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Abstract: It is well known that, under general regularity conditions, the
distribution of the maximum likelihood estimator (MLE) is asymptotically
normal. Very recently, bounds of the optimal order O(1/

√
n) on the close-

ness of the distribution of the MLE to normality in the so-called bounded
Wasserstein distance were obtained [2, 1], where n is the sample size. How-
ever, the corresponding bounds on the Kolmogorov distance were only of
the order O(1/n1/4). In this paper, bounds of the optimal order O(1/

√
n)

on the closeness of the distribution of the MLE to normality in the Kol-
mogorov distance are given, as well as their nonuniform counterparts, which
work better in tail zones of the distribution of the MLE. These results are
based in part on previously obtained general optimal-order bounds on the
rate of convergence to normality in the multivariate delta method. The cru-
cial observation is that, under natural conditions, the MLE can be tightly
enough bracketed between two smooth enough functions of the sum of in-
dependent random vectors, which makes the delta method applicable. It
appears that the nonuniform bounds for MLEs in general have no prece-
dents in the existing literature; a special case was recently treated by Pinelis
and Molzon [20]. The results can be extended to M -estimators.
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1. Introduction

Let us begin with the following quote from Kiefer [9] of 1968:

a second area of what seem to me important problems to work on has to do with
the fact that we do have, in many settings, quite a good large sample theory,
but we don’t know how large the sample sizes have to be for that theory to take
hold. Now, I’m sure most of you are familiar with the error estimate one can
give for the classical central-limit theorem, which goes by the name of the Berry-
Esseen estimate, and which tells you that under certain assumptions one can
actually give an explicit bound on the departure from the normal distribution of
the sample mean for a given sample size, the error term being of order 1/

√
n. For

most other statistical problems, in fact for almost anything other than the use
of the sample mean, we have nothing. The most obvious example of this (and
this is not original with me; many people have been concerned with this), is the
maximum likelihood estimator in the case of regular estimation. We all know
what the asymptotic distribution is. Can you give explicitly some useful bound
on the departure from the asymptotic normal distribution as a function of the
sample size n? It seems to be a terrifically difficult problem.

Since then, there has been some significant progress in this direction, espe-
cially rather recently. For instance, Berry–Esseen-type bounds of order 1/

√
n

were obtained for U -statistics – see e.g. [10]; for the Student statistic [4, 3]; and,
even more recently, for rather broad classes of other statistics that depend on
the observations in a nonlinear fashion [6, 20].

As Kiefer pointed out, it is well known that, under general regularity condi-
tions, the distribution of the maximum likelihood estimator (MLE) is asymp-
totically normal. In this paper, we shall consider Berry–Esseen-type bounds of
order 1/

√
n for the MLE. First such bounds were apparently obtained in the

paper [14], followed by [16, 17]. Very recently, bounds on the closeness of the
distribution of the MLE to normality in the so-called bounded Wasserstein dis-
tance, dbW, were obtained in [2]. In the rather common special case when the

MLE θ̂ is expressible as a smooth enough function of a linear statistic of in-
dependent identically distributed (i.i.d.) observations, the bounds obtained in
[2] were sharpened and simplified in [1] by using a version of the delta method.
More specifically, it was assumed in [1] that

q(θ̂) =
1

n

n∑
i=1

g(Xi), (1.1)

where q : Θ → R is a twice continuously differentiable one-to-one mapping,
g : R → R is a Borel-measurable function, and the Xi’s are i.i.d. real-valued
r.v.’s.
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It was noted in [2, Proposition 2.1] that for any r.v. Y and a standard normal
r.v. Z one has dKo(Y, Z) � 2

√
dbW(Y, Z), where dKo denotes the Kolmogorov

distance. This bound on dKo in terms of dbW is the best possible one, up to a
constant factor, as shown in [20]. Therefore, even though the bounds on the
bounded Wasserstein distance dbW obtained in [2, 1] are of the optimal order
O(1/

√
n), the resulting bounds on the Kolmogorov distance are only of the or-

der O(1/n1/4). (That the order O(1/
√
n) is optimal for MLEs is well known;

for instance, see the example of the Bernoulli family of distributions given in
[14].)

In [20], optimal-order bounds of the form O(1/
√
n) on the rate of convergence

to normality in the general multivariate delta method were given. Those results
are applicable when the statistic of interest can be expressed as a smooth enough
function of the sum of independent random vectors. Accordingly, various kinds
of applications were presented in [20]. In particular, uniform and nonuniform
bounds of the optimal order on the closeness of the distribution of the MLE
to normality were obtained in [20] under conditions similar to the mentioned
conditions assumed in [1].

In this paper we present a way to extend those results in [20] to the general
case, without an assumption of the form (1.1), made in [1, 20]. Of course, in
general the MLE cannot be represented as a function of the sum of independent
random vectors (see the Appendix in the arXiv version [19] of this paper for
details). However, the crucial observation here is that, under natural conditions,
the MLE can be tightly enough bracketed between two such smooth enough
functions, which makes the delta method applicable. Thus, the present paper
is methodologically different from the preceding work on Berry–Esseen-type
bounds for the MLE, in that it relies on the general result developed in [20],
rather than on methods specially designed to deal with the MLE.

Perhaps more importantly, the new method yields not only uniform bounds
(that is, in the Kolmogorov metric) of the optimal order O(1/

√
n) on the close-

ness of the distribution of the MLE to normality but also their so-called nonuni-
form counterparts, which work much better for large deviations, that is, in tail
zones of the distribution of the MLE – which are usually of foremost interest in
statistical tests. Such nonuniform bounds for MLEs in general appear to have
no precedents in the existing literature (except that, as stated above, a special
case of nonuniform bounds for MLEs was recently treated in [20]).

The paper is organized as follows. The general setting of the problem is
described in Section 2. The key step of tight enough bracketing of the MLE
between two functions of the sum of independent random vectors is made in
Section 3. General uniform and nonuniform optimal-order bounds from [20] on
the convergence rate in the multivariate delta method are presented in Section 4.
In Section 5, we make the bracketing work by applying the general bounds in
the multivariate delta method. Yet, this leaves out the problem of bounding a
remainder, which is a probability of large deviations of the MLE from the true
value of the parameter. It is shown in Section 6 that under natural conditions
this remainder is exponentially fast decreasing (in n) and thus asymptotically
negligible as compared to the main term on the order of 1/

√
n. All these findings
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are summarized in Section 7, where the main result of this paper is presented,
along with corresponding discussion.

2. General setting

Let X,X1, X2, . . . be random variables (r.v.’s) mapping a measurable space
(Ω,A) to another measurable space (X ,B) and let (Pθ)θ∈Θ be a parametric
family of probability measures on (Ω,A) such that the r.v.’s X,X1, X2, . . . are
i.i.d. with respect to each of the probability measures Pθ with θ ∈ Θ; here the
parameter space Θ is assumed to be a subset of the real line R. As usual, let Eθ

denote the expectation with respect to the probability measure Pθ. Suppose that
for each θ ∈ Θ the distribution Pθ X

−1 of X has a density pθ with respect to a
measure μ on B. Because the extended real line [−∞,∞] is compact, for each n ∈
N and each point x = xn = (x1, . . . , xn) ∈ Xn the likelihood function Θ � θ �→
Lx(θ) :=

∏n
i=1 pθ(xi) has at least one generalized maximizer θ̂n(x) in the closure

of the set Θ in [−∞,∞], in the sense that supθ∈Θ Lx(θ) = lim supθ→θ̂n(x)
Lx(θ).

Picking, for each x = (x1, . . . , xn) ∈ Xn, any one of such generalized maximizers

θ̂n(x), one obtains a map Ω � ω �→ θ̂n(X(ω)), where X := Xn := (X1, . . . , Xn);

any such map will be denoted here by θ̂n(X) (or simply by θ̂n or θ̂) and referred
to as a maximum likelihood estimator (MLE) of θ. This is a somewhat more

general definition of the MLE than usual, and in general an MLE θ̂ will not have
to be a r.v.; that is, it can be non-measurable with respect to the sigma-algebra
A. However, to simplify the presentation, we shall still refer to sets of the form
{θ̂ ∈ J} := {ω ∈ Ω: θ̂n(X(ω)) ∈ J} for Borel sets J ⊆ Θ as events and write

Pθ(θ̂ ∈ J) implying that the latter expression may and should be understood as

either one of the expressions (Pθ)
∗(θ̂ ∈ J) or (Pθ)∗(θ̂ ∈ J), where ∗ and ∗ stand

for the corresponding outer and inner measures. Of course, when the map θ̂ is
measurable, then one can use the bona fide expressions of the mentioned form
Pθ(θ̂ ∈ J).

Let θ0 ∈ Θ be the “true” value of the unknown parameter θ, such that

[θ0 − δ, θ0 + δ] ⊆ Θ◦ (2.1)

for some real δ > 0, where Θ◦ denotes the interior of the subset Θ of R. For
brevity, let

P := Pθ0 and E := Eθ0 .

For x ∈ X and θ ∈ Θ, consider the log-likelihood

�x(θ) := ln pθ(x)

and assume the following:

(I) The set X>0 := {x ∈ X : pθ(x) > 0} is the same for all θ ∈ [θ0− δ, θ0+ δ],
and for each x ∈ X>0 the density pθ(x) and hence the log-likelihood �x(θ)
are thrice differentiable in θ at each point θ ∈ [θ0 − δ, θ0 + δ].
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(II) Standard regularity conditions hold so that E �′X(θ0) = 0 and E �′X(θ0)
2 =

−E �′′X(θ0) = I(θ0) ∈ (0,∞), where I(θ) is the Fisher information at θ.
(III) E |�′X(θ0)|3 + E |�′′X(θ0)|3 < ∞.
(IV) E sup

θ∈[θ0−δ,θ0+δ]

|�′′′X(θ)|3 < ∞.

Remark 2.1. The introduction of the set X>0 in condition (I) is needed even
for a careful definition of the log-likelihood. The expectation E �′X(θ0), men-
tioned in condition (II), may be understood as

∫
X>0

p′x(θ0)μ(dx), where px(θ) :=

pθ(x); similarly, for the other expectations mentioned in conditions (II)–(IV).
Of course, all the derivatives at this point are with respect to θ.

Concerning the “standard regularity conditions” mentioned in condition (II),
it will be enough to assume that P( ∂

∂θpθ(X) 	= 0) > 0 and for some measurable
function g : X>0 → [0,∞) such that

∫
X>0

g dμ < ∞ and all θ ∈ [θ0 − δ, θ0 + δ]

and x ∈ X>0 we have | ∂
∂θpθ(x)| + | ∂2

∂θ2 pθ(x)| � g(x); see e.g. [12, Lemma 5.3,
page 116] and [18, Lemma 2.4] (more general conditions can be given using [18,
Lemma 2.3]). Then I(θ) will also be continuous in θ ∈ [θ0 − δ, θ0 + δ].

Conditions (I)–(IV) are rather similar to regularity conditions used in re-
lated literature; see Remark 7.4 on page 1177 for details. It appears that these
conditions will be generally satisfied provided that �x(θ) is smooth enough in θ.

For instance, let us briefly consider the case when the family of densities (pθ)
is a location family, so that �x(θ) = λ(x− θ) for all (x, θ) ∈ X ×Θ = R

2, where
λ is a smooth enough function. If the densities pθ have power-like tails, then for
some positive real constants c+ and c− one has λ(x) ∼ −c± ln |x| as x → ±∞, in
which case typically |λ(k)(x)| ∼ −c±k!|x|−k ln |x| for k = 0, 1, . . . as x → ±∞.

So, conditions (III) and (IV) will hold, since |�(k)x (θ)| = |λ(k)(x−θ)|. If the tails of
the densities pθ are lighter than power-like tails, so that (say) λ(x) ∼ −c±|x|α
for some real α > 0 as x → ±∞, then typically |λ(k)(x)| ∼ −c±k!|x|α−k for
k = 0, 1, . . . as x → ±∞, so that conditions (III) and (IV) will again hold.

The case of a scale family is quite similar to that of a location family. Alter-
natively, the “scale” case can be reduced to the “location” one by logarithmic
rescaling in both x and θ.

At this point, consider also the case when the family of densities (pθ) is an ex-
ponential family, so that �x(θ) = w(θ)T (x)+d(θ) for some functions w, T , and d
and for all (x, θ) ∈ X×Θ = R

2, where the functions w and d are smooth enough,

with w′(θ0) 	= 0. Then �
(k)
x (θ) = w(k)(θ)T (x) + d(k)(θ). So, conditions (III) and

(IV) will hold in this case as well, since E |T (X)|α =
∫
X |T (x)|α exp{w(θ0)T (x)+

d(θ0)}μ(dx) for α > 0, |T (x)|α = O(ehT (x) + e−hT (x)) for any given real α > 0
and any given nonzero real h, and the conditions θ0 ∈ Θ◦ and w′(θ0) 	= 0 im-
ply that

∫
X exp{[w(θ0) + h]T (x) + d(θ0)}μ(dx) < ∞ for all real h close enough

to 0.

Let

�X(θ) :=
n∑

i=1

�Xi(θ) (2.2)

for θ ∈ Θ, the log-likelihood of the sample X = (X1, . . . , Xn).
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3. Tight bracketing of the MLE between two functions of the sum of
independent random vectors

Without loss of generality (w.l.o.g.), X>0 = X . Then on the event

G := {θ̂ ∈ [θ0 − δ, θ0 + δ]} (3.1)

(G for “good event”) one must have

0 = �′X(θ̂) =�′X(θ0) + (θ̂ − θ0) �
′′
X(θ0) +

(θ̂ − θ0)
2

2
�′′′X(θ0 + ξ(θ̂ − θ0)) (3.2)

=n
(
Z − (θ̂ − θ0)U +

(θ̂ − θ0)
2

2
R

)
(3.3)

for some ξ ∈ (0, 1), depending on the values of the Xi’s, where Z := 1
n

∑n
i=1 Zi,

U := 1
n

∑n
i=1 Ui, R := 1

n

∑n
i=1 Ri, R∗ := 1

n

∑n
i=1 R

∗
i ,

Zi := �′Xi
(θ0), Ui := −�′′Xi

(θ0),

Ri := �′′′Xi
(θ0 + ξ(θ̂ − θ0)) ∈ [−R∗

i , R
∗
i ], R∗

i := sup
θ∈[θ0−δ,θ0+δ]

|�′′′Xi
(θ)|. (3.4)

Note that the Zi’s are i.i.d. r.v.’s, and so are the Ui’s and the R∗
i ’s (but not

necessarily the Ri’s).

Equalities (3.2) and (3.3) provide a quadratic equation for θ̂. So, on the event
G one has

θ̂ − θ0 =
Z

U
if R = 0 & U 	= 0,

θ̂ − θ0 ∈ {d+, d−} if R 	= 0,

(3.5)

where

d± :=
U ±

√
U

2 − 2Z R

R
.

Letting

B := B1 ∪B2, where

B1 := {R 	= 0, θ̂ − θ0 = d+} ∪ {U � 0} and B2 := {U2 � 2|Z|R∗} (3.6)

(B for “bad event”), on the event B1 ∩ {U > 0} one has |θ̂ − θ0| = |d+| �
U/|R| � U/R∗, whence, by (3.1),

P(G ∩B1) � P
(
U � 0 or

U

R∗ � δ
)
= P

( U

R∗ � δ
)
= P

( n∑
i=1

(Ui − δR∗
i ) � 0

)
.

(3.7)
By definitions (3.4) and conditions (II), (III), and (IV),

EU1 > 0, E |Z1|3 < ∞, E |U1|3 < ∞, E(R∗
1)

3 < ∞, (3.8)
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and hence ER∗
1 < ∞. So, w.l.o.g. one may choose δ > 0 to be small enough so

that
δ1 := E(Ui − δR∗

i ) > 0.

Then, letting Yi := (Ui−δR∗
i )−E(Ui−δR∗

i ) and using (3.7), Markov’s inequality,
and a Rosenthal-type inequality (see e.g. [18, Theorem 1.5]), we have

P(G ∩B1) � P
( n∑

i=1

Yi � −nδ1

)
� 1

(nδ1)3
E

∣∣∣ n∑
i=1

Yi

∣∣∣3

� nE |Y1|3 +
√

8/π (nEY 2
1 )

3/2

(nδ1)3
� C

n3/2
, (3.9)

where C :=
(
E |Y1|3+

√
8/π (EY 2

1 )
3/2

)
/δ31 , which depends on δ1 > 0, EY 2

1 < ∞,
and E |Y1|3 < ∞ – but not on n.

Next, the occurrence of B2 implies the occurrence of at least one of the
following events: B21 := {U � 1

2 EU1}, B22 := {R∗ � 1 + ER∗
1}, or B23 :=

{|Z| � 1
8 (EU1)

2/(1 + ER∗
1)}. So,

P(B2) � P(B21) + P(B22) + P(B23). (3.10)

In view of (3.8), the bounding of each of the probabilities P(B21), P(B22),
P(B23) is quite similar to the bounding of P(G ∩ B1) in (3.9) – because
P(B21) = P(

∑n
i=1 Yi,21 � −nδ21), P(B22) = P(

∑n
i=1 Yi,22 � nδ22), and P(B23)=

P(
∑n

i=1 |Yi,23| � nδ23), where Yi,21 := Ui − EU1, δ21 := 1
2 EU1 > 0, Yi,22 :=

R∗
i −ER∗

1, δ22 := 1 > 0, Yi,23 := Zi−EZ1 = Zi, δ23 := 1
8 (EU1)

2/(1+ER∗
1) > 0.

Thus, by (3.6), (3.9), and (3.10),

P(G ∩B) � P(G ∩B1) + P(B2) � C

n3/2
, (3.11)

where C depends on the likelihood function, the measure μ, and the choice of
θ0 – but not on n.

On the other hand, if R 	= 0 and U > 0, then d− = 2Z

U+
√

U
2−2Z R

; here, the

condition U > 0 was used only to ensure that the denominator of the latter
ratio is nonzero. Hence, on the event G \B one has

U > 0 and θ̂ − θ0 =
2Z

U +

√
U

2 − 2Z R

∈ [T−, T+], (3.12)

where

T± :=
2Z

U +

√
U

2 ∓ 2|Z|R∗
; (3.13)

note that, when R = 0 and U > 0, the expression of θ̂ − θ0 in (3.12) is in
agreement with the corresponding expression in (3.5).

Now that the desired bracketing of θ̂ − θ0 between T− and T+ is obtained
in (3.12), we are ready to apply some of the mentioned general results of [20],
presented in the next section.
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4. General uniform and nonuniform bounds from [20] on the rate of
convergence to normality for smooth nonlinear functions of sums
of independent random vectors

The standard normal distribution function (d.f.) will be denoted by Φ. For any
R

d-valued random vector ζ, we use the norm notation

‖ζ‖p :=
(
E ‖ζ‖p

)1/p
for any real p � 1,

where ‖ · ‖ denotes the Euclidean norm on R
d.

Take any Borel-measurable functional f : Rd → R satisfying the following
smoothness condition: there exist ε ∈ (0,∞), Mε ∈ (0,∞), and a linear func-
tional L : Rd → R such that

|f(x)− L(x)| � Mε

2
‖x‖2 for all x ∈ R

d with ‖x‖ � ε. (4.1)

Thus, f(0) = 0 and L necessarily coincides with the first Fréchet derivative,
f ′(0), of the function f at 0. Moreover, for the smoothness condition (4.1) to
hold, it is enough that

Mε � M∗
ε := sup

{
1

‖x‖2

∣∣∣∣ d2dt2
f(x+ tx)

∣∣∣
t=0

∣∣∣∣ : x ∈ R
d, 0 < ‖x‖ � ε

}
; (4.2)

it is not necessary that f be twice differentiable at 0. E.g., if d = 1 and f(x) =
x

1+|x| for x ∈ R, then f(0) = 0, f ′(0) = 1, and f ′′(x) = − 2 sign x
(1+|x|)3 for real x 	= 0;

so, (4.1) holds for any real ε > 0 with L(x) ≡ x and Mε = 2, whereas f ′′(0)
does not exist.

Let V, V1, . . . , Vn be i.i.d. random vectors in R
d, with EV = 0 and

V :=
1

n

n∑
i=1

Vi.

Further let

σ̃ := ‖L(V )‖2, v3 := ‖V ‖3, and ς3 :=
‖L(V )‖3

σ̃
. (4.3)

Theorem 4.1. [20] Suppose that (4.1) holds, and that σ̃ > 0 and v3 < ∞. Then
for all z ∈ R ∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C√
n
, (4.4)

where C is a finite positive expression that depends only on the function f
(through (4.1)) and the moments σ̃, ς3, and v3. Moreover, for any ω ∈ (0,∞)
and for all

z ∈
(
0, ω

√
n

]
(4.5)
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one has

∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � Cω

z3
√
n
, (4.6)

where Cω is a finite positive expression that depends only on the function f
(through (4.1)), the moments σ̃, ς3, and v3, and also on ω.

The restriction (4.5) cannot be relaxed in general; see [20].
To simplify the presentation, in what follows let C stand for various finite

positive expressions whose values do not depend on n or z; that is, C will denote
various positive real constants – with respect to n and z. However, C may
depend on other attributes of the setting, including the model (Pθ)θ∈Θ under
consideration, the Pθ0 -distribution of X1, the measure μ, and the values of
parameters freely chosen in a given range (such as ω in (4.5) and ε in (4.1)).

5. Making the bracketing work: Applying the general bounds of [20]

Now let d = 3 and then let

D := {x=(x1, x2, x3)∈R
d =R

3 : x2+EU1 > 0, (x2+EU1)
2 > 2|x1| |x3+ER∗

1|}.

By (3.4) and conditions (II) and (IV), EU1 = I(θ0) ∈ (0,∞) and ER∗
1 ∈ [0,∞).

So, for some real ε > 0, the set D contains the ε-neighborhood of the origin 0
of R3.

Define functions f± : R3 → R by the formula

f±(x) = f±(x1, x2, x3) =
2x1

x2 + EU1 +
√
(x2 + EU1)2 ∓ 2|x1| |x3 + ER∗

1|
(5.1)

for x = (x1, x2, x3) ∈ D, and let f(x) := 0 if x ∈ R
3 \ D. Clearly, f±(0) = 0,

L±(x) := f ′
±(0)(x) =

x1

EU1
=

x1

I(θ0)
(5.2)

for x = (x1, x2, x3) ∈ R
3, and, in accordance with (4.2), the smoothness con-

dition (4.1) holds for some ε and Mε in (0,∞) – because, as was noted above,
EU1 = I(θ0) ∈ (0,∞) and ER∗

1 ∈ [0,∞), and hence the denominator of the
ratio in (5.1) is bounded away from 0 for x = (x1, x2, x3) in a neighborhood
of 0.

Next, let
Vi := (Zi, Ui − EUi, R

∗
i − ER∗

i ) (5.3)

for i = 1, . . . , n, with Zi, Ui, R
∗
i as defined in (3.4). Then, by (4.3), (5.2), and

condition (II), for f = f±,

σ̃ =

√
EZ2

1

I(θ0)2
=

1√
I(θ0)

> 0 (5.4)
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and v33 = E ‖V ‖3 < ∞ by conditions (III) and (IV). So, all the conditions of
Theorem 4.1 are satisfied for f = f±.

Moreover, by (3.13), (5.1), and (5.3),

T± = f±(V )

on the event G \ B. So, by the inclusion relation in (3.12) (which holds on
the event G \ B = (Gc ∪ B)c, where c denotes the complement) and (5.4),
inequality (4.4) in Theorem 4.1 implies

P
(√

nI(θ0) (θ̂ − θ0) � z
)

� P
(√

nI(θ0) f−(V ) � z
)
+ P(Gc ∪B)

� Φ(z) +
C√
n
+ P(Gc ∪B)

and, quite similarly,

P
(√

nI(θ0) (θ̂ − θ0) � z
)

� P
(√

nI(θ0) f+(V ) � z
)
− P(Gc ∪B)

� Φ(z)− C√
n
− P(Gc ∪B),

for all real z. Note that P(Gc ∪B) = P(Gc) + P(G∩B). It follows now by (3.1)
and (3.11) that

∣∣∣P(√
nI(θ0) (θ̂ − θ0) � z

)
− Φ(z)

∣∣∣ � C√
n
+ P(|θ̂ − θ0| > δ) (5.5)

for all real z. Quite similarly, but using (4.6) instead of (4.4), one has

∣∣∣P(√
nI(θ0) (θ̂ − θ0) � z

)
− Φ(z)

∣∣∣ � C

z3
√
n
+ P(|θ̂ − θ0| > δ) (5.6)

for z as in (4.5).

Typically, given rather standard regularity conditions, the remainder term
P(|θ̂ − θ0| > δ) decreases exponentially fast in n and thus is negligible as com-
pared with the “error” term C√

n
, and even with the “error” term C

z3
√
n
– under

condition (4.5). Some details on this can be found in the following section.

6. Exponentially small bounds on the remainder term
P(|θ̂ − θ0| > δ)

6.1. Bounding the remainder: Log-concave case

In this subsection, suppose that the log-likelihood �x(θ) is concave in θ ∈ Θ, for
each x ∈ X . By condition (II), E �′′X(θ0) 	= 0. Hence, P

(
pθ0+h(X) 	= pθ0(X)

)
=
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P
(
�X(θ0 + h) 	= �X(θ0)

)
> 0 for some h ∈ (0, δ). The concavity of �x(θ) in θ

implies that of �X(θ). So, if θ̂ > θ0 + δ, then �X(θ0 + h) � �X(θ0). Therefore,

P(θ̂ > θ0 + δ) � P
(
�X(θ0 + h) � �X(θ0)

)
= P

( n∏
i=1

√
pθ0+h(Xi)

pθ0(Xi)
� 1

)

� E
n∏

i=1

√
pθ0+h(Xi)

pθ0(Xi)
= λn

+,

where

λ+ := E

√
pθ0+h(X)

pθ0(X)
<

√
E
pθ0+h(X)

pθ0(X)
=

√
Eθ0

pθ0+h(X)

pθ0(X)
= 1;

the inequality here is an instance of a strict version of the Cauchy–Schwarz
inequality, which holds because, as was noted, P

(
pθ0+h(X) 	= pθ0(X)

)
> 0.

Quite similarly, P(θ̂ < θ0 − δ) � λn
− for some λ− ∈ [0, 1), and so,

P(|θ̂ − θ0| > δ) � 2λn (6.1)

for λ := max(λ+, λ−) ∈ [0, 1).
In particular, the condition of the concavity of the log-likelihood �x(θ) =

ln pθ(x) in θ is fulfilled in the important case when the densities pθ form an
exponential family with θ as the natural parameter, so that

pθ(x) = eθg(x)−ψ(θ)

for some function ψ : Θ → R and all θ ∈ Θ and x ∈ X . Here, g : X → R

is a measurable function. Then necessarily ψ(θ) = ln
∫
X eθg(x)μ(dx), which is

convex in θ – because any mixture of log-convex functions is log-convex, as
is well known – see e.g. [8, page 66, Theorem 5.4C]. So, �x(θ) = ln pθ(x) =
θg(x) − ψ(θ) is indeed concave in θ. In the case of multivariate exponential
families, an exponentially decreasing bound of a form more complicated than
that of the bound in (6.1) was given in [11].

6.2. Bounding the remainder: General case

Upper bounds on the large-deviation probability P(|θ̂ − θ0| > δ) that are ex-
ponentially decreasing in n without the assumption of the concavity of the
log-likelihood function were presented e.g. in [22, 21, 15, 5, 13]. However, the
parameter space Θ was assumed in [22, 21, 5] to be bounded, whereas in [13] the
distributions Pθ were assumed to be subgaussian (cf. Theorems 2.1, 2.2, and 3.3
in [13]). Conditions in [15] appear to be difficult to verify, including the strict
positivity of the infimum of the rate function, needed for an actual exponential
decrease.
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Related is the work [7], containing a result on so-called moderate deviation
probabilities for MLEs, which decrease slower than exponentially but still faster
than any powers. So, such a result would be enough for our conclusions in
Theorem 7.1 in the next section (cf. Remark 7.2 there), if it were not assumed
in [7] (as in [22, 21, 5]) that Θ is bounded.

Here we modify the method of [5] to get rid of the condition that Θ is
bounded. Consider the (squared) Hellinger distance

H(θ, θ0) :=

∫
X

(√
pθ −

√
pθ0

)2
dμ (6.2)

between the probability measures Pθ and Pθ0 .
Assume now the following conditions:

(B) The set Θ is a (possibly infinite) interval, and the Fisher information I(θ)
is well defined and satisfies the boundedness condition

I(θ) � c1 + c2|θ − θ0|α (6.3)

for some positive real constants c1, c2, α and all θ ∈ Θ. (If a point θ in Θ is
an endpoint of the interval Θ, then I(θ) is naturally understood in terms
of the corresponding one-sided derivative of pθ(x) in θ.)

(D0) For each bounded neighborhood U of θ0,

H(θ, θ0) >	 (θ − θ0)
2 (6.4)

over all θ ∈ U .
(D1) For some real constant γ > 0 and some bounded neighborhood V of θ0,

J(θ, θ0) := 1− 1
2 H(θ, θ0) =

∫
X

√
pθ
√
pθ0 dμ <	 |θ − θ0|−γ (6.5)

over all θ ∈ Θ \ V .

Here and in the sequel, for any two expressions E1 > 0 and E2 � 0 whose val-
ues depend on some variables, the relation E1 >	 E2 and its equivalent E2 <	 E1

mean that sup(E2/E1) < ∞, where the supremum is taken over the correspond-
ing specified range of values of the variables.

Conditions (D0) and (D1) may be referred to as distinguishability conditions:
(D0) means that the probability measures Pθ and Pθ0 are not too close to each
other for θ in a punctured neighborhood of θ0 – whereas (D1) implies that for
θ far away from θ0, the probability measures Pθ and Pθ0 are almost mutually
singular, and thus, easily distinguishable, at least in principle.

Remark 6.1. In the particular case when the parameter space Θ is compact
(or just bounded), condition (D1) trivially holds. Moreover, as shown in [5,
Section 31], if Θ is compact and the Fisher information I(θ) is continuous in
θ ∈ Θ and strictly positive for θ ∈ Θ, then (6.4) holds over all θ ∈ Θ. So,
condition (D0) holds (whether the set Θ is bounded or not) whenever the Fisher
information I(·) is continuous and strictly positive on Θ.
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However, since H(θ, θ0) is always bounded from above by 2, it is clear that
condition (6.4) cannot possibly hold over all θ ∈ Θ if the parameter space Θ is
unbounded. In such a case, we need to complement condition (D0) by condition
(D1), which latter appears to be natural, and it is indeed commonly satisfied.
In particular, conditions (D0) and (D1) (as well as regularity conditions (I)–
(IV)) hold if pθ is the density belonging to any one of the following families of
probability distributions:

(a) N(θ, σ2) – with σ > 0 known, Θ = R, H(θ, θ0) = 2− 2 exp
{
− (θ−θ0)

2

8σ2

}
;

(b) N(μ, θ2) – with μ > 0 known, Θ = (0,∞), H(θ, θ0) = 2− 2
√

2θθ0
θ2+θ2

0
;

(c) Exp(θ) – with Θ = (0,∞), H(θ, θ0) = 2− 4
√
θθ0

θ+θ0
;

(d) more generally, Weibull distributions W(k, θ) – with

pθ(x) ≡ k
θ (

x
θ )

k−1e−(x/θ)kI{x > 0}, k > 0 known, Θ = (0,∞), H(θ, θ0) =

2− 4(θθ0)
k/2

θk+θk
0

;

(e) Gamma(θ, β) – with scale parameter β > 0 known, Θ = (0,∞), H(θ, θ0) =

2− 2Γ((θ+θ0)/2)√
Γ(θ)Γ(θ0)

;

(f) Gamma(α, θ) – with shape parameter α > 0 known, Θ = (0,∞), H(θ, θ0) =

2− 21+α(θθ0)
α/2

(θ+θ0)α
;

(g) Poisson(θ) – with Θ = (0,∞), H(θ, θ0) = 2− 2e−(
√
θ−

√
θ0)

2/2;
(h) Beta(sθ, s(1− θ)) – with s > 0 known, Θ = (0, 1), H(θ, θ0) =

2− 2B( 1
2 s(θ+θ0),

1
2 s(2−θ−θ0))√

B(sθ,s−sθ)B(sθ0,s−sθ0)
, where B(·, ·) is the Beta function;

(i) Beta(αθ, βθ) – with α, β > 0 known, Θ = (0,∞), H(θ, θ0) =

2− 2B( 1
2α(θ+θ0),

1
2β(θ+θ0))√

B(αθ,βθ)B(αθ0,βθ0)
(in this case, by Stirling’s formula, condition (D1)

holds with γ = 1/4).

Item (a) above, concerning the normal location family, can be quite broadly
generalized:

Proposition 6.2. Suppose that (pθ)θ∈Θ is a location family over R, so that
pθ(x) = p(x− θ) for all x ∈ R and θ ∈ Θ, where p is a pdf (with respect to the
Lebesgue measure over R). Suppose also that

p(u) <	 (1 + |u|)−α (6.6)

for some real α > 1 and all real u. Then condition (D1) holds.

Note that the restriction α > 1, together with (6.6), implies the integrability
of the nonnegative function p.

Proof of Proposition 6.2. Without loss of generality, θ0 = −θ and θ > 0, so that
θ − θ0 = 2θ > 0 and

J(θ, θ0) =

∫
R

√
p(x+ θ)

√
p(x− θ) dx =

∫
|x|�2θ

· · · +

∫
|x|<2θ

· · · . (6.7)
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Since |x| � 2θ implies |x± θ| >	 |x|, condition (6.6) yields

∫
|x|�2θ

· · · <	
∫
|x|�2θ

|x|−α dx <	 θ1−α. (6.8)

Since 0 � x < 2θ implies x+ θ � θ and −θ � x− θ < θ, condition (6.6) yields

∫ 2θ

0

. . . <	 θ−α/2

∫ θ

−θ

(1 + |u|)−α/2 du <	 θ−α/2 θ0∨(1−α/2) ln θ (6.9)

for (say) θ � 2; the factor ln θ is actually needed here only in the case when

α = 2. The integral
∫ 0

−2θ
· · · can be bounded quite similarly. So,

∫
|x|<2θ

. . . <	 θ−α/2 θ0∨(1−α/2) ln θ (6.10)

for θ � 2. Thus, (D1) holds for any γ ∈ (0, γα), where γα := α
2 −

(
0∨ (1− α

2 )
)
=

α
2 ∧ (α− 1) > 0.

The problem concerning the possibility of a non-compact parameter space Θ
may be illustrated by the following simple example:

Example 6.3. For θ ∈ Θ = (−1,∞), let pθ be the density (with respect to
the Lebesgue measure on R) of the normal distribution with mean μ(θ) := θ

1+θ2

and variance σ2(θ) := (1+θ)3−θ
1+θ3 , and let θ0 = 0, so that θ0 ∈ Θ◦ = Θ. Then for

any two distinct θ and τ in Θ the equality μ(τ) = μ(θ) implies θ /∈ {0, 1} and
τ = 1/θ > 0, whence σ2(τ) 	= σ2(θ). So, pτ 	= pθ for any two distinct θ and τ in
Θ. However, μ(θ) −→

θ→∞
0 = μ(0) and σ2(θ) −→

θ→∞
1 = σ2(0), so that p0 is almost

indistinguishable from pθ for large θ. More specifically, it is not hard to check
that here

J(θ, θ0) =

∫
R

√
pθ(x)

√
p0(x) dx =

√
2σ(θ)

σ2(θ) + 1
exp

(
− μ(θ)2

4σ2(θ) + 4

)
−→
θ→∞

1,

so that this situation is excluded by condition (6.5).

Now we are well prepared to state the main result of this subsection:

Proposition 6.4. Under conditions (B), (D0), and (D1),

P(|θ̂ − θ0| > δ) � c λn (6.11)

for some real constants c > 0 and λ ∈ [0, 1) (depending on γ, c0, α, c1, c2) and
all natural n; cf. (6.1).

Inequality (6.11) is similar to inequality (6) in [5, Section 33.2, Theorem 3],
with the following main differences.
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(i) It is assumed in [5] that Θ is compact, in addition to the assumption that
I(θ) is continuous in θ ∈ Θ and strictly positive for θ ∈ Θ. Under these
assumptions, condition (D0) is, not assumed, but derived in [5]. As noted
above, if the parameter space Θ is compact, then condition (D1) is trivial.

(ii) As we do not assume that Θ is compact (or even bounded), we need to
control the behavior of log-likelihood �X(θ) for θ far from θ0. This is done
using condition (D1).

(iii) In [5], instead of condition (B) above, it is assumed that the Fisher in-
formation I(θ) is just bounded over all θ ∈ Θ. However, mainly following
the lines of proof in [5], one can see that the more general condition (B)
suffices, given conditions (D0) and (D1).

For the readers’ convenience here is

Proof of Proposition 6.4. Let

Z(u) :=
pθ0+u(X)

pθ0(X)
=

n∏
i=1

pθ0+u(Xi)

pθ0(Xi)
= exp{�X(θ0 + u)− �X(θ0)}, (6.12)

where pθ(X) :=
∏n

i=1 pθ(Xi) = exp �X(θ) and �X is the log-likelihood function,
as defined in (2.2); here and subsequently in this proof, u is a real number such
that θ0 + u ∈ Θ.

By conditions (D1) and (D0), there exist real C1 > 0,

u∗ > C
1/γ
1 ∨ δ, (6.13)

and C0 > 0 such that

EZ(u)1/2 = Eθ0 Z(u)1/2 = J(θ0, θ0 + u)n � Cn
1 u

−nγ if |u| > u∗ (6.14)

and

EZ(u)1/2 =
(
1− 1

2 H(θ0, θ0 + u)
)n � (1− u2/C0)

n � e−nu2/C0 if |u| � u∗.
(6.15)

Note also that EZ(u) = 1. So, introducing

P (u) := Z(u)3/4, (6.16)

by the Cauchy–Schwarz inequality one has

EP (u) �
√

EZ(u) EZ(u)1/2 =
√
EZ(u)1/2. (6.17)

Further, P ′(u) = 3
4 �

′
X(θ0 + u)Z(u)3/4, whence, again by the Cauchy–Schwarz

inequality,

E |P ′(u)| � 3
4

√
E �′X(θ0 + u)2Z(u) EZ(u)1/2

= 3
4

√
Eθ0+u �′X(θ0 + u)2 EZ(u)1/2

= 3
4

√
nI(θ0 + u) EZ(u)1/2.

(6.18)
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For u > δ, one has P (u) � P (δ) +
∫
Θ∩(δ,∞)

|P ′(t)| dt. So, by (6.17), (6.15),

(6.18), (6.3), (6.13), and (6.14),

E sup
u>δ

P (u) � e−nδ2/(2C0) + I0 + I1 = λn
∗ + I0 + I1,

where λ∗ := e−δ2/(2C0) ∈ (0, 1),

I0 :=

∫ u∗

δ

√
n(c1 + c2uα) e−nu2/(2C0) du <	

∫ ∞

δ

√
nuα e−nu2/(2C0) du <	 λn

0

for any fixed λ0 ∈ (λ∗, 1), and

I1 :=

∫ ∞

u∗

√
n(c1 + c2uα)Cn

1 u
−nγ du <	 λ

n/2
1

for any fixed λ1 ∈ (C1/u
γ
∗ , 1) – note that the latter interval is nonempty, in view

of (6.13). Thus, E supu>δ P (u) <	 λn for λ := λ0 ∨
√
λ1 ∈ (0, 1). Quite similarly,

E supu<−δ P (u) <	 λn and hence E sup|u|>δ P (u) <	 λn. So,

P(|θ̂−θ0| > δ) � P( sup
|u|>δ

Z(u) � Z(0)) = P( sup
|u|>δ

P (u) � 1) � E sup
|u|>δ

P (u) <	 λn,

which completes the proof of Proposition 6.4.

7. Conclusion

Inequalities (5.5) and (5.6) together with (6.1) and Proposition 6.4 yield

Theorem 7.1. Suppose that conditions (I)–(IV) hold. Suppose also that either
(i) the log-likelihood �x(θ) is concave in θ ∈ Θ, for each x ∈ X , or (ii) conditions
(B), (D0), and (D1) hold. Then∣∣∣P(√

nI(θ0) (θ̂ − θ0) � z
)
− Φ(z)

∣∣∣ � C√
n

(7.1)

for all real z, and∣∣∣P(√
nI(θ0) (θ̂ − θ0) � z

)
− Φ(z)

∣∣∣ � C

z3
√
n

(7.2)

for z as in (4.5). Here, as before, each of the two instances of the symbol C
stands for a finite positive expression whose values do not depend on n or z, in
accordance with the last paragraph of Section 4.

Remark 7.2. It should be clear that the conditions assumed in the second
sentence of Theorem 7.1 can be replaced by any other conditions that imply
(6.11) for some real constants c > 0 and λ ∈ [0, 1) not depending on n. Actu-
ally, a much weaker bound, of the form c/n2, instead of the exponentially fast
decreasing upper bound cλn in (6.11), will already suffice.



1176 I. Pinelis

Remark 7.3. It is shown in Proposition A.1 of the arXiv version [19] of this
paper that, under general regularity conditions, (1.1) (or even a relaxed ver-
sion of it) implies that the family of densities (pθ) is a one-parameter expo-
nential one; thus, condition (1.1) is quite restrictive. This allows one to give
any number of examples where Theorem 7.1 of the present paper is appli-
cable, whereas [20, Theorem 3.16] is not. Indeed, taking almost any smooth
enough location family (cf. Remarks 2.1 and 6.1 and Proposition 6.2), one has
an example where Theorem 7.1 of the present paper is applicable, whereas [20,
Theorem 3.16] is not. For instance, one may take the Cauchy location fam-
ily, with pθ(x) = 1

π
1

1+(x−θ)2 , or the location family defined by the formula

pθ(x) = 1
2Γ(5/4) exp{−(x − θ)4}, for all real x and θ. (One may note that,

whereas the tails in the first example here, of the Cauchy family, are very heavy,
they are very light in the second example.) An additional advantage of Theo-
rem 7.1 of the present paper over [20, Theorem 3.16] is that now one does not
have to check a special, restrictive condition of the form (1.1) even when it
holds.

Theorem 7.1 can be extended to the more general case of M -estimators. In-
deed, the condition that pθ is a pdf for θ 	= θ0 is used in our proofs only in
order to state that Eθ �

′
X(θ) = 0 and Eθ �

′
X(θ)2 = −Eθ �

′′
X(θ) = I(θ) ∈ (0,∞).

In the case of M -estimators, the corresponding conditions will have to be just
assumed, with some other expressions in place of the Fisher information I(θ),
as it is done e.g. in [16, 17], where uniform bounds of optimal order O(1/

√
n)

for M -estimators were obtained; M -estimators were referred to as minimum
contrast estimates in [14, 16, 17]. We have chosen to restrict the considera-
tion here to MLEs in order not to obscure the novelty elements in our re-
sult.

The most significant novelty in our Theorem 7.1, as compared with the results
of [14, 16, 17], is that, in addition to the uniform bound in (7.1), inequality (7.2)
in Theorem 7.1 also provides a nonuniform Berry–Esseen-type bound for MLEs
in general, which latter appears to be the first such result in the literature –
except for the already mentioned special case considered recently in [20]. On the
other hand, paper [17] treats the case of a multidimensional parameter θ. The
uniform bound in [14] was of the form O(

√
lnn/

√
n), rather than of the optimal

order O(1/
√
n).

Another notable distinction is that condition [14, (1)] (the same as the cor-
responding conditions on page 73 in [16] and on page 173 in [17]) effectively
reduces the consideration to the case when the parameter space Θ is compact
in [−∞,∞]. This obviates the need in a condition such as (D1), which is there
to control the behavior of the likelihood �X(θ) for large |θ|. However, as pointed
out in [14, page 75] concerning the main result there, the nonconstructive com-
pactification condition used in [14, 16, 17] “gives no method for determining
[the] value [of the constant in the Berry–Esseen-type bound] for a given family
of probability measures.”

The problem of controlling the likelihood over far-away zones of a non-
compact parameter space Θ was illustrated in Example 6.3, where the “bad” sit-
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uation was excluded by condition (6.5). That same situation – with fθ = − ln pθ
for θ ∈ Θ = [−1,∞] and μ(∞) := limθ→∞ μ(θ) = 0 = μ(0) and variance
σ2(∞) := limθ→∞ σ2(θ) = 1 = σ2(0) – was also excluded by the mentioned
compactification condition in [14, 16, 17].

As was pointed out, the method of the present paper is based on the general
Berry–Esseen bounds for the multivariate delta method obtained in [20], which
were apllied here via the bracketing argument delineated in Section 3. As such,
this method is quite different from the methods in [14, 16, 17], specialized to
deal with MLEs. Partly because of this difference in the methods, there are
many differences between the conditions in [14, 16, 17] and those in the present
paper. Most of these differences – apart from the ones discussed above – are
rather minor. Since the result of [16] is apparently the closest to ours in the
literature, let us further discuss the regularity conditions in [16], in comparison
with ours, in some detail:

Remark 7.4. Condition (I) in the present paper can be replaced by the condi-
tion that pθ > 0 everywhere on X . The latter condition is necessary in order for
�x(θ) = ln pθ(x) to be defined for all x ∈ X ; cf. the first paragraph on page 83
in [16].

Our condition (II) follows, by Remark 2.1, from regularity conditions (iv),
(v)(a), (vi) on pages 83–84 in [16] – for fθ := −�θ.

Next, condition (III) follows from [16, (vi)]. Here and in the rest of this
remark, the lower-case Roman numerals and letters in parentheses refer to the
regularity conditions on pages 83–84 in [16] – again for fθ := −�θ.

Condition (IV) is, in main, a bit stronger than [16, (viii)]. Of course, condition
(IV) can be relaxed, for the price of making it more complicated.

By Remark 6.1, our condition (D0) will hold if the Fisher information I(·)
is continuous and strictly positive on Θ, for which conditions (ix) and (v)(a),
respectively, in [16] will be more than enough.

Next, our condition (D1), to control the behavior of the likelihood �X(θ) for
large |θ|, was already discussed at length, versus the compactification condition
used in [14, 16, 17].

In the case when Θ is compact, for our condition (B) to hold, either one of
regularity conditions (vi)(a) or (vi)(b) in [16] will be more than enough. More
generally, condition (B) together with condition (D1) replace the just mentioned
compactification condition in [14, 16, 17].

In the present paper, no explicit analogues of regularity conditions (i), (ii),
(iii), (vii) of [16] are imposed.

So, quite predictably, neither our conditions imply those in [14, 16, 17], nor
vice versa. However, our conditions appear to be a bit simpler and more explicit
overall than those in [14, 16, 17]. It should also be mentioned that in [14, 16]
both the relevant conditions and the corresponding results are stated uniformly
over compact subsets of Θ. Of course, a similar modification of our conditions
and results can be done.
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