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1. Introduction

We would like to first congratulate the authors for this timely survey on high-
dimensional covariance matrix estimation. Over the last decade, there has been
a flurry of activities in high-dimensional statistics in general and more specif-
ically on covariance estimation. The article provides an organized overview of
the key advancements in the area of sparse covariance matrix estimation and
sparse inverse covariance matrix estimation. Specifically it enlists the parame-
ter spaces corresponding to the different types of sparse structures commonly
assumed in the literature and provides minimax lower bounds and estimators
that match these lower bounds for each of the parameter spaces. Furthermore,
it includes discussion on two closely related problems, namely sparse principal
component analysis and high-dimensional covariance testing. This expository
article, without a doubt would serve as a “goto” reference for people who are
interested to learn about high dimensional covariance matrix estimation in the
future.

In this discussion, we concentrate on a particular assumption made in most
of the literature on covariance estimation, namely the sub-Gaussian assump-
tion. It is long recognized by statisticians that data from real-world experi-
ments oftentimes tend to be corrupted with outliers and/or exhibit heavy tails.
In such cases, it is not clear that those covariance matrix estimators described
in this article remain optimal. In particular, many of these estimators are based
upon sample covariance matrices that is known to perform rather poorly if
the data is corrupted with outliers, under the classical fixed dimensionality
paradigm [1].
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To explore this possible pitfall and offer potential solutions, we investigate in
this discussion a simple strategy of replacing the sample covariance matrix with
a more robust median covariance matrix.

2. Median covariance matrix estimator

Let {X(1), . . . , X(n)} be n random variables taking values in a Banach space
(B, ‖·‖), with metric ‖·‖. Recall that the geometric median (cf. [2]), m̂(X(1), X(2),
. . . , X(n)), of the n random variables is defined as the point in the space that
minimizes the sum of its distance to all observations:

m̂(X(1), X(2), . . . , X(n)) = argmin
c∈B

n∑

i=1

‖X(i) − c‖.

We note that the minimizer on the right hand side is uniquely defined and
therefore the above definition is valid if the space B is separable, reflexive and
strictly convex; see [3] for further discussions about the existence and other
properties of m̂.

Now consider employing a similar strategy for covariance matrix estimation.
More specifically, define

Σ̂med = m̂(X(1)X(1)�, X(2)X(2)�, . . . , X(n)X(n)�),

where, for simplicity, we use the standard Frobenious norm ‖A‖F =
√

tr(A�A)
as the metric for calculating m̂. Instead of Frobenius norm, one may also consider
other metrics, for example those adapted to the manifold of symmetric positive
semidefinite matrices, when computing m̂.

Once the median covariance matrix is computed, we may impose sparse struc-
tures on it to derive estimates suitable for high dimensional problems. To fix
ideas, here we focus on the bandable case and consider a banding estimator
based on Σ̂med:

Σ̂B,k = (Σ̂med
ij I{|i− j|} ≤ k).

We now examine the effect of using Σmed as the initial estimator through a
numerical experiment.

3. Numerical example

To compare the median covariance matrix based banding estimator against the
sample covariance matrix based estimator, we now conduct a set of simulation
studies. We generated n = 50 random vectors in R

120. Of the 50 observations,
a random fraction (ρ) are corrupted, and the corrupted observations are sam-
pled from [−10, 10]120. The remaining observations are samples from a Gaus-
sian distribution with a certain AR(1) covariance structure similar to [4], that
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Table 1

Comparison between sample covariance matrix and median covariance matrix based banding
estimators. Reported here are the estimation error measured by the spectral norm averaged

over 50 runs. The numbers in bracket correspond to standard errors

Sample Cov Based Median Cov Based
ρ = 0.10 3.98 (0.02) 1.76 (0.04)
ρ = 0.14 4.76 (0.04) 2.21 (0.05)
ρ = 0.18 5.56 (0.04) 2.65 (0.03)
ρ = 0.20 6.64 (0.04) 2.99 (0.02)

is Σ∗
ij = η|i−j|, with η = 0.7. To gain insights into the effect of the level of

corruption, we consider various values of ρ, namely ρ ∈ {0.10, 0.14, 0.18, 0.20}.
We compare both the sample covariance matrix based and median covariance
matrix based banding estimator in terms of spectral norm. To fix ideas, we fix
k = 5 for both estimators. The result based on 50 runs is summarized below.
The benefit of using the more robust median covariance matrix as the initial
estimator is evident from this example.

To conclude, robustness to corrupted and/or heavy-tailed data appears to
be an important practical issue when it comes to covariance matrix estimation.
Our limited experiment here suggests that it could potentially be gained by
simply replacing the sample covariance matrix with a robust covariance matrix
estimator. To what extent this is true and what are the other possible strategies
to deal with heavy tailed distributions warrant further studies.
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