphere. Our results
show that, by focusing on this clearly specified criterion, significant gains
in performance (in terms of this criterion) can be achieved. We also present
analogous results for the much more difficult case that σ2 is unknown.
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1. Introduction

Suppose that X = (X1, ..., Xp) ∼ N
(
θ, σ2I
)
where θ = (θ1, ..., θp) and I de-

notes the p × p identity matrix (p ≥ 3). Stein [24] presents arguments that
suggest that, for σ2 known, a confidence sphere centered on the positive-part
James-Stein estimator and with the same radius as the standard 1 − α confi-
dence sphere for θ dominates the standard 1− α confidence sphere in terms of
coverage probability. This remarkable suggested result (proved later by Hwang
and Casella [16]) mirrors the earlier results on the point estimation of θ known
as Stein’s paradox.

Casella and Hwang [4], Section 3, introduce a broad class of recentered con-
fidence spheres for θ, for σ2 known. Both the center and radius functions of
these confidence spheres are flexible functions of the data. For the particular
case of confidence spheres centered on the positive-part James-Stein estimator
and with radius determined by empirical Bayes considerations, they show nu-
merically that, for sufficiently large p, these confidence spheres have the desired
minimum coverage probability 1− α and dominate the usual confidence sphere
in terms of the scaled volume. For σ2 known, Samworth [22] also considered a
recentered confidence sphere (RCS) with center at the positive-part James-Stein
estimator. However, he determines the radius function using either a Taylor se-
ries or the bootstrap. He shows numerically that these confidence spheres have
the desired minimum coverage probability 1−α for sufficiently large p and dom-
inate the usual confidence sphere in terms of the p’th root of the scaled volume.
In common with much of the existing literature, we first consider the case that
σ2 is known. Later, we consider the more difficult case that σ2 is unknown.

Suppose that σ2 is known. We shift the focus from the scaled volume
(or its p’th root) to the scaled expected volume of the RCS. Scaled expected
length has been profitably used in related problems and to resolve a paradox
in decision-theoretic interval estimation (Farchione and Kabaila [11], Kabaila
and Giri [19], Kabaila and Tissera [21] and Kabaila [18]). Casella et al [7] show
that a confidence interval for the univariate normal mean that is obtained by
minimizing the posterior expected loss, for the prior distribution and the risk
function that they specify, has paradoxical properties. Kabaila [18] shows that
these paradoxical properties disappear when the expected length term in this
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risk function is replaced by the scaled expected length. Since both the coverage
probability and the scaled expected volume of the RCS are functions of ‖θ‖,
it is feasible to optimize the performance of the RCS by numerically comput-
ing both the center and radius functions so as to optimize some clearly specified
criterion, subject to coverage and radius constraints. By contrast, a goal of seek-
ing to minimize (in some sense) the scaled volume of the recentered confidence
sphere for the most probable values of X when θ = 0, subject to the coverage
constraint, is problematic (Casella and Hwang [5]).

Casella and Hwang [6] argue cogently that the confidence set for θ should
be tailored to the uncertain prior information available about θ. We suppose
that we have uncertain prior information that θ = 0. Hodges and Lehmann
[15] propose, quite broadly, the utilization of uncertain prior information in
frequentist inference. Our utilization of the uncertain prior information that
θ = 0 is also frequentist. This uncertain prior information motivates us to
determine the center and radius functions of the RCS by numerical minimization
of the scaled expected volume of the confidence sphere at θ = 0, subject to the
constraints that (a) the coverage probability never falls below 1−α and (b) the
radius never exceeds the radius of the standard 1−α confidence sphere (centered
on X). The numerical results in Section 2 show that, by focusing on the clearly
specified criterion of the scaled expected volume of the confidence sphere at
θ = 0, significant gains in performance (in terms of this specified criterion) can
be achieved.

Of course, our approach requires the use of a computationally convenient
formula for the coverage probability of the RCS. Such a formula is derived by
Casella and Hwang [4], Section 3, for p odd. To be able to compute the coverage
probability also for p even, we derive a new computationally convenient formula
for the coverage probability of the RCS that is applicable for both even and odd
p. The coverage constraint is implemented in the computations by requiring that
this constraint is satisfied for a judiciously chosen finite set of values of ‖θ‖. To
show that a given finite set is adequate to the task, we simply check that at the
completion of the computations of the optimized RCS, the coverage probability
constraint is satisfied for all ‖θ‖. For computational feasibility, we also need to
choose parametric forms for the center and radius functions. This choice is by
no means obvious and, as described in Section 2 (see, particularly, Remark 2.1),
requires a great deal of care.

A natural requirement for any confidence set for θ is that this it is rotation-
ally symmetric. The optimized RCS’s that we compute satisfy this requirement.
Efron (2006) provides an elegant description of any rotationally symmetric con-
fidence set in terms of his ‘inclusion function’. This is a function of only two
variables: ‖θ‖ and ‖x‖. In Section 3, we compare the graphs of the inclusion
functions for (a) the standard confidence sphere, (b) the RCS of Casella and
Hwang [4] and (c) the optimized RCS.

Now consider the more difficult case that σ2 is unknown. Suppose
that we have additional data that provides the estimator S2 for σ2, where
mS2/σ2 ∼ χ2

m and S2 and X are independent. In the related context that
there is uncertain prior information that θ1 = θ2 = · · · = θp, Casella and Hwang
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[6] put forward an RCS with center at an analogue of the positive-part James-
Stein estimator (which is defined for σ2 known) and radius that is an analogue
of the radius based on empirical Bayes considerations for σ2 known.

In Section 4, we describe a class of RCS’s that are an analogue, for σ2 un-
known, of the broad class of RCS’s described by Casella and Hwang [4], Section
3, for σ2 known. Both the coverage probability and the scaled expected volume
of the RCS’s in this class are functions of γ = ‖θ‖/σ. As before, suppose that
we have uncertain prior information that θ = 0. Again, this motivates us to de-
termine the center and radius functions of the RCS by numerical minimization
of the scaled expected volume of the confidence sphere at θ = 0, subject to the
constraints that (a) the coverage probability never falls below 1−α and (b) the
radius never exceeds the radius of the standard 1 − α confidence sphere (cen-
tered on X). The numerical results in Section 4 show that, by focusing on the
clearly specified criterion of the scaled expected volume of the confidence sphere
at θ = 0, significant gains in performance can be achieved, by comparison with
the RCS centered on the analogue of the positive-part James-Stein estimator.

2. Results for σ2 known. Comparison of the performances of the
optimized RCS and the RCS of Casella and Hwang [4], Section 4

In this section, we suppose that σ2 is known. Without loss of generality, we
assume that σ2 = 1. The standard 1 − α confidence set for θ is I = {θ :
‖θ − X‖ ≤ d}, where the positive number d satisfies P

(
Q ≤ d2

)
= 1 − α for

Q ∼ χ2
p. Casella and Hwang [4], Section 3, define a class of RCS’s that can be

expressed in the form

J(a, b) =
{
θ : ‖a(T )X − θ‖ ≤ b(T )

}
,

where a : [0,∞) → (0,∞), b : [0,∞) → (0,∞) and T = ‖X‖/√p. This notation
for the RCS is slightly different from that used by Casella and Hwang [4], who
express this RCS in terms of ‖X‖. This makes no essential difference. This
choice of center and radius has some intuitive appeal, since T = ‖X‖/√p may
be viewed as a test statistic for testing the null hypothesis that θ = 0 against
the alternative hypothesis that θ 	= 0. We assess the RCS J(a, b) using both its
coverage probability an its scaled expected volume, which is defined to be the
ratio (expected volume of the RCS) / (volume of I).

Casella and Hwang [4], Section 3, derive a computationally convenient for-
mula for the coverage probability of J(a, b) that is applicable for p odd. Let
γ = ‖θ‖. In Appendix A, we show that the coverage probability of J(a, b) is,
for given functions a and b, a function of γ and we derive a new computation-
ally convenient formula for this coverage probability that is applicable for any
p (even or odd). Details of the numerical evaluation of this coverage proba-
bility, using these computationally convenient formulas, are also presented in
Appendix A. The numerical results for coverage probabilities that are presented
in this section were found using this new computationally convenient formula.
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Define a+ : [0,∞) → (0,∞) by the requirement that a+(T )X is the positive-
part James-Stein estimator. This implies that

a+(x) = max

{
0, 1−
(
1− 2

p

)
1

x2

}
.

The specific proposal for an RCS that is given in Section 4 of Casella and Hwang
[4] is J(a+, b∗), where b∗ is determined by empirical Bayes considerations. For
x ∈ [0, d/

√
p],

b∗(x) =
√

{1− (p− 2)/d2}[d2 − p log{1− (p− 2)/d2}]

and, for x > d/
√
p,

b∗(x) =
√
{1− (p− 2)/(p x2)}[d2 − p log{1− (p− 2)/(p x2)}].

We define the scaled expected volume of J(a, b) to be the ratio

Eθ{volume of J(a, b)}
volume of I

= Eθ

{(
b(T )

d

)p}
, (2.1)

since the volume of a sphere in R
p with radius r is 2 rp πp/2/

{
pΓ(p/2)

}
. In

Appendix A, we show that this is a function of γ = ‖θ‖, for given function
b. We also derive a new computationally convenient formula for this scaled
expected volume. To find the optimized RCS, we require that the functions a
and b satisfy the following conditions.

Condition A a : [0,∞) → (0,∞) is a continuous nondecreasing function that
satisfies a(x) = a+(x) for all x ≥ k, where a+(T )X is the positive-part James-
Stein estimator and k is a (sufficiently large) specified positive number.

Condition B b : [0,∞) → (0,∞) is a continuous nondecreasing function that
satisfies b(x) = d for all x ≥ k.

In addition, for computational feasibility, we specify the following parametric
forms for these functions.

1. Suppose that x1, . . . , xq1 satisfy 0 = x1 < x2 < · · · < xq1 = k. The func-
tion a is fully specified by the vector a(x1), . . . , a(xq1) as follows. The value
of a(x) for any given x ∈ [0, k] is found by piecewise cubic Hermite poly-
nomial interpolation for these given function values. We call x1, . . . , xq1

the knots of this piecewise cubic Hermite polynomial.
2. Suppose that y1, . . . , yq2 satisfy 0 = y1 < y2 < · · · < yq2 = k. The function

b is fully specified by the vector b(y1), . . . , b(yq2) as follows. The value of
b(y) for any given y ∈ [0, k] is found by piecewise cubic Hermite polynomial
interpolation for these given function values. We call y1, . . . , yq2 the knots
of this piecewise cubic Hermite polynomial.

For judiciously-chosen values of k and these knots, we compute the functions
a and b, which take these parametric forms, are nondecreasing and are such that
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(a) the scaled expected volume evaluated at θ = 0 (i.e. at γ = 0) is minimized
and (b) the coverage probability of J(a, b) never falls below 1 − α. All of the
computations presented in the present paper were performed using programs
written in MATLAB using the Statistics and Optimization toolboxes. Piecewise
cubic Hermite interpolation (Fritsch and Carlson [14]) is implemented in the
pchip function in MATLAB.

The coverage constraint is implemented in the computations as follows. For
any reasonable choice of the functions a and b, the coverage probability of J(a, b)
converges to 1−α as γ → ∞. The constraints implemented in the computations
are that the coverage probability of J(a, b) is greater than or equal to 1 − α
for every γ in a judiciously-chosen finite set of values. That a given finite set
of values of γ is adequate to the task is judged by checking numerically, at the
completion of computations, that the coverage probability constraint is satisfied
for all γ ≥ 0.

For 1 − α = 0.95, we compare the coverage probability and scaled expected
volume of the optimized RCS with J(a+, b∗), the RCS of Casella and Hwang [4],
Section 4. We chose the knots of a and b that allow these functions to provide
good approximations to a+ and b∗, respectively. In this way, we sought to ensure
that J(a, b) could perform at least as well as J(a+, b∗) in terms of minimizing the
scaled expected volume at γ = 0, subject to the coverage and radius constraints.
Some exploratory computations led us to choose k = 10 and the following knots
for a and b. Since a+(x) = 0 for 0 ≤ x ≤

√
1− (2/p), we place the first two

knots of the function a at 0 and
√
1− (2/p). The next three knots of a are at√

1− (2/p) + (τ/10),
√
1− (2/p) + (2τ/10) and

√
1− (2/p) + (4τ/10), where

τ = (k/2)−
√
1− (2/p). The remaining knots of a are at k/2, 3k/4 and k. Since

b+(x) is a constant for 0 ≤ x ≤ d/
√
p, we place the first two knots of the function

b at 0 and d/
√
p. The next two knots of b are at d/

√
p+(ξ/3) and d/

√
p+(2ξ/3),

where ξ = (k/2)− d/
√
p. The remaining knots of b are at k/2, 3k/4 and k. The

optimized RCS was computed for each p ∈ {3, 4, . . . , 13, 20, 25}.
The coverage constraint was implemented in the computations by requiring

that the coverage probability of J(a, b) is greater than or equal to 1− α for all
γ ∈ {0, 1, 2, . . . , 64, 65}. This was shown to be adequate to the task by checking
numerically, at the completion of the computation of the optimized RCS, that
the coverage probability constraint is satisfied for all γ ≥ 0.

Figure 1 shows that, for p = 3, the coverage probability of the optimized
RCS is no less than 0.95 for all γ, while the coverage probability of J(a+, b∗),
the RCS of Casella and Hwang [4], Section 4, is slightly below 0.95 for some
values of γ. This figure also shows that, for p = 3, the scaled expected volume
of the optimized RCS is substantially less than the scaled expected volume of
J(a+, b∗), at θ = 0. The top two panels of this figure suggest the following
from the point of view of minimizing the scaled expected volume at θ = 0,
subject to the coverage and other constraints. The shrinkage towards the origin
of the center of the RCS of Casella and Hwang (the positive-part James-Stein
estimator) is too severe for small x, requiring that the radius of this RCS must
be unhelpfully large.
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Fig 1. Graphs of the functions a and b and the coverage probability and scaled expected volume
(as functions of γ = ‖θ‖) for both the optimized RCS and the RCS of Casella and Hwang
[4], Section 4, for 1− α = 0.95 and p = 3.

Of course, our optimized RCS does not dominate this RCS of Casella and
Hwang. Our optimized RCS has smaller scaled expected volume for γ close
to 0. However, it has larger scaled expected volume for γ not close to 0. Ta-
ble 1 presents the comparison of the minimum coverage probability and the
scaled expected volume at θ = 0 of the optimized RCS and J(a+, b∗) for
p ∈ {3, 4, . . . , 13, 20, 25}. According to this table, the optimized RCS always
achieves a coverage probability greater than or equal to 0.95, while J(a+, b∗),
the RCS of Casella and Hwang [4], Section 4, does not achieve this for p ≤ 6.
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Table 1

Comparison of the optimized RCS and J(a+, b∗), the RCS of Casella and Hwang [4],
Section 4, with respect to the minimum coverage probability (CP) and the scaled expected

volume (SEV) at θ = 0, for 1− α = 0.95 and p ∈ {3, 4, . . . , 13, 20, 25}.
p RCS of Casella and Hwang Optimized RCS

J(a+, b∗)

minimum SEV at minimum SEV at
CP θ = 0 CP θ = 0

3 0.94594 0.88054 0.95 0.57155
4 0.94609 0.75553 0.95 0.37381
5 0.94666 0.63637 0.95 0.23814
6 0.94852 0.52826 0.95 0.15362
7 0.95 0.43314 0.95 0.09975
8 0.95 0.35142 0.95 0.06503
9 0.95 0.28243 0.95 0.04221
10 0.95 0.22505 0.95 0.02741
11 0.95 0.17794 0.95 0.01782
12 0.95 0.13966 0.95 0.01155
13 0.95 0.10889 0.95 0.00752
20 0.95 0.01629 0.95 0.00049
25 0.95 0.00367 0.95 0.00004

Also, for every value of p considered, J(a, b) achieves a substantially lower
scaled expected volume at θ = 0 than J(a+, b∗). In summary, our optimized
RCS compares favourably with that of Casella and Hwang [4], Section 4, in terms
of both the minimum coverage probability and the scaled expected volume at
θ = 0.

Remark 2.1. When we initially considered the construction of optimized RCS’s
for θ, we set a(x) = 1 for all x ≥ k. This seemed a very reasonable choice that
leads to J(a, b) coinciding with the standard 1−α confidence set I when ‖X‖ ≥
k. Surprisingly, the computation of the nondecreasing functions a and b such that
the scaled expected volume at γ = 0 was minimized, subject to the coverage
probability of J(a, b) never falling below 1 − α, always resulted in a J(a, b)
that was, within computational accuracy, equal to I. A careful investigation
(Abeysekera [1]) revealed that the explanation for this phenomenon is that for
all J(a, b)’s, other than those very close to I, there was a small dip (over a narrow
interval of values of γ) in the coverage probability below 1−α. As k is increased,
this dip becomes less pronounced, but appears to never disappear entirely. In
other words, it did not seem possible for J(a, b) to satisfy the coverage constraint
unless it was, within computational accuracy, equal to I. We found the following
solution to this problem. If, instead of setting a(x) = 1 for all x ≥ k, we set
a(x) = a+(x) for all x ≥ k, then this phenomenon does not occur.

Remark 2.2. We have chosen the functions a and b to be a piecewise cubic
Hermite interpolating polynomial in the interval [0, k]. Other choices of para-
metric forms for this function are also possible. For example, one could choose
this function to be a quadratic spline in this interval. Our reason for choosing
piecewise cubic Hermite interpolation is that this leads to interpolating function
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with fewer undesirable oscillations between the knots than, say, natural cubic
spline interpolation.

Remark 2.3. Casella and Hwang [4], Section 3, argue that it is desirable that
the set Sθ, described in their Theorem 3.1, is an interval. During the computation
of the optimized RCS, it was found that at every stage (including the final stage)
this set was an interval.

3. Results for σ2 known. Comparison of the inclusion functions for
the standard confidence sphere, the RCS of Casella and Hwang
and the optimized RCS

Efron [10] considers confidence sets of the form⋃
γ≥0

SCx
(
ωγ(‖x‖), γ

)
,

where γ = ‖θ‖ and SCx
(
ωγ(‖x‖), γ

)
is a spherical cap of values of θ of angular

radius ωγ(‖x‖) centered at γ x/‖x‖. For any rotationally symmetric confidence
set we can use this representation to find the function ωγ(‖x‖). This function
can then be used to find the ‘inclusion function’ iγ(‖x‖) defined by Efron [10]
to be the conditional probability

Pθ

(
x ∈ SCθ

(
ωγ(‖x‖), ‖x‖

) ∣∣∣ ‖x‖),
where SCθ

(
ωγ(‖x‖), ‖x‖

)
is a spherical cap of values of θ of angular radius

ωγ(‖x‖) centered at ‖x‖θ/γ. This conditional density is found using (2.9) of
Efron [10]. The coverage probability of the confidence set is, for any given γ,∫∞
0

iγ(y) fγ(y)dy, where fγ denotes the probability density function of ‖X‖.
In Figures 2 and 3 we compare the inclusion functions of the standard confi-

dence sphere, the RCS of Casella and Hwang [4], Section 4, and the optimized
RCS for 1 − α = 0.95. Figures 2 and 3 are for p = 3 and p = 10, respectively.
The top and middle panels of Figure 2 are for the fairly small values of γ = 1.5
and γ = 2.3. The superiority of the optimized RCS in terms of scaled expected
volume for γ = 0, is reflected by the fact that, in these panels, the inclusion
function for the optimized RCS matches up better with the pdf of ‖X‖ than
the inclusion functions for both the standard confidence sphere and the RCS
of Casella and Hwang. The bottom panel of Figure 2 is for the larger value of
γ = 3. For this larger value, the inclusion functions of both the RCS of Casella
and Hwang and the optimized RCS match up equally well (and better than the
standard confidence sphere) with the pdf of ‖X‖.

The top and middle panels of Figure 3 are for the fairly small values of γ = 2
and γ = 3.5. The superiority of the optimized RCS in terms of scaled expected
volume for γ = 0, is reflected by the fact that, in these panels, the inclusion
function for the optimized RCS matches up better with the pdf of ‖X‖ than both
the inclusion functions for the standard confidence sphere and the RCS of Casella
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Fig 2. Each panel consists of graphs of the inclusion functions of the standard confidence
sphere, the RCS of Casella and Hwang [4], Section 4, and the optimized RCS for 1−α = 0.95
and p = 3. Also included in each panel is the graph of fγ the pdf of ‖X‖. The top, middle
and bottom panels are for γ = 1.5, γ = 2.3 and γ = 3, respectively.

and Hwang. The bottom panel of Figure 3 is for the larger value of γ = 6. For
this larger value, the inclusion function the RCS of Casella and Hwang matches
up with the pdf of ‖X‖ somewhat better than the optimized RCS match. Both
of these RCS’s match up better with this pdf than the standard confidence
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Fig 3. Each panel consists of graphs of the inclusion functions of the standard confidence
sphere, the RCS of Casella and Hwang [4], Section 4, and the optimized RCS for 1−α = 0.95
and p = 10. Also included in each panel is the graph of fγ the pdf of ‖X‖. The top, middle
and bottom panels are for γ = 2, γ = 3.5 and γ = 6, respectively.

sphere. The bottom panel of Figure 3 compares the inclusion functions for the
same values of p, 1− α and γ as Figure 2 of Efron (2006).
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4. Results for σ2 unknown. Comparison of the performances of the
optimized RCS and the RCS centered on an analogue of the
positive-part James-Stein estimator

In this section, we consider the more difficult case that σ2 is unknown. Sup-
pose that we have additional data that provides the estimator S2 for σ2, where
mS2/σ2 ∼ χ2

m and S2 and X are independent. The standard 1 − α confi-

dence set is Ĩ =
{
θ : ‖θ − X‖ ≤ d̃ S

}
, where the positive number d̃ satisfies

P
(
G ≤ d̃2/p

)
= 1 − α for G ∼ Fp,m. Define the class of RCS’s that can be

expressed in the form

J̃(ã, b̃) =
{
θ : ‖ã(T̃ )X − θ‖ ≤ S b̃(T̃ )

}
,

where ã : [0,∞) → (0,∞), b̃ : [0,∞) → (0,∞) and T̃ = ‖X‖/(√pS). This

choice of center and radius has some intuitive appeal, since T̃ = ‖X‖/(√pS)
may be viewed as a test statistic for testing the null hypothesis that θ = 0
against the alternative hypothesis that θ 	= 0. This class of RCS’s is an ana-
logue, for σ2 unknown, of the broad class of RCS’s described by Casella and
Hwang [4], Section 3, for σ2 known. We assess the RCS J̃(ã, b̃) using both its
coverage probability an its scaled expected volume, which is defined to be the
ratio (expected volume of the RCS) / (expected volume of Ĩ).

The coverage probability of J̃(ã, b̃) is

P
(
θ ∈ J̃(ã, b̃)

)
= P

(∥∥∥∥ã( ‖Y ‖
√
pW

)
− ϑ

∥∥∥∥ ≤ Wb̃

(
‖Y ‖
√
pW

))
,

where W = S/σ, ϑ = θ/σ and Y = X/σ. Obviously, Y ∼ N(ϑ, I) and W
has the same distribution as

√
Q/m, where Q ∼ χ2

m. Since Y and W are
independent, this coverage probability is equal to∫ ∞

0

P

(∥∥∥∥ã( ‖Y ‖
√
pw

)
− ϑ

∥∥∥∥ ≤ w b̃

(
‖Y ‖
√
pw

))
fW (w) dw, (4.1)

where fW denotes the probability density function of W . Let γ = ‖ϑ‖ = ‖θ/σ‖.
It follows from Theorem A.1 (presented in Appendix A) that, for any given

w > 0 and functions ã and b̃,

P

(∥∥∥∥ã( ‖Y ‖
√
pw

)
− ϑ

∥∥∥∥ ≤ w b̃

(
‖Y ‖
√
pw

))
(4.2)

is a function of γ. It follows from (4.1) that the coverage probability of J̃(ã, b̃)
is also a function of γ. We evaluate (4.2) using the computationally convenient
formula of Casella and Hwang [4], Section 3, which is applicable for p odd. The
method used for the numerical evaluation of (4.1) is described in Appendix B.

We define the scaled expected volume of J̃(ã, b̃) to be the ratio

Eθ, σ(volume of J̃(ã, b̃))

Eθ, σ(volume of Ĩ)
=

Eθ

(
W p b̃p
(

‖Y ‖√
pw

))
d̃p E (W p)

. (4.3)



1810 W. Abeysekera and P. Kabaila

In Appendix B, we show that this is a function of γ = ‖ϑ‖ = ‖θ/σ‖, for given
function b̃. We also derive a new computationally convenient formula for this
scaled expected volume.

Define

ã+(x) = max

{
0, 1−
(
1− 2

p

)(
m

m+ 2

)
1

x2

}
.

Note that ã+
(
‖X‖/(√pS)

)
X is the positive-part version of an estimator of θ

due James and Stein [17], pp. 365–366. This estimator belongs to a class of
estimators described by Baranchik [2] and is an analogue, for σ2 unknown, of
the positive-part James-Stein estimator.

To find the optimized RCS, we require that the functions ã and b̃ satisfy the
following conditions.

Condition Ã ã : [0,∞) → (0,∞) is a continuous nondecreasing function that
satisfies ã(x) = ã+(x) for all x ≥ k.

Condition B̃ b̃ : [0,∞) → (0,∞) is a continuous nondecreasing function that

satisfies b̃(x) = d̃ for all x ≥ k̃.

We compare two different optimized RCS’s. The first of these RCS’s is cen-
tered on ã+

(
‖X‖/(√pS)

)
X. In other words, this RCS has the form J̃(ã+, b̃).

For computational feasibility, we specify the following parametric form for the
function b̃.

Suppose that y1, . . . , yq2 satisfy 0 = y1 < y2 < · · · < yq2 = k. The function

b̃ is fully specified by the vector b̃(y1), . . . , b̃(yq2) as follows. The value of

b̃(y) for any given y ∈ [0, k] is found by piecewise cubic Hermite polynomial
interpolation for these given function values. We call y1, . . . , yq2 the knots
of this piecewise cubic Hermite polynomial.

For judiciously-chosen values of k and these knots, we compute the function
b̃, which takes this parametric form, is nondecreasing and is such that (a) the
scaled expected volume evaluated at θ = 0 (i.e. at γ = 0) is minimized and (b)

the coverage probability of J̃(ã+, b̃) never falls below 1− α.

The second of the RCS’s has the form J̃(ã, b̃). For computational feasibility,
we additionally specify the following parametric form for the function ã.

Suppose that x1, . . . , xq1 satisfy 0 = x1 < x2 < · · · < xq1 = k. The func-
tion ã is fully specified by the vector ã(x1), . . . , ã(xq1) as follows. The value
of ã(x) for any given x ∈ [0, k] is found by piecewise cubic Hermite poly-
nomial interpolation for these given function values. We call x1, . . . , xq1

the knots of this piecewise cubic Hermite polynomial.

For judiciously-chosen values of k and the knots, we compute the functions ã
and b̃, which take these parametric forms, are nondecreasing and are such that
(a) the scaled expected volume evaluated at θ = 0 (i.e. at γ = 0) is minimized

and (b) the coverage probability of J̃(ã, b̃) never falls below 1− α.
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For 1 − α = 0.95, we compare the coverage probability and scaled expected
volume of these two RCS’s for odd values of p. We chose the knots of ã that allow
this function to provide a good approximation to ã+. In this way, we sought to
ensure that J̃(ã, b̃) could perform at least as well as J̃(ã+, b̃) in terms of mini-
mizing the scaled expected volume at γ = 0, subject to the coverage constraint.
Some exploratory computations led us to choose k = 10 and the following knots
for ã and b̃. Since ã+(x) = 0 for 0 ≤ x ≤

√
2(p− 2)m/p(m+ 2), we place the

first two knots of the function ã at 0 and
√

2(p− 2)m/p(m+ 2). The next three

knots of ã are at equally spaced positions between
√

2(p− 2)m/p(m+ 2) and
k/2. The last two knots of ã are at k/2 and k. For both RCS’s we place the

knots of the function b̃ at 0, 2, 4, 6, 8, and 10.
The coverage constraint was implemented in the computations by requiring

that the coverage probability of these RCS’s is greater than or equal to 1 − α
for all γ ∈ {0, 1, 2, . . . , 64, 65}. This was shown to be adequate to the task by
checking numerically, at the completion of the computation of these RCS’s, that
the coverage probability constraint is satisfied for all γ ≥ 0.

We compare the two optimized RCS’s for all combinations of p∈{3, 5, 7, 9, 25}
and m ∈ {3, 10, 30}. Figure 4 compares these RCS’s in detail for p = 3 and
m = 3. Table 2 presents the comparison of the scaled expected volumes at
θ = 0 of the two optimized RCS’s for all the combinations of m ∈ {3, 10, 30}
and p ∈ {3, 5, 7, 9, 25}. This table shows that, for every combination of m and

p considered, the RCS of the form J̃(ã, b̃) achieves a significantly lower scaled

expected volume at θ = 0 than the RCS of the form J̃(ã+, b̃).
For these optimized RCS’s, the decrease in the scaled expected volume at

θ = 0 is higher whenm is smaller, for given p. Note that the coverage probability
results of these RCS’s are not presented, since both of these optimized RCS’s
achieve a minimum coverage probability greater than or equal to 0.95.

In summary, both of the optimized 1− α RCS’s compare favorably with the
standard 1− α confidence set for θ. Also, the optimized 1− α RCS of the form
J̃(ã, b̃) compares favorably with the optimized 1 − α RCS of the form J̃(ã+, b̃)
in terms of the scaled expected volume at θ = 0.

5. Conclusion

The method of construction of a 1− α confidence set that we have used is the
following. Suppose that we have a clearly specified class of confidence sets and
a clearly specified criterion that should be optimized. This specified criterion
is numerically optimized, subject to the coverage constraint and the constraint
that the confidence set (belonging to this class) has volume no larger than the
standard 1− α confidence set, for all possible data values.

We have successfully applied this method for the broad class of recentered
confidence spheres described by Casella and Hwang [4], Section 3, in the case of
known σ2, and an analogue of this class, in the case of unknown σ2. Motivated
by the assumption that we have uncertain prior information that θ = 0, the
criterion that we have chosen to optimize is the scaled expected volume at
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Fig 4. Graphs of the functions ã and b̃ and the coverage probability and the scaled expected
volume (as functions of γ = ‖θ/σ‖) for both optimized RCS’s, for 1 − α = 0.95, p = 3 and
m = 3.

θ = 0. This optimization is possible because a recentered confidence sphere has
relatively simple properties. This sphere is specified by two nondecreasing real-
valued functions (which, in turn, specify the center and radius functions) defined
on the positive real line. Both the coverage probability and the scaled expected
volume of this sphere are readily-computed functions of the scalar parameter
γ = ‖θ/σ‖. This method of construction can also be applied for other criteria.
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Table 2

Comparison of the optimized RCS’s of the forms J̃(ã+, b̃) and J̃(ã, b̃), with respect to the
scaled expected volume (SEV) at θ = 0, for 1− α = 0.95, p ∈ {3, 5, 7, 9, 25} and

m ∈ {3, 10, 30}.
m = 3

SEV at θ = 0 of the SEV at θ = 0 of the

p optimized RCS of the form J̃(ã+, b̃) optimized RCS of the form J̃(ã, b̃)

3 0.56644 0.32788
5 0.07008 0.01724
7 0.00555 0.00072
9 0.00029 0.00008
. . .
. . .
25 3.19 ×10−7 7.93 ×10−8

m = 10

SEV at θ = 0 of the SEV at θ = 0 of the

p optimized RCS of the form J̃(ã+, b̃) optimized RCS of the form J̃(ã, b̃)

3 0.71589 0.52070
5 0.22627 0.11229
7 0.05747 0.02035
9 0.01215 0.00332
. . .
. . .
25 4.27 ×10−6 1.12 ×10−7

m = 30

SEV at θ = 0 of the SEV at θ = 0 of the

p optimized RCS of the form J̃(ã+, b̃) optimized RCS of the form J̃(ã, b̃)

3 0.78059 0.56333
5 0.33636 0.17951
7 0.12474 0.05855
9 0.04111 0.01721
. . .
. . .
25 3.49 ×10−6 1.13 ×10−6

For example, the criterion could be a weighted average (where the weight is
a function of ‖θ‖) of the scaled expected volume, with the largest weight at
θ = 0.

Confidence sets for the multivariate normal mean with other shapes have
been proposed by Faith [13], Berger [3], Shinozaki [23], Tseng and
Brown [25] and Efron [10]. Reviews of the literature on confidence sets for
the multivariate normal mean are provided by Efron [10] and Casella and
Hwang [8]. It would be interesting to know whether or not our method of
construction can also be applied to a confidence set with one of these other
shapes.
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Appendix A: Results for σ2 known

In this appendix, we derive computationally-convenient formulas for the cover-
age probability and the scaled expected volume of the RCS J(a, b), when σ2 is
known. We assume, without loss of generality, that σ2 = 1. Suppose that p ≥ 3.
Let γ = ‖θ‖.

A computationally convenient formula for the coverage probability of
J(a, b)

In this section we show that the coverage probability of J(a, b) is an even
function of γ, for given functions a and b, and we derive a computationally
convenient formula for this coverage probability. We first present the proofs and
derivations and then state the results.

The coverage probability of J(a, b) is

P
(
θ ∈ J(a, b)

)
= P
(
‖a(T )X − θ‖ ≤ b(T )

)
.

Let Z = X − θ, so that Z ∼ N (0, I). We write Z = RU where R and U are
independent, R2 ∼ χ2

p andU is a random p-vector which is distributed uniformly

on the surface of a unit sphere in R
p. Then, ‖Z‖2 = Z�Z = R2U�U = R2.

For θ = 0, ‖X‖2 = R2. Also, for θ 	= 0,

‖X‖2 = ‖θ +Z‖2

= (θ +Z)�(θ +Z)

= ‖θ‖2 + 2θ�Z + ‖Z‖2

= ‖θ‖2 + 2‖θ‖‖Z‖
(

θ

‖θ‖

)�(
Z

‖Z‖

)
+ ‖Z‖2. (A.1)

Let L = (θ/‖θ‖)� (Z/‖Z‖). Note that L is a random variable which has a
distribution that does not depend on θ. Let fL denote the probability density
function of L. Let B(x, y) = Γ(x)Γ(y)/Γ(x + y) denote the beta function. For
p ≥ 3,

fL(�) =

{(√
1− �2
)p−3
/
B
(
1/2, (p− 1)/2

)
for − 1 ≤ � ≤ 1

0 otherwise.

Now, (A.1) can be written as follows.

‖X‖2 = γ2 + 2γRL+R2. (A.2)

Note that this formula is valid for all γ ≥ 0 if, for example, we set L = 1 for
θ = 0. Thus

T = ‖X‖/√p =
√

(γ2 + 2γRL+R2)/p. (A.3)
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For θ 	= 0,

P
(
θ ∈ J(a, b)

)
= P
(
‖a(T )X − θ‖2 ≤ b2(T )

)
= P
(
a2(T )‖X‖2 − 2a(T )

(
γ2 + γRL

)
+ γ2 ≤ b2(T )

)
.

This is a function of γ, by (A.2) and (A.3) and the fact that (R,L) has a
distribution that does not depend on θ. We now derive the new computationally
convenient formula for the coverage probability of J(a, b). By the law of total
probability, this coverage probability is equal to

P (‖a(T )X − θ‖ ≤ b(T ), T < k) + P (‖a(T )X − θ‖ ≤ b(T ), T ≥ k)

= P (‖a(T )X − θ‖ ≤ b(T ), T < k) + P
(
‖a+(T )X − θ‖ ≤ d, T ≥ k

)
= P (‖a(T )X − θ‖ ≤ b(T ), T < k) + P

(
‖a+(T )X − θ‖ ≤ d

)
− P
(
‖a+(T )X − θ‖ ≤ d, T < k

)
.

By using the law of total probability in this way, we simplify the computer
programming required for the evaluation of the coverage probability. Let

c(γ; a, b) = P (‖a(T )X − θ‖ ≤ b(T ), T < k)

c∗(γ; a+) = P
(
‖a+(T )X − θ‖ ≤ d

)
c+(γ; a+) = P

(
‖a+(T )X − θ‖ ≤ d, T < k

)
.

Thus, the coverage probability of J(a, b) is equal to c(γ; a, b) + c∗(γ; a+) −
c+(γ; a+). We now derive computationally convenient approximations for
c(γ; a, b), c∗(γ; a+) and c+(γ; a+).

Derivation of the computationally convenient approximation for c(γ; a, b)

Observe that

‖a(T )X − θ‖2 = ‖a(T ) (X − θ) + (a(T )− 1)θ‖2

= ‖a(T )Z + (a(T )− 1)θ‖2

=
[
a(T )Z + {a(T )− 1}θ

]�[
a(T )Z + {a(T )− 1}θ

]
= a2(T )Z�Z + a(T ){a(T )− 1}Z�θ

+ {a(T )− 1}a(T )θ�Z + {a(T )− 1}2θ�θ

= a2(T )R2 + 2a(T ){a(T )− 1}γRL+ {a(T )− 1}2γ2. (A.4)

Let t =
√
(r2 + 2γr�+ γ2)/p. We define functions g and h as follows.

g(r, �, γ) = t2 − k2

h(r, �, γ; a, b) =
√

a2(t)r2 + 2a(t){a(t)− 1}γr�+ {a(t)− 1}2γ2 − b(t).

Let I be defined as follows.

I(A) =

{
1 if A is true

0 if A is false,

where A is an arbitrary statement. By definition, c(γ; a, b) is equal to
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P (‖a(T )X − θ‖ ≤ b(T ), T < k)

= P
(√

a2(T )R2 + 2a(T )(a(T )− 1)γRL+ (a(T )− 1)2γ2 ≤ b(T ), T < k
)

=

∫ ∞

0

∫ 1

−1

I
{√

a2(t)r2 + 2a(t)(a(t)− 1)γr�+ (a(t)− 1)2γ2 ≤ b(t)
}

I
(
t2 < k2

)
fR(r) fL(�) d� dr.

=

∫ ∞

0

∫ 1

−1

I
{
h(r, �, γ; a, b) ≤ 0

}
I
{
g(r, �, γ) < 0

}
fR(r) fL(�) d� dr. (A.5)

To compute this multiple integral, our next step is to truncate the outer integral.
We approximate this multiple integral by∫ ur

lr

∫ 1

−1

I
{
h(r, �, γ; a, b) ≤ 0

}
I
{
g(r, �, γ) < 0

}
fR(r) fL(�) d� dr (A.6)

where, for a specified small positive number δ,

lr =

{
0 for p ≤ 10√
F−1
p (δ/2) for p > 10,

(A.7)

and

ur =

√
F−1
p (1− δ/2) (A.8)

and Fp denotes the χ2
p distribution function. The reason for not truncating the

integral at the lower endpoint for p ≤ 10 is that there is little to be gained
in this case. The following lemma provides an upper bound on the error of
approximation.

Lemma 1. Let e = (A.5) − (A.6). For p ≤ 10, 0 ≤ e ≤ δ/2. Also, for p > 10,
0 ≤ e ≤ δ.

Proof. Let e = (A.5)− (A.6). Obviously, e ≥ 0 and

e =

∫ lr

0

[∫ 1

−1

I
{
h(r, �, γ; a, b) ≤ 0

}
I
{
g(r, �, γ) < 0

}
fL(�) d�

]
fR(r) dr

+

∫ ∞

ur

[∫ 1

−1

I
{
h(r, �, γ; a, b) ≤ 0

}
I
{
g(r, �, γ) < 0

}
fL(�) d�

]
fR(r) dr.

Since I can only take the values 0 and 1, we have that

e ≤
∫ lr

0

{∫ 1

−1

fL(�) d�

}
fR(r) dr +

∫ ∞

ur

{∫ 1

−1

fL(�) d�

}
fR(r) dr

=

∫ lr

0

fR(r) dr +

∫ ∞

ur

fR(r) dr

= P (R ≤ lr) + 1− P (R < ur)

= P
(
R2 ≤ l2r

)
+ 1− P

(
R2 < u2

r

)
= Fp(l

2
r) + 1− Fp(u

2
r).
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Obviously, (A.6) is equal to∫ 1

−1

[∫ ur

lr

I
{
h(r, �, γ; a, b) ≤ 0

}
I
{
g(r, �, γ) < 0

}
fR(r) dr

]
fL(�) d�. (A.9)

We now use the fact that g(r, �, γ) is a particularly simple function of r and
� for given γ, to simplify (A.9). Note that for given values of � and γ, there
is a non-empty interval of values of r such that g(r, �, γ) < 0 if and only if
r2 + 2γ�r + γ2 − pk2 = 0 has distinct real solutions for r. This condition is
equivalent to

(2γ�)2 − 4(γ2 − pk2) > 0

⇔ �2 > (γ2 − pk2)/γ2

⇔
{
� ∈ [−1, 1] if γ2 − pk2 ≤ 0

� ∈ [−1,−s) ∪ (s, 1] otherwise,

where s =
√

γ2 − pk2/γ. This implies that (A.9) is equal to

capprox(γ; a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1

v(�, γ; a, b)fL(�) d� if γ2 − pk2 ≤ 0∫ −s

−1

v(�, γ; a, b)fL(�) d�

+

∫ 1

s
v(�, γ; a, b)fL(�) d� otherwise,

(A.10)

where

v(�, γ; a, b) =

∫ ur

lr

I
{
h(r, �, γ; a, b) ≤ 0

}
I
{
g(r, �, γ) ≤ 0

}
fR(r) dr.

A computationally convenient formula for v(�, γ; a, b) is obtained as follows.
Suppose the set of values (if it exists) of r ∈ [lr, ur] such that g(r, �, γ) ≤ 0 and
h(r, �, γ; a, b) ≤ 0, for given �, γ and functions a and b, is expressed in the form
of a union of disjoint intervals as follows.

K(�, γ; a, b)⋃
i = 1

[
li(�, γ; a, b), ui(�, γ; a, b)

]
,

where K(�, γ; a, b) denotes the number of such disjoint intervals. Thus

v(�, γ; a, b) =

⎧⎪⎪⎨⎪⎪⎩
K(�, γ; a, b)∑

i = 1

∫ ui(�, γ; a, b)

li(�, γ; a, b)
fR(r) dr if K(�, γ; a, b) > 0

0 if K(�, γ; a, b) = 0.
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Since R2 ∼ χ2
p, this simplifies to the following. If K(�, γ; a, b) > 0 then

v(�, γ; a, b) =

K(�, γ; a, b)∑
i = 1

[
Fp

{
u2
i (�, γ; a, b)

}
− Fp

{
l2i (�, γ; a, b)

} ]
and if K(�, γ; a, b) = 0 then v(�, γ; a, b) = 0. Here Fp denotes the χ2

p cumulative
distribution function.

Remark. The computer program used to find the disjoint intervals
[
li(�, γ; a, b),

ui(�, γ; a, b)
]
, carries out an extensive grid search, followed by the application

of the MATLAB zero-finding function fzero. This programming is designed to
account for the possibility of quite a large number of such intervals. However,
careful investigations suggest that h(r, �, γ; a, b), considered as a function of r,
is smooth, leading typically to a single interval i.e. K(�, γ; a, b) = 1. A similar
remark applies to the computation of the disjoint intervals involved in com-
putations of the computationally convenient approximations for c∗(γ; a+) and
c+(γ; a+).

Derivation of a computationally convenient approximation for c∗(γ; a+)

Similarly to the previous derivation of the computationally convenient ap-
proximation for c(γ; a, b), we observe that∥∥a+(T )X − θ

∥∥2 = a+(T )2R2 + 2a+(T )(a+(T )− 1)γRL+ (a+(T )− 1)2γ2,

and we define the function h+ as follows.

h+(r, �, γ; a+) =
√

(a+(t))2r2 + 2a+(t)(a+(t)− 1)γr�+ (a+(t)− 1)2γ2 − d,

where, as in the previous section, t =
√

(r2 + 2γr�+ γ2)/p. By definition,
c∗(γ; a+) is equal to

P
(
‖a+(T )X − θ‖ ≤ d

)
= P
(√

a+(T )2R2 + 2a+(T )(a+(T )− 1)γRL+ (a+(T )− 1)2γ2 ≤ d
)

=

∫ ∞

0

∫ 1

−1

I
{√

a+(T )2r2 + 2a+(t)(a+(t)− 1)γr�+ (a+(t)− 1)2γ2 ≤ d
}

fR(r) fL(�) dr d�.

=

∫ ∞

0

∫ 1

−1

I
{
h+(r, �, γ; a+) ≤ 0

}
fR(r) fL(�) d� dr (A.11)

To compute this multiple integral, our next step is to truncate the outer integral.
We approximate this multiple integral by∫ ur

lr

∫ 1

−1

I
{
h+(r, �, γ; a+) ≤ 0

}
fR(r) fL(�) d� dr (A.12)

where lr and ur are given by (A.7) and (A.8), respectively. The following lemma
provides an upper bound on the error of approximation.
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Lemma 2. Let e = (A.11)− (A.12). For p ≤ 10, 0 ≤ e ≤ δ/2. Also, for p > 10,
0 ≤ e ≤ δ.

The proof of this lemma is omitted, because it is very similar to the proof of
Lemma 1. Obviously, (A.12) is equal to∫ 1

−1

[∫ ur

lr

I
{
h+(r, �, γ; a+) ≤ 0

}
fR(r) dr

]
fL(�) d�.

This is equal to

c∗approx(γ; a
+) =

∫ 1

−1

v∗(�, γ; a+) fL(�) d�,

where

v∗(�, γ; a+) =

∫ ur

lr

I
{
h+(r, �, γ; a+) ≤ 0

}
fR(r) dr.

Similarly to the previous derivation, a computationally convenient formula for
v∗(�, γ; a+) is obtained as follows. Suppose the set of values (if it exists) of
r ∈ [lr, ur] such that h+(r, �, γ; a+) ≤ 0, for given �, γ and functions a and b is
expressed in the form of a union of disjoint intervals as follows.

K∗(�, γ; a+)⋃
i = 1

[
l∗i (�, γ; a

+), u∗
i (�, γ; a

+)
]
,

where K∗(�, γ; a+) denotes the number of such disjoint intervals. Thus

v∗(�, γ; a+) =

⎧⎪⎪⎨⎪⎪⎩
K∗(�, γ; a+)∑

i = 1

∫ u∗
i (�, γ; a

+)

l∗i (�, γ; a
+)

fR(r) dr if K∗(�, γ; a+) > 0

0 if K∗(�, γ; a+) = 0.

Since R2 ∼ χ2
p, this simplifies to the following. If K∗(�, γ; a+) > 0 then

v∗(�, γ; a+) =

K∗(�, γ; a+)∑
i = 1

[
Fp

{
(u∗

i (�, γ; a
+))2
}
− Fp

{
(l∗i (�, γ; a

+))2
} ]

and if K∗(�, γ; a+) = 0 then v∗(�, γ; a+) = 0. Here, as in the previous section,
Fp denotes the χ2

p distribution function.

Derivation of a computationally convenient approximation for c+(γ; a+)

Note that c+(γ; a+) is obtained by simply replacing the function a by the
function a+ and the function b by the constant d in the expression for c(γ; a, b).
Thus, by replacing the function a by the function a+ and the function b by
the constant d in the expression for the computationally convenient approxi-
mation capprox(γ; a, b) for c(γ; a, b), we obtain the computationally convenient
approximation c+approx(γ; a

+) for c+(γ; a+).
The following theorem provides a computationally convenient expression for

the coverage probability of J(a, b) for p ≥ 3.
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Theorem A.1. Suppose that p ≥ 3. The coverage probability of J(a, b) is equal
to

c(γ; a, b) + c∗(γ; a+)− c+(γ; a+). (A.13)

An approximation to this coverage probability is

capprox(γ; a, b) + c∗approx(γ; a
+)− c+approx(γ; a

+), (A.14)

where the accuracy of this approximation is determined, through (A.7) and
(A.8), by the specified small positive number δ. The error of approximation
(A.13)− (A.14) lies (a) between −δ/2 and δ, for p ≤ 10 and (b) between −δ and
2δ, for p > 10.

Comparison of the two computationally convenient formulas for the
coverage probability of J(a, b)

Note that there is a typographical error in this formula as stated on page 691
of Casella and Hwang [4]. The (n + 1)! on the second line of (3.10) should be
replaced by (n+i)!. The main advantage of computationally convenient formula
stated in Theorem A.2 is that it is applicable for any p ≥ 3, whereas the com-
putationally convenient formula stated by Casella and Hwang [4], Section 3, is
applicable only for odd values of p ≥ 3. We found that the coverage probability
computed using the formula of Casella and Hwang [4], Section 3, was inaccu-
rate when γ = ‖θ‖ is very close to zero but not equal to zero. There is no such
problem with the formula for the coverage probability stated in Theorem A.1.
In terms of computational speed, for small values of p, both of these computa-
tionally convenient formulas perform equally well. However, for large values of
p, the coverage probability can be computed faster using the formula of Casella
and Hwang [4], Section 3.

Numerical evaluation of the coverage probability of J(a, b) using the
new computationally convenient formula

The computer programs for the computation of the coverage probability using
(A.14) were checked for correctness in two ways, for some particular examples.
Firstly, the coverage probabilities computed using the computationally conve-
nient formula of Casella and Hwang [4] for p odd and the computationally conve-
nient formula (A.14) were compared. Secondly, coverage probabilities computed
using these formulas were compared with the results of coverage probabilities
computed using Monte Carlo simulations.

A computationally convenient formula for the scaled expected volume
of J(a, b)

The following theorem provides a computationally convenient-formula for the
scaled expected volume of the recentered confidence sphere J(a, b).

Theorem A.2. For given function b, the scaled expected volume of J(a, b) is a
function of γ = ||θ||.
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1. Let f
(
v; p, γ2

)
denote the noncentral χ2 probability density function with

p degrees of freedom and noncentrality parameter γ2, evaluated at v. The
scaled expected volume of J(a, b) is∫ ∞

0

{
b
(√

v/p
)

d

}p

f
(
v; p, γ2

)
dv. (A.15)

2. Suppose that b(x) = d for all x ≥ k, where k is a specified positive number.
The scaled expected volume of J(a, b) is∫ pk2

0

{
b
(√

v/p
)

d

}p

f
(
v; p, γ2

)
dv + 1− F

(
pk2; p, γ2

)
, (A.16)

where F
(
v; p, γ2

)
denotes the noncentral χ2 cumulative distribution func-

tion with p degrees of freedom and noncentrality parameter γ2, evaluated
at v.

Proof. Note that V = ‖X‖2 = X2
1 + · · ·+X2

p has a noncentral χ2 distribution
with p degrees of freedom and noncentrality parameter γ2. It follows from (2.1)
that the scaled expected volume of J(a, b) is (A.15). Clearly, (A.15) is an even
function of γ, for given function b. Suppose that b(x) = d for all x ≥ k, where
k is a specified positive number. Obviously, (A.16) follows immediately from
(A.15).

Numerical evaluation of the scaled expected volume using the com-
putationally convenient formula (A.16)

As stated in Section 2, we suppose that the function b is a piecewise cubic
Hermite interpolating polynomial in the interval [0, k], with knots at y1, . . . , yq2
(0 = y1 < y2 < · · · < yq2 = k) and that b(x) = d for all x ≥ k. This function
is very smooth between successive knots (it is a cubic between these knots).
However, it may not possess a second derivative at each of the knots. For this
reason, we numerically evaluate (A.16) using the formula

q2 − 1∑
i = 1

∫ py2i+1

py2i

{
b
(√

y/p
)

d

}p

f
(
y; p, γ2

)
dy + 1− F

(
pk2; p, γ2

)
,

where each integral is computed separately by numerical quadrature. The com-
puter programs for the computation of the scaled expected length using (A.16)
were checked for correctness, for some particular examples, by comparison with
the scaled expected length computed using Monte Carlo simulation.

Appendix B: Results for σ2 unknown

In this appendix, we describe the method used for the numerical evaluation
of (4.1), the coverage probability of J̃(ã, b̃). We also derive a computationally

convenient formula for the scaled expected volume of J̃(ã, b̃). Suppose that p ≥ 3.
Let γ = ‖ϑ‖ = ‖θ/σ‖.
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Numerical evaluation of the coverage probability of J̃(ã, b̃) using (4.1)

The optimized RCS is found by numerically solving the constrained optimiza-
tion problem described in Section 3. This type of computation has been carried
out in other related problems by Farchione and Kabaila [11], [12] and Kabaila
and Giri [19], [20]. The main lesson from these related computations is that the
coverage probability needs to be computed with great accuracy.

Let

ψ
(
w, γ; ã, b̃

)
= P

{∥∥∥∥ã( ‖Y ‖
√
pw

)
− ϑ

∥∥∥∥ ≤ w b̃

(
‖Y ‖
√
pw

)}
.

Therefore, the formula (4.1) for the coverage probability of J̃(ã, b̃) is∫ ∞

0

ψ
(
w, γ; ã, b̃

)
fW (w) dw.

We numerically evaluate this integral as follows. This integral is equal to∫ 1

0

ψ
(
w, γ; ã, b̃

)
fW (w) dw +

∫ ∞

1

ψ
(
w, γ; ã, b̃

)
fW (w) dw.

We transform the variable of integration in the second integral from w to x =
FW (w), where FW denotes the cumulative distribution function ofW . Therefore,

the coverage probability of J̃(ã, b̃) is∫ 1

0

ψ
(
w, γ; ã, b̃

)
fW (w) dw +

∫ 1

FW (1)

ψ
{
F−1
W (x), γ; ã, b̃

}
dx,

where ψ
{
F−1
W (x), γ; ã, b̃

}
evaluated at x = 1 is defined to be the limit as x ↑ 1

of this function. This limit is 1. The integrands in both of these integrals are
smooth. These integrals were computed using Simpson’s rule with an appro-
priately chosen fixed number of evaluations of the integrand. To help ensure
accurate computation of the integrands for both integrals, progressive numeri-
cal quadrature, using Simpson’s rule was used and a doubling of equal-length
segments at each stage of the progression is used. Progressive numerical quadra-
ture is described, for example, in Section 6.1 of Davis and Rabinowitz [9]. The
main stopping criterion is that |Q2s − Qs|/Q2s ≤ 10−8, where Qs denotes the
computed quadrature using s segments. The computer programs for the com-
putation of the coverage probability were checked for correctness by comparing
computed values, for some particular examples, with the results of coverage
probabilities computed using Monte Carlo simulations.

A computationally convenient formula for the scaled expected volume
of J̃(ã, b̃)

The following theorem provides a computationally convenient formula for the
scaled expected volume of the RCS J̃(ã, b̃).

Theorem B.1. For given function b̃, the scaled expected volume of J̃(ã, b̃) is a
function of γ = ‖ϑ‖ = ‖θ/σ‖. Let f

(
v; p, γ2

)
and F
(
v; p, γ2

)
denote the prob-

ability density function and the cumulative distribution function, respectively,
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of the noncentral χ2 distribution with p degrees of freedom and noncentrality
parameter γ2, evaluated at v. The scaled expected volume of J̃(ã, b̃) is equal to
1 plus

1 + μ−1

∫ ∞

0

(∫ p k2w2

0

[
b̃
{
v
/
(
√
pw)
}

d

]p
f(v; p, γ2) dv − F (p k2w2; p, γ2)

)
× wp fW (w) dw, (B.1)

where μ = (2/m)p/2 Γ
{
(p+m)/2

}/
Γ (m/2).

Proof. Our proof proceeds from the expression (4.3) for the scaled expected

volume of J̃(ã, b̃). Since W has the same distribution as
√
Q/m where Q ∼ χ2

m,

E (W p) = E
{
(Q/m)p/2

}
=

1

mp/2
E
(
Qp/2
)

= (2/m)p/2 Γ

(
p+m

2

)/
Γ
(m
2

)
.

Let μ = (2/m)p/2 Γ ((p+m)/2)
/
Γ (m/2). Thus (4.3) is equal to

μ−1 × Eθ

(
W p

[
b̃
{
||Y ||
/
(
√
pW )
}

d

]p)
, (B.2)

where Y = X/σ, so that Y ∼ N(ϑ, I) for ϑ = θ/σ. Let V = ||Y ||2. Note that
V has a noncentral χ2 distribution with p degrees of freedom and noncentrality
parameter γ2. Thus, (B.2) is equal to

μ−1

∫ ∞

0

∫ ∞

0

wp

[
b̃
{
v
/
(
√
pw)
}

d

]p
f(v; p, γ2)fW (w) dv dw. (B.3)

By Condition B̃, b̃(x) = d for all x ≥ k. Note that v
/√

pw ≥ k is equivalent
to v ≥ p k2w2. Therefore, (B.3) is equal to

μ−1

∫ ∞

0

∫ p k2w2

0

wp

[
b̃
{
v
/
(
√
pw)
}

d

]p
f(v; p, γ2)fW (w) dv dw

+ μ−1

∫ ∞

0

∫ ∞

p k2w2
wpf(v; p, γ2) fW (w) dv dw.

The second term in this expression is equal to

μ−1

∫ ∞

0

{∫ ∞

p k2w2
f(v; p, γ2) dv

}
wp fW (w) dw

= μ−1

∫ ∞

0

{
1− F (p k2w2; p, γ2)

}
wpfW (w) dw
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= μ−1

∫ ∞

0

wpfW (w) dw − μ−1

∫ ∞

0

F (p k2w2; p, γ2)wp fW (w) dw

= 1− μ−1

∫ ∞

0

F (p k2w2; p, γ2)wp fW (w) dw,

Thus the scaled expected volume of J̃(ã, b̃) is is equal to (B.1).

Numerical evaluation of the scaled expected volume using the com-
putationally convenient formula (B.1)

To compute the scaled expected volume using (B.1), we truncate the outer
integral. As before, let μ = (2/m)p/2 Γ ((p+m)/2)

/
Γ (m/2). We approximate

(B.1) by

1 + μ−1

∫ uw

lw

(∫ p k2w2

0

[
b̃
{
v
/
(
√
pw)
}

d

]p
f(v; p, γ2) dv − F (p k2w2; p, γ2)

)
× wp fW (w) dw, (B.4)

where, for a specified small positive number δ,

lw =

{
0 for m+ p ≤ 10√
F−1
m+p{δ/(2μ)} for m+ p > 10

and

uw =
√
F−1
m+p{1− δ/(2μ)}

and Fm+p denotes the χ2
m+p cumulative distribution function. The following

lemma provides an upper bound on the error of approximation.

Lemma 3. Let e = (B.1) − (B.4). For m + p ≤ 10, 0 ≤ e ≤ δ/2. Also, for
m+ p > 10, 0 ≤ e ≤ δ.

The proof of this lemma is omitted for the sake of brevity.
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