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1. Introduction

Consider the logistic regression set-up in which Y1, . . . , YN are independent
Bernoulli random variables such that Pr(Yi = 1) = F (xT

i β), where xi is a
p× 1 vector of known covariates that are associated with Yi, β is a p× 1 vector
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of unknown regression coefficients, and F is the standard logistic distribution
function, that is, F (s) = es/(1 + es). An important special case is the one-way
logistic analysis of variance (ANOVA) model, where each xi is a unit vector.
(See Section 3 for a detailed explanation of how the logistic regression model
reduces to the one-way model.) In general, the joint mass function of Y1, . . . , YN

is given by

N∏
i=1

Pr(Yi = yi |β) =
N∏
i=1

[
F (xT

i β)
]yi
[
1− F (xT

i β)
]1−yi

I{0,1}(yi) . (1)

A Bayesian version of the logistic regression model (1) can be assembled
by specifying a prior for the unknown regression parameter β. We consider a
flat improper prior. Of course, whenever an improper prior is used, one must
check that the resulting posterior is well-defined (i.e., proper). Chen and Shao
(2000) provide necessary and sufficient conditions for propriety and these are
stated explicitly in Section 2. We assume that these conditions are satisfied,
and denote the posterior by π(β | y). This posterior density is intractable in the
sense that its expectations, which are required for Bayesian inference, cannot
be computed in closed form. However, we may resort to Markov chain Monte
Carlo (MCMC) methods to approximate the intractable posterior expectations.

The most recent MCMC method for this problem is a data augmentation
(DA) algorithm that is based on the Polya-Gamma latent data strategy devel-
oped in Polson, Scott and Windle (2013) (hereafter, PS&W). In this article, we
show that in the one-way logistic ANOVA model, which is an important special
case of logistic regression models, the Markov operator associated with PS&
W’s DA algorithm is trace-class (see Section 3 for definition). The fact that this
Markov operator is trace-class implies that it is also compact, which in turn im-
plies that the corresponding Markov chain is geometrically ergodic. This is very
important from a practical standpoint because geometric ergodicity guarantees
the existence of central limit theorems for ergodic averages, which allows for the
calculation of asymptotically valid standard errors for the MCMC estimates of
posterior expectations (see, e.g., Flegal, Haran and Jones, 2008; Jones, Haran,
Caffo and Neath, 2006).

Aside from our work, the only existing convergence rate result of a DA al-
gorithm for the Bayesian logistic model is the one in Choi and Hobert (2013).
However, in Choi and Hobert (2013), the model that was considered has proper
normal priors on the regression parameter. While our result applies to a rel-
atively small class of logistic regression models, it is the first of its kind for
logistic regression models with an improper prior. It turns out that using a
flat improper prior complicates the analysis that is required to study the cor-
responding Markov chain. Indeed, our analysis is substantially different from
theirs.

The remainder of this paper is organized as follows. Section 2 contains a
formal description of PS&W’s algorithm for exploring the posterior π(β | y). In
Section 3, we study the operator associated with PS&W’s DA Markov chain
for the one-way logistic ANOVA model and show that the associated Markov
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operator is trace-class. Finally, in Section 4 we discuss possible difficulties in
extending our result to the general logistic regression model.

2. Polson, Scott and Windle’s algorithm

We begin with a description of the posterior density and conditions for propri-
ety. We consider the posterior density that results when the logistic regression
likelihood (1) is combined with a flat prior on the regression parameter β. Let
y = (y1, . . . , yN )T denote the vector of observed data and define the marginal
density as

c(y) =

∫
Rp

N∏
i=1

[
F (xT

i β)
]yi
[
1− F (xT

i β)
]1−yi

dβ .

By definition, the posterior is proper if and only if c(y) < ∞. Of course, when
c(y) < ∞, the posterior density is given by

π(β | y) = 1

c(y)

N∏
i=1

[
F (xT

i β)
]yi
[
1− F (xT

i β)
]1−yi

.

Recall from the Introduction that Chen and Shao (2000) provide necessary and
sufficient conditions for propriety. In order to state Chen and Shao’s (2000)
result, we need a bit more notation. As usual, let X denote the N × p design
matrix whose ith row is xT

i , and let Z be an N × p matrix whose ith row is
zTi := I{0}(yi)x

T
i − I{1}(yi)x

T
i . Finally, let 0p be the p× 1 vector of zeros. Here

is the result.

Proposition 1 (Chen and Shao, 2000). The function c(y) is finite if and only
if

(A) the design matrix X has full column rank and
(B) there is a vector b = (b1, . . . , bN )T with strictly positive components such

that ZT b = 0p.

In particular, in the one-way logistic ANOVA model, the design matrix X has
full column rank so the posterior is proper if and only if (B) holds. (The precise
form of X in the one-way model and an easily checkable equivalent condition
for propriety are stated in the next section.) Throughout the remainder of this
section, we assume that the conditions of Proposition 1 are satisfied so that the
posterior is well-defined.

We now describe PS&W’s DA algorithm for exploring the posterior π(β | y).
Let R+ := (0,∞). For fixed w ∈ R

N
+ , define Σ(w) = (ZTΩ(w)Z)−1 and μ(w) =

Σ(w)ZT (−1
21N ), where Ω(w) is the N ×N diagonal matrix whose ith diagonal

entry is wi, and 1N is the N × 1 vector of 1’s. When we write W ∼ PG(1, c),
we mean W has a Polya-Gamma density (PS&W) given by

f(x; c) = cosh(c/2) e−
c2x
2 g(x) ,
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where c ≥ 0 and

g(x) =

∞∑
k=0

(−1)k
(2k + 1)√

2πx3
e−

(2k+1)2

8x I(0,∞)(x) . (2)

The dynamics of PS&W’s Markov chain, Φ = {β(m)}∞m=0, are implicitly defined
through the following two-step procedure for moving from the current state,
β(m) = β, to new state β(m+1).

Iteration m+ 1 of PS&W’s DA algorithm:

1. Draw W1, . . . ,WN independently with

Wi ∼ PG(1, |zTi β|) ,

and call the observed value w = (w1, . . . , wN )T .
2. Draw β(m+1) ∼ Np

(
μ(w),Σ(w)

)
.

A highly efficient rejection sampler for simulating the Polya-Gamma distribution
is provided in PS&W. Also, a formal derivation of the above algorithm is similar
to the one for the normal prior case provided in Choi and Hobert (2013).

The Markov transition density (Mtd) of the Markov chain Φ is given by

k(β |β′) =

∫
RN

+

π(β |w, y)π(w |β′, y) dw ,

where π(β |w, y) and π(w |β, y) are conditional densities that can be gleaned
from the two-step algorithm described above. Indeed, π(w |β, y) is a product of
Polya-Gamma densities, and π(β |w, y) is the multivariate normal density. Note
that k maps R

p × R
p into R+ and that π(β | y) is an invariant density for this

Mtd. It follows that the corresponding Markov chain Φ is Harris ergodic; that
is, irreducible, aperiodic, and positive Harris recurrent (see, e.g., Hobert, 2011).

3. Main result

In this section, we restrict attention to the one-way logistic ANOVA model, an
important special case of logistic regression models, and present a spectral anal-
ysis result concerning PS&W’s Markov chain Φ for this problem. In particular,
we prove that the Markov operator associated with Φ is trace-class.

We begin by describing the one-way logistic ANOVA model. Let {Yij} be
independent Bernoulli random variables such that

Pr(Yij = 1 |β) = F (βi) , i = 1, 2, . . . , p , j = 1, 2, . . . , ni ,
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where βi is the main effect of the ith treatment group, and β = (β1, . . . , βp)
T .

Note that there are p treatment groups and the number of observations in
different groups may differ. Of course, this model can be written in the logistic
regression form (1). Indeed, there are a total of N := n1 + · · ·+np observations
and we arrange them using the usual lexicographical ordering:

y = [y11 · · · y1n1 y21 · · · y2n2 · · · yp1 · · · ypnp ]
T .

The random version of y, call it Y , is defined similarly using the same ordering.
We denote the lth components of y and Y as yl and Yl, respectively. Letting
ñ0 = 0 and ñj =

∑j
k=1 nk for j ∈ Np := {1, 2, . . . , p}, we can write

xi = ej , if ñj−1 + 1 ≤ i ≤ ñj ,

where ej denote the p × 1 jth unit vector (i.e., the jth column of the p × p
identity matrix).

Note that the design matrix X has full column rank since it equals
⊕p

i=1 1ni ,
which has orthogonal columns. It follows from Proposition 1 that the posterior
π(β | y) that results when the one-way logistic ANOVA likelihood is combined
with a flat prior on β is proper if and only if (B) holds, but this condition is
not easy to interpret. We present an equivalent condition that is easy to check
and understand. As usual, let p̂i be the proportion of 1’s in the ith treatment
group, that is, p̂i = 1

ni

∑ñi

l=ñi−1+1 yl. The following result, which is proven in
the Appendix, implies that the posterior is proper if and only if there are at
least one 1 and one 0 in each treatment group.

Corollary 1. Assume that X =
⊕p

i=1 1ni . The posterior is proper if and only
if

0 < p̂i < 1 for all i ∈ Np . (B′)

Assume that the posterior π(β | y) is proper. We now study PS&W’s Markov
chain Φ for exploring the posterior. In order to formally describe our main result,
we must introduce the operator associated with Φ. Recall that k(β |β′) denotes
the Mtd of Φ, that is, the conditional density of β(m+1) given that β(m) = β′.
Let L2

0 be the space of real-valued functions with domain R
p that are square

integrable and have mean zero with respect to the posterior density π(β | y).
This is a Hilbert space in which the inner product of g, h ∈ L2

0 is defined as

〈g, h〉 =
∫
Rp

g(β)h(β)π(β | y) dβ ,

and the corresponding norm is, of course, given by ‖g‖ = 〈g, g〉1/2. The Mtd k
defines an operator on L2

0 and the spectrum of the operator contains a great
deal of information about the convergence behavior of the corresponding Markov
chain Φ (see, e.g., Hobert, Roy and Robert, 2011). Let K : L2

0 → L2
0 denote the

operator that maps g ∈ L2
0 to

(Kg)(β′) =

∫
Rp

g(β) k(β |β′) dβ .
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Because the operator K is self-adjoint and positive, the spectrum of K is a
subset of the interval [0, 1] (see, e.g., Hobert and Marchev, 2008; Liu, Wong and
Kong, 1994; Hobert et al., 2011). Moreover, if the self-adjoint, positive operator
K is compact, then its spectrum consists solely of eigenvalues (which are all
strictly less than one) and the point {0} (see, e.g., Retherford, 1993, p. 61-62).
If the sum of the eigenvalues is finite, then the operator is called trace-class (see
Khare and Hobert (2011), and references therein). Here is our main result.

Theorem 1. Assume that X =
⊕p

i=1 1ni and the posterior is proper. Then,
the Markov operator K is trace-class.

The following lemma, which is a simple derivation of results in Devroye
(2009), will be used in the proof of Theorem 1.

Lemma 1. Let g denote the density of PG(1, 0) random variable. If w ∈
(0, 1

log 3 ], then

g(w) ≤ 1√
2πw3

exp

{
− 1

8w

}
.

Remark 1. It is clear that (2) is a density of PG(1, 0) random variable. As
described in Devroye (2009), Lemma 1 follows from the fact that g is of the
form g(w) =

∑∞
k=0(−1)kak(w) where nonnegative {ak(w)}∞k=0 is decreasing in

k for w ∈ (0, 1
log 3 ].

Proof of Theorem 1. To prove that the Markov operator K is trace-class, we
follow a technique used in Khare and Hobert (2011); that is, we will establish
the following condition∫

Rp

k(β |β) dβ =

∫
RN

+

[∫
Rp

π(β |w, y)π(w |β, y) dβ
]
dw < ∞ . (3)

The key is to bound the inner integral in (3) by

c1

N∏
i=1

[
exp

{
a

8wi

}
g(wi)

]
,

where c1 and a < 1 are constants. We then use Lemma 1 to complete the proof.
We begin by evaluating the inner integral in (3). Recall that Σ = Σ(w) =

(ZTΩ(w)Z)−1 and μ = μ(w) = Σ(w)ZT (−1
21N ). First, note that the product

of densities π(β |w, y)× π(w |β, y) can be written as follows:

(2π)−
p
2 |Σ|− 1

2 exp

{
−1

2

(
βT (ZTΩZ)β − 2βTZT

(
− 1

2
1N

))}

× exp

{
−1

8
1TNZ(ZTΩZ)−1ZT 1N

}

×
N∏
i=1

cosh

(
|zTi β|
2

)
exp

{
− (zTi β)

2

2
wi

}
g(wi)
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= (2π)−
p
2 |Σ|− 1

2 exp

{
−1

2
βT
(
2Σ−1

)
β

}

×
N∏
i=1

cosh

(
|zTi β|
2

)
exp

{
−zTi β

2

}
g(wi)

× exp

{
−1

8
1TNZ(ZTΩZ)−1ZT 1N

}

= (2π)−
p
2 |Σ|− 1

2 exp

{
−1

2
βT
(
2Σ−1

)
β

}[ N∏
i=1

1

2

(
1 + exp{−zTi β}

)]

× exp

{
−1

8
1TNZ(ZTΩZ)−1ZT 1N

} N∏
i=1

g(wi) , (4)

where the last equality follows from cosh(a)e−a = 1
2 (1 + e−2a).

We now evaluate the integral of (4) with respect to β. Recall NN =
{1, 2, . . . , N}. For each A ⊆ NN , define an N × p matrix ZA whose ith row is{

zTi if i ∈ A

0Tp if i ∈ NN \A .

Then, it is easy to see that

exp{−1TNZAβ} =

⎧⎪⎨
⎪⎩
exp

{
−
∑
i∈A

zTi β

}
if A is nonempty

1 if A is empty .

Therefore, we have

N∏
i=1

(
1 + exp{−zTi β}

)
=
∑

A⊆NN

exp
{
−1TNZAβ

}

so the integral of (4) with respect to β can be written as

c0 exp

{
−1

8
1TNZ(ZTΩZ)−1ZT 1N

}[ N∏
i=1

g(wi)

]

×
∑

A⊆NN

∫
Rp

exp
{
−1TNZAβ

}
φ (β; 0p,Σ/2) dβ , (5)

where c0 is a constant, and φ(β; 0p,Σ/2) is a multivariate normal density with
mean 0p and variance Σ/2. Note that the integral in (5) is just the moment
generating function of β evaluated at the point −1TNZA. Hence, (5) is equal to

c0 exp

{
−1

8
1TNZ(ZTΩZ)−1ZT 1N

}[ N∏
i=1

g(wi)

]
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×
∑

A⊆NN

exp

{
1

4
1TNZA(Z

TΩZ)−1ZT
A1N

}
. (6)

We now express the exponential terms of (6) in a more compact way. Recall
X =

⊕p
i=1 1ni and the ith row of Z is zTi = I{0}(yi)x

T
i − I{1}(yi)x

T
i . Clearly,

the N×p matrix Z can be written as UX, where U is the N×N diagonal matrix
whose ith diagonal entry is equal to ui := I{0}(yi) − I{1}(yi). It is easy to see
ZTΩZ = XTΩX, and using the orthogonality of the columns of X, ZTΩZ is a
p× p diagonal matrix whose ith diagonal entry is equal to

ñi∑
j=ñi−1+1

wj ,

where ñ0 = 0 and ñi =
∑i

k=1 nk for i ∈ Np. Let zij denote the jth component
of the row vector zTi . A straightforward calculation yields that, for A ⊆ NN ,

1TNZA(Z
TΩZ)−1ZT

A1N =

p∑
j=1

(∑
i∈A zij

)2∑ñj

k=ñj−1+1 wk

.

Hence, the exponential terms in (6) can be written as

∑
A⊆NN

exp

⎧⎨
⎩1

8

p∑
j=1

1∑ñj

k=ñj−1+1 wk

⎡
⎣2
(∑

i∈A

zij

)2

−
(

N∑
i=1

zij

)2
⎤
⎦
⎫⎬
⎭ . (7)

We now claim that, for all A ⊆ NN and all j ∈ Np,

1

n2
j

⎡
⎣2
(∑

i∈A

zij

)2

−
(

N∑
i=1

zij

)2
⎤
⎦ < 1 .

Recall that p̂j is the proportion of 1’s in the jth treatment group, that is,

p̂j =
1
nj

∑ñj

i=ñj−1+1 yi. Also, recall from the definition of Z that its jth column is

[
0Tñj−1

uñj−1+1 · · · uñj 0TN−ñj

]T
,

where ui = I{0}(yi) − I{1}(yi). Of course, when j = 1 or j = p, we omit the
vector 00; for example, the first column of Z is [u1 · · · un1 0TN−n1

]T . Since there
are nj p̂j 1’s and nj(1− p̂j) 0’s in the jth treatment group, in the jth column of
Z, nj p̂j of the ui’s are −1’s and nj(1−p̂j) of the ui’s are 1’s. Assume without loss
of generality that, for each j ∈ Np, the first nj p̂j ui’s are −1’s and the remaining
nj(1− p̂j) ui’s are 1’s. That is, we assume that the jth column of Z is equal to⎧⎪⎨

⎪⎩
[−1Tn1p̂1

1Tn1(1−p̂1)
0TN−n1

]T if j = 1

[ 0Tñj−1
− 1Tnj p̂j

1Tnj(1−p̂j)
0TN−ñj

]T if 1 < j < p

[ 0Tñp−1
− 1Tnpp̂p

1Tnp(1−p̂p)
]T if j = p .

(8)



334 H. M. Choi and J. C. Roman

Letting q̂j = 1− p̂j for j ∈ Np, the sum of the jth column of Z is

N∑
i=1

zij = nj(1− p̂j)− nj p̂j = nj(q̂j − p̂j) ,

and, for all A ⊆ NN and j ∈ Np,∣∣∣∣∣
∑
i∈A

zij

∣∣∣∣∣ ≤ max {nj p̂j , nj q̂j} .

It follows that, for all A ⊆ NN and all j ∈ Np,

1

n2
j

⎡
⎣2
(∑

i∈A

zij

)2

−
(

N∑
i=1

zij

)2
⎤
⎦ ≤ 2max{p̂j , q̂j}2 − (q̂j − p̂j)

2

= 2(p̂2j + q̂2j )− 2min{p̂j , q̂j}2 − (q̂j − p̂j)
2

= 1− 2min{p̂j , q̂j}2 .

Since condition (B′) of Corollary 1 is in force, for all j ∈ Np, we have

1− 2min{p̂j , q̂j}2 < 1 .

Hence, (7) is bounded above by

2N exp

⎧⎨
⎩a

8

p∑
j=1

n2
j∑ñj

k=ñj−1
wk

⎫⎬
⎭ , (9)

where
a := max

j∈Np

[
1− 2min{p̂j , q̂j}2

]
< 1 .

Combining (5), (6), (7) and (9), we have

∫
Rp

π(β |w, y)π(w |β, y) dβ ≤ c1 exp

⎧⎨
⎩a

8

p∑
j=1

n2
j∑ñj

k=ñj−1+1 wk

⎫⎬
⎭

N∏
i=1

g(wi)

≤ c1 exp

⎧⎨
⎩a

8

p∑
j=1

ñj∑
k=ñj−1+1

1

wk

⎫⎬
⎭

N∏
i=1

g(wi)

= c1

N∏
i=1

exp

{
a

8wi

}
g(wi) ,

where c1 is a constant, and the last inequality is due to the arithmetic-harmonic
mean inequality. It follows that∫

RN
+

∫
Rp

π(β |w, y)π(w |β, y) dβ dw
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≤ c1

N∏
i=1

∫
R+

exp

{
a

8wi

}
g(wi) dwi

≤ c1

N∏
i=1

[∫ t

0

exp

{
a

8wi

}
g(wi) dwi +

∫ ∞

t

exp
{ a

8t

}
g(wi) dwi

]

≤ c1

N∏
i=1

[∫ t

0

1√
2πw3

i

exp

{
−1− a

8wi

}
dwi + c2

]
, (10)

where t = 1
log 3 , c2 is a constant, and the last inequality is due to Lemma 1.

The integrand in (10) is a kernel of an inverse gamma density, and hence (3) is
satisfied.

4. Discussion

We have shown in Section 3 that in the one-way logistic ANOVA model, the
Markov operator associated with PS&W’s DA chain is trace-class (and thus the
chain is geometrically ergodic). Given this result, it is natural to ask whether
PS&W’s DA operator is also trace-class in the general logistic regression model.
We note that our trace-class proof for the one-way model relies heavily on
the orthogonality of the columns of the design matrix X, which is not guar-
anteed in general. In particular, the idea is to use orthogonality to express
(ZTΩZ)−1 as a diagonal matrix whose diagonal entries are simple functions
of w = (w1, . . . , wN )T . However, in the general case, (ZTΩZ)−1 does not nec-
essarily take a simple form, which in turn complicates the analysis. Thus, we
believe that establishing (3) for the general case would be much more than a
straightforward extension of the proof of our Theorem 1. It is our hope that our
result for the one-way logistic ANOVA model will promote the study of the DA
Markov chain for the general logistic regression model.

Appendix A: Appendix

In this section, we provide a proof of Corollary 1. Before presenting the proof,
we recall the structure of Z given in (8) which will be used a couple of times
within the proof. The jth column of the N × p matrix Z is

⎧⎪⎨
⎪⎩
[−1Tn1p̂1

1Tn1(1−p̂1)
0TN−n1

]T if j = 1

[ 0Tñj−1
− 1Tnj p̂j

1Tnj(1−p̂j)
0TN−ñj

]T if 1 < j < p

[ 0Tñp−1
− 1Tnpp̂p

1Tnp(1−p̂p)
]T if j = p .

Proof of Corollary 1. Recall that c(y) < ∞ if and only if (B) holds. Thus,
it suffices to show that (B′) is equivalent to (B). First, we shall write b =
(bT1 , · · · , bTp )T , where each bi is an ni × 1 vector. We start by demonstrating
that (B) implies (B′). We will establish this by contradiction. Assume (without
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loss of generality) that p̂1 = 0. Then, there are no −1’s in the first column of
Z, so the first column of Z is equal to [1Tn1

0TN−n1
]T . It follows that the first

component of the p×1 vector ZT b is 1Tn1
b1 > 0 for all b ∈ R

N
+ , which contradicts

(B). We can similarly prove that the assumption of p̂1 = 1 yields a contradiction
to (B). Hence, it must be that 0 < p̂j < 1 for all j ∈ Np.

We now show that (B′) implies (B). We will establish this by explicitly con-
structing a vector b ∈ R

N
+ such that ZT b = 0p. For each j ∈ Np, define

bTj =

{
[nj(1− 2p̂j) + 1 1Tnj−1 ] if 0 < p̂j <

1
2

[ 1Tnj−1 nj(2p̂j − 1) + 1 ] if 1
2 ≤ p̂j < 1 .

Clearly, each bj is in R
nj

+ , so that b ∈ R
N
+ . Therefore, we need only to show that

ZT b = 0p. It follows that, if 1
2 ≤ p̂j < 1, then the jth component of the p × 1

vector ZT b is equal to

[
−1Tnj p̂j

1Tnj(1−p̂j)

] [
1nj−1

nj(2p̂j − 1) + 1

]
= 0 .

We can similarly show that, if 0 < p̂j < 1
2 , then the jth component of ZT b is

also zero. Hence, ZT b = 0p, which completes the proof.
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