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Abstract: A Bayesian nonparametric methodology has been recently in-
troduced for estimating, given an initial observed sample, the species vari-
ety featured by an additional unobserved sample of size m. Although this
methodology led to explicit posterior distributions under the general frame-
work of Gibbs-type priors, there are situations of practical interest where
m is required to be very large and the computational burden for evaluating
these posterior distributions makes impossible their concrete implementa-
tion. In this paper we present a solution to this problem for a large class of
Gibbs-type priors which encompasses the two parameter Poisson-Dirichlet
prior and, among others, the normalized generalized Gamma prior. Our
solution relies on the study of the large m asymptotic behaviour of the pos-
terior distribution of the number of new species in the additional sample.
In particular we introduce a simple characterization of the limiting pos-
terior distribution in terms of a scale mixture with respect to a suitable
latent random variable; this characterization, combined with the adaptive
rejection sampling, leads to derive a large m approximation of any feature
of interest from the exact posterior distribution. We show how to imple-
ment our results through a simulation study and the analysis of a dataset
in linguistics.

MSC 2010 subject classifications: Primary 62F15, 60G57.
Keywords and phrases: Adaptive rejection sampling, Bayesian nonpara-
metric inference, empirical linguistics, Gibbs-type priors, normalized gener-
alized Gamma prior, species sampling asymptotics, two parameter Poisson-
Dirichlet prior.

Received February 2015.

1. Introduction

Species sampling problems are associated to situations where an experimenter
is sampling from a population of individuals belonging to different species with
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unknown proportions. Given the information yielded by an initial observed sam-
ple, most of the statistical issues to be faced are related to the concept of species
variety, or species richness, which can be quantified by estimating various fea-
tures of an additional unobserved sample. A full range of statistical approaches,
parametric and nonparametric as well as frequentist and Bayesian, have been
proposed for estimating species variety. These approaches have found many ap-
plications in ecology, and their importance has grown considerably in recent
years, driven by challenging applications arising from bioinformatics, genetics,
statistical physics, computer science, design of experiments, linguistics, machine
learning, etc. See, e.g., Bunge and Fitzpatrick [7] and Bunge et al. [8] for two
comprehensive reviews, the latter with emphasis on applications to microbial di-
versity studies. In this paper we consider the Bayesian nonparametric approach
introduced in Lijoi et al. [24] and further investigated in Favaro et al. [13] and
Favaro et al. [14]. Other recent contributions to species sampling problems in
the Bayesian framework are, e.g., Navarrete et al. [28], Zhang and Stern [33],
Barger and Bunge [6], Bacallado et al. [3], Lee et al. [23], Airoldi et al. [1] and
Guindani et al. [19].

Assuming a population with an (ideally) infinite number of species, we denote
by (X∗

i )i≥1 and (qi)i≥1 the species labels and the unknown species proportions,
respectively. The Bayesian nonparametric approach in Lijoi et al. [24] is based
on the randomization of the qi’s, whose distribution takes on the interpretation
of a prior distribution over the species composition of the population. Specifi-
cally, let Q̃ =

∑
i≥1 qiδX∗

i
where (qi)i≥1 are nonnegative random weights such

that
∑

i≥1 qi = 1 almost surely, and (X∗
i )i≥1 are random locations independent

of (qi)i≥1 and independent and identically distributed according to a nonatomic
probability measure. Furthermore, let Π be the distribution of the discrete ran-
dom probability measure Q̃ and let Xn = (X1, . . . , Xn) be a sample from Q̃,
namely

Xi | Q̃ iid∼ Q̃ i = 1, . . . , n (1)

Q̃ ∼ Π,

for any n ≥ 1. Recall that, due to the de Finetti representation theorem, Xn is
part of the exchangeable sequence (Xi)i≥1 with directing measure Π. Under the
nonparametric framework (1), and with Π belonging to the class of Gibbs-type
priors by Gnedin and Pitman [17], results in Lijoi et al. [24] and Favaro et al. [14]
provide explicit posterior distributions for several features of an additional un-
observed sample (Xn+1, . . . , Xn+m), given the initial sample Xn. Corresponding
Bayesian nonparametric estimators, with respect to a squared loss function, are
obtained by taking the expected value with respect to these posterior distribu-
tions. Two features of particular interest are: the number Kn,m of new species
in the additional sample, and the number Mn,m(l) of species with frequency
1 ≤ l ≤ n+m in the enlarged sample obtained by gathering the initial sample
and the additional sample.

Within species sampling problems there are several situations of practical
interest where the size of the additional sample is required to be very large, and
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only a small portion of the population is sampled. For instance, these situations
arise frequently in genomics, as witnessed in Mao and Lindsay [27] and Mao [26],
and in linguistics, as witnessed in Sampson [32] and references therein. Making
inference on Kn,m and Mn,m(l) for large m poses additional challenges to the
Bayesian nonparametric approach of Lijoi et al. [24]. Indeed, while Gibbs-type
priors lead to explicit expressions for the posterior distributions and moments of
Kn,m and Mn,m(l), these expressions involve combinatorial coefficients and spe-
cial functions whose evaluation for large m is cumbersome, thus preventing their
concrete implementation. With regards to Kn,m, a first answer to this problem
was presented by Favaro et al. [12] under the assumption of the two parame-
ter Poisson-Dirichlet (PD) prior, which is a noteworthy example of Gibbs-type
prior introduced in Pitman [29]. Their approach consisted in characterizing the
limiting posterior distribution of Kn,m, for fixed n and as m tends to infinity,
and devising an exact sampling algorithm for it. Monte Carlo expectation and
quantiles of the limiting posterior distribution have then been used in order
to approximate, for large m, the exact estimator of Kn,m and the associated
credible intervals.

In this paper we extend the methodology of Favaro et al. [12] to a large
subclass of Gibbs-type priors introduced in James [22] and referred to as the
Poisson-Gamma (PG) class. See also Proposition 21 in Pitman and Yor [31] for
an early definition of the PG class. The PG class encompasses the two parameter
PD prior and, among others, the normalized generalized Gamma (GG) prior,
which is another noteworthy example of Gibbs-type prior introduced in Pitman
[30] and nowadays widely used in Bayesian nonparametrics. See, e.g., James
[21], Lijoi et al. [25], Argiento et al. [2], Griffin et al. [18] and Caron and Fox [9].
Within the PG class we provide a simple scale mixture characterization for the
limiting posterior distributions of Kn,m and Mn,m(l), for fixed n and as m tends
to infinity. Interestingly, under the assumption of a two parameter PD prior our
result leads to an alternative limiting characterization with respect to the one
obtained in Favaro et al. [12]. Such a novel characterization sheds some light
on the difference between the two parameter PD prior and the normalized GG
prior in the context of species variety estimation. Besides extending the main
result in Favaro et al. [12], we show that under the general PG class one can
still resort to an exact sampling algorithm, which relies on the adaptive rejection
sampling of Gilks andWild [15], for generating random variates from the limiting
posterior distributions ofKn,m andMn,m(l). Our result thus provides a practical
tool for obtaining a Monte Carlo approximation, for large m, of any feature of
interest from the exact posterior distributions of Kn,m and Mn,m(l). Under the
assumption a two parameter PD prior and a normalized GG prior, we show how
to implement this new tool through a simulation study and the analysis of a
dataset in linguistics.

The paper is structured as follows. In Section 2 we present the scale mixture
characterization of the limiting posterior distributions of Kn,m and Mn,m(l),
for fixed n and as m tends to infinity, under the general framework of the PG
class; details of such a characterization are provided for the special cases of
the two parameter PD prior and the normalized GG prior. Section 3 contains
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an illustration of the proposed characterization through a detailed simulation
study and the analysis of a real dataset in linguistics. Proofs are deferred to the
Appendix.

2. Limiting posterior distributions under the PG class

Gibbs-type priors form a large class of nonparametric priors indexed by a pa-
rameter α ∈ (−∞, 1) and a nonnegative function h. Let Q̃α,h denote a Gibbs-
type random probability measure with parameter (α, h), for α ∈ (0, 1). Among
various possible definitions of Q̃α,h, a simple and intuitive one follows by com-
bining Theorem 8 and Proposition 9 in Pitman [30]. Indeed these result pro-
vide an indirect definition of Q̃α,h by characterizing the distribution of the ex-

changeable random partition induced by a sample Xn from Q̃α,h. Specifically, if
pn,k(n1, . . . , nk) denotes the probability of any particular partition of {1, . . . , n}
induced by Xn and featuring k distinct blocks with frequencies (n1, . . . , nk),
then

pn,k(n1, . . . , nk) = Vn,k

k∏
i=1

(1− α)(ni−1) (2)

where

Vn,k =
αk

Γ(n− αk)

∫ +∞

0

t−αkh(t)

∫ 1

0

(1− z)n−1−αkfα(zt)dzdt,

with fα being the positive α-stable density function and (a)n =
∏n−1

i=0 (a+i) with
the proviso (a)0 = 1. The two parameter PD prior and the normalized GG prior
are Gibbs-type priors corresponding to the choices h(t) = αt−θΓ(θ)/Γ(θ/α),
for any θ > −α, and h(t) = exp{b − b1/αt}, for any b > 0, respectively. Let
Kn the number of distinct observations in Xn, and by (N1,n, . . . , NKn,n) their
frequencies. Pitman [30] showed that, as n → +∞, n−αKn → Sα,h almost
surely, where Sα,h is a nonnegative random variable such that P[Sα,h ∈ ds] =
α−1s−1/α−1h(s−1/α)fα(s

−1/α)ds. The random variable Sα,h is referred to as the
α-diversity.

Proposition 1 in Lijoi et al. [24] and Theorem 3 in Favaro et al. [14] pro-
vide explicit expressions for the posterior distributions of Kn,m and Mn,m(l)

with respect to an initial sample Xn from Q̃α,h. However, as pointed out in
the Introduction, for large m the computational burden for evaluating these ex-
pressions becomes overwhelming and prevents their practical use. See Favaro et
al. [12] for a discussion in the context of the two parameter PD prior. In order
to overcome this drawback for a flexible specification of the parameter h, we
investigate the asymptotic behaviour of the posterior distributions of Kn,m and
Mn,m(l) for the choice

h(t) =

∫
D

eζ−ζ1/αtF (dζ), (3)

where F is any distribution function on a subsetD of the positive real line. Using
the terminology of James [22], the subclass of Gibbs-type priors with parameter
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h of the form (3) is referred to as the PG class. If F is the Gamma distribution
with shape parameter θ/α and scale parameter 1, for any α ∈ (0, 1) and θ > 0,
then (3) reduces to the parameter h that characterizes the two parameter PD
prior. Furthermore, if F is the degenerate distribution on b, for any b > 0, then
(3) reduces to the parameter h that characterizes the normalized GG prior.
Note that for θ → 0 and b → 0 the two parameter PD prior coincides with the
normalized GG prior.

In the next theorem we characterize the large m asymptotic behavior of the
posterior distributions of Kn,m and Mn,m(l) under the general framework of
the PG class. In order to state this result we need to introduce some additional
notation. For any a > 0 and b > 0 let Ga,b be Gamma random variable with
shape parameter a and scale parameter b, and for any c > 0 let Tc be an
exponentially tilted α-stable random variable, namely a nonnegative random
variable such that

P[Tc ∈ dt] =
e−c1/αtfα(t)dt

e−c
.

Furthermore, for any distribution function F on a subset D of the positive real
line, and for any n ≥ 1 and k ≤ n let UF be a nonnegative random variable
such that

P[UF ∈ du] (4)

=

∫ uα

D

eζ1
(D1/α,D1/α)

(u)

(u−ζ1/α)1−n F (dζ) +
∫D

D

eζ1
(D1/α,+∞)

(u)

(u−ζ1/α)1−n F (dζ)

euα

ukα−n

∫
D

∫ +∞
ζ1/α ukα−n(u− ζ1/α)n−1eζ−uαduF (dζ)

du,

with 1 being the indicator function, and with D and D being the infimum and
the supremum, respectively, of the support D of the distribution function F .
Note that for D = R+ one has 1

(D
1/α

,+∞)
(u) = 0 for all u > 0 and, hence, the

second integral in the numerator of the density function (4) cancels. Throughout
the rest of the paper, with a slight abuse of notation we denote by X |Y a
random variable whose distribution coincides with the conditional distribution
of X given Y .

Theorem 1. Let Xn be a sample from a prior in the PG class with parameter
(α, F ), and let Xn featuring Kn = k and (N1,n, . . . , NKn,n) = (n1, . . . , nk). For
any positive ζ, let

Sα,ζ,n,k
d
= T−α

ζ+Gn/α−k,1

(
ζ +Gn/α−k,1

ζ

)−1

. (5)

As m → +∞,
Kn,m

mα
|Xn → Sα,Uα

F ,n,k (6)

almost surely, where UF is the random variable with density function (4). Fur-
thermore, as m → +∞, m−αMn,m(l) |Xn → cl,αSα,Uα

F ,n,k almost surely, where

cl,α = (l!)−1α(1− α)l−1.
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The proof of Theorem 1 is deferred to the Appendix. The limiting random
variable Sα,Uα

F ,n,k takes on the interpretation of the posterior counterpart, with
respect to the initial sample Xn, of the α-diversity introduced in Pitman [30].
In particular, observe that the distribution of the α-diversity Sα,h, with h of the
form (3), coincides with the distribution of Sα,Uα

F ,0,0. Theorem 1 can be com-
bined with a simulation algorithm for Sα,Uα

F ,n,k in order to obtain a Monte Carlo
approximation, for large m, of any feature of interest from the exact posterior
distributions of Kn,m and Mn,m(l). In particular we are interested in Monte
Carlo expectation and quantiles of the limiting posterior distributions, which
can be used to approximate exact estimators and associated credible intervals
for Kn,m and Mn,m(l). For any positive ζ, the random variable Sα,ζ,n,k in (5)
can be easily sampled by means of the rejection sampling algorithm developed
in Devroye [11] for exponentially tilted α-stable random variables. Accordingly,
the problem of generating random variates from the distribution of Sα,Uα

F ,n,k re-
duces to the problem of devising a suitable sampling algorithm for the random
variable U with distribution (4). We conclude this section by describing how to
generate random variates from the distribution of U under the choice of F which
corresponds to the two parameter PD prior and to the normalized GG prior.

Theorem 1 generalizes Proposition 2 in Favaro et al. [12] to the PG class.
Let Ba,b be a Beta random variable with parameter (a, b) and let Yq, for any
q > −1, be a polynomially tilted α-stable random variable, namely P[Yq ∈
dy] = (Γ(qα + 1)/αΓ(q + 1))yq−1/α−1fα(y

−1/α)dy. According to Proposition 2
in Favaro et al. [12], under the assumption of a two parameter PD prior, as
m → +∞

Kn,m

mα
|Xn → Zα,θ,n,k (7)

almost surely, where Zα,θ,n,k
d
= Bk+θ/α,n/α−kY

−α
θ+n, with Bk+θ/α,n/α−k and Yθ+n

being independent random variables. The limit (7) is recovered as special cases
of (6) by setting F to be a Gamma distribution with parameter (θ/α, 1). Indeed,
under this assumption for F , the probability distribution displayed in (4) reduces
to

P[U ∈ du] =
α

Γ(θ/α+ k)
uθ+kα−1e−uα

du, (8)

for any u > 0, and it can be verified that Sα,Uα
F ,n,k

d
= Zα,θ,n,k for any α ∈ (0, 1)

and θ > −α. Theorem 1 thus provides an alternative limiting characterization
with respect to the one originally obtained Favaro et al. [12]. The random vari-
able U with distribution (8) can be easily sampled by observing that the trans-
formation Uα is distributed according to a Gamma distribution with parameter
(θ/α+ k, 1).

Besides introducing a novel characterization for the limiting posterior distri-
bution of Kn,m under the assumption of a two parameter PD prior, Theorem 1
provides the limiting characterization for the posterior distributions of Kn,m

and Mn,m(l) under the assumption of the normalized GG prior. This charac-
terization is obtained from Theorem 1 by assuming F to be the degenerate
distribution on b > 0. Under this assumption for F , the probability distribution
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(4) reduces to

P[UF ∈ du] =
αukα−n(u− b1/α)n−1e−uα∫ +∞

b
e−xxk−1(1− (b/x)1/α)n−1dx

du, (9)

where

∫ +∞

b

e−xxk−1

(
1−

(
b

x

)1/α
)n−1

dx =

n−1∑
i=0

(
n− 1

i

)
(−b1/α)iΓ

(
k − i

α
, b

)
,

for any u > b1/α. In order to generate random variates from the distribution (9),
it is sufficient to observe that the density function of the transformed random
variable Uα is log concave. Therefore, one can easily sample Uα by means of
the adaptive rejection sampling of Gilks and Wild [15]. In general, the adaptive
rejection sampling can be exploited to generate random variates from (4) for
any choice of F on the positive real line and for which a sampling procedure is
available.

3. Illustration

For the sake of clarity we focus on the asymptotic posterior distribution of Kn,m

under a two parameter PD prior and a normalized GG prior. The same argu-
ments described in this section apply to the asymptotic posterior distribution of
Mn,m(l), for any l ≥ 1. In order to implement Theorem 1 with respect to these
two prior assumptions, the first issue to face is the specification of the param-
eters (α, θ) and (α, b). Here, following Favaro et al. [12], we specify these pa-
rameters by resorting to an empirical Bayes procedure. This procedure suggests
to set (α, θ) and (α, b) so to maximize (2) corresponding to the observed sam-
ple (k, n1, . . . , nk) and for h(t) = αt−θΓ(θ)/Γ(θ/α) and h(t) = exp{b − b1/αt}.
Precisely,

(α̂, θ̂) = argmax
(α,θ)

{∏k−1
i=0 (θ + iα)

(θ)n

k∏
i=1

(1− α)(ni−1)

}
(10)

and

(α̂, b̂) = argmax
(α,b)

{∫ +∞
b

e−xxk−1(1− (b/x)1/α)n−1dx

α1−ke−bΓ(n)

k∏
i=1

(1− α)(ni−1)

}
. (11)

In this paper the maximizations (10) and (11) are obtained by using an adaptive
version of the differential evolution global stochastic optimizer for non-linearly
constrained real valued functions of multiple variables. We refer to Huang et
al. [20] for a detailed account on this optimization method. In particular, the
integral appearing in the maximization (11) is solved numerically by using the
double exponential quadrature algorithm described in Bailey et al. [5], which
has proved to be competitive with other numerical quadrature methods for most
integrand functions.
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Given (α̂, θ̂) and (α̂, b̂), one can determine the Monte Carlo expectation
S̄α,Uα

F ,n,k of the limiting random variable Sα,Uα
F ,n,k by generating random vari-

ates from its distribution as described in Section 2. Hence, given that the nor-
malizing rate function for Kn,m in Theorem 1 is mα, K̄n,m = mαS̄α,Uα

F ,n,k

provides a Monte Carlo approximation, for large m, of the exact estimator of
Kn,m. Similarly, one can simulate appropriate quantiles from the distribution
of Sα,Uα

F ,n,k, and then determine a Monte Carlo approximation for the 95%

and 99% credible intervals associated to K̄n,m. It is still an open problem to
measure the accuracy of K̄n,m with respect to m and, hence, to determine an
m∗ for which K̄n,m∗ provides an accurate approximation of the exact posterior
expectation E[Kn,m |Xn]. As observed in Favaro et al. [12] under the assump-
tion of two parameter PD prior, such a choice of m∗ depends on the values
of n and θ. In particular when θ and n are moderately large and not over-
whelmingly smaller than m, Favaro et al. [12] showed that a finer normalizing
rate function may be used to improve the approximation of E[Kn,m |Xn]. Such
a less rough rate function, say rα,θ,n(m), is determined in such a way that
E[Kn,m |Xn] = rα,θ,n(m)E[Sα,Uα

F ,n,k] and rα,θ,n(m)/mα → 1 as m → +∞.
Unfortunately a similar approach can not be applied under the assumption of
the normalized GG prior, due to intractable expressions for E[Kn,m |Xn] and
E[Sα,Uα

F ,n,k].
We start by illustrating an application of Theorem 1 in a simulation study,

and then we present an application to a real dataset arising from empirical lin-
guistic. With regards to the simulation study, we consider two synthetic datasets,
say Data-1 and Data-2, generated from a Zeta (or Zipf) distribution function
with scale parameter 1.6, whose power law behavior is common in linguistics.
The reader is referred to Chapter 7 in Sampson [32] and references therein for a
comprehensive account on the use of the Zeta distribution in the context of em-
pirical linguistics. Data-1 consists of 22000 observations featuring 664 species,
whereas Data-2 consists of 82000 observations featuring 1564 species. We per-
form a cross validation study in terms of out-of-sample predictive performance.
Specifically, we take a subsample without replacement of n = 2000 observations
from Data-1 and Data-2, and we make prediction over an additional sample of
size m = 20000 and m = 80000, respectively. In order to perform the cross vali-
dation study on representative subsamples, for each dataset we generated 10000
subsamples of size 2000. The empirical deciles of the generated subsamples, in
terms of the observed number Kn of distinct species, are 139, 142, 145, 147, 149,
151, 153, 156, 160 for Data-1, and 137, 141, 143, 146, 148, 150, 152, 155, 158
for Data-2. We perform our analysis on subsamples belonging to a selection of
these deciles.

For a subsample with Kn = 149 species from Data-1, results displayed in
Table 1 and Table 2 show how the Monte Carlo approximate estimation K̄n,m

changes as the parameter (α, θ) and (α, b), respectively, vary. A similar analysis
is performed in Table 3 and Table 4 for a subsample with Kn = 148 species from
Data-2. The behaviour of these estimates agrees with the interpretation, with
respect to the distribution of the numberKn of distinct species, of the parameter
(α, θ) and (α, b) under the two parameter PD prior and the normalized GG prior,
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Table 1

Data-1: initial samples of size n = 2000 with Kn = 149 species. Monte Carlo approximate
estimations K̄n,m, for an additional sample of size m = 20000, under a two parameter PD

prior with varying parameters α and θ

α = 0.3 α = 0.6 α = 0.9

θ K̄n,m 95% c.i. K̄n,m 95% c.i. K̄n,m 95% c.i.

0.5 293 (239, 346) 556 (476, 647) 1070 (896, 1249)

1 292 (249, 344) 558 (482, 657) 1069 (905, 1236)

1.5 298 (258, 354) 565 (475, 666) 1086 (953, 1250)

2 299 (243, 344) 565 (470, 656) 1091 (922, 1258)

2.5 304 (251, 348) 568 (496, 655) 1092 (937, 1266)

3 308 (261, 360) 578 (494, 685) 1118 (918, 1294)

3.5 314 (269, 360) 567 (462, 650) 1105 (940, 1282)

4 310 (256, 355) 585 (512, 675) 1111 (949, 1289)

Table 2

Data-1: initial samples of size n = 2000 with Kn = 149 species. Monte Carlo approximate
estimations K̄n,m, for an additional sample of size m = 20000, under a normalized GG

prior with varying parameters α and b

α = 0.3 α = 0.6 α = 0.9

b K̄n,m 95% c.i. K̄n,m 95% c.i. K̄n,m 95% c.i.

0.5 286 (236, 243) 553 (467, 656) 1099 (906, 1293)

1 287 (237, 340) 557 (458, 650) 1123 (934, 1314)

1.5 284 (237, 337) 559 (468, 670) 1158 (967, 1409)

2 288 (243, 340) 563 (467, 665) 1176 (1005, 1376)

2.5 286 (244, 345) 563 (459, 662) 1209 (1049, 1431)

3 287 (230, 341) 571 (480, 681) 1238 (1049, 1405)

3.5 286 (231, 338) 573 (482, 675) 1264 (1095, 1487)

4 287 (244, 342) 581 (485, 674) 1280 (1116, 1482)

respectively. On the one hand, the parameters θ and b control the location of
the distribution of Kn: the bigger θ and b the larger the expected number of
species tends to be. On the other hand, the parameter α controls the flatness
of the distribution of Kn: the bigger α the flatter is the distribution of Kn. In
particular, as discussed in De Blasi et al. [10] under the general framework of
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Table 3

Data-2: initial samples of size n = 2000 with Kn = 148 species. Monte Carlo approximate
estimations K̄n,m, for an additional sample of size m = 80000, under a two parameter PD

prior with varying parameters α and θ

α = 0.3 α = 0.6 α = 0.9

θ K̄n,m 95% c.i. K̄n,m 95% c.i. K̄n,m 95% c.i.

0.5 458 (387, 548) 1360 (1209, 1587) 4072 (3479, 4827)

1 460 (404, 520) 1366 (1144, 1536) 4124 (3515, 4699)

1.5 466 (404, 541) 1398 (1231, 1618) 4128 (3411, 4863)

2 478 (418, 569) 1408 (1202, 1636) 4278 (3626, 5223)

2.5 479 (409, 554) 1428 (1175, 1695) 4338 (3760, 4947)

3 491 (422, 568) 1438 (1253, 1732) 4387 (3594, 5229)

3.5 490 (417, 555) 1461 (1238, 1767) 4447 (3807, 5056)

4 498 (433, 574) 1478 (1288, 1703) 4460 (3731, 5093)

Table 4

Data-2: initial samples of size n = 2000 with Kn = 148 species. Monte Carlo approximate
estimations K̄n,m, for an additional sample of size m = 80000, under a normalized GG

prior with varying parameters α and b

α = 0.3 α = 0.6 α = 0.9

b K̄n,m 95% c.i. K̄n,m 95% c.i. K̄n,m 95% c.i.

0.5 447 (366, 530) 1344 (1144, 1607) 4155 (3455, 4869)

1 449 (372, 533) 1364 (1113, 1621) 4306 (3630, 5067)

1.5 446 (367, 530) 1380 (1170, 1618) 4484 (3691, 5341)

2 453 (381, 538) 1397 (1168, 1661) 4623 (3947, 5357)

2.5 453 (384, 544) 1408 (1155, 1671) 4785 (4072, 5581)

3 456 (364, 547) 1441 (1212, 1713) 4951 (4121, 5705)

3.5 455 (370, 536) 1459 (1254, 1737) 5115 (4405, 5959)

4 458 (389, 544) 1483 (1211, 1750) 5240 (4640, 6007)

Gibbs-type priors, a value of α close to 1 determines a large number of species
most of which with small frequencies, whereas a value of α close to 0 determines
a small number of species with large frequencies. A comparison between results
displayed in Table 1 and Table 2 reveals the following behaviour for the Monte
Carlo approximate estimations K̄n,m: for α = 0.3 and any b ≥ θ estimates under
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Table 5

Data-1: initial samples of size n = 2000 with Kn species and true Kn,m = 664−Kn. Monte
Carlo approximate estimations K̄n,m, with associated 95% credible intervals, for additional

sample size m = 20000

Two parameter PD prior Normalized GG prior

Kn Kn,m (α̂, θ̂) K̄n,m 95% c.i. (α̂, b̂) K̄n,m 95% c.i.

142 522 (0.584, 0.940) 517 (438, 609) (0.582, 1.714) 520 (440, 601)

148 516 (0.591, 0.943) 550 (471, 634) (0.589, 1.701) 550 (466, 638)

151 513 (0.588, 1.000) 551 (467, 641) (0.587, 1.801) 551 (468, 639)

157 507 (0.601, 0.862) 581 (494, 670) (0.600, 1.542) 582 (495, 672)

Table 6

Data-2: initial samples of size n = 2000 with Kn species and true Kn,m = 1564−Kn

Monte Carlo approximate estimations K̄n,m and associated 95% credible intervals, for
additional sample size m = 80000

Two parameter PD prior Normalized GG prior

Kn Kn,m (α̂, θ̂) K̄n,m 95% c.i. (α̂, b̂) K̄n,m 95% c.i.

139 1425 (0.590, 0.841) 1246 (1046, 1460) (0.588, 1.540) 1239 (1050, 1450)

145 1419 (0.612, 0.589) 1369 (1160, 1607) (0.610, 1.097) 1366 (1159, 1589)

152 1412 (0.590, 0.960) 1306 (1108, 1511) (0.588, 1.730) 1301 (1110, 1501)

156 1408 (0.601, 0.853) 1395 (1181, 1615) (0.599, 1.528) 1388 (1183, 1607)

the two PD prior are always greater than the corresponding estimates under the
normalized GG prior, whereas for α = 0.9 and any b ≥ θ estimates under the
two PD prior are always smaller than the corresponding estimates under the
normalized GG prior. In other terms, for any fixed b ≥ θ, the aforementioned
effect of the parameter α results more sharpen under the assumption of the
normalized GG prior than under the assumption of the two parameter PD prior.
The same behaviour emerges from the comparison between results in Table 3
and Table 4.

Table 5 and Table 6 display results related to four subsamples from Data-1
and Data-2, respectively. The maximizations approach described by Equation
(10) and Equation (11) have been applied to the collection of selected sub-
samples, and they resulted into similar values for the parameter α and slightly
different values for the parameters θ and b. Furthermore, the corresponding esti-
mations K̄n,m and their associated 95% credible intervals are very similar under
the assumption of the two parameter PD prior and the normalized GG prior.
Observe that the true values of Kn,m is always included in the 95% credible
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intervals. We retain that such a behaviour is mainly determined by the fact
that the two parameter PD prior, for any α ∈ (0, 1) and θ > 0, may be viewed
as a suitable mixture of normalized GG priors. Specifically, let ΠPD(α, θ) de-
note the distribution of the two parameter PD random probability measure,
let ΠGG(α, b) denote the distribution of the normalized GG random proba-
bility measure, and let Gθ/α,1 be a Gamma random variable with parameter
(θ/α, 1). Then, according to Proposition 21 in Pitman and Yor [31], we can
write ΠPD(α, θ) = ΠGG(α,Gθ/α,1). See also the definition of the PG class in
Section 2, as well as the recent paper by James [22] for additional details. In
other terms, assuming a two parameter PD prior is equivalent to assuming a
normalized GG prior with an Gamma hyper prior over the parameter b. It can
be verified that for large datasets the distribution of Gθ/α,1 |Xn tends to be

highly concentrated around b̂. Therefore, the larger the sample size n and the
number of species k tend to be, the more the two parameter PD prior and the
normalized GG prior lead to the same inferences for Kn,m. A repeated anal-
ysis, which is not reported in the present paper, for subsamples belonging to
the different deciles of Data-1 and Data-2 shows the same behaviour in terms
of values for (α̂, θ̂) and (α̂, b̂), and the corresponding Monte Carlo approximate
estimations K̄n,m.

We conclude by presenting an application of Theorem 1 to a real dataset
arising from a study in empirical linguistics. This is a concrete example, typ-
ically referred to as the “prosody example”, which is drawn from research on
speech timing reported in Bachenko and Gale [4]. We refer to the monograph
by Sampson [32] for additional details. The prosody example assumes a clas-
sification of speech segments into consonants, full vowels, and reduced vowels.
Species in the population are strings such as VCV, VCRCV, VCCRCRCV, and
so on, using C, V and R to represent the three class of speech segments. We use
the TIMIT database (https://catalog.ldc.upenn.edu/LDC93S1) as a sam-
ple, which consists of n = 30902 individual strings featuring Kn = 309 species.
The maximizations (10) and (11) have been applied to this sample and they
resulted in

(α̂, θ̂) = (0.393, 3.506) (12)

and
(α̂, b̂) = (0.393, 8.959), (13)

respectively. Based on these values (12) and (13), Table 7 displays the Monte
Carlo approximate estimation K̄n,m for m = 20n, m = 40n, m = 60n, m =
80n and m = 100n, as well as the associated 95% and 99% credible intervals.
We observe that, similarly to the simulation study, Monte Carlo approximate
estimations are very similar under the assumption of the two parameter PD
prior and the normalized GG prior. This is not surprising due to the values for
the parameters (α, θ) and (α, b) that we obtained by means of the maximizations
(10) and (11).

https://catalog.ldc.upenn.edu/LDC93S1
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Table 7

Prosody example: initial sample of size n = 30902 with Kn = 309 species. Monte Carlo
approximate estimations K̄n,m and associated 95% and 99% credible intervals, for various

values of the additional sample size m

Two parameter PD prior Normalized GG prior

m K̄n,m 95% c.i. 99% c.i. K̄n,m 95% c.i. 99% c.i.

20n 1032 (919, 1151) (893, 1197) 1033 (929, 1145) (884, 1180)

40n 1356 (1206, 1512) (1173, 1571) 1356 (1219, 1504) (1150, 1535)

60n 1579 (1415, 1773) (1375, 1843) 1591 (1430, 1764) (1362, 1818)

80n 1780 (1584, 1985) (1539, 2064) 1781 (1601, 1975) (1525, 2035)

100n 1943 (1729, 2167) (1681, 2253) 1944 (1748, 2156) (1665, 2222)

Appendix

We start by recalling the distribution of the random partition of {1, . . . , n} in-
duced by a sample Xn from a Gibbs-type prior in the PG class. We denote
by pn,k(n1, . . . , nk;α, F ) the probability of any particular partition of the set
{1, . . . , n} induced by Xn and featuring Kn = k distinct blocks with corre-
sponding frequencies (N1,n, . . . , Nn,Kn) = (n1, . . . , nk). By a direct application
of (2) we can write

pn,k(n1, . . . , nk;α, F )

=
αk

∏k−1
i=1 (1− α)ni−1

Γ(n− αk)

×
∫ +∞

0

t−αk

∫
D

eζ−ζ1/αtF (dζ)

∫ 1

0

(1− z)n−1−αkfα(zt)dzdt

=
αk

∏k−1
i=1 (1− α)ni−1

Γ(n)
(14)

×
∫
D

∫ +∞

0

hn−1(h+ ζ1/α)−n+kαeζ−(h+ζ1/α)αF (dζ)dh.

The probability (14) is obtained by: i) the change of variable zt = y, ii)

the augmentation t−n = Γ(n)−1
∫ +∞
0

hn−1 exp{−th}dh and iii) the Lapalce
transform of a positive α-stable random variable. We denote by Ba,b a Beta
random variable with parameter (a, b), and by Yq, for any q > −1, a poly-
nomially tilted α-stable random variable, namely P[Yq ∈ dy] = (Γ(qα + 1)/
αΓ(q + 1))yq−1/α−1fα(y

−1/α)dy.

Proof of Theorem 1. It is sufficient to prove the almost sure limit for Kn,m.
The almost sure limit for Mn,m(l) follows by combining the almost sure limit
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for Kn,m with Corollary 21 in Gnedin et al. [16]. Let Qα,F be the posterior
distribution, with respect to the initial sample Xn, of a prior in the PG class.
Furthermore, let Qα,0 be the posterior distribution, with respect to the initial
sample Xn, of a prior in the PG class with F being the degenerate distribution
in 0. Let Eα,F be the expected value with respect to Qα,F . If we denote by Fn,m

the sigma-algebra generated by an additional sample (Xn+1, . . . , Xn+m), then
we can compute

Ln,m =
dQα,F

dQα,0

∣∣∣∣
Fn,m

=
pn+m,Kn+Kn,m(N1,n+m, . . . , NKn+Kn,m,n+m;α, F )

pn,Kn(N1,n, . . . , NKn,n;α, F )

× pn,Kn(N1,n, . . . , NKn,n;α, 0)

pn+m,Kn+Kn,m(N1,n+m, . . . , NKn+Kn,m,n+m;α, 0)

=

∫
D

∫ +∞
0

hn+m−1(h+ ζ1/α)−n−m+αKn+αKn,meζ−(h+ζ1/α)αdhF (dζ)

(Kn)Kn,m

∫
D

∫ +∞
0

hn−1(h+ ζ1/α)−n+αKneζ−(h+ζ1/α)αdhF (dζ)
.

Hence (Ln,m,Fn,m)m≥1 is a Qα,0-martingale, and by a martingale convergence
theorem (Ln,m)m≥1 has a Qα,0 almost sure limit as m → +∞. We denote by
Ln the limiting random variable, for which Eα,0[Ln] = 1. Let En,m = E1+ . . .+
EKn+Kn,m , where Ei is a negative exponential random variable with mean 1
and Er is independent of Es and (Kn,Kn.m) for any r �= s. Accordingly, we can
write

Ln,m =
Γ(Kn)∫

D

∫ +∞
ζ1/α(v − ζ1/α)n−1v−n+αKneζ−vαdhdζ

× 1

α

∫
D

eζE

⎡
⎣1(ζ,+∞)(En,m)

(
1− ζ1/α

E
1/α
n,m

)n+m−1

|Fn,m

⎤
⎦

and, as m → +∞,

Ln,m ≈ Γ(Kn)∫
D

∫ +∞
ζ1/α(v − ζ1/α)n−1v−n+αKneζ−vαdhF (dζ)

× 1

α

∫
D

eζ
(
1− ζ1/α

(Kn +Kn,m)1/α

)
F (dζ)

≈ Γ(Kn)

α
∫
D

∫ +∞
ζ1/α(v − ζ1/α)n−1v−n+αKneζ−vαdhF (dζ)

×
∫
D

exp

{
ζ −m

ζ1/α

K
1/α
n,m

}
F (dζ).

Furthermore, there exists a nonnegative random variable, say Sα,0, such that

m−1K
1/α
n,m → Sα,0 almost surely with respect to Qα,0, as m → +∞. This obser-

vation follows directly from the fact that Ln,m → Ln almost surely with respect
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to Qα,0, as m → +∞. In particular, according to Proposition 2 in Favaro et
al. [12] with θ = 0, the limiting random variable Sα,0 has the following density
function

P[Sα,0 ∈ ds]

=
αΓ(n)

Γ(Kn)Γ(n/α−Kn)
s−α−1ds

×
∫ +∞

s−α

vn/α−1−1/α−1

(
s−α

v

)Kn−1 (
1− s−α

v

)n/α−Kn−1

fα(v
1/α)dv

=
αΓ(n)

Γ(Kn)Γ(n/α−Kn)
s−nds

×
∫ 1

0

y−n/α+1/α+Kn−1(1− y)n/α−Kn−1fα(sy
1/α)dy.

In particular, Sα,0
d
= (BKn,n/α−Kn

Yn/α)
−1/α. Since Qα,F and Qα,0 are mu-

tually absolutely continuous, almost sure convergence holds true with respect
to Qα,F , as well. In order to identify the limiting distribution with respect to
Qα,F , it is sufficient to exploit the change of measure suggested by Qα,F (·) =∫
(·)(dQα,F /dQα,0)dQα,0. If we denote by Sα,F the random variable with this

distribution, then

P[Sα,F ∈ ds] (15)

=
Γ(n)

αΓ(n/α−Kn)
∫
D

∫ +∞
ζ1/α(v − ζ1/α)n−1v−n+αKneζ−vαdhF (dζ)

×
∫
D

e(ζ−ζ1/αs−1/α)sn/α−1/α−1

×
∫ 1

0

y−n/α+1/α+Kn−1(1− y)n/α−Kn−1fα(s
−1/αy1/α)dyF (dζ)ds.

The proof is completed by showing that (15) corresponds to the density function
of Sα,Uα

F ,n,Kn . Simple algebraic manipulations of the density function (15) lead
to the representation

P[Sα,F ∈ ds] =

∫ +∞

0

P[Sα,F,u ∈ ds]P[Uα ∈ du] (16)

where

P[Sα,F,u ∈ ds] (17)

=
1

αΓ(n/α−Kn)
s−1/α−1ds

∫ +∞

0

e(u−u1/αs−1/α)

u−n/α+Kn

×
∫ 1

0

y−n/α+1/α+Kn−1(1− y)n/α−Kn−1fα(s
−1/αy1/α)dy
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and

P[U ∈ du]

=

∫ uα

D
(u−ζ1/α)n−1

e−ζ1
(D1/α,D1/α)

(u)
F (dζ) +

∫D

D
(u−ζ1/α)n−1

e−ζ1
(D1/α,+∞)

(u)
F (dζ)

euα

ukα−n

∫
D

∫ +∞
ζ1/α ukα−n(u− ζ1/α)n−1eζ−uαduF (dζ)

du.

Let Ga,b be a Gamma random variable with shape parameter a and scale pa-
rameter b, and for any c > 0 let Tc be an exponentially tilted α-stable random
variable, namely P[Tc ∈ dt] = exp{c − c1/αt}fα(t)dt. For any positive u, (17)
is the density function of T−α

u+Gn/α−Kn,1
((u + Gn/α−Kn,1)/u)

−1. The proof is

completed.

Alternative proof of Theorem 1. The proof exploits Proposition 9 and Propo-
sition 13 in [30], which provide two characterizations of the random partition
(Kn, N1,n, . . . , NKn,n) induced by a sample of size n from a Gibbs-type prior.
Specifically, let Xn be a sample of size n from a Gibbs-type prior belonging to
the PG class. According to Proposition 13 in [30], as n → +∞, n−αKn → Sα,F

almost surely, where Sα,F is a nonnegative random variable with density func-
tion of the form

P[Sα,F ∈ ds] =
1

α
s−1/α−1ds

∫
D

eζ−ζ1/αs−1/α

dF (dζ)fα(s
−1/α). (18)

Let Tα,F = S
−1/α
α,F and let pn,k(n1, . . . , nk; t) be the conditional probability,

given Tα,F = t, of any particular partition of {1, . . . , n} induced by the initial
sample Xn and featuring Kn = k distinct blocks with corresponding frequencies
(N1,n, . . . , Nn,Kn) = (n1, . . . , nk). According to Proposition 9 in Pitman [30],
one has

pn,k(n1, . . . , nk; t) (19)

=
αk

∏k
i=1(1− α)ni−1

Γ(n− kα)
t−αk

∫ 1

0

pn−αk−1 fα((1− p)t)

fα(t)
dp.

Of course by integrating the conditional probability (19) with respect to the dis-
tribution of Tα,F one obtains the probability (14). By combining (18) and (19),
a straightforward application of Bayes theorem leads to the following density
function

P[Tα,F ∈ dt |Kn = k, (N1,n, . . . , Nn,Kn) = (n1, . . . , nk)]

=
Γ(n)

Γ(n/α−Kn)
∫
D

∫ +∞
ζ1/α(v − ζ1/α)n−1v−n+αKneζ−vαdhF (dζ)

× t−ndt

∫
D

e(ζ−ζ1/αt)

×
∫ 1

0

y−n/α+1/α+Kn−1(1− y)n/α−Kn−1fα(ty
1/α)dyF (dζ).
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Due to the sufficiency of (Kn, N1,n, . . . , NKn,n) for Xn we can write P[Tα,F ∈
dt |Kn = k, (N1,n, . . . , Nn,Kn) = (n1, . . . , nk)] = P[Tα,F ∈ dt |Xn]. Moreover, it
can be easily verified that P[T−α

α,F ∈ ds |Xn] = P[Sα,F ∈ ds], where P[Sα,F ∈
ds] is the density function in (15). Accordingly, P[T−α

α,F ∈ ds |Xn] admits the
representation (16). This proves the almost sure limit for Kn,m. The almost sure
limit for Mn,m(l) follows by a direct application of Corollary 21 in Gnedin et
al. [16].
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