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Abstract: We aim to estimate multiple networks in the presence of sample
heterogeneity, where the independent samples (i.e. observations) may come
from different and unknown populations or distributions. Specifically, we
consider penalized estimation of multiple precision matrices in the frame-
work of a Gaussian mixture model. A major innovation is to take advantage
of the commonalities across the multiple precision matrices through possi-
bly nonconvex fusion regularization, which for example makes it possible
to achieve simultaneous discovery of unknown disease subtypes and detec-
tion of differential gene (dys)regulations in functional genomics. We embed
in the EM algorithm one of two recently proposed methods for estimating
multiple precision matrices in Gaussian graphical models. We demonstrate
the feasibility and potential usefulness of the proposed methods in an ap-
plication to glioblastoma subtype discovery and differential gene network
analysis with a microarray gene expression data set. We also conduct real-
istic simulation studies to evaluate and compare the performance of various
methods.
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1. Introduction

We consider the problem of estimating multiple networks in the presence of
sample heterogeneity; that is, the samples come from several populations with
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different Gaussian distributions, however it is unknown which samples are from
which distributions. The precision matrix of each distribution corresponds to
a network. This is related to but differs from the usual task of inferring and
contrasting multiple networks in Gaussian graphical models, where it is known
which samples are from which distributions (Guo et al. 2011; Danaher et al.
2014; Zhu et al. 2014 [11, 4, 38]). Although Gaussian mixture models are widely
used for model-based clustering, our primary goal is for estimation and com-
parison of cluster-specific precision matrices, for which existing model-based
clustering methods (McLachlan and Peel 2001; Fraley and Raftery 2006; Zhou
et al. 2009 [18, 8, 37]) are not suitable. The existing model-based clustering
methods either specify a common precision matrix or estimate multiple uncon-
strained cluster-specific precision matrices; due to the lack of a fusion penalty or
other mechanisms, the cluster-specific precision matrix estimates are either ex-
actly the same or completely different. On the other hand, in many applications
one would expect both commonalities and differences among the cluster-specific
precision matrices. Accounting for their commonalities not only improves sta-
tistical estimation efficiency through information borrowing, but also enhances
the ability of interpretation with a focus on few possible changes across the
cluster-specific precision matrices.

Our proposed methods were motivated by genomic applications to disease
subtype discovery while accounting for differential gene expression and/or differ-
ential gene regulations across (unknown) disease subtypes. This is in contrast to
existing methods allowing for only differential gene expression in disease subtype
discovery (Verhaak et al. 2010 [33]). Arguably, a biologically more interesting
problem is not only in detecting differential gene expression, but also in discov-
ering gene dysregulations, across to-be-discovered disease subtypes, which will
facilitate understanding disease mechanisms and thus developing individualized
treatments.

Our approach is in the framework of multivariate Gaussian mixture model-
ing (McLachlan and Peel 2001 [18]). The majority of the existing literature on
mixture modeling focus on regularizing only the mean parameters with diagonal
covariance matrices (Pan and Shen 2007; Wang and Zhu 2008; Xie et al. 2008
[23, 34, 36]), though some (Zhou et al. 2009; Hill and Mukerjee 2013; Wu et
al. 2013 [37, 12, 35]) have started considering regularization of the covariance
parameters too, all of which, however, do not touch on the key issue of identi-
fying both common and varying substructures of the precision matrices across
the components of a mixture model. Since these methods always give different
networks for different populations unless a common network is assumed, they
do not address the question of interest here: which parts of the networks change
with the populations. To address this question, we propose embedding one of the
current methods of estimating multiple Gaussian graphical models (Danaher et
al. 2014; Zhu et al. 2014 [4, 38]) in the EM algorithm (Dempster et al. 1977 [6])
for the Gaussian mixture model, for which existing algorithms can be effectively
used in the M-step of an EM algorithm for a Gaussian mixture model.

Since these methods apply a fusion penalty to shrink multiple networks to-
wards each other, they not only are statistically more efficient with information
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borrowing, but also facilitate interpretation in identifying differential network
substructures. In particular, due to the use of a non-convex penalty, the method
of Zhu et al. (2014) [38] strives to uncover the commonalities among multiple
networks while maintaining their unique substructures too.

Due to the connections to and differences from our current problem, we briefly
review the literature on Gaussian graphical models without sample heterogene-
ity; that is, it is known that the samples come from the same Gaussian distri-
bution. Gaussian graphical models are commonly used to describe conditional
dependence relationships between interacting variables for continuous multivari-
ate data. They are widely applied to reveal the structures in gene regulatory
networks ([9, 7]), protein interaction networks ([10, 30, 15]) and brain functional
connectivity ([13, 15]). Each network or graph consists of a set of nodes repre-
senting variables (e.g. genes) and edges; each edge between two nodes indicates
the conditional dependency of the two nodes, given all other nodes. In Gaussian
graphical models, the edges between nodes are determined by the non-zero off-
diagonal elements in the precision matrix (the inverse of the covariance matrix).
Therefore, reconstruction of the graph is equivalent to estimating the precision
matrix in the Gaussian graphical model. Friedman et al. (2008) [10] proposed
the graphical lasso method to estimate the (inverse) covariance matrices, where
they provided an efficient algorithm to directly maximize the L;-penalized log-
likelihood. While the graphical lasso is fast, it only focuses on estimating a single
graph. It ignores the structural similarities of multiple graphs when graphical
lasso is applied to estimate each graph separately. Recent works aim to recognize
possible commonalities among multiple graphs. Peterson et al. (2015) [24] pro-
posed a Bayesian approach to estimating multiple Gaussian graphs by placing a
Markov random field prior on the edges and a spike-and-slab prior to control the
similarity between graphs. Qiu et al. (2015) [25] proposed a kernel method for
joint estimation of multiple Gaussian graphs. Guo et al. [11] proposed to control
the sparsity of the off-diagonal elements of the precision matrices and to use the
L1 penalty to control the differences between the off-diagonal elements for each
pair of precision matrices. Danaher et al. (2014) [4] proposed the joint graphical
lasso algorithm, which uses the L; penalty to regularize both the sparsity and
the differences between the corresponding off-diagonal elements for each pair of
precision matrices. Mohan et al. (2014) [21] extended the joint graphical lasso by
taking a node-based approach for estimation of multiple Gaussian graphs. Re-
cently, Zhu et al. (2014) [38] proposed a regularized maximum likelihood method
for estimation of multiple precision matrices, In addition to seeking sparseness
with a non-convex penalty to regularize the off-diagonal elements in each preci-
sion matrix, it also imposes a non-convex fusion penalty on the differences be-
tween each pair of some related precision matrices that can be flexibly specified.

The rest of this paper is organized as follows. In Section 2 we introduce our
proposed new methods for estimating component-wise precision matrices in the
framework of a Gaussian mixture model. Section 3 presents simulation studies
to demonstrate the promising performance of our proposed methods, followed
in Section 4 for an application to a glioblastoma gene expression data set. We
conclude in Section 5 with a summary of our findings.
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2. Methods
2.1. Gausstan mixture model

We assume that each of n iid p-dimensional observations, x1, xs,..., Xy, comes
from a Gaussian mixture distribution with probability density function

g
flz;) = Zﬂ—ifi(xj;ei)v
i=1

where g is the number of components (or populations), 7; is the prior probability
for component ¢ with Y7 ;7 =1, 6; = {p;, Vi} is the set of the mean and
covariance matrix parameters for cluster ¢, and f; is a multivariate Normal
density (with a component-specific mean u; and covariance matrix V;),

1 1
fi(@;0;) = W exp <—§(93 - Mi)/Vi_l(ﬂﬁ - Nz)) .
Since each component corresponds to a cluster, we will refer to component and
cluster exchangeably. The primary goal here is to estimate the cluster-specific
precision matrices W; = Vi_l, though identifying the clusters is often of interest
either as a direct or side product.

Given the data, the log-likelihood is

log L(©) = Zlog (Z Wifi(xﬁai)) ) (1)

where O = {(m;,6;) : i = 1,2, ..., g} denotes the set of all unknown parameters.
An Expectation-Maximization (EM) algorithm [6] is often used to obtain the
maximum likelihood estimates. For high-dimensional data, it is often beneficial
to use the maximum penalized likelihood estimator based on a penalized log-
likelihood

log Lp(©) = log L(©) — pA(©), (2)

where p,(0) is to be specified as a penalty on all or a subset of the parameters.
Various penalties have been proposed to achieve better performance in different
contexts.

2.2. New methods
2.2.1. New method 1: With a convexr penalty

A zero entry Wi, the (k,{)th entry of W;, indicates conditional independence
between the kth and [th variables in cluster ¢ given other variables. Estimating
multiple cluster-specific precision matrices can reveal changes of dependency
structures across multiple clusters. To facilitate detecting structural changes, a
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penalty is imposed on the differences between the corresponding entries across
multiple precision matrices. We propose using a joint lasso and fused graphical
lasso (FGL) penalty of Danaher et al. (2014) [4] on each precision matrices W;’s:

g

pA(©@) = A\ ZZ [Wikt] + A2 Z Z Wiske — Wil (3)

i=1 k£l i<i’ k,l

where \; and Ay are nonnegative tuning parameters. In addition to achieving
sparseness as in graphical lasso, FGL also encourages identical entries across
cluster-specific precision matrices. This feature helps to reveal both commonal-
ities and cluster-specific network structures, in addition to improving statistical
estimation efficiency through borrowing information across the multiple net-
works.

Note that Danaher et al. (2014) used the above penalty in the context of
Gaussian graphical modeling, knowing which observations are from which Gaus-
sian distribution, differing from our Gaussian mixture modeling. Nevertheless,
we will show how to apply their proposed ADMM algorithm ([1]) (as imple-
mented in the R package JGL) in the M-step of an EM algorithm in the current
context.

We denote the new method that incorporates the use of the joint lasso and
fused graphical lasso (JGL) in our Gaussian mixture modeling as New-JGL.

2.2.2. New method 2: With a non-conver penalty

In the context of Gaussian graphical modeling, Zhu et al. (2014) [38] proposed
the following non-convex penalty function for W,

PA®) = M Y Y T (Wil + A2 DD T ((Wiskt — Wirswal), (4)

i=1 k#l <1’ k#l

where A1, A2 and 7 are nonnegative tuning parameters, and J(z) = min(|z|, 7)
is the truncated Lasso penalty (TLP) (Shen et al. 2012 [28]). The two penalties
serve the corresponding sparseness and fusion roles as in JGL. However, in
contrast to FGL in (3), only non-diagonal elements, but not diagonal elements,
are penalized for their differences in (4).

The non-convex TLP reduces the bias induced by the lasso penalty because
no more penalty is imposed if |z] > 7 in J.(2). In the current context, the TLP
can do better in maintaining the magnitudes of non-zero entries or differences
between two unequal entries. The scaled TLP, J,(z)/7, approximates the Lg-
function, I(z # 0), as 7 tends to 0F. Like FGL, this method is able to detect
possible element-wise heterogeneity across multiple networks, for example in
identifying signaling network changes across distinct cancer subtypes.

We propose using the same non-convex penalty (4) in our current context of
Gaussian mixture modeling, and will demonstrate that the algorithm of Zhu et
al. (2014) can be applied in the M-step of an EM algorithm for our purpose.
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We denote the new method that incorporates the use of structural pursuit (SP)
penalty (4) in our Gaussian mixture modeling as New-SP (New-Structural-
Pursuit).

2.3. Computing

We develop an EM algorithm to obtain the maximum penalized likelihood es-
timates (MPLEs). In particular, we will demonstrate how to use an existing
Gaussian graphical modeling algorithm in the M-step of the EM algorithm for
a penalized Gaussian mixture model.

We introduce z;; as the indicator of whether z; belongs to component i,
so z;; = 1 if x; comes from component i and z;; = 0 otherwise. Here z;;’s
are treated as missing data. If z;;’s are observed, the complete data penalized
log-likelihood is

log L. p(©) = Z Zzij [log i + log fi(x;;0;)] — pA(©), (5)

i=1j=1

where py(0©) is a penalty on the parameters; typically only the mean parameters
wi’s and /or covariance matrices V;’s are penalized, which is assumed throughout.

Define the posterior probability of x;’s belonging to component ¢ as p;; =
P(z;; = 1|z;;0), then the E-step calculates the following with the current
estimate ©(") at iteration r,

Qp(9;0) = Egw (log Le,p| X) = ZZp [log 7; + log fi(x;; 0:)] — pA(©)
=1 j=1
(6)
with

f7( j’ z )
Lo filal; 0

J’l

Py = Pz = 1]2;;07) =

(7)

In the M-step, we find 7T (r+1) , ﬂET'H) and that maximize @) p. Using the

Lagrange multiplier 7 to constrain Y 7_, 7; = 1, we omit the terms without m;’s
and rewrite Qp as

Wi(r+l)

g

Liz,m) = >3 g logmi + (> mi — 1). (8)

=1 j=1 i=1
Taking the partial derivative of L(m,n) with respect to m; and set it to 0, we
arrive at the updating formula for 7;

n

#D =350 . (9)

=1
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To update p;, if there is no penalty on u;, we take the derivative of Qp with
respect to p; and set it to 0,

00r < .
3 oy ) W =0, (10)
! J

obtaining the updating formula for f; as

n  A(r)
ﬂ(r+1) _ Zj:l Pij Lj

On the other hand, if the Lasso penalty is imposed on p;, then its updating
formula involves a soft-thresholding on the above quantity (e.g., Pan and Shen
2007 [23]).

Finally, to update V; or equivalently, W; = Vi_l, we only need to consider
the terms related to W; in Qp:

(11)

n

1< (r 1 & o o
Qr = 52> A logIWil = 5 DD (g — i)Y Wile; — 457) — pA(©)
=1 j=1 i=1j=1
Lm0 5(r)
= 52 (1o W] — (37 W3)) — pa(©) (12)
=1 j=1
with

S ) g = ) (s = ")
S By
as a weighted sample covariance matrix.
Typically there is no closed-form solution to update W; or V; when one of
them is penalized. However, we can take advantage of the existing methods for
penalized Gaussian graphical models. Below we point out their connection.

If we know the cluster label for each observation x;, as in Gaussian graphical
modeling, then the penalized log-likelihood for W; is

Z [n; (log [Wi| — tr(S;W;)) — pa(W3)] (14)

i=1

N =

where n; is the sample size for cluster i, and S; is the sample covariance ma-
trix for cluster ¢. Correspondingly, in the current context of Gaussian mixture
modeling, the @Qp function in the EM algorithm with a penalty on W; is

g n
Qp = %Z Zﬁg) (log |Wi| — tT‘(Sl(T)Wi)) —pa(Wi) | . (15)
i=1 | j=1

To maximize @ p, we use the soft assignment, instead of hard assignment, of each
observation z; into a cluster. Specifically, setting n; = Z?Zl ﬁg;) and S; = SZ-(T),
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then maximizing expression (15) will be equivalent to maximizing (14). Since
there are already efficient computational algorithms to maximize the penalized
log-likelihood (14) in the Gaussian graphical model, we can incorporate one of
them into the M-step in our EM algorithm to obtain an update for W;. Zhou
et al. (2009) used this idea in applying graphical Lasso (Friedman et al. 2008
[10]) in their penalized model-based clustering with unconstrained covariance
matrices. We applied the R functions of Danaher et al. (2014) and Zhu et al.
(2014) in the M-step for the proposed two new methods respectively.

2.4. Review: two existing methods

Different choice of py(W;) will lead to different penalized maximum likelihood
estimates of W; and corresponding algorithms. For comparison, we briefly review
two existing penalized mixture modeling methods (Pan and Shen (2007); Zhou et
al. (2009) [23, 37]). The method of Pan and Shen (2007) specifies each component
in the Gaussian mixture model as a multivariate normal with a common diagonal
covariance matrix V; = V = diag(o?,03,. .., p) They proposed an Li-penalty
for the mean parameters,

=2 30> s (16)

=1 k=1

where i is the mean of kth variable for component ¢. Using the L; penalty,
small estimates of the mean parameters will be shrunken to be exactly zero. If
for a given variable k, p;, = 0 for all components 4, then this variable will have
no effect on clustering. Hence this penalty is used for variable selection, but not
for inferring the cluster-specific networks.

Zhou et al. (2009) [37] relaxed the diagonal covariance matrix assumption
and adopted unconstrained covariance/precision matrices. To regularize the pa-
rameters in the precision matrices, they proposed a penalty function of the form

@):/\IZZ|MM|+)‘QZ|WM|’ (17)

i=1 k=1 k£l

where W = V1 is the common precision matrix (or inverse covariance matrix).
The first term in the above penalty function aims at variable selection as in
Pan and Shen (2007), while the second term uses the L;-penalty to promote the
sparseness of the precision matrix. For penalized covariance matrix estimation,
they used the graphical lasso algorithm of Friedman et al. (2008) and maximized
the following objective function

log [W] = tr(S"W) = A [Wil, (18)
k£l
where A = 2Ay/n and

) _ S X A g — i) = 7Y

n
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is a weighted sample covariance matrix based on the soft assignments of all the
samples as for Si(r).

Zhou et al. (2009) also considered the case where each component ¢ in the
mixture model has an unconstrained covariance matrix V;. Then they proposed
the following penalty function to regularize the means and cluster-specific co-
variance matrices,

PAO) =AY D il + A Y D> IWigjal, (19)

i=1 k=1 =1 j,l

where W;.;; is the (j,{)th entry of W;. They again used the graphical lasso
algorithm to obtain the estimate of the cluster-specific precision matrix W; =
Vfl in the M-step of the EM algorithm.

2.5. Implementation

By default our EM algorithm starts with some initial values given by the K-
means method, though other (random or fixed) and/or multiple starting values
can be equally applied.

We first use the Li-penalty, then try 7 at each of the quantiles of the L;-
penalized estimates of |W;.xi| and |W;.p — Wir|. By default the tuning param-
eters A\; and Ay are chosen from A; € {log(p) x (1.5,1,0.8,0.3,0.1,0.05,0.01,
0.001)} and Ay € {log(p) x (108,1000, 500, 100,50, 10,5,1,0.8,0.5,0.3,0.1,0.01,
0.001)}. A grid search is used to find a combination of the penalty parameter
values (A1, A2, 7) and a cluster number g that lead to the highest predictive
log-likelihood as calculated by 5-fold cross-validation.

Our methods are implemented in an R package called pGMM that will be
freely downloadable on CRAN.

3. Simulations

Due to the unknown truth for real data, it is difficult to draw definitive con-
clusions on the relative performance of various methods. As an alternative, we
conducted simulations to evaluate and compare the performance of the methods
in both clustering (i.e. the assignments of the samples to clusters) and precision
matrix estimation.

To mimic real data, we used the fitted models to the glioblastoma gene ex-
pression data by Zhou et al. (2009) and our proposed new methods as the true
model to generate simulated data; in this way, we avoided possible biases in
using only one true model to generate simulated data that might favor one of
the methods. In each case, there were 4 clusters with n = 173 or n = 346 ob-
servations with p = 20. We then applied the usual non-penalized model-based
clustering as implemented in R package mclust (Fraley and Raftery 2006 [8]), the
methods of Pan and Shen (2007) [23] and Zhou et al. (2009) [37], and our pro-
posed two new methods. To measure the accuracy of parameter estimation for
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precision matrices, we used the average entropy loss (EL) and average quadratic
loss (QL),

EL =

M=

(tr(ViWi) — log det(ViWi))

QIR Q|

i=1

QL = tr ((ViWi - 1)2) .

=1

To measure the accuracy of estimating zero or non-zero entries and grouping
structures in precision matrices, following Zhu et al. (2014) [38], we used the
average number of false positives for sparseness pursuit (FPV), average number
of false negatives for sparseness pursuit (FNV), average number of false positives
for grouping (FPG), and average number of false negatives for grouping (FNG):

19 e I(Wieiir = 0, Wi # 0
FPV:—ZZISJSJ <K ( 300 370 7& )X (1—H(Wi’oﬂ‘#0)>

9.3 Z1§j§j'gk H(Wi;jj’ =0)

1 < ir<i MWy # 0, Wij5r = 0
FNV — » Z Z1§]§g <K ( JJ # JJ >]I(Wi,of-f £ 0)

it Yacj<jrrx IWiggr #0)

1 .y ]I W’L’ :Wi""’7W’L"" Wi""’

FPG — Z Zl§]§] <K (Wisjj 47 i 7 i)

C(9,2) i<t Z1§j§j/§K I(Wij50 = Wirjr)

X (1 - I{(Vvi,oﬂ? 7é Wi’,of‘f))

NG = L > or<j<ir<i Wi # Wirjjo, Wisjyr = Wirsgjr)

C(g,2) i<l Z1§j§j'§Kl(Wi;jj/ # Wi’;jj/)

X H(Wi,off # Wi’,off)»

where C(g,2) is the combinatorial number of choosing 2 from g.

Table 1 shows the results for n = 173 based on 50 simulations for each set-up.
With the true model as the fitted model by the method of Zhou et al. (2009), the
method of Zhou et al. (2009) itself gave the highest Rand index, suggesting the
best accuracy for clustering. However, It did not give the lowest average entropy
loss (EL) and quadratic loss (QL) for precision matrix estimation, though the
differences were not large. Recall that the true model here was based on four
largely differing cluster-specific precision matrices, which might not favor fusing
the cluster-specific precision matrices. Impressively our method New-SP gave
the second highest Rand index that was quite close to that of Zhou et al. (2009),
and more importantly, New-SP gave the most or second most accurate estimates
of the cluster-specific precision matrices with the lowest average EL and second
lowest QL. In addition, it also gave low false positive rates of sparseness and
grouping, but high false negative rates. It is noted that New-JGL also performed
well.
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TABLE 1
Simulation results with n = 173 and the true model being that estimated byone of the three
methods based on the glioblastoma dataset. The means (standard deviations) of the Rand
Index (RI), adjusted Rand Index (aRI), average entropy loss (EL) average quadratic loss
(QL), average false positive for sparseness pursuit (FPV), average false negative for
sparseness pursuit (FNV), average false positive for grouping (FPG) and average false
negative for grouping (FNG) are shown for 50 simulations.

Trath  Method  RI aRl EL QL FPV _FNV _FPG  FNG
Zhou09  Zhou09 0.714 0.309 30495 61.121  0.749 0.204 0875  0.110
(0.036) (0.087) (1.330) (21.484) (0.026) (0.021) (0.081) (0.084)

Pan07 0648 0164 29569 66.803 0000 1.000 0.000 1.000

(0.033) (0.054) (0.208) (4.349) (0.000) (0.000) (0.000) (0.000)

Mclust  0.632 0150 30.054 70533  0.000 1.000 0.000  1.000

(0.027) (0.044) (0.620) (11.465) (0.000) (0.000) (0.000) (0.000)

New-JGL 0660 0189 29.049 59.005 0127 0817 0.000 1.000
(0.026) (0.054) (0.673) (11.801) (0.174) (0.182) (0.000) (0.000)

New-SP  0.680 0260 28.726 59.605 0020 00952 0022  0.957

(0.034) (0.071) (0.881) (11.112) (0.042) (0.086) (0.043) (0.075)

New-SP _ Zhou09  0.632 0.024 31.609 61.775  0.649 0256 0.881 _ 0.000
(0.024) (0.010) (1.138) (17.245) (0.047) (0.023) (0.058) (0.000)

Pan07 0804 0501 33.785 40.081 0000 1.000 0.000  0.000

(0.043) (0.107) (0.612) (8.787) (0.000) (0.000) (0.000) (0.000)

Mclust  0.862 0647 26.179 72.099 _ 1.000 0.000 0.319 _ 0.000

(0.047) (0.114) (5.333) (209.858) (0.000) (0.000) (0.470) (0.000)

New-JGL 0856 0620 23853 11.255 0376 0292 0.000  0.000
(0.038) (0.098) (0.362) (2.275) (0.124) (0.069) (0.000) (0.000)

New-SP _ 0.917 0.785 23.265 10.242 0.130 0.558  0.000 _ 0.000

(0.053) (0.136) (0.977) (4.657) (0.072) (0.106) (0.000) (0.000)

New-JGL Zhou09 0664 0.063 30.174 46403  0.692 0.245 0011  0.090
(0.027) (0.017) (0.769) (8.676) (0.029) (0.018) (0.037) (0.040)

Pan07  0.886 0717 30283 31.125 0000 1.000 0.000 1.000

(0.036) (0.087) (0.624) (5.356) (0.000) (0.000) (0.000) (0.000)

Mclust  0.807 0744 25875 24760 0020 0080 0.000  1.000

(0.030) (0.072) (0.392) (3.434) (0.141) (0.141) (0.000) (0.000)

New-JGL 0926 0815 22.533 7.615 0361 0341 0000 1.000

(0.043 (0.109) (0.258) (1.237) (0.047) (0.048) (0.000) (0.000)

New-SP_ 0.930 0.823 23.493 12.604 0.056 0.759  0.000 _ 1.000

(0.042) (0.107) (0.786) (5.237) (0.049) (0.159) (0.000) (0.000)

On the other hand, if the true model was the fitted one by New-SP, then New-
SP was the clear winner for both clustering and precision matrix estimation,
followed by New-JGL. This was the case when the cluster-specific precision
matrices differed but sharing some commonalities. Finally, if the true model
was the fitted one from New-JGL, the winners were New-JGL and New-SP,
followed by mclust and the method of Pan and Shen (2007) (where a common
diagonal precision matrix was assumed).

We also investigated the sensitivity of the EM algorithm to its starting values.
For the set-up with the true model as the one fitted by New-JGL, instead of
using the K-means output as the starting value for New-JGL and New-SP, we
used some randomly generated numbers as the starting value. The resulting
Rand index values for New-JGL and New-SP decreased from 0.926 and 0.930 to
0.635 and 0.757 respectively, confirming the importance of using good starting
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TABLE 2
Simulation results with n = 346 and the true model being that estimated byone of the three
methods based on the glioblastoma dataset. The means (standard deviations) of the Rand
Index (RI), adjusted Rand Index (aRI), average entropy loss (EL) average quadratic loss
(QL), average false positive for sparseness pursuit (FPV), average false negative for
sparseness pursuit (FNV), average false positive for grouping (FPG) and average false
negative for grouping (FNG) are shown for 50 simulations.

Trath  Method  RI aRl EL QL FPV _FNV _FPG  FNG
Zhou09  Zhou09  0.775  0.455 26.072 24.435 0825 0.115  0.936  0.049
(0.040) (0.097) (1.185) (12.397) (0.021) (0.022) (0.065) (0.062)

Pan07  0.608 0.123 29.101 56.655 0000 1.000 0.000  1.000

(0.036) (0.049) (0.140) (2.808) (0.000) (0.000) (0.000) (0.000)

Mclust  0.675  0.239 29.647 72.100 0.000 1.000 0.000 _ 1.000

(0.040) (0.079) (1.543) (28.488) (0.000) (0.000) (0.000) (0.000)

New-JGL 0.661 0.200 27.316 34188 0583 0320 0.007 0.992

(0.022) (0.043) (0.356) (4.787) (0.028) (0.033) (0.050) (0.057)

New-SP  0.842 0.624 24.502 17.738 0128 0605 0206 0541

(0.052) (0.129) (1.163) (7.946) (0.032) (0.067) (0.054) (0.074)

New-SP _ Zhou09  0.893  0.726 20.645 42.074 0743 0.156 0.056 _ 0.000
(0.032) (0.083) (0.587) (7.665) (0.041) (0.016) (0.033) (0.000)

Pan07  0.830 0.570 34.003 49.082 0000 1.000 0.000  0.000

(0.025) (0.061) (0.354) (5.454) (0.000) (0.000) (0.000) (0.000)

Mclust  0.922  0.802 24.722 23761 1.000 0.000 0.950 _ 0.000

(0.037) (0.094) (1.704) (18.492) (0.000) (0.000) (0.198) (0.000)

New-JGL 0883 0.701 22.864 7.019 0426 0.185 0.000  0.000

(0.037) (0.095) (0.234) (1.33)8 (0.103) (0.040) (0.000) (0.000)

New-SP_ 0.962 0.902 21.035 2.534 0544 0.106 0.000 _ 0.000

(0.018) (0.048) (0.318) (0.827) (0.230) (0.116) (0.001) (0.000)

New-JGL Zhou09  0.931 0.827 28.631 35451 0788 0.153 0.963 0.036
(0.025) (0.063) (0.618) (6.236) (0.022) (0.013) (0.007) (0.011)

Pan07  0.898 0.747 30255 30215 0.000 1.000 0.000  1.000

(0.023) (0.056) (0.507) (3.997) (0.000) (0.000) (0.000) (0.000)

Mclust  0.941  0.853 22.358 7.122 1.000 0000 0275 0.725

(0.021) (0.052) (0.610) (2.899) (0.002) (0.000) (0.446) (0.446)

New-JGL 0038 0845 21.844 4899 0458 0216 0.104 0.869

(0.024) (0.060) (0.130) (0.650) (0.069) (0.055) (0.241) (0.304)

New-SP__ 0.961 0.903 21.637 4.359 0109 0540 0.000  0.998

(0.011) (0.028) (0.171) (0.698) (0.116) 0.105) (0.001) (0.006)

values for the EM algorithm. However, the estimation errors for the precision
matrices were less influenced: for example, the mean EL for New-JGL and New-
SP increased from 22.533 and 23.493 to only 23.964 and 25.743, respectively,
still lower than those of the other methods.

Next we doubled the sample size in simulations. With the increased sample
size, the proposed method New-SP became the clear overall winner, followed
by New-JGL (Table 2). Although mclust performed well in the last two set-
ups (with the true model being that fitted by New-SP or New-JGL), it did
not work well in the first set-up. Again it is noted that the two new meth-
ods largely outperformed the method of Zhou et al. (2009) [37] for estimating
the cluster-specific precision matrices, perhaps due to the former two’s use of
the fusion penalties for information borrowing across multiple cluster-specific
precision matrices.
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4. Example
4.1. Glioblastoma gene expression data

Verhaak et al. (2010) [33] studied a gene expression data set of glioblastoma tu-
mor and normal samples. They used a consensus hierarchical clustering method
to identify four disease subtypes. It is noted that, due to the limitation of the
clustering method, the conditional dependencies between genes in each clus-
ter were ignored and thus not revealed. This leaves room for our new and other
methods to explore possible dependency relationships among the genes. Further-
more, the identified four clusters, albeit biologically reasonable, are in no way
to be perfect, which bears importance when one uses their sample assignments
as a reference to compare various methods.

To be practically focused, we restricted our analysis to the gene expression
data from the 173 core samples as used by Verhaak et al.(2010) [33], and we
selected only 20 genes that are related to cell signaling pathways. Some of these
genes were demonstrated to be altered in Figure 4B in Brennan et al. (2013) [2]
and Figure 5 in Mclendon et al. (2008) [19]. Specifically, genes EGFR, PDGFRA,
FGFR3 are members of the RTK signaling pathway. RASGRP3 and RRAS
are downstream targets of the RTK signaling pathway. PIK3C2B, PIK3R1,
PIK3R3, PIK3IP1 and AKTIP are components of the PI3K/AKT signaling
pathway. NFIB is the downstream target of RTK and PI3K/AKT signaling
pathways. CDKN3, CDK4, CDKN1A, CDKN2C, CCND2 are involved in RB
signaling pathways and they play important roles in cell cycle regulation. CASP1
and CASP4 are important genes in cell apoptosis.

4.2. Estimated networks

We applied our method New-SP to the glioblastoma gene expression data set.
Trying with ¢ = 1,2,3,4,5 clusters, it reached four clusters/subtypes. Each
cluster showed a distinct conditional dependency structure among the genes,
though their overall structures were similar (Figure 1).

This suggests distinct cell signalling network changes across the disease sub-
types. A closer examination of the estimated precision matrices reveals that the
conditional dependencies among the receptor kinases and the downstream tar-
get genes were altered. The PI3K/Akt signaling pathway plays an important
role in cell survival and proliferation in glioblastoma ([3, 22]). One of the esti-
mated networks shows that the AKTIP gene was conditionally correlated with
CDKN2C, a gene encoding a cyclin-dependent kinase inhibitor that regulates
cell growth. However, this link was lost in all other three estimated networks.
Similarly, PIK3IP and AKTIP were not conditionally correlated with CDKN1A,
CDKN2C and CDKN3 in one or more estimated networks, while the network in
bottom left of Figure 1 preserved most of the connections. The PI3K/Akt sig-
naling pathway is reported to be upstream of CCNDZ2, a gene encoding the cell
cycle regulating protein Cyclin D2 ([20]). Only one out of four subtypes demon-
strated a conditional dependence between AKTIP and CCND2. The changes
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Fia 1. Estimated cluster-specific networks based on 173 core samples using the new method
New-SP.

between these links collectively suggested dysregulation of cell growth by the
PI3K/Akt signaling pathway in some subtypes of glioblastoma.

Gene IDH1 is known to have a higher mutation frequency in some glioblas-
toma subtypes, and here it exhibited cluster-specific associations with FGFR3,
which was also reported to have mutations in glioblastoma subtypes classified
by Verhaak et al. (2010) [33]. We found that gene IDH1’s expression was pos-
itively correlated with that of FGFR3 in only one cluster, suggesting possibly
altered co-expressions in other clusters. IDH1 mutation is reported to cause
widespread changes in histone and DNA methylation and potentially promot-
ing tumorigenesis ([32, 16]). CCND2 was found to be amplified in IDH1 mutant
medulloblastoma subtypes ([29]). Therefore, the abnormal IDH1 gene level and
its disconnection with CCND2 observed in the estimated network pointed to
possible roles of IDH1 in oncogenesis in certain subtypes of glioblastoma.

For comparison, we applied Zhou et al.’s method to the glioblastoma gene ex-
pression data set with cluster-specific covariance matrices. Among g = 1,2,3,4,5
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Fia 2. Estimated cluster-specific networks based on 173 core samples using the method of
Zhou et al. (2009).

clusters, it selected four clusters. The estimated cluster-specific precision matri-
ces demonstrated cluster-specific dependencies among the genes (Figure 2). The
estimated networks using Zhou et al.’s method confirmed that the conditional
correlation between IDH1 and CCND2 was lost in one network estimated by
the New-SP method. The conditional correlation between AKTIP and CCND2
was present in three subtypes, though the correlation was weak in one subtype.
Compared to the networks estimated by the method of New-SP, the dependency
changes across the clusters estimated by Zhou et al.’s method were much more
dramatic, reflecting possibly large variations of the estimates without borrowing
information across clusters.

The New-JGL method also yielded four clusters (Figure 3). Like the networks
estimated by the New-SP method, the networks estimated by the New-JGL
method shared some structural similarity. The AKTIP and CCND2 correlation
was found in two out of four subtypes, although the correlation in one sub-
type was weak. This agreed with the correlation in the networks estimated by
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Fia 3. Estimated cluster-specific networks based on 173 core samples using the method of
New-JGL.

the New-SP method. Unlike in Figure 1, the conditional correlation between
IDH2 and CCND2 was present in all four subtypes, though the magnitude of
correlation was small.

The non-penalized mclust yielded four clusters with a common covariance
matrix, suggesting that the differences among the four cluster-specific covariance
matrices were possibly subtle. This was also reflected from the overall similarity
across the four cluster-specific estimates of the two new methods.

4.3. Sample cluster assignments

Using the cluster assignments in Verhaak et al. (2010) [33] as the reference, the
agreement between our New-SP method and the reference as measured by the
Rand index was 0.747 and by the adjusted Rand index was 0.354 (Table 3).
Its performance was compared with several other methods. First, the method
of Pan and Shen (2007) [23] based on a common diagonal covariance matrix
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TABLE 3
Rand Index (RI) and adjusted Rand Index (aRI) for the glioblastoma gene expression data
with 20 genes by various methods. The class assignments given in [33] are used as the
reference.

New-SP  mclust Pan07 Zhou09 New-JGL
p=20 RI 0.747 0.688 0.780 0.713 0.746
aRI 0.354 0.222 0.439 0.305 0.355

yielded 5 clusters with a Rand index of 0.749 and the adjusted Rand index of
0.358. For the purpose of comparison, we also examined the clustering results
of the method by forcing 4 clusters, which led to a Rand index of 0.780 and
the adjusted Rand index of 0.439 (Table 3). Although the method of Pan and
Shen yielded a slightly higher Rand index, it was possibly due to the bias of the
reference clustering method (that ignored varying within-cluster dependencies
that would in turn favor the results of Pan and Shen (2007)). More importantly,
a common diagonal covariance matrix assumed and estimated by the method
cannot be used to examine possibly varying within-cluster dependency struc-
tures. Finally, the two new methods seemed to perform better than the two
other methods.

4.4. Model assessment

To check the goodness-of-fit of a final model, we propose using the parametric
bootstrap, which was used by McLachlan and others to select the number of
components in a Gaussian mixture model ([17, 26]). For example, for our real
data, the New-SP method selected a final model with four components, each
with a component-specific precision matrix, which is called an alternative model
here; it may be of interest to compare this alternative model with a null (or
reduced) model with four components but a common precision matrix, which
could be achieved by forcing a large Ay value (while other tuning parameters
were selected as before). We generated 50 bootstrap samples from the fitted
null and alternative models respectively, then fitted the two models respectively
to the bootstrap samples; finally, we compared their corresponding CV log-
likelihood values, as shown in Figure 4. For the bootstrap samples, in both cases
fitting the alternative model seemed to yield a higher mean value of the CV log-
likelihood; however, the difference between the two fitted models was larger when
the bootstrap samples were generated from the alternative model, as expected.
Since the CV log-likelihood value difference between the two fitted models based
on the original data was larger than that from the bootstrap samples generated
from the alternative model, there was some evidence to support the use of the
alternative model. Nevertheless, perhaps due to the relatively small sample sizes
and shrinkage effects of the four component-specific precision matrices towards
each other (as imposed by the fusion penalty even in the alternative model), the
difference between the two models was not overwhelming, and cautions must be
taken in not over-interpreting their differences.



1150 C. Gao et al.

--- Null log-likelihood
S| Alt log-likelihood
S 4
T
o — :
Sl PP O P PP PPN
@ :
T
o
o
S 4
T
o |
Yol '
— : —_—
! :

T T T T
Null=Null Null-Alt Alt=Null Alt-Alt

F1c 4. Distributions of the C'V log-likelihood values of various fitted models based on bootstrap
samples. Null-Null, bootstrap samples were generated from the null model, to which the null
model was fitted; Null-Alt, bootstrap samples were generated from the null model, to which the
alternative model was fitted; Alt-Null, bootstrap samples were generated from the alternative
model, to which the null model was fitted; Alt-Alt, bootstrap samples were generated from the
alternative model, to which the alternative model was fitted. The two horizontal lines are the
CV log-likelihood values for the two fitted models to the original data.

5. Discussion

We have presented a new approach to estimation of multiple networks in the con-
text of a penalized Gaussian mixture model. The primary goal is for estimating
and comparing cluster-specific network changes, though automatic cluster dis-
covery is often of interest too. For the primary goal, it is necessary to encourage
the equalities of the entries across the cluster-specific precision matrices while
maintaining their differences if any, which is best accomplished by fusion with
a non-convex penalty such as TLP as adopted in our proposed method New-SP
([28], [38]). Note that standard and existing penalized model-based clustering
methods are not suitable for our primary goal: due to the lack of fusion penal-
ties, the existing methods cannot highlight few major differneces across multiple
precision matrix estimates, in addition to their loss of estimation efficiency with-
out information borrowing. Both our proposed methods pursue both sparseness
and fusion for multiple precision matrices in the framework of Gaussian mixture
modeling. Our approach takes advantage of the existing methods using convex
or non-convex penalties to regularize the parameters in the unconstrained pre-
cision matrices based on Gaussian graphical models, which assumes that it is
known that which samples are from which Gaussian distributions, differing from
our current context with unknown sample heterogeneity.

We applied the methods to a real data set containing gene expression profiles
of glioblastoma patients. Using the New-SP method, the samples were parti-
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tioned into four disease subtypes, as reported in Verhaak et al. (2010) but based
on only differential gene expression. Importantly, our method reconstructed dis-
ease subtype-specific gene networks, suggesting candidates for possibly subtype-
specific gene dysregulations that can be followed up in further biological exper-
iments. Since the truth is unknown for the real data, we recoursed to realistic
simulations mimicking the real data to evaluate the methods; it was demon-
strated that our method New-SP based on the non-convex TLP gave the best
overall performance in both clustering (i.e. subtype discovery) and network es-
timation when the sample size was at least moderately large, followed by the
other proposed method New-JGL based on the convex (fused) Lasso penalty.
The better performance of New-SP over New-JGL is likely due to the non-
convex TLP adopted in the former, as demonstrated in Shen et al. (2012) [28]
for regression and single precision matrix estimation and Zhu et al. (2014) [38]
for estimating multiple precision matrices in Gaussian graphical models. On the
other hand, New-JGL is simpler and faster than New-SP, and thus can be used
for larger problems and/or to provide a quick preliminary solution; in particular,
we advocate using the results of New-JGL (or any other method with a convex
penalty) as a good starting value for New-SP, thus the latter can be regarded as
a refinement of the former. We also note that partition rules discussed in Zhu et
al. (2014) can be used to speed up the new methods for high-dimensional data.

We emphasize that the existing methods for estimation of multiple networks,
including the two used here (Danaher et al. 2014; Zhu et al. 2014 [4, 38]), are
based on Gaussian graphical models without sample heterogeneity; that is, each
sample is assumed to be known from a given Gaussian distribution. In our target
applications and other settings, this sample homogeneity assumption may not
hold. For example, in clinical genomic studies, due to disease heterogeneity, the
assumption that all the gene expression profiles of cancer patients come from
the same Gaussian distribution is not practical. To discover unknown disease
subtypes, clustering or unsupervised learning becomes useful, which will facil-
itate personalized medicine. To our knowledge, existing clustering methods of
gene expression have focused on detecting differential mean expression levels
across clusters or disease subtypes, as demonstrated in Verhaak et al. (2010)
[33]. However, in addition to differential gene expression, there are possibly dif-
ferential gene regulations or dysregulations across disease subtypes. If disease
subtypes are known, then differential gene regulations can be treated as esti-
mating multiple precision matrices in Gaussian graphical models, as handled by
many existing methods; otherwise, as discussed here, both disease subtypes and
possibly differential precision matrices must be inferred simultaneously based
on a Gaussian mixture model.

Our methods are implemented in an R package pGMM that will be available
on CRAN.
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