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Abstract: We investigate properties of a hybrid bootstrap procedure for
general, strictly stationary sequences, called the autoregressive-aided block
bootstrap which combines a parametric autoregressive bootstrap with a
nonparametric moving block bootstrap. The autoregressive-aided block boot-
strap consists of two main steps, namely an autoregressive model fit and
an ensuing (moving) block resampling of residuals. The linear parametric
model-fit prewhitenes the time series so that the dependence structure of
the remaining residuals gets closer to that of a white noise sequence, while
the moving block bootstrap applied to these residuals captures nonlinear
features that are not taken into account by the linear autoregressive fit. We
establish validity of the autoregressive-aided block bootstrap for the im-
portant class of statistics known as generalized means which includes many
commonly used statistics in time series analysis as special cases. Numeri-
cal investigations show that the hybrid bootstrap procedure considered in
this paper performs quite well, it behaves as good as or it outperforms in
many cases the ordinary moving block bootstrap and it is robust against
mis-specifications of the autoregressive order, a substantial advantage over
the autoregressive bootstrap.
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1. Introduction

As in many areas of statistics, also for bootstrapping time series, different non-
parametric as well as parametric procedures have been proposed in the lit-
erature. On the nonparametric side one important approach is the moving
block bootstrap (MBB) which is a general nonparametric resampling scheme
for strictly stationary time series. It has been actively investigated since its in-
troduction by [26] and [32]. See among others, [38, 27, 42, 33, 8, 10, 28, 35].
The MBB is a simple and important extension of Efron’s i.i.d. bootstrap (see
[15]) to the case of dependent observations without assuming a model structure
for the underlying stochastic process. Therefore, the advantage of the MBB
is its generality, i.e. the fact that it can be applied to complicated situations
where parametric modeling does not provide an appropriate description of the
stochastic mechanism generating the time series. Based on the idea of resam-
pling blocks of observations rather than single observations, several variants of
the MBB have been introduced and investigated in the literature; among them
the non-overlapping block bootstrap (see [12]), the circular block bootstrap (see
[38]), the matched block bootstrap (see [13]), and the tapered block bootstrap
(see [36]). For an extensive account we refer to the monograph by [29].

On the other hand, parametric bootstrap procedures for time series, like the
autoregressive bootstrap, have been also proposed and investigated by many
researchers. The idea is to generate bootstrap pseudo-time series by reducing
the time series at hand via a parametric model fit to a white noise sequence and
then to use the fitted parametric model structure together with Efron’s i.i.d.
bootstrap applied to the estimated white noise innovations. See among others
[18, 16, 4], and [22]. Clearly, the advantage of such a parametric bootstrap
approach is its efficiency which relies of course on the assumption that the
underlying process follows such a parametric model structure and that this
structure has been (at least asymptotically) correctly specified for the purposes
of the bootstrap.

The idea to combine the generality of nonparametric methods with the effi-
ciency of parametric procedures in a hybrid bootstrap approach for time series
is quite attractive and not new; see for instance, [14, 25] and [24]. In partic-
ular, [14] considered a hybrid or two-step bootstrap approach which is called
in the following the autoregressive-aided block bootstrap (ARAB). The basic
idea of the ARAB is to prewhiten the time series by using an autoregressive
model fit, and then to apply a block bootstrap procedure to the estimated se-
ries of (centered) residuals instead of an i.i.d. resampling as this is the case
of the pure autoregressive bootstrap. This procedure is motivated by the fact
that while the autoregressive fit succeeds in mimicking the linear dependence
structure of the process, the nonparametric resampling of the residuals captures
model mis-specifications or nonlinear dependence features of the process that
are not appropriately mimicked by the autoregressive fit. Although this seems
to be a promising approach for bootstrapping a time series, little is known
about the asymptotic properties of such a procedure, i.e. the class of statis-
tics and processes for which it is valid and how it performs compared with
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the pure MBB or the pure AR bootstrap. The aim of this paper is to fill this
gap.

We first investigate the asymptotic properties of the ARAB procedure and
show, under rather general assumptions on the underlying stochastic process, its
validity for the wide and important class of so-called generalized mean statistics.
This class includes many statistics commonly used in time series analysis, like
autocovariances, autocorrelations or partial autocorrelations, as special cases.
Notice that the proof of the corresponding main result of this paper (see Theo-
rem 1) is quite involved since it requires a proper truncation of infinite moving
average representations that appropriately takes into account the block struc-
ture of the pseudo-innovations. We also investigate by means of simulations the
finite sample behavior of the ARAB procedure and compare its performance
with that of the pure block bootstrap and of the pure autoregressive boot-
strap. Our numerical results show that the ARAB is able to outperform both
bootstrap methods in several situations. More precisely, for all different simu-
lated scenarios considered, only the ARAB performs equally well, while the pure
block and the pure AR-sieve bootstrap, both, show a somehow changing behav-
ior. In particular, the ARAB is able to improve the performance of the moving
block bootstrap in several situations where the gains of such an improvement
depend on the particular simulation set-up considered. Moreover, and inter-
estingly enough, even for model scenarios that correspond to highly nonlinear
models, the ARAB was not outperformed by the moving block bootstrap. This
indicates that the ARAB is very well suited for resampling stationary time series
without a strong indication of some parametric model structure. Furthermore,
using the ARAB seems to be more favorable than using the pure moving block
or the pure autoregressive bootstrap, especially when doubts are raised about
the assumption of a pure linear autoregressive model structure.

The paper is organized as follows. Section 2 introduces some technical prelim-
inaries and describes the ARAB procedure in detail. Its connection to already
established bootstrap proposals is also briefly discussed. Section 3 states the
main theorem of this paper which establishes validity of the ARAB for the class
of generalized means under mild assumptions on the underlying stochastic pro-
cess. Results of a simulation study comparing the performance of the different
bootstrap methods considered are reported in Section 4 while our conclusions
are given in Section 5. Technical details and proofs are deferred to Section 6.

2. AR-aided block bootstrap

2.1. Preliminaries and assumptions

For the time series X1, X2, . . . , Xn we assume that it is a stretch of a process
X = {Xt, t ∈ Z} which fulfills the following assumption.

Assumption 1. Let X = {Xt : t ∈ Z} be a zero mean strictly stationary
process with E|Xt|4+δ < ∞ for some δ > 0. The autocovariance function
γX : Z → R, where γX(h) = EXtXt+h, is assumed to fulfill γX(0) > 0 and∑

h∈Z |γX(h)| < ∞.
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Notice that absolute summability of the autocovariance function assures that
a continuous and bounded spectral density fX of the underlying processX exists
and is given by fX(ω) = (2π)−1

∑
h∈Z γX(h)e−ihω, ω ∈ (−π, π].

In the following we consider the class of statistics known as generalized means,
see [26], which includes many statistics used in time series analysis as special
cases. Among others, the class of generalized means include versions of the
sample mean, sample autocorrelations, sample autocovariances, sample partial
autocorrelations and Yule-Walker estimators. Given observations X1, . . . , Xn

stemming from X, a generalized mean statistic Tn is given by

Tn = f

(
1

n−m+ 1

n−m+1∑
t=1

g(Xt, . . . , Xt+m−1)

)
, (1)

where g = (g1, . . . , gq)
′ and g : Rm → Rq for some m ∈ {1, . . . , n} and f :

Rq → Rq̃, where q, q̃ ≥ 1. We may think of Tn as an estimator of a function of
the parameter θ = E(g(X1, X2, . . . , Xm)) associated with the process X. Our
goal is to investigate the capabilities of the ARAB to estimate the distribution
of the statistic Tn. Toward this goal we assume that Tn satisfies the following
assumption.

Assumption 2. It holds that

1√
n−m+ 1

n−m+1∑
t=1

(g(Xt, . . . , Xt+m−1)− θ)
D→n→∞ N (0q,Σq×q) , (2)

where

Σq×q = lim
n→∞

(n−m+ 1)−1 · V ar

(
n−m+1∑

t=1

g(Xt, . . . , Xt−m+1)

)

=

( ∞∑
k=−∞

Cov(gu(X0, . . . , Xm−1), gv(Xk, . . . , Xk+m−1))

)
u,v=1,...,q

.

Clearly, if the functions g and f fulfill certain smoothness conditions (cf.
Assumption 3), then the weak convergence (2) and the delta-method yield

√
n (Tn − f(θ))

D→n→∞ f ′(θ) N (0q,Σq×q) , (3)

where f ′(·) := Df(·) is the Jacobi matrix of f . The following assumption spec-
ifies the conditions imposed on the functions f and g.

Assumption 3. The function f = (f1, . . . , fq̃) has continuous partial deriva-

tives y �→
∑q

i=1
∂fu
∂xi

∣∣
x=y

yi, for all u = 1, . . . , q̃, i = 1, . . . ,m, for y in a neigh-

borhood of θ and the differentials at θ, y �→
∑q

i=1
∂fu
∂xi

∣∣
x=θ

yi, for all u = 1, . . . , q̃,
do not vanish. Further, the function g has continuous partial derivatives of order
h, where h is an integer greater than or equal to one. Furthermore,∣∣∣∣ ∂hgi(x)

∂xi1 . . . ∂xih

∣∣
x=y

− ∂hgi(x)

∂xi1 . . . ∂xih

∣∣
x=z

∣∣∣∣ ≤ Cu‖y − z‖, (4)
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where u = 1, . . . , q; 1 ≤ i1, . . . , ih ≤ m, Cu is some suitable constant and ‖ · ‖
denotes the Euclidean norm and x, y, z ∈ Rm.

Assumptions 2 and 3 guarantee the asymptotic normality of
√
n−m+ 1(Tn−

f(θ)) which is a minimal requirement and it is satisfied if the underlying process
X fulfills a variety of weak dependence conditions. Assumption 3 is in line with
the assumptions imposed in [19] and [9] for dealing with this type of statistics
in the context of the block bootstrap.

The next assumption requires the
√
n-consistency of a fixed number of sample

autocovariances γ̂(h) = n−1
∑n−|h|

t=1 (Xt −Xn)(Xt+|h| −Xn), 0 ≤ h ≤ p, where

Xn = n−1
∑n

t=1 Xt denotes the sample mean and it is also satisfied for a wide
range of weakly dependent stationary processes.

Assumption 4. The autocovariance estimator γ̂(h) satisfies for every fixed
p ∈ N,

√
n(γ̂X(h)− γX(h)) = OP (1) for h = 0, . . . , p. (5)

2.2. The AR-aided block bootstrap algorithm

We describe in this section the ARAB procedure. This bootstrap procedure gen-
erates replicates T ∗

n of the statistic Tn which are obtained by replacing in (1)
the observed time series X1, X2, . . . , Xn by the pseudo-time series X∗

1 , . . . , X
∗
n

generated by the following algorithm. Notice that in this algorithm the positive
integer l denotes the block length while b the total number of blocks. Further-
more, we assume that bl ≥ n+ p.

Step 1: Fit an autoregressive process of order p to the time series X1, . . . , Xn

and denote by â1(p), . . . , âp(p) the estimated autoregressive parameters obtained

by solving the Yule-Walker equations, i.e., (â1(p), . . . , âp(p))
′ = Γ̂(p)−1γ̂p, where

Γ̂ = (γ̂(i − j))i,j=1,2,...,p is a p × p matrix and γ̂p = (γ̂(1), γ̂(2), . . . , γ̂(p))
′
. Let

Ût, t = p+ 1, p+ 2, . . . , n, be the residuals of this fit, i.e.,

Ût = Xt −
p∑

j=1

âj(p)Xt−j . (6)

Step 2: Center the estimated residuals Ûp+1, . . . , Ûn by

¯̂
U :=

1

n− p− l + 1

⎡⎣ n∑
i=1+p

Ûi −
l−1∑
i=1

i

l
Ûp+l−i −

l−1∑
i=1

i

l
Ûn−l+1+i

⎤⎦ . (7)

and let Û c
t = Ût − ¯̂

U , t = p+ 1, . . . , n.
Step 3: Generate bootstrap residuals

(
U∗
1−p, U

∗
2−p, . . . , U

∗
n

)
by application of

the moving block bootstrap to the sequence Û c
p+1, . . . , Û

c
n. That is, draw with re-

placement b independent identically distributed random variables i1, . . . , ib which
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have the same discrete uniform distribution on the set {p, . . . , n− l} and let

(
U∗
1−p, . . . , U

∗
n

)
=

(
Û c
i1+1, . . . , Û

c
i1+l, Û

c
i2+1, . . . , Û

c
i2+l, . . . , . . . , Û

c
ib+l

)
. (8)

For convenience we set in the following U∗
t ≡ 0 for all t < 1− p.

Step 4: Compute a bootstrap time series X∗
1 , X

∗
2 , . . . , X

∗
n via

X∗
t =

p∑
j=1

âj(p)X
∗
t−j + U∗

t , t = 1, . . . , n. (9)

Obtain the bootstrap analogue of Tn as

T ∗
n = f

(
1

n−m+ 1

n−m+1∑
t=1

g(X∗
t , . . . , X

∗
t+m−1)

)
(10)

and approximate the distribution of
√
n(Tn − f(θ)) by that of

√
n(T ∗

n − f(θ∗)),
where θ∗ = E∗(g(X∗

t , X
∗
t+1, . . . , X

∗
t+m−1)).

Some remarks are in order. Notice first that we do not attempt to reduce
the time series to residuals which are then used to imitate i.i.d. innovations. Be-
cause of this, the present approach differs from purely autoregressive approaches
based on i.i.d. resampling of estimated (and appropriately centered) residuals;
cf. [18, 16, 4, 22]. In fact, the AR fit applied is in the spirit of the so-called
prewhitening idea (see [40]) and is used to capture the autocovariance structure
of the time series X1, X2, . . . , Xn at hand. Fitting an autoregression should be
seen as a (convenient) approach for such a whitening although other parametric
models may be considered for the same purpose, too. However, autoregressive
fits together with the use of Yule-Walker estimators are rather convenient and
have nice features including the property that all roots of the estimated poly-
nomial Â(z) = 1−

∑p
j=1 âj(p)z

j lie outside the unit disc in the complex plane.

An important issue when using autoregressive fits is the choice of the order
p. The motivation is to balance the complexity of the model and the volatility
of the resulting residuals. The most convenient way to address this conflict is
according to Akaike’s information criterion (AIC) (see [1, 2]). While [7] stated
that AIC tends to select orders that are too high, even asymptotically, [21]
found a modification of the AIC which assures for consistency. However, since
it is not necessary for the ARAB to assure for correctly specified model orders,
we propose using the classical AIC.

We mention that the centering in Step 2 of the bootstrap algorithm is based
on the expected value of U∗

t with respect to the ensuing moving block boot-
strap. Thus, expression (7) differs from the common sample mean (to which it
is reduced for l = 1) and ensures that the block bootstrapped residuals have
zero mean (with respect to the moving block bootstrap distribution) to avoid
an unnecessary bias; see Step 3.
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3. Bootstrap validity

We now derive the main result of this paper which shows that the ARAB is valid
for the class of generalized means described in (1). Recall that the ARAB pro-
cedure generates pseudo-time series X∗

1 , . . . , X
∗
n by means of (9). The estimated

autoregressive polynomial 1−
∑p

j=1 âj(p)z
j , has a theoretical counterpart given

by

A(z) = 1−
p∑

j=1

aj(p)z
j , (11)

where the coefficients âj(p) are determined by

(a1(p), . . . , ap(p))
′ = argmin

(c1,...,cp)
E

⎡⎢⎣
⎛⎝Xt −

p∑
j=1

cjXt−j

⎞⎠2
⎤⎥⎦ , (12)

i.e., (a1(p), . . . , ap(p))
′ = Γ(p)−1γp, where Γ = (γ(i − j))i,j=1,2,...,p is a p × p

matrix and γp = (γ(1), γ(2), . . . , γ(p))
′
. For the proofs, it is more convenient

to use an infinite moving-average representation of Xt which is based on the
inverse polynomial

A−1(z) =

⎛⎝1−
p∑

j=1

aj(p)z
j

⎞⎠−1

=

∞∑
j=0

ψj(p)z
j =: Ψ(z), (13)

where ψ0(p) = 1. Notice that an analogue expression appears using the inverse

Â−1(z) of the estimated autoregressive polynomial Â(z) = 1−
∑p

j=1 âj(p)z
j . Let

ψ̂j(p) be the coefficients appearing in this inverse polynomial. In the following

we use for brevity the notation ψj for ψj(p) and ψ̂j for ψ̂j(p) respectively.

Notice that the inverse autoregressive polynomial Ψ(z) given in (13) is
bounded away from zero for all |z| ≤ 1, z ∈ C, and that the coefficients ψj

fulfill the summability condition
∑∞

j=0 j
r|ψj | < ∞ for some r ≥ 0. This follows

directly using Cauchy’s inequality for holomorphic functions (e.g. [17], Theorem
6.1).

Application of the filter A(L) = 1 −
∑p

j=1 aj(p)L
j to the series X, where L

denotes the backshift operator leads to the filtered time series {Ut : t ∈ Z} with
Ut = Xt−

∑p
j=1 aj(p)Xt−j , which is the process analogue of the estimated resid-

ual series Ût given in (6). The following assumption specifies our requirements
on the moments of Ut and their sample estimators.

Assumption 5. The filtered process {Ut : t ∈ Z} fulfills

E
[
U4h
t

]
< ∞, (14)
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where h is the number of continuous partial derivatives of the function g; see
Assumption 3 for details. Furthermore,

1

n− p

n−p∑
t=1

Ûα
t

P→ E [Uα
t ] , for every α ≤ 4h (15)

and for FU denoting the distribution function of {Ut : t ∈ Z} and F̂U denoting

the distribution function of its estimated counterpart, it holds F̂U
D→ FU , as

n → ∞.

The following theorem establishes validity of the autoregressive-aided block
bootstrap in estimating the distribution of generalized means.

Theorem 1. Suppose that Assumptions 1–5 hold with δ ≥ 4h−4. T ∗
n is defined

as in (10), and Σq×q as in (2). Further assume that l → ∞ and l2+2/δ/n → 0,
as n → ∞. Then, as n → ∞,

(n−m+ 1)−1 V ar∗

(
n−m+1∑

t=1

(
g(X∗

t , . . . , X
∗
t+m−1)− θ∗

))
→ Σq×q (16)

and

√
n(T ∗

n − f(θ∗))
D→ f ′(θ) N (0q,Σq×q) , (17)

in probability.

Notice that (3) and (17) together with the continuity of the distribution
function of the Gaussian distribution, leads under the assumptions of the above
theorem to the result that

sup
x∈Rq̃

∣∣P ∗(
√
n(T ∗

n − f(θ∗)) ≤ x)− P (
√
n(Tn − f(θ)) ≤ x)

∣∣ = oP (1), (18)

as n → ∞.
According to the above theorem, validity of the ARAB holds as long as

l2+2/δ/n → 0 as n → ∞ is fulfilled. The parameter δ depends on characteristics
of the underlying process X and is the same as the one appearing in the moment
condition E|Xt|4+δ < ∞ in Assumption 1. Thus, the condition on the block
length holds true if l = n1/2−ε for any ε satisfying 1/(2 + 2δ) < ε < 1/2.

The ARAB is tailor-made but not restricted to AR processes with non-
independent identically distributed innovations, so called weak AR or more
generally weak (autoregressive moving-average) ARMA processes. Such pro-
cesses arise in several situations like of instance, strong ARMA processes with
non-normal distributed noise observed at lower frequencies, see [34], processes
obtained from observing only the first component of a vector-valued AR process
or equidistant sampling of continuous-time ARMA processes (e.g. [6]).

Furthermore, the usual model-based bootstrap approaches typically assume
that the model structure has been correctly specified. This is different for the
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ARAB. There is neither an assumption of an autoregressive representation of
the underlying process X nor it is assumed in the case that X has such an AR
representation, that the autoregressive order has been correctly specified. The
AR model fit solely prewhitens the time series at hand and, therefore, weakens its
dependence structure leading to residuals to which a block bootstrap procedure
is applied. Thus, even in the case that X has a finite order AR representation
it is not essential for ARAB validity, that the autoregressive order has been
correctly specified. In this sense, the ARAB makes the ordinary residual based
AR-bootstrap robust against model mis-specifications.

One important problem in applying the block bootstrap is the choice of the
block length l. This problem is common in all blocking methods, and the condi-
tions stated for deriving the asymptotic results presented in Theorem 1 do not
provide some guidance on how to choose l in practice. [29] considered the prob-
lem of determining an optimal block length for the class of smooth functions of
means while further approaches for choosing this bootstrap parameter are given
in [20, 11, 39, 30] or [37].

4. Numerical examples

In this section we investigate by means of numerical simulations the finite-sample
behavior of the autoregressive-aided block bootstrap (ARAB) and compare its
performance with that of the autoregressive residual based bootstrap (AR) and
of the moving block bootstrap (MBB). The MBB and the ARAB are applica-
ble to a wide class of stationary and weak dependent time series while the AR
bootstrap is tailor-made for but restricted to autoregressive processes driven by
i.i.d. innovations. Taking this into account, we consider several scenarios with
different models, namely finite order autoregressive, non-linear autoregressive
and autoregressive conditional heteroscedastic (ARCH) models, and consider
the estimation of quantiles of the distribution of the second order autocorrela-
tion estimator ρ̂(2) = γ̂(2)/γ̂(0). Regarding the bootstrap estimates, the three
different methods are compared by presenting boxplots of the results together
with the true finite sample quantiles. The true quantiles, which are the target
parameters of interest, have been estimated using 1, 000, 000 replications of the
models considered (or 100, 000 replications in the ARCH case respectively) and
are shown in the figures presented by a dashed vertical line. We report results
for different choices of the block size l while the autoregressive order used has
been selected by means of AIC (see [1]).

4.1. Linear AR time series

We generate time series from the AR(2) process

Xt = −0.9Xt−1 − 0.7Xt−2 + et, (19)
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where et are i.i.d., standard Gaussian distributed. We are interested in estimat-
ing the 5% and 95% quantile of the distribution of

√
n(ρ̂X(2)− E[ρ̂X(2)]). (20)

For this, K = 500 time series of length n = 100 of the AR(2) model have been
generated and for each one of them the three different bootstrap approaches
have been applied with B = 1, 000 bootstrap repetitions. For the MBB the
block lengths l = 8, 10, 12 and 14 have been chosen and for the ARAB the block
sizes l = 3, 5, 8 and 10 have been used.

The simulation results are presented in Figure 1. As it can be seen, all ap-
proaches capture the target values quite satisfactory when the block lengths are
appropriately chosen. Since the autoregressive model fit captures (at least to
some extend) the dependence structure of the process, the pre-whitened series
becomes closer to an i.i.d. sequence. This is the reason why the ARAB requires
shorter blocks than the MBB to capture the time series dependence. Recall that
therefore this model set-up is tailor-made for the AR and the ARAB bootstrap
and, their performances are not surprising. It is, however, remarkable that the
ARAB is less biased than the AR approach for some choices of l.

Fig 1. AR time series: Boxplots of bootstrap quantile estimates using the AR, the ARAB and
the MBB bootstrap. The true finite sample quantile is presented by the dashed red line.

4.2. Nonlinear time series

We next consider the following non-linear autoregressive model also used in [36]
and [43]:

Xt = 0.6 sin(Xt−1) + et, t ∈ Z, (21)

where the et’s are i.i.d. standard Gaussian distributed random variables. As a
quantity of interest we again consider estimating the distribution (20) and in
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particular the 5% and 95% quantiles of this distribution with n = 200. Notice
that for this nonlinear autoregressive model, the linear pre-whitening cannot
capture the entire dependence structure of the time series. For this reason the
block lengths have been selected to be l = 3, 5, 8, 10 for the ARAB and the
MBB. The further simulation parameters read the same as in the previous ex-
ample. The simulation results are presented in Figure 2. As it is seen, the linear
AR bootstrap behaves quite satisfactory even in this case. The MBB seems to
be prone to underestimate the values of the quantiles while the preliminary
autoregressive fit moves the ARAB estimates in the right direction.

Fig 2. Nonlinear AR Time Series: Boxplots of bootstrap quantile estimates using the AR, the
ARAB and the MBB bootstrap. The true finite sample quantile is presented by the dashed red
line.

4.3. ARCH time series

We finally consider the following ARCH model

Xt = σtεt (22)

σ2
t = 1 + 0.25 ·X2

t−1, t ∈ Z,

for which an autoregressive fit is not appropriate to capture its dependence
structure due to the white noise property of its realizations. Here the et’s are
i.i.d. standard Gaussian distributed innovations. We consider estimating the 5%
and 95% quantiles of the distribution (20). K = 400 replications of length n =
2, 000 of this model have been generated and to each of them the three different
bootstrap methods have been applied using B = 800 bootstrap replications.
For the same arguments as for the nonlinear autoregressive model, the block
sizes l = 8, 12, 16 and l = 20 have been considered for both block bootstrap
approaches. The simulation results are shown in Figure 3. Since the ARCH
model contains no linear part, the AR bootstrap cannot capture the target
values. However, the ARAB bootstrap performs competitive to the MBB also
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in this case and leads to estimates which are not outperformed by the MBB
bootstrap.

Fig 3. ARCH Time Series: Boxplots of bootstrap quantile estimates using the AR, the ARAB
and the MBB bootstrap. The true finite sample quantile is presented by a dashed red line.

5. Conclusions

This paper investigated properties of a hybrid resampling method for time se-
ries, called the autoregressive-aided block bootstrap (ARAB), which consists of
a linear autoregressive bootstrap combined with a block resampling of residu-
als. It has been shown that this bootstrap procedure is valid for general weak
dependent stationary processes and for a wide class of statistics. The method
shares the generality of nonparametric resampling procedures. Moreover, the
nonparametric resampling part of the ARAB makes this resampling procedure
robust against mis-specifications of the model structure, a problem from which
purely parametric bootstrap methods suffer. On the other hand, the parametric
fit makes the ARAB procedure less sensitive to the choice of nonparametric re-
sampling parameters like the block size. These attractive features of the ARAB
have been demonstrated by means of simulations with the ARAB procedure
showing a very good finite sample performance illustrating its aforementioned
attractive features.
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6. Proofs and auxiliary results

The main strategy for proving the validity of the ARAB bootstrap is the fol-
lowing. In a first step, we state Lemma 1 which allows for a special truncation
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of the process’ (weak) moving average representation. An ordinary truncation
of the moving average representation at some fixed M ∈ N is not sufficient for
the proof (i.e. Proposition 6.3.9 of [5] cannot be applied). Due to the underlying
block structure of the innovations the present proof requires a truncation point
that depends on n and - more important - on the time point t in relation to its
position in the block of pseudo-innovations. This turns out to be highly relevant
for the computation of the limiting covariance matrix of the estimator.

Lemma 1. Assume that X∗
1 , . . . , X

∗
n is a bootstrap sequence generated as de-

scribed in Section 2.2. Furthermore, let Assumption 1 with some δ ≥ 4h−4 and
Assumptions 2–5 hold true. Then, the bootstrap time series has the representa-
tion

X∗
t =

∞∑
j=0

ψ̂j(p)U
∗
t−j ∀t = 1, . . . , n. (23)

Define

X̌∗
t =

(t−1) mod l+M(n)∑
j=0

ψ̂j(p)U
∗
t−j (24)

as a truncated version of X∗
t , where M(n) fulfills M(n) ≤ l and M(n) → ∞, as

n → ∞. Then, it holds

E∗

⎡⎣( 1√
n−m+ 1

n−m+1∑
t=1

(
g (X∗

t )− g
(
X̌

∗
t

)))2
⎤⎦ →n→∞ 0 i.p. (25)

Consider X̌∗
t as given in (24) which is a modified version of X∗

t and truncated
at some time point depending on the time index t. In particular, the truncation
is done at a point being M(n) steps in the past of the beginning of the block
in which the present time point t is located. Thus, the truncated bootstrap
observation at time point t = (r − 1)l + s, where s ∈ {1, . . . , l}, is truncated
M(n) steps in front of the beginning of the (r − 1)-th block. Thus, the infinite
moving average representation reduces to s +M(n) summands. Since M(n) ≤
l the truncated version only correlates with two blocks of residuals. This is
of advantage especially for computing covariances as required in the proof of
Theorem 1.

Proof of Lemma 1. DenoteX∗
t =(X∗

t , . . . , X
∗
t+m−1) and X̌

∗
t =(X̌∗

t , . . . , X̌
∗
t+m−1).

Now expand g (X∗
t ) at g

(
X̌

∗
t

)
by using a Taylor series to obtain

g
(
X∗

t , . . . , X
∗
t+m−1

)
− g

(
X̌∗

t , . . . , X̌
∗
t+m−1

)
(26)

=
∑

1≤|α|≤h−1

1

α!
Dαg

(
X̌

∗
t

)(
X∗

t − X̌
∗
t

)α

+
∑
|α|=h

1

α!
Dαg (τ)

(
X∗

t − X̌
∗
t

)α
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for some τ = X̌
∗
t +λ

(
X∗

t − X̌
∗
t

)
, λ ∈ [0, 1], where α ∈ Nm

0 , |α| = α1+ . . .+αm,

(x)α = xα1
1 · . . . · xαm

m and Dαg(x) :=
∂|α|g(y)

∂y
α1
1 ·...·yαm

m
|y=x. Next, denote by ‖ · ‖r the

usual Lr-norm with respect to the bootstrap distribution. From (26) we get∥∥∥g (X∗
t )− g

(
X̌

∗
t

)∥∥∥
2

(27)

≤
∑

1≤|α|≤h−1

1

α!

∥∥∥Dαg
(
X̌

∗
t

)(
X∗

t − X̌
∗
t

)α∥∥∥
2

+
∑
|α|=h

1

α!

∥∥∥Dαg(τ)
(
X∗

t − X̌
∗
t

)α∥∥∥
2
.

It should be noted that X̌
∗
t and X∗

t − X̌
∗
t are not independent due to the under-

lying blocks of innovations. Using Cauchy Schwarz’s inequality the summands
of the first sum yield∥∥∥Dαg(X∗

t )
(
X∗

t − X̌
∗
t

)α∥∥∥
2
≤

(
‖Dαg(X∗

t )‖4
∥∥∥(X∗

t − X̌
∗
t

)α∥∥∥
4

)1/2

(28)

By Assumption 3 the h-th derivative of g(·) is Lipschitz and, therefore, one
obtains for the summands of the second sum∥∥∥Dαg(τ)

(
X∗

t − X̌
∗
t

)α∥∥∥
2

(29)

≤
∥∥∥Dαg(X̌

∗
t )
(
X∗

t − X̌
∗
t

)α∥∥∥
2
+
∥∥∥(Dαg(τ)−Dαg(X̌

∗
t )
)(

X∗
t − X̌

∗
t

)α∥∥∥
2

≤
∥∥∥Dαg

(
X̌

∗
t

)∥∥∥1/2
4

·
∥∥∥(X∗

t − X̌
∗
t

)α∥∥∥1/2
4

+

⎛⎝Cgλ

m−1∑
j=0

∥∥X∗
t+j − X̌∗

t+j

∥∥
4
·
∥∥∥(X∗

t − X̌
∗
t

)α∥∥∥
4

⎞⎠1/2

,

for some suitable constant Cg, e.g. Cg := maxu=1,...,q Cu. Using (28) and (29)
gives ∥∥∥∥∥ 1√

n−m+ 1

n−m+1∑
t=1

(
g (X∗

t )− g
(
X̌

∗
t

))∥∥∥∥∥
2

(30)

≤ 1√
n−m+ 1

b∑
i=1

l−m+1∑
k=1⎛⎝ ∑

1≤|α|≤h−1

1

α!

∥∥∥Dαg
(
X̌

∗
(i−1)l+k

)∥∥∥1/2
4

·
∥∥∥(X∗

(i−1)l+k − X̌
∗
(i−1)l+k

)α∥∥∥1/2
4

+
∑
|α|=h

1

α!

∥∥∥Dαg
(
X̌

∗
(i−1)l+k

)∥∥∥1/2
4

·
∥∥∥(X∗

(i−1)l+k − X̌
∗
(i−1)l+k

)α∥∥∥1/2
4



AR-aided block bootstrap 739

+
∑
|α|=h

1

α!

(
Cgλ

m−1∑
v=0

∥∥∥(X∗
(i−1)l+k+v − X̌∗

(i−1)l+k+v

)∥∥∥
4

×
∥∥∥(X∗

(i−1)l+k − X̌
∗
(i−1)l+k

)α∥∥∥
4

)1/2
)
+ oP (1).

Furthermore, by Assumptions 1 and 3 and by the definitions of Dαg(·) and X̌
∗
t ,

it holds ∥∥∥Dαg
(
X̌

∗
t

)∥∥∥
4
= OP (1) (31)

for any |α| ≤ h. The same holds true for X̌
∗
t in (31) replaced by X∗

t . Next we
consider the further terms in (30). We have∥∥∥(X∗

(i−1)l+k − X̌
∗
(i−1)l+k

)α∥∥∥
4

(32)

=

∥∥∥∥∥∥
⎛⎝ ∞∑

j=((i−1)l+k) mod l+M(n)+1

ψ̂jU
∗
(i−1)l+k−j

⎞⎠α∥∥∥∥∥∥
4

and the modulo condition can be simplified since ((i−1)l+k) mod l+M(n)+1 =
k +M(n) + 1. Furthermore, it is well-known (e.g. [23]) that the coefficients ψj

(and ψ̂j) of the inverse autoregressive polynomial (and its estimated counter-
part) uniformly yield

|ψj | ≤ Cρj , ∀j ∈ Z, C > 0 (33)

for some 0 < ρ < 1 which depends on the autoregressive parameters. By As-
sumption 5 and noting that |α| ≤ h, (32) further computes to∥∥∥∥∥∥

⎛⎝ ∞∑
j=k+M(n)+1

ψ̂jU
∗
(i−1)l+k−j

⎞⎠α∥∥∥∥∥∥
4

(34)

≤
m∏

w=1

∥∥∥∥∥∥
⎛⎝ ∞∑

j=k+M(n)+1

ψ̂jU
∗
(i−1)l+k−j

⎞⎠αw
∥∥∥∥∥∥
4

≤
m∏

w=1

∞∑
j1,...,jαw=k+M(n)+1

ρj1 · . . . · ρjαw

×
∥∥∥U∗

(i−1)l+k−j1
· . . . · U∗

(i−1)l+k−jαw

∥∥∥
4
· O(1)

≤
m∏

w=1

∞∑
j1,...,jαw=k+M(n)+1

ρj1 · . . . · ρjαwE∗
[
(U∗

1 )
4|α|

]
· O(1)

= ρ(k+M(n)+1)|α| · C ′ · OP (1),
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where the constant C ′ can be easily obtained. The further terms in (30) can be
handled along the same lines, where the corresponding constants may change.
Thus we get∥∥∥∥∥ 1√

n−m+ 1

n−m+1∑
t=1

(
g (X∗

t )− g
(
X̌

∗
t

))∥∥∥∥∥
2

(35)

≤ 1√
n−m+ 1

b∑
i=1

l−m+1∑
k=1

⎛⎝ ∑
1≤|α|≤h−1

1

α!
· OP (1) · ρ(k+M(n)+1)|α|· 12

+
∑
|α|=h

1

α!
· OP (1) · ρ(k+M(n)+1)|α|· 12

+
∑
|α|=h

1

α!

(
O(1) ·

m−1∑
v=0

ρk+v+M(n)+1 · ρ(k+v+M(n)+1)|α|

)1/2
⎞⎠+ oP (1)

= OP

(
b√
n
ρM(n)

)
which converges to zero in probability as M(n) → ∞ and concludes the proof.

Proof of Theorem 1. By Lemma 1 it suffices to show that the assertions of the
theorem hold true for T ∗

n , where X
∗
t is replaced by X̌∗

t . For the truncated series
we choose M(n) such that M(n)2l−1 → 0 as n → ∞.

First, consider (16), the limiting covariance matrix. As discussed at the be-
ginning of the proof of Lemma 1, each X̌∗

t only is correlated with at least two
blocks of residuals. Thus, two bootstrap realizations X̌∗

t and X̌∗
s either stem

from the same block, or X̌∗
t stems from the block before or after X̌∗

s , or they
are uncorrelated. Hence,

Cov∗

(
1√

n−m+ 1

n−m+1∑
t=1

gu

(
X̌

∗
t

)
,

1√
n−m+ 1

n−m+1∑
s=1

gv

(
X̌

∗
s

))
(36)

=
1

n−m+ 1
Cov∗

(
b∑

i1=1

l−m+1∑
k1=1

gu

(
X̌

∗
(i1−1)l+k1

)
,

b∑
i2=1

l−m+1∑
k2=1

gv

(
X̌

∗
(i2−1)l+k2

))
+ oP (1)

=: R1 +R2 +R3 + oP (1),

where

R1 :=
b

n−m+ 1

l−m+1∑
k1=1

l−m+1∑
k2=1

Cov
(
gu

(
Xk1

)
, gv

(
Xk2

))
(37)
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+
b

n−m+ 1

l−m+1∑
k1=1

l−m+1∑
k2=1

Cov
(
gu

(
X̌k1

)
− gu

(
Xk1

)
, gv

(
Xk2

))
+

b

n−m+ 1

l−m+1∑
k1=1

l−m+1∑
k2=1

Cov
(
gu

(
X̌k1

)
, gv

(
X̌k2

)
− gv

(
Xk2

))
+

b

n−m+ 1

l−m+1∑
k1=1

l−m+1∑
k2=1

(
Cov∗

(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

)))
and R2 (and R3) is of same form as R1 but with k1 replaced by k1 + l (k2
replaced by k2+ l) and where b is replaced by b−1. Denote by Ri,j , i = 1, . . . , 3,
j = 1, . . . , 4, the j-th term of Ri (compare (37)). Consider first R1,1+R2,1+R3,1.
By using formulae (A.11) of [23] one directly computes

R1,1 +R2,1 +R3,1 (38)

=
b

n

[
l∑

h=−l

l Cov(gu(X0), gv(Xh))

+

2l−m∑
h=l+1

(2l −m+ 2− h) Cov(gu(X0), gv(Xh))

+

−(2l−m)∑
h=−(l+1)

(2l −m+ 1− |h|) Cov(gu(X0), gv(Xh))

⎤⎦+ o(1)

→n→∞

∞∑
h=−∞

Cov(gu(X0), gv(Xh)) = (Σq×q)u,v ,

Hence, it only remains to show that all other terms converge to zero as n → ∞.
To prove this, the arguments for R1,2, R2,2, R3,2 as well as for R1,3, R2,3, R3,3

are very similar and therefore we only consider R1,2 here. Applying a Taylor ex-
pansion to the first term in R1,2 and further using the linearity of the covariance
and Cauchy Schwarz’s inequality leads to

R1,2 (39)

≤ b

n−m+ 1

l−m+1∑
k1=1

l−m+1∑
k2=1⎛⎝ ∑

1≤|α|≤h−1

1

α!
E

[(
Dαgu(Xk1

)
(
X̌k1

−Xk1

)α)2
]1/2

· E
[
gv

(
Xk2

)2]1/2

+
∑
|α|=h

1

α!
E

[(
Dαgu(τ)

(
X̌k1

−Xk1

)α)2
]1/2

· E
[
gv

(
Xk2

)2]1/2⎞⎠
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≤ b

n−m+ 1

l−m+1∑
k1=1

l−m+1∑
k2=1⎛⎝ ∑

1≤|α|≤h−1

1

α!
E
[(
Dαgu(Xk1

)
)4]1/4

E
[(
X̌k1

−Xk1

)4α]1/4
×E

[
gv

(
Xk2

)2]1/2
+

∑
|α|=h

1

α!
E
[
(Dαgu(τ))

4
]1/4

E
[(
X̌k1

−Xk1

)4α]1/4
×E

[
gv

(
Xk2

)2]1/2)
,

where the above expectations are similar to the terms investigated in the proof
of Lemma 1. By the same strategy as in (30)-(35), one is lead to R1,2 =
OP

(
ρM(n)

)
, which converges to zero as n → ∞. Analogously one proofs that

R2,2, R3,2, R1,3, R2,3 and R3,3 vanish asymptotically.
Next consider expression R1,4 which validates that the bootstrap covariance

of the truncated series converges to its counterpart based on the original time
series. For that, decompose

R1,4 =
b

n−m+ 1

l−m+1∑
k1=M(n)+1

l−m+1∑
k2=M(n)+1

(
Cov∗

(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
(40)

− Cov
(
gu

(
X̌k1

)
, gv

(
X̌k2

)))
+

b

n−m+ 1

M(n)∑
k1=1

M(n)∑
k2=1

(
Cov∗

(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

)))
+

b

n−m+ 1

M(n)∑
k1=1

l−m+1∑
k2=M(n)+1

(
Cov∗

(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

)))
+

b

n−m+ 1

l−m+1∑
k1=M(n)+1

M(n)∑
k2=1

(
Cov∗

(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

)))
.

To show that (40) asymptotically vanishes in probability, we mainly follow the
lines of the proof of Lemma 5.5 in [9] and write

X̌∗
t =

M(n)∑
j=0

ψjU
∗
t−j +

M(n)∑
j=0

(ψ̂j − ψj)U
∗
t−j +

M(n)+(t−1) mod l∑
j=M(n)+1

ψ̂jU
∗
t−j . (41)
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We now show that, for M(n) → ∞ as n → ∞, the second and third sum in
(41) asymptotically vanish, while the first sum appropriately imitates Xt. The
asymptotic negligibility of the second and of the third sum is mainly due to the
consistent estimation of the moving average coefficients and to their exponential
decay.

Let x ∈ R be a continuity point of the distribution function of Xt. Further-
more, let γ > 0 be arbitrary. Then, as in the proof of Slutsky’s Theorem we
have

P ∗ [X̌∗
t ≤ x

]
(42)

≤ P ∗

⎡⎣M(n)∑
j=0

ψjU
∗
t−j ≤ x+ γ

⎤⎦+ P ∗

⎡⎣∣∣∣∣∣∣
M(n)∑
j=0

(
ψ̂j − ψj

)
U∗
t−j

∣∣∣∣∣∣ > γ

2

⎤⎦
+P ∗

⎡⎣∣∣∣∣∣∣
M(n)+(t−1) mod l∑

j=M(n)+1

ψ̂jU
∗
t−j

∣∣∣∣∣∣ > γ

2

⎤⎦ .

Markov’s inequality then gives

P ∗

⎡⎣∣∣∣∣∣∣
M(n)∑
j=0

(
ψ̂j − ψj

)
U∗
t−j

∣∣∣∣∣∣ > γ

2

⎤⎦ ≤ 2

M(n)∑
j=0

∣∣∣ψ̂j − ψj

∣∣∣E∗ ∣∣U∗
t−j

∣∣ 1
γ

(43)

and

P ∗

⎡⎣∣∣∣∣∣∣
M(n)+(t−1) mod l∑

j=M(n)+1

ψ̂jU
∗
t−j

∣∣∣∣∣∣ > γ

2

⎤⎦ ≤ 2

M(n)+(t−1) mod l∑
j=M(n)+1

∣∣∣ψ̂j

∣∣∣E∗ ∣∣U∗
t−j

∣∣ 1
γ
. (44)

Furthermore, by Lemma 2.2 of [22] it holds
∑M(n)

j=0

∣∣∣ψ̂j − ψj

∣∣∣ = oP (1), and by

(33) it is
∑M(n)+(t−1) mod l

j=M(n)+1

∣∣∣ψ̂j

∣∣∣ ≤ CρM(n), for a suitable constant C > 0. Then,

using E∗ ∣∣U∗
t−j

∣∣ ≤ √
E∗(U∗

t−j)
2 and Assumption 5, one obtains for n sufficiently

large and for any κ > 0 that, in probability,

P ∗

⎡⎣∣∣∣∣∣∣
M(n)∑
j=0

(
ψ̂j − ψj

)
U∗
t−j

∣∣∣∣∣∣ > γ

2

⎤⎦ ≤ κ

2
(45)

and

P ∗

⎡⎣∣∣∣∣∣∣
M(n)+(t−1) mod l∑

j=M(n)+1

ψ̂jU
∗
t−j

∣∣∣∣∣∣ > γ

2

⎤⎦ ≤ κ

2
. (46)

Hence, using (45) and (46) in (42) yields, in probability,

P ∗ [X̌∗
t ≤ x

]
≤ P ∗

⎡⎣M(n)∑
j=0

ψjU
∗
t−j ≤ x+ γ

⎤⎦+ κ (47)
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and in direct analogy

P ∗ [X̌∗
t ≤ x

]
≥ P ∗

⎡⎣M(n)∑
j=0

ψjU
∗
t−j ≤ x− γ

⎤⎦− κ, (48)

which indicates that the first sum in (41) is the dominating term.
Now we take a deeper look at the first sum of (41) and especially at its

corresponding probability from (42). Consider

M(n)∑
j=0

ψjU
∗
t−j =

K∑
j=0

ψjU
∗
t−j +

M(n)∑
j=K+1

ψjU
∗
t−j (49)

for some K < M(n). Using (33), find
∣∣∣∑M(n)

j=K+1 ψjU
∗
t−j

∣∣∣ = OP (ρ
K), which

means that for any ε, δ > 0, we have

P ∗

⎡⎣∣∣∣∣∣∣
M(n)∑

j=K+1

ψjU
∗
t−j

∣∣∣∣∣∣ > ε

⎤⎦ ≤ δ (50)

as K is sufficiently large. Hence, in probability,

P ∗

⎡⎣M(n)∑
j=0

ψjU
∗
t−j ≤ x+ γ

⎤⎦ ≤ P ∗

⎡⎣ K∑
j=0

ψjU
∗
t−j ≤ x+ γ + ε

⎤⎦+ δ (51)

and

P ∗

⎡⎣M(n)∑
j=0

ψjU
∗
t−j ≤ x+ γ

⎤⎦ ≥ P ∗

⎡⎣ K∑
j=0

ψjU
∗
t−j ≤ x+ γ − ε

⎤⎦− δ (52)

which indicates the first sum on the right hand side in (49) as the determining
part of the left hand side. In the same manner these findings hold true for the

non-bootstrap analogue
∑M(n)

j=0 ψjUt−j . Now, define the set

τn := {k |M(n) + 1 ≤ k ≤ l} . (53)

Then, for t ∈ τn, the sum
∑M(n)

j=0 ψjU
∗
t−j refers to the values of U∗

t within the
same block of innovations and we therefore have∣∣∣∣∣∣P ∗

⎡⎣M(n)∑
j=0

ψjU
∗
t−j ≤ x+ γ

⎤⎦− P

⎡⎣M(n)∑
j=0

ψjUt−j ≤ x+ γ

⎤⎦∣∣∣∣∣∣ (54)

≤

∣∣∣∣∣∣P ∗

⎡⎣ K∑
j=0

ψjU
∗
t−j ≤ x+ γ + ε

⎤⎦− P

⎡⎣ K∑
j=0

ψjUt−j ≤ x+ γ − ε

⎤⎦∣∣∣∣∣∣+ 2δ
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≤

∣∣∣∣∣∣ 1

n− l + 1

n−l+1∑
k=1

1(−∞,x+γ+ε]

⎛⎝ K∑
j=0

ψjUk+l−j

⎞⎠
−P

⎡⎣ K∑
j=0

ψjUt−j ≤ x+ γ + ε

⎤⎦∣∣∣∣∣∣
+ P

⎡⎣x+ γ − ε <

K∑
j=0

ψjUt−j ≤ x+ γ + ε

⎤⎦+ 2δ

where the first term is the difference of a probability and its empirical version,
and thus, for sufficiently large n, it can be made arbitrarily small. The remainder
terms also can be made arbitrarily small since ε and δ are arbitrarily chosen.

This is a rather important point in the proof. As discussed at the beginning
of the proof of Lemma 1, it is important to assure for M(n) → ∞ in order
to incorporate completely the process structure. However, for (54) to be valid,
the bootstrap innovations have to belong to the same block and hence, the
(truncated) series should not overlap from one block of innovations to another;
otherwise the desired non-bootstrap analogue would not be mimicked appro-
priately since the dependence structure of the time series is destroyed at the
joining points of the independent blocks. This is the reason why the set τn is
introduced and furthermore, why the rate M(n) has to increase slower than
the block length l. The following computations will clarify in more detail why
M(n)2l−1 → 0 has to be fulfilled.

Reconsider (54) which states that the approximation error of the distribution
of X̌∗

t to the distribution of X̌t vanishes for n → ∞, for all ∀t mod l ∈ τn. Write

L(X̌∗
t ) = L(X̌t) + oP (1) ∀t mod l ∈ τn, (55)

and observe that convergence is guaranteed for all time points t with X̌∗
t relying

only on innovations stemming from one single block. Hence, by the Cramér-Wold
device one has, for arbitrary d ∈ N, and for any (t1 mod l, . . . , td mod l) ∈ τdn ,
that

L
(
X̌∗

t1 , . . . , X̌
∗
td

)
= L

(
X̌t1 , . . . , X̌td

)
+ oP (1). (56)

It is crucial to notice that (56) only holds for bootstrap random variables stem-
ming from the set τn. Bootstrap realizations stemming from the first M(n)
positions of a block have an overlapping moving average representation to pre-
vious blocks of innovations. Such bootstrap realizations are seperately treated
later on (see (63) and the following).

For the moment, we stay with the set τn. As a next step the function g and
its component functions is investigated. Truncate gu via

g̃u(x) = gu(x)1|gu(x)|≤K(x) +K sign(gu(x))1|gu(x)|>K , K > 0. (57)

Then g̃u(·) is continuous and bounded and one immediately has

Cov∗
(
g̃u

(
X̌

∗
t

)
, g̃v

(
X̌

∗
s

))
(58)
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= Cov
(
g̃u

(
X̌t

)
, g̃v

(
X̌s

))
+ oP (1) ∀t, s mod l ∈ τn

by (56). Now we show that the effect of truncating the functions is asymptoti-
cally negligible. By Hölder’s inequality

E∗ ∣∣gu (X̌t

)
1|gu(x)|>K

∣∣2 (59)

≤
(
E∗ ∣∣gu (X̌t

)∣∣2(h+2)/(h+1)
)(h+1)/(h+2) (

P ∗ (∣∣gu (X̌t

)∣∣ > K
))1/(h+2)

= OP (1)K
−2/(h+1).

To see that the expected value is OP (1) approach as in the proof of Lemma 1.
Then, for arbitrary κ > 0, we can chooseK = K(κ, n) such that for n sufficiently
large and in probability, for all t, s mod l ∈ τn,∣∣∣ Cov∗

(
g̃u

(
X̌

∗
t

)
, g̃v

(
X̌

∗
s

))
− Cov∗

(
gu

(
X̌

∗
t

)
, gv

(
X̌

∗
s

))∣∣∣ ≤ κ

N(n)
(60)

and in complete analogy, still for all t, s mod l ∈ τn only,∣∣ Cov
(
g̃u

(
X̌t

)
, g̃v

(
X̌s

))
− Cov

(
gu

(
X̌t

)
, gv

(
X̌s

))∣∣ ≤ κ

N(n)
(61)

where N(n) → ∞, as n → ∞, is chosen such that l/N(n) → 0. Hence, it follows,
from (58) by (60) and (61)∣∣∣ Cov∗

(
gu

(
X̌

∗
t

)
, gv

(
X̌

∗
s

))
− Cov

(
gu

(
X̌t

)
, gv

(
X̌s

))∣∣∣ (62)

=
∣∣∣ Cov∗

(
gu

(
X̌

∗
t

)
, gv

(
X̌

∗
s

))
− Cov

(
gu

(
X̌t

)
, gv

(
X̌s

))
± Cov∗

(
g̃u

(
X̌

∗
t

)
, g̃v

(
X̌

∗
s

))
± Cov

(
g̃u

(
X̌t

)
, g̃v

(
X̌s

))∣∣∣
= OP

(
N(n)−1

)
+ oP (1)

for all t, s mod l ∈ τn, and, thus, is applicable to the first sum of R1,4. To handle
the further sums of R1,4, we have to consider the covariances in (40) where k1
or k2 is not in τn. Hence, consider the case k1 /∈ τn and k2 ∈ τn and obtain by
using (62)

Cov∗
(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

))
(63)

= Cov∗
(
gu

(
X̌

∗
k1

)
− gu

(
X̌

∗
l−m+1

)
, gv

(
X̌

∗
k2

))
+ Cov∗

(
gu

(
X̌

∗
l−m+1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

))
= Cov∗

(
gu

(
X̌

∗
k1

)
− gu

(
X̌

∗
l−m+1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
− gu

(
X̌ l−m+1

)
, gv

(
X̌k2

))
+OP (N(n)−1).

Then by application of the Taylor expansion and by Cauchy Schwarz inequality
one obtains for the first covariance

Cov∗
(
gu

(
X̌

∗
k1

)
− gu

(
X̌

∗
l−m+1

)
, gv

(
X̌

∗
k2

))
(64)
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≤

⎛⎝ ∑
1≤|α|≤h−1

1

α!
E∗

[(
Dαgu

(
X̌

∗
l−m+1

))4
]1/4

×E∗
[(

X̌
∗
k1

− X̌
∗
l−m+1

)4α
]1/4

+
∑
|α|=h

1

α!
E∗

[
(Dαgu (τ))

4
]1/4

E∗
[(

X̌
∗
k1

− X̌
∗
l−m+1

)4α
]1/4⎞⎠

×E∗
[
gv

(
X̌

∗
k2

)2
]1/2

,

for some τ = X̌
∗
l−m+1 + λ

(
X̌

∗
k1

− X̌
∗
l−m+1

)
, λ ∈ (0, 1). Indeed, this expression

is similar to (39) and can be handled analogously. One obtains

E∗
[(

X̌
∗
k1

− X̌
∗
l−m+1

)4α
]

(65)

≤
m∏
r=1

E∗

⎡⎢⎣
⎛⎝ l−m+M(n)∑

j=k1+M(n)

ψ̂j

(
U∗
k1+r−1−j − U∗

l+r−1−j

)⎞⎠4αr
⎤⎥⎦

= OP

(
ρ(k1+M(n))·|α|

)
,

where αr indicates the r-th component of α. The further expectations are finite
by Assumptions 1 and 3. For the non-bootstrap covariance in (63) one proceeds
exactly in the same way. Altogether this leads to

Cov∗
(
gu

(
X̌

∗
k1

)
, gv

(
X̌

∗
k2

))
− Cov

(
gu

(
X̌k1

)
, gv

(
X̌k2

))
(66)

= OP

(
N(n)−1 + ρk1+M(n)

)
,

for all k1 /∈ τn and k2 ∈ τn. Of course, if k1 ∈ τn and k2 /∈ τn this result is
directly adaptable.

Now we have all preliminaries at hand to revisit the remainder term R1,4

given in (40). Using the previous considerations and the summability of the
autocovariances it holds

R1,4 = OP

(
l

N(n)
+

b M(n)2

n
+M(n)

(
N(n)−1 + ρM(n)

))
(67)

= OP

(
l

N(n)
+

b M(n)2

n
+M(n)ρM(n)

)
,

which converges to zero as n increases by the conditions on the rates (l/N(n) →
0 and ρ < 1) and by the choice of M(n). The further remainder terms R2,4

and R3,4 yield analogue results. Altogether this proofs (16), the assertion on the
limiting covariance.
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Now consider (17), the central limit result. By Lemma 1 it suffices to show
the result for

1√
n−m+ 1

n−m+1∑
t=1

(
g
(
X̌

∗
t

)
− E∗g

(
X̌

∗
t

))
(68)

to conclude the proof. Define, for all t = 1, . . . , n−m+ 1,

Z∗
n,t :=

1√
n−m+ 1

(
g
(
X̌

∗
t

)
− E∗g

(
X̌

∗
t

))
(69)

which is a triangular array with E∗Z∗
n,t = 0 for all t = 1, . . . , n − m + 1, and

denote by Z∗
n,t,u the u-th component of Z∗

t,n, u = 1, . . . , q. Due to the underly-

ing block structure and the definition of X̌∗
t , the sequence is 2l-dependent and

does not yield stationarity. To proceed, a central limit result for 2l-dependent
triangular random variables is required where l is allowed to increase to infinity
with sample size by some rate. In here we make use of Theorem 2.1 in [41] and
need to check their six conditions. Using the notation of [41], we define

B2
n,r,a ≡ B2

n,r,a(u, v) (70)

:= Cov∗

(
a+r−1∑
t=a

Z∗
n,t,u,

a+r−1∑
s=a

Z∗
n,s,v

)

=

⌊
r
l

⌋
n−m+ 1

l−m∑
h=−(l−m)

((l −m+ 1)− |h|) Cov
(
gu

(
X̌0

)
, gv

(
X̌h

))
+ oP (1)

for all u, v = 1, . . . , q, and note that
⌊
r
l

⌋
l = O(r). Further compute

B2
n ≡ B2

n,n,1 (71)

:= Cov∗

(
n∑

t=1

Z∗
n,t,u,

n∑
s=1

Z∗
n,s,v

)

=
b

n−m+ 1

l−m∑
h=−(l−m)

((l −m+ 1)− |h|) Cov
(
gu

(
X̌0

)
, gv

(
X̌h

))
+ oP (1)

for all u, v = 1, . . . , q, by the same manner. If one sets γ = 0 (in the notation of
[41]), it can be straightforwardly checked that all conditions of the Theorem are
fulfilled (also see their Example 3.3 on the moving blocks bootstrap for further
details), and thus the central limit theorem is applicable to the present scenario.

It is worth to note that the stated condition on the block length, l2+2/δ/n →
0, corresponds to condition C6 of [41] and is required for their theorem to hold.
In our setup, it causes that the higher moments of the time series exist the larger
the block length is allowed to be chosen. However, as for any block approach,
the rate of the block length is not allowed to exceed n1/2.
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One finally obtains

B−1
n

n−m+1∑
t=1

Z∗
n,t

D∗
−→ N (0, 1) (72)

in probability, and furthermore, since B2
n → (Σq×q)u,v, for all u, v = 1, . . . , q, it

holds

1√
n−m+ 1

n−m+1∑
t=1

(
g
(
X̌

∗
t

)
− θ∗

)
D∗
−→n→∞ N (0q,Σq×q) . (73)

By application of the delta technique, e.g. [3], the proof of (17) then is concluded
for T ∗

n with X∗
t replaced by X̌∗

t . Lemma 1 then immediately concludes the proof
for T ∗

n itself.
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Springer, Heidelberg.

[24] Kreiss, J.-P. and Paparoditis, E. (2012): The hybrid wild bootstrap for time
series. Journal of the American Statistical Association, Vol. 107, No. 499,
pp. 1073–1084.

[25] Kreiss, J.-P. and Paparoditis, E. (2003): Autoregressive-aided periodogram
bootstrap for time series. The Annals of Statistics, Vol. 31, pp. 1923–1955.
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