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Abstract: This paper presents an adaptive version of the Hill estimator
based on Lespki’s model selection method. This simple data-driven index
selection method is shown to satisfy an oracle inequality and is checked to
achieve the lower bound recently derived by Carpentier and Kim. In order
to establish the oracle inequality, we derive non-asymptotic variance bounds
and concentration inequalities for Hill estimators. These concentration in-
equalities are derived from Talagrand’s concentration inequality for smooth
functions of independent exponentially distributed random variables com-
bined with three tools of Extreme Value Theory: the quantile transform,
Karamata’s representation of slowly varying functions, and Rényi’s charac-
terisation for the order statistics of exponential samples. The performance
of this computationally and conceptually simple method is illustrated using
Monte-Carlo simulations.
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1. Introduction

The basic questions faced by Extreme Value Analysis consist in estimating the
probability of exceeding a threshold that is larger than the sample maximum
and estimating a quantile of an order that is larger than 1 minus the recipro-
cal of the sample size. In words, they consist in making inferences on regions
that lie outside the support of the empirical distribution. In order to face these
challenges in a sensible framework, Extreme Value Theory (EVT) assumes that
the sampling distribution F satisfies a regularity condition. Indeed, in heavy-
tail analysis, the tail function F = 1 − F is supposed to be regularly varying
that is, limτ→∞ F (τx)/F (τ) exists for all x > 0. This amounts to assume the
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existence of some γ > 0 such that the limit is x−1/γ for all x. In other words, if
we define the excess distribution above the threshold τ by its survival function:
x �→ F τ (x) = F (x)/F (τ) for x ≥ τ , then F is regularly varying if and only if Fτ

converges weakly towards a Pareto distribution. The sampling distribution F is
then said to belong to the max-domain of attraction of a Fréchet distribution
with index γ > 0 (abbreviated in F ∈ MDA(γ)) and γ is called the extreme
value index.

The main impediment to large exceedance and large quantile estimation prob-
lems alluded above turns out to be the estimation of the extreme value index.
Since the inception of Extreme Value Analysis, many estimators have been de-
fined, analysed and implemented into software. Hill (1975) introduced a simple,
yet remarkable, collection of estimators: for k < n,

γ̂(k) =
1

k

k∑
i=1

ln
X(i)

X(k+1)
=

1

k

k∑
i=1

i ln
X(i)

X(i+1)

where X(1) ≥ . . . ≥ X(n) are the order statistics of the sample X1, . . . , Xn (the
non-increasing rearrangement of the sample).

An integer sequence (kn) is said to be intermediate if limn→∞ kn = ∞ while
limn→∞ kn/n = 0. It is well known that F belongs to MDA(γ) for some γ > 0 if
and only if, for all intermediate sequences (kn), γ̂(kn) converges in probability
towards γ (Mason, 1982; de Haan and Ferreira, 2006). Under mildly stronger
conditions, it can be shown that

√
kn(γ̂(kn)−Eγ̂(kn)) is asymptotically Gaussian

with variance γ2. This suggests that, in order to minimise the quadratic risk
E[(γ̂(kn) − γ)2] or the absolute risk E |γ̂(kn)− γ|, an appropriate choice for kn
has to be made. If kn is too large, the Hill estimator γ̂(kn) suffers a large bias
and, if kn is too small, γ̂(kn) suffers erratic fluctuations.

As all estimators of the extreme value index face this dilemma (see Beirlant
et al., 2004; de Haan and Ferreira, 2006; Resnick, 2007, and references therein),
during the last three decades, a variety of data-driven selection methods for
kn has been proposed in the literature (see Hall and Weissman (1997), Hall
and Welsh (1985), Danielsson et al. (2001), Draisma et al. (1999), Drees and
Kaufmann (1998), Drees et al. (2000), Grama and Spokoiny (2008), Carpentier
and Kim (2015) to name a few). A related but distinct problem is considered
by Carpentier and Kim (2014): constructing uniform and adaptive confidence
intervals for the extreme value index.

The rationale for investigating adaptive Hill estimation stems from compu-
tational simplicity and variance optimality of properly chosen Hill estimators
(Beirlant et al., 2006).

The hallmark of our approach is to combine techniques of EVT with tools
from concentration of measure theory. As up to our knowledge, the impact of
the concentration of measure phenomenon in EVT has received little attention,
we comment and motivate the use of concentration arguments. Talagrand’s con-
centration phenomenon for products of exponential distributions is one instance
of a general phenomenon: concentration of measure in product spaces (Ledoux,
2001; Ledoux and Talagrand, 1991). The phenomenon may be summarised in
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a simple quote: functions of independent random variables that do not depend
too much on any of them are almost constant (Talagrand, 1996a).

The concentration approach helps to split the investigation in two steps: the
first step consists in bounding the fluctuations of the random variable under con-
cern around its median or its expectation, while the second step focuses on the
expectation. This approach has seriously simplified the investigation of suprema
of empirical processes and made the life of many statisticians easier (Talagrand,
1996b, 2005; Massart, 2007; Koltchinskii, 2008). To point out the potential uses
of concentration inequalities in the field of EVT is one purpose of this paper. In
statistics, concentration inequalities have proved very useful when dealing with
estimator selection and adaptivity issues: sharp, non-asymptotic tail bounds can
be combined with simple union bounds in order to obtain uniform guarantees
of the risk of collection of estimators. Using concentration inequalities to inves-
tigate adaptive choice of the number of order statistics to be used in tail index
estimation is a natural thing to do.

In the present setting, tail index estimators are functions of independent
random variables. Talagrand’s quote raises a first question: in which way are
these tail functionals smooth functions of independent random variables? We do
not attempt here to revisit the asymptotic approach described by (Drees, 1998b)
which equates smoothness with Hadamard differentiability. Our approach is
non-asymptotic and our conception of smoothness somewhat circular, smooth
functionals are these functionals for which we can obtain good concentration
inequalities.

In this paper, we combine Talagrand’s concentration inequality for smooth
functions of independent exponentially distributed random variables (Theorem
2.15) with three traditional tools of EVT: the quantile transform, Karamata’s
representation for slowly varying functions, and Rényi’s characterisation of the
joint distribution of order statistics of exponential samples. This allows us to
establish concentration inequalities for the Hill process (

√
k(γ̂(k) − Eγ̂(k))k)

(Theorem 3.3) in Section 3.1.
In Section 3.2, we build on these concentration inequalities to analyse the

performance of a variant of Lepki’s rule defined in Sections 2.3 and 3.2: Theorem
3.8 describes an oracle inequality and Corollary 3.12 assesses the performance
of this simple selection rule under a mild assumption on the so-called von Mises
function. Note that the condition is less demanding than the regular variation
condition on the von Mises function that has often been assumed when looking
for adaptive tail index estimators (notable exceptions being (Carpentier and
Kim, 2015) and (Grama and Spokoiny, 2008)). It reveals that the performance
of Hill estimators selected by Lepski’s method matches known lower bounds (see
Section 2.4) that is, they suffer the loss of efficiency which is inherent to this
problem, but not more.

Proofs are given in Section 4. Finally, in Section 5, we examine the perfor-
mance of this adaptive Hill estimator for finite sample sizes using Monte-Carlo
simulations.
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2. Background, notations and tools

2.1. The Hill estimator as a smooth tail statistics

The quantile function F← is the generalised inverse of the distribution function
F . The tail quantile function of F is a non-decreasing function defined on (1,∞)
by U = (1/(1− F ))←, or by

U(t) = inf{x : F (x) ≥ 1− 1/t} = F←(1− 1/t) .

In this text, we use a variation of the quantile transform that fits EVT: if
E is exponentially distributed, then U(exp(E)) is distributed according to F .
Moreover, by the same argument, the order statistics X(1) ≥ . . . ≥ X(n) are
distributed as a monotone transformation of the order statistics Y(1) ≥ . . . ≥
Y(n) of a sample of n independent standard exponential random variables.

(X(1), . . . , X(n))
d
=
(
U(eY(1)), . . . , U(eY(n))

)
.

Thanks to Rényi’s representation for order statistics of exponential samples,
agreeing on Y(n+1) = 0, the rescaled exponential spacings Y(1)−Y(2), . . . , i(Y(i)−
Y(i+1)), . . . , (n− 1)(Y(n−1)−Y(n)), nY(n) are independent and exponentially dis-
tributed.

The quantile transform and Rényi’s representation are complemented by
Karamata’s representation for slowly varying functions. Recall that a function
L is slowly varying at infinity if for all x > 0, limt→∞ L(tx)/L(t) = x0 = 1.
The von Mises condition specifies the form of Karamata’s representation (see
Resnick, 2007, Corollary 2.1) of the slowly varying component t−γU(t) of U(t).

Definition 2.1 (von Mises condition). A distribution function F belonging
to MDA(γ), γ > 0, satisfies the von Mises condition if there exist a constant
t0 ≥ 1, a constant c = U(t0)t

−γ
0 and a measurable function η on (1,∞) such

that, for t ≥ t0

U(t) = ctγ exp

(∫ t

t0

η(s)

s
ds

)
with lims→∞ η(s) = 0. The function η is called the von Mises function.

In the sequel, we assume that the sampling distribution F ∈ MDA(γ), γ > 0,
satisfies the von Mises condition with t0 = 1, von Mises function η and define
the non-increasing function η from [1,∞) to [0,∞) by η(t) = sups≥t |η(s)|. In
the text, we assume that η(1) < ∞.

Combining the quantile transformation, Rényi’s and Karamata’s representa-
tions, it is straightforward that, under the von Mises condition, the sequence
of Hill estimators is distributed as a function of the largest order statistics of a
standard exponential sample.

Proposition 2.2. The vector of Hill estimators (γ̂(k))k<n is distributed as the
random vector (

1

k

k∑
i=1

∫ Ei

0

(
γ + η(e

u
i +Y(i+1))

)
du

)
k<n

(2.3)
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where E1, . . . , En are independent standard exponential random variables while,
for i ≤ n, Y(i) =

∑n
j=i Ej/j is distributed like the ith order statistic of an

n-sample of the exponential distribution.

For a fixed k < n, a second distributional representation is available,

γ̂(k)
d
=

1

k

k∑
i=1

∫ Ei

0

(
γ + η(eu+Y(k+1))

)
du (2.4)

where E1, . . . , Ek and Y(k+1) are defined as in Proposition 2.2.
This second, simpler, distributional representation stresses the fact that, con-

ditionally on Y(k+1), γ̂(k) is distributed as a mixture of sums of independent ran-
dom variables approximately distributed as exponential random variables with
scale γ. This distributional identity suggests that the variance of γ̂(k) scales like
γ2/k, an intuition that is corroborated by analysis, see Section 3.1.

The bias of γ̂(k) is connected with the von Mises function η by the next
formula

Eγ̂(k)− γ = E

[∫ ∞

0

e−vη
(
eY(k+1)ev

)
dv

]
= E

[∫ ∞

1

η
(
eY(k+1)v

)
v2

dv

]
.

Henceforth, let b be defined on (1,∞) by

b(t) =

∫ ∞

1

η (tv)

v2
dv = t

∫ ∞

t

η (v)

v2
dv . (2.5)

The quantity b(t) is the bias of the Hill estimator γ̂(k) given F (X(k+1)) = 1/t.
The second expression for b shows that b is differentiable with respect to t (even
though η might be nowhere differentiable) and that

b′(t) =
b(t)− η(t)

t
.

The von Mises function governs both the rate of convergence of U(tx)/U(t)
towards xγ , or equivalently of F (tx)/F (t) towards x−1/γ , and the rate of con-
vergence of |Eγ̂(k)− γ| towards 0.

2.2. Frameworks

The difficulty in extreme value index estimation stems from the fact that, for any
collection of estimators, for any intermediate sequence (kn), and for any γ > 0,
there is a distribution function F ∈ MDA(γ) such that the bias |Eγ̂(kn) − γ|
decays at an arbitrarily slow rate. This has led authors to put conditions on the
rate of convergence of U(tx)/U(t) towards xγ as t tends to infinity while x > 0,
or equivalently, on the rate of convergence of F (tx)/F (t) towards x−1/γ . These
conditions have then to be translated into conditions on the rate of decay of
the bias of estimators. As we focus on Hill estimators, the connection between
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the rate of convergence of U(tx)/U(t) towards xγ and the rate of decay of the
bias is transparent and well-understood (Segers, 2002): the theory of O-regular
variation provides an adequate setting for describing both rates of convergence
(Bingham et al., 1987). In words, if a positive function g defined over [1,∞) is
such that, for some α ∈ R, for all Λ > 1, lim supt supx∈[1,Λ] g(tx)/g(t) < ∞, g
is said to have bounded increase. If g has bounded increase, the class OΠg is
the class of measurable functions f on some interval [a,∞), a > 0, such that as
t → ∞, f(tx)− f(t) = O(g(t)) for all x ≥ 1.

For example, the analysis carried out by Carpentier and Kim (2015) rests on
the condition that, if F ∈ MDA(γ), for some C > 0, D 
= 0 and ρ < 0,∣∣∣∣ F (x)

x−1/γ
− C

∣∣∣∣ ≤ Dxρ/γ . (2.6)

This condition implies that ln(t−γU(t)) ∈ OΠg with g(t) = tρ (Segers, 2002,
p. 473). Thus, under the von Mises condition, Condition (2.6) implies that the
function

∫∞
t

(η(s)/s)ds belongs to OΠg with g(t) = tρ. Moreover, the Abelian

and Tauberian theorems from (Segers, 2002) assert that
∫∞
t

(η(s)/s)ds ∈ OΠg

if and only if |Eγ̂(kn)− γ| = O(g(n/kn)) for any intermediate sequence (kn).
In this text, we are ready to assume that if F ∈ MDA(γ) and satisfies the

von Mises condition, then, for some C > 0 and ρ < 0 and t > 1,

|η(t)| ≤ Ctρ .

This condition is arguably more stringent than (2.6). However, we do not want
to assume that η satisfies a regular variation property. This would imply that
t �→ |b(t)| is ρ-regularly varying.

Indeed, assuming as in (Hall and Welsh, 1985) and several subsequent papers
that F satisfies

F (x) = Cx−1/γ
(
1 +Dxρ/γ + o(xρ/γ)

)
(2.7)

where C > 0, D 
= 0 are constants and ρ < 0, or equivalently,(Csörgő, Deheuvels,
and Mason, 1985; Drees and Kaufmann, 1998) that U satisfies

U(t)=Cγtγ (1 + γDCρtρ + o(tρ))

(which entails that η is regularly varying) makes the problem of extreme value
index estimation easier (but not easy). These conditions entail that, for any
intermediate sequence (kn), the ratio |E[γ̂(kn)− γ]|/(n/kn)ρ converges towards
a finite limit as n tends to ∞ (Beirlant et al., 2004; de Haan and Ferreira, 2006;
Segers, 2002). This makes the estimation of the second-order parameter a very
natural intermediate objective (see for example Drees and Kaufmann, 1998).

2.3. Lepski’s method and adaptive tail index estimation

The necessity of developing data-driven index selection methods is illustrated
in Figure 1, which displays the estimated standardised root mean squared error
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Fig 1. Estimated standardised rmse as a function of k for samples of size 10000 from Stu-
dent’s distributions with different degrees of freedom ν = 1, 2, 4, 10. All four distributions
satisfy Condition (2.7) with |ρ| = 2/ν. The increasing parts of the lines reflect the values of
ρ. rmse is estimated by averaging over 5000 Monte-Carlo simulations.

(rmse) of Hill estimators

E

[(
γ̂(k)

γ
− 1

)2
]1/2

as a function of k for four related sampling distributions which all satisfy the
second-order condition (2.7) with different values of the second-order parame-
ters.

Under this second-order condition (2.7), Hall and Welsh proved that the
asymptotic mean squared error of the Hill estimator is minimal for sequences
(k∗n)n satisfying

k∗n ∼ K(C,D, ρ)n2|ρ|/(1+2|ρ|)

with K(C,D, ρ) =
(
C2|ρ|(1 + |ρ|)2/2D2|ρ|3

)1/(1+2|ρ|)
. Since C > 0, D 
= 0 and

the second-order parameter ρ < 0 are usually unknown, many authors have
been interested in the construction of data-driven selection procedures for kn
under conditions such as (2.7). A great deal of ingenuity has been dedicated to
the estimation of the second-order parameters and to the use of such estimates
when estimating first order parameters.

As we do not want to assume a second-order condition such as Condition
(2.7), we resort to Lepski’s method which is a general attempt to balance bias
and variance.
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Since its introduction (Lepski, 1991), this general method for model selection
has been proved to achieve adaptivity and to provide one with oracle inequalities
in a variety of inferential contexts ranging from density estimation to inverse
problems and classification (Lepski and Tsybakov, 2000; Lepski, 1991, 1990,
1992). Very readable introductions to Lepski’s method and its connections with
penalised contrast methods can be found in (Birgé, 2001; Mathé, 2006). In EVT,
we are aware of three papers that explicitly rely on this methodology: (Drees
and Kaufmann, 1998), (Grama and Spokoiny, 2008) and (Carpentier and Kim,
2015).

The selection rule analysed in the present paper (see Section 3.2 for a precise
definition) is a variant of the preliminary selection rule introduced in (Drees and
Kaufmann, 1998)

κn(rn) = min

{
k ∈ {2, . . . , n} : max

2≤i≤k

√
i|γ̂(i)− γ̂(k)| > rn

}
(2.8)

where (rn)n is a sequence of thresholds such that
√
ln lnn = o(rn) and rn =

o(
√
n), and γ̂(i) is the Hill estimator computed from the (i + 1) largest order

statistics. The definition of this “stopping time” is motivated by Lemma 1 from
(Drees and Kaufmann, 1998) which asserts that, under the von Mises condition,

max
2≤i≤kn

√
i|γ̂(i)− E [γ̂(i)] | = OP

(√
ln lnn

)
.

In words, this selection rule almost picks out the largest index k such that, for
all i smaller than k, γ̂(k) differs from γ̂(i) by a quantity that is not much larger
than the typical fluctuations of γ̂(i). This index selection rule can be performed
graphically by interpreting an alternative Hill plot as shown on Figure 2 (see
Drees et al., 2000; Resnick, 2007, for a discussion on the merits of alt-Hill plots).

The goal of Drees and Kaufmann (1998) is not to investigate the performance
of the preliminary selection rule defined in Display (2.8) but to design a selection
rule κ̂n(rn), based on κn(rn), that would asymptotically mimic the optimal
selection rule k∗n under second-order conditions.

Our goal, as in (Grama and Spokoiny, 2008; Carpentier and Kim, 2015), is to
derive non-asymptotic risk bounds without making a second-order assumption.
In both papers, the rationale for working with some special collection of estima-
tors seems to be the ability to derive non-asymptotic deviation inequalities for
γ̂(k) either from exponential inequalities for log-likelihood ratio statistics or from
simple binomial tail inequalities such as Bernstein’s inequality (see Boucheron
et al., 2013, Section 2.8).

In models satisfying Condition (2.7), the estimators from (Grama and Spokoiny,
2008) achieve the optimal rate up to a ln(n) factor. Carpentier and Kim (2015)
prove that the risk of their data-driven estimator decays at the optimal rate

n|ρ|/(1+2|ρ|) up to a factor r
2|ρ|/(1+2|ρ|)
n = (ln lnn)|ρ|/(1+2|ρ|) in models satisfying

Condition (2.6).
We aim at achieving optimal risk bounds under Condition (2.6) using a simple

estimation method requiring almost no calibration effort and based on main-
stream extreme value index estimators. Before describing the keystone of our
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Fig 2. Lepski’s method illustrated on a alt-Hill plot. The plain line describes the sequence
of Hill estimates as a function of index k computed on a pseudo-random sample of size
n = 10000 from Student distribution with 1 degree of freedom (Cauchy distribution). Hill
estimators are computed from the positive order statistics. The grey ribbon around the plain
line provides a graphic illustration of Lepski’s method. For a given value of i, the width of the
ribbon is 2rnγ̂(i)/

√
i. A point (k, γ̂(k)) on the plain line corresponds to an eligible index if

the horizontal segment between this point and the vertical axis lies inside the ribbon that is, if
for all i, 30 ≤ i < k, |γ̂(k)− γ̂(i)| ≤ rnγ̂(i)/

√
i. If rn were replaced by an appropriate quantile

of the Gaussian distribution, the grey ribbon would just represent the confidence tube that is
usually added on Hill plots. The triangle represents the selected index with rn =

√
2.1 ln lnn.

The cross represents the oracle index estimated from Monte-Carlo simulations, see Table 2.

approach in Section 2.5, we recall the recent lower risk bound for adaptive ex-
treme value index estimation.

2.4. Lower bound

One of the key results in (Carpentier and Kim, 2015) is a lower bound on the
accuracy of adaptive tail index estimation. This lower bound reveals that, just
as for estimating a density at a point (Lepski, 1991, 1992), or point estimation
in Sobolev spaces (Tsybakov, 1998), as far as tail index estimation is concerned,
adaptivity has a price. Using Fano’s Lemma, and a Bayesian game that ex-
tends cleanly in frameworks of (Grama and Spokoiny, 2008) and (Novak, 2014),
Carpentier and Kim were able to prove the next minimax lower bound.

Theorem 2.9. Let ρ0 < −1 and v ∈ [0, e/(1 + 2e)]. Then, for any tail index
estimator γ̂ and any sample size n such that M = �lnn > e/v, there exists a
probability distribution P such that
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i) P ∈ MDA(γ) with γ > 0,
ii) P meets the von Mises condition with von Mises function η satisfying

η(t) ≤ γtρ

for some ρ ∈ [ρ0, 0),
iii)

P

{
|γ̂ − γ| ≥ Cρ

4
γ

(
v ln lnn

n

)|ρ|/(1+2|ρ|)}
≥ 1

1 + 2e

and

EP

[
|γ̂ − γ|

γ

]
≥ Cρ

4(1 + 2e)

(
v ln lnn

n

)|ρ|/(1+2|ρ|)
,

with Cρ = 1− exp
(
− 1

2(1+2|ρ|)2
)
.

Using Birgé’s Lemma instead of Fano’s Lemma, we provide a simpler, shorter
proof of this theorem (see Appendix E).

The lower rate of convergence provided by Theorem 2.9 is another incentive to
revisit the preliminary tail index estimator from (Drees and Kaufmann, 1998).
However, instead of using a sequence (rn)n of order larger than

√
ln lnn in order

to calibrate pairwise tests and ultimately to design estimators of the second-
order parameter (if there are any), it is worth investigating a minimal sequence
where rn is of order

√
ln lnn, and check whether the corresponding adaptive

estimator achieves the Carpentier-Kim lower bound (Theorem 2.9).
In this paper, we focus on rn of the order

√
ln lnn. The rationale for imposing

rn of the order
√
ln lnn can be understood by the fact that, even if the sampling

distribution is a pure Pareto distribution with shape parameter γ (F (x) =
(x/τ)−1/γ for x ≥ τ > 0), if

lim sup rn/(γ
√
2 ln lnn) < 1 ,

the preliminary selection rule will, with high probability, select a small value of
k and thus pick out a suboptimal estimator. This can be justified using results
from (Darling and Erdös, 1956) (see Appendix A for details).

Such an endeavour requires sharp probabilistic tools. They are the topic of
the next section.

2.5. Talagrand’s concentration phenomenon for products of
exponential distributions

Deriving authentic concentration inequalities for Hill estimators is not straight-
forward. Fortunately, the construction of such inequalities turns out to be possi-
ble thanks to general functional inequalities that hold for functions of indepen-
dent exponentially distributed random variables. We recall these inequalities
(Proposition 2.10 and Theorem 2.15) which have been largely overlooked in
statistics. A thorough and readable presentation of these inequalities can be
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found in (Ledoux, 2001). We start by the easiest result, a variance bound that
pertains to the family of Poincaré inequalities.

Proposition 2.10 (Poincaré inequality for exponentials, (Bobkov and Ledoux,
1997)). If g is a differentiable function over Rn and Z = g(E1, . . . , En) where
E1, . . . , En are independent standard exponential random variables, then

Var(Z) ≤ 4E
[
‖∇g‖2

]
.

Remark 2.11. The constant 4 can not be improved.

The next corollary is stated in order to point the relevance of this Poincaré
inequality to the analysis of general order statistics and their functionals. Recall
that the hazard rate of an absolutely continuous probability distribution with
distribution F is: h = f/F where f and F = 1 − F are the density and the
survival function associated with F , respectively.

Corollary 2.12. Assume the distribution of X has a positive density, then the
kth order statistic X(k) satisfies

Var(X(k)) ≤ C

n∑
i=k

1

i2
E

[
1

h(X(k))2

]
≤ C

k

(
1 +

1

k

)
E

[
1

h(X(k))2

]
where C can be chosen as 4.

Remark 2.13. By Smirnov’s Lemma (de Haan and Ferreira, 2006), C can not
be smaller than 1. If the distribution of X has a non-decreasing hazard rate, the
factor of 4 can be improved into a factor 2 (Boucheron and Thomas, 2012).

Talagrand (1991); Maurey (1991); Bobkov and Ledoux (1997) show that
smooth functions of independent exponential random variables satisfy Bernstein
type concentration inequalities. The next result is extracted from the derivation
of Talagrand’s concentration phenomenon for product of exponential random
variables in (Bobkov and Ledoux, 1997).

The definition of sub-gamma random variables will be used in the formulation
of the theorem and in many arguments.

Definition 2.14. A real-valued centred random variable X is said to be sub-
gamma on the right tail with variance factor v and scale parameter c if

lnEeλX ≤ λ2v

2(1− cλ)
for every λ such that 0 < λ < 1/c .

We denote the collection of such random variables by Γ+(v, c). Similarly, X is
said to be sub-gamma on the left tail with variance factor v and scale parameter
c if −X is sub-gamma on the right tail with variance factor v and tail parameter
c. We denote the collection of such random variables by Γ−(v, c) and Γ+(v, c)∩
Γ−(v, c) by Γ±(v, c).

If X − EX ∈ Γ+(v, c), then for all δ ∈ (0, 1), with probability larger than
1− δ,

X ≤ EX +
√

2v ln (1/δ) + c ln (1/δ) .
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The entropy of a non-negative random variable X is defined by Ent[X] =
E[X lnX]− EX lnEX.

Theorem 2.15. Assume that g is a differentiable function on Rn with maxi |∂ig| <
∞. Let Z = g(E1, . . . , En) where E1, . . . , En are n independent standard expo-
nential random variables and c < 1. Then, for all λ such that 0 ≤ λmaxi |∂ig| ≤
c,

Ent
[
eλ(Z−EZ)

]
≤ 2λ2

1− c
E
[
eλ(Z−EZ)‖∇g‖2

]
.

Let v be the essential supremum of ‖∇g‖2, then Z is sub-gamma on both tails
with variance factor 4v and scale factor maxi |∂ig|.

Again, we illustrate the relevance of these versatile tools on the analysis of
general order statistics. This general theorem implies that if the sampling dis-
tribution has non-decreasing hazard rate, then the order statistics X(k) satisfy
Bernstein type inequalities (see Boucheron et al., 2013, Section 2.8) with vari-
ance factor 4/kE

[
1/h(X(k))

2
]
(the Poincaré estimate of variance) and scale pa-

rameter (supx 1/h(x))/k). Starting back from the Efron-Stein-Steele inequality,
the authors derived a somewhat sharper inequality (Boucheron and Thomas,
2012).

Corollary 2.16. Assume the distribution function F has non-decreasing haz-
ard rate h that is, U ◦ exp is C1 and concave. Let Z = g(E1, . . . , En) =
(U ◦ exp) (

∑n
i=k Ei/i) be distributed as the kth order statistic of a sample dis-

tributed according to F . Then, Z is sub-gamma on both tails with variance factor
4/k (1 + 1/k)E[1/h(Z)2] and scale factor 1/(k infx h(x)).

This corollary describes in which way central, intermediate and extreme or-
der statistics can be portrayed as smooth functions of independent exponential
random variables. This possibility should not be taken for granted as it is non
trivial to capture in a non-asymptotic way the tail behaviour of maxima of in-
dependent Gaussians (Ledoux, 2001; Boucheron and Thomas, 2012; Chatterjee,
2014). In the next section, we show in which way the Hill estimator can fit into
this picture.

3. Main results

In this section, the sampling distribution F is assumed to belong to MDA(γ)
with γ > 0 and to satisfy the von Mises condition (Definition 2.1) with bounded
von Mises function η.

3.1. Variance and concentration inequalities for the Hill estimators

It is well known that, under the von Mises condition, if (kn) is an intermediate
sequence, the sequence

√
kn (γ̂(kn)− Eγ̂(kn)) converges in distribution towards

N (0, γ2), suggesting that the variance of γ̂(kn) scales like γ2/kn (see Geluk
et al., 1997; Beirlant et al., 2004; de Haan and Ferreira, 2006; Resnick, 2007).
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Proposition 3.1 provides us with handy non-asymptotic bounds on Var[γ̂(k)]−
γ2/k using the von Mises function.

Proposition 3.1. Let γ̂(k) be the Hill estimator computed from the (k + 1)
largest order statistics of an n-sample from F . Then,

−2γ

k
E
[
η
(
eY(k+1)

)]
≤ Var[γ̂(k)]− γ2

k
≤ 2γ

k
E
[
η
(
eY(k+1)

)]
+

5

k
E
[
η
(
eY(k+1)

)2]
.

The next Abelian result might help in appreciating these variance bounds.

Proposition 3.2. Assuming that η is ρ-regularly varying with ρ < 0, then, for
any intermediate sequence (kn),

lim
n→∞

kn Var(γ̂(kn))− γ2

η(n/kn)
=

2γ

(1− ρ)2
.

Wemay now move to genuine concentration inequalities for the Hill estimator.

The exponential representation (2.3) suggests that the rescaled Hill estima-
tor kγ̂(k) should be approximately distributed according to a gamma(k, γ) dis-
tribution where k is the shape parameter and γ the scale parameter. There-
fore, we expect the Hill estimators to satisfy Bernstein type concentration in-
equalities that is, to be sub-gamma on both tails with variance factors con-
nected to the tail index γ and to the von Mises function. Representation (2.3)
actually suggests more. Following (Drees and Kaufmann, 1998), we actually
expect the sequence

(√
k(γ̂(k) − Eγ̂(k))

)
k
to behave like normalized partial

sums of independent square integrable random variables that is, we believe
max2≤k≤n

√
k(γ̂(k)−Eγ̂(k)) to scale like

√
ln lnn and to be sub-gamma on both

tails (see Appendix A). The purpose of this section is to meet these expectations
in a non-asymptotic way.

Proofs use the Markov property of order statistics: conditionally on the (J +
1)th order statistic, the first largest J order statistics are distributed as the
order statistics of a sample of size J of the excess distribution. They consist of
appropriate invocations of Talagrand’s concentration inequality (Theorem 2.15).
However, this theorem generally requires a uniform bound on the gradient of the
relevant function. When Hill estimators are analysed as functions of independent
exponential random variables, the partial derivatives depend on the points at
which the von Mises function is evaluated. In order to get interesting bounds,
it is worth conditioning on an intermediate order statistic.

Throughout this subsection, let � be an integer larger than
√
lnn and J an

integer not larger than n. We denote Ei, 1 ≤ i ≤ n, n independent standard
exponential random variables and we work on the probability space where all
Ei are defined, and therefore consider the Hill estimators defined by Represen-
tation (2.3). As we use the exponential representation of order statistics, besides
Hill estimators, the random variables that appear in the main statements are
order statistics of exponential samples. As before, Y(k) will denote the kth order
statistic of a standard exponential sample of size n (we agree on Y(n+1) = 0).
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The first theorem provides an exponential refinement of the variance bound
stated in Proposition 3.1. However, as announced, there is a price to pay: state-
ments hold conditionally on some order statistic. This is not an impediment to
analyse Lepski’s rule using this theorem. Indeed, when analysing Lepki’s rule it
is sufficient to control the Hill process

(√
i(γ̂(i)− E[γ̂(i) | Y(k+1)])

)
i
for indices

i ranging between �n (that should not be smaller than ln(n)) and some upper
bound kn that achieves a certain balance between bias and standard deviation
(the bias of γ̂(kn) should be of order rn times the standard deviation, that is
approximately γ/

√
kn where rn ≈

√
ln(ln(n))). The second clause of next theo-

rem is the cornerstone in the derivation of the risk bounds presented in the next
section.

In the sequel, let
ξn = c1

√
ln log2 n+ c′1,

where c1 may be chosen not larger than 4 and c′1 not larger than 34.

Theorem 3.3. Let T be a shorthand for exp(Y(J+1)). For some k such that
c2 lnn ∨ 32 ≤ � ≤ k ≤ J where c2 ≥ 2, let

Za = max
�≤i≤k

√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ .
Then, conditionally on T ,

i) For � ≤ i ≤ k,

√
i (γ̂(i)− E[γ̂(i) | T ]) ∈ Γ±

(
4 (γ + 3η(T ))

2
, (γ + 2η(T ))

)
.

ii) Let u be such that Jη(u)2 ≤ γ2r2n where rn =
√
c3 ln lnn with c3 = 2.

Assume that T ≥ u, then

Za ∈ Γ±
(
4γ2(1 + 3rn/

√
J)2, γ(1 + 2rn/

√
J)/

√
�
)

and

E [Za | T ] ≤ γξn

(
1 +

3rn√
J

)
.

Remark 3.4. If F is a pure Pareto distribution with shape parameter γ >
0, then kγ̂(k)/γ is distributed according to a gamma distribution with shape
parameter k and scale parameter 1. Tight and well-known tail bounds for gamma
distributed random variables assert that

P

{
|γ̂(k)− E [γ̂(k)]| ≥ γ√

k

(√
2 ln (2/δ) +

ln (2/δ)√
k

)}
≤ 2δ .

Remark 3.5. First part of Statement ii) reads as: conditionally on η(T ) ≤
rnγ/

√
J , with probability larger than 1− δ,

|Za − E[Za | T ]| ≤ γ(1 + 3rn/
√
J)

(√
8 ln (2/δ) +

ln (2/δ)√
�

)
.
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Combining both parts of Statement ii), we also get that, conditionally on η(T ) ≤
rnγ/

√
J , with probability larger than 1− δ,

Za ≤ γ(1 + 3rn/
√
J)

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)√
�

)
.

Remark 3.6. The reader may wonder whether resorting to the exponential rep-
resentation and usual Chernoff bounding would not provide a simpler argument.
The straightforward approach leads to the following conditional bound on the
logarithmic moment generating function,

lnE
[
exp
(
λ
(
γ̂(k)− E[γ̂(k) | Y(k+1)]

))
| Y(k+1)

]
≤

(
γ + η(eY(k+1))

)2
2k
(
1− λ(γ + η(eY(k+1)))

) + λ
(
η(eY(k+1))− b

(
eY(k+1)

))
.

A similar statement holds for the lower tail. This leads to exponential bounds for
deviations of the Hill estimator above E[γ̂(k) | Y(k+1)] + η(eY(k+1)) − b

(
eY(k+1)

)
that is, to control deviations of the Hill estimator above its expectation plus a
term that may be of the order of magnitude of the bias.

Attempts to rewrite γ̂(k)−E[γ̂(k) | Y(k+1)] as a sum of martingale increments
E[γ̂(k) | Y(i)] − E[γ̂(k) | Y(i+1)], for 1 ≤ i ≤ k, and to exhibit an exponential
supermartingale met the same impediments.

At the expense of inflating the variance factor, Theorem 2.15 provides a
genuine (conditional) concentration inequality for Hill estimators. As we will
deal with values of k for which bias exceeds the typical order of magnitudes of
fluctuations, this is relevant to our purpose.

3.2. Adaptive Hill estimation

We are now able to characterise the performance of the variant of the selec-
tion rule defined by (2.8) (Drees and Kaufmann, 1998) with rn =

√
c3 ln lnn

where c3 = 2. Let �n = �c2 lnn� where c2 is a constant to be defined below.
The deterministic sequence of indices (kn(rn)) is defined (for n large enough)

by

kn(rn) = max
{
k ∈ {�n, . . . , n} :

√
kη(n/kδ) ≤ γrn

}
, (3.7)

where kδ = k +
√

2k ln(1/δ) + 2 ln(1/δ). The sequence (kn(1))n is defined by
choosing rn = 1. The deterministic sequences (kn(1)) and (kn(rn)) achieve spe-
cific balances between bias and variance. In full generality, because η(t) is just
an upper bound on the conditional bias b(t), it is difficult to precisely connect
(kn(1)) and (kn(rn)) with the oracle sequence (k∗n). We call these two sequences
the pivotal sequences. In the sequel, kn stands for kn(rn). If the context is not
clear, we specify kn(1) or kn(rn).

Let 1/(2n) < δ < 1/4. Recall, from Section 3.1, that ξn = c1
√
ln ln(n) + c′1

and agree on the shorthands

zδ = (1 + 3rn/
√
kn)
(
ξn +

√
8 ln (2/δ) + ln(2/δ)√

�n

)
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and zδ which is defined by replacing kn by �n in the definition of zδ (zδ depends
on n, δ but not on the sampling distribution). In the sequel, c2 is assumed to
be chosen so that rn + zδ ≤ 9

√
c2 ln(n)/10 for n > 1000 and 2/n < δ < 1/4 (c2

may be chosen not larger than 100).

The index k̂n is selected according to the following rule:

k̂n = max

{
k ∈ {�n, . . . , n} and ∀i ∈ {�n, . . . , n} , |γ̂(i)− γ̂(k)| ≤ γ̂(i)rn(δ)√

i

}
where rn(δ) = 10(rn+ zδ). The quantity rn(δ) scales like

√
ln((2/δ) ln(n)). The

tail index estimator is γ̂(k̂n).
As tail adaptivity has a price (see Theorem 2.9), the ratio between the risk

of the data-driven estimator γ̂(k̂n) and the risk of the pivotal index γ̂(kn(1))
cannot be upper bounded by a constant factor, let alone by a factor close to 1.
This is why in the next theorem, we compare the risk of the empirically selected
index γ̂(k̂n) with the risk of the pivotal index γ̂(kn).

Recall, from Section 3.1, that

ξn = c1
√

ln log2 n+ c′1 with c1 ≤ 4 and c′1 ≤ 34 .

Theorem 3.8. Assume the sampling distribution F ∈ MDA(γ), γ > 0 satis-
fies the von Mises condition with bounded von Mises function η, and η(t) =
sups≥t |η(s)|.

Let n > 1000 is large enough so that kn (Definition 3.7) is well defined. Then,
for 2/n < δ < 1/4, with probability larger than 1− 3δ,∣∣∣γ − γ̂(k̂n)

∣∣∣ ≤ |γ − γ̂(kn)|
(
1 + rn(δ)√

kn

)
+ rn(δ)√

kn
γ ,

and, with probability larger than 1− 4δ,∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ 2rn(δ)√

kn
γ (1 + α(δ, n)) , (3.9)

where

α(δ, n) ≤ rn

2
√
�n

+

√
ln(2/δ)

rn(δ)

(
1 +

3rn(δ)√
�n

)2

.

Remark 3.10. For 0 < δ < 1/2,

α(δ, n) = o(1) as n → ∞ .

Remark 3.11. If the bias b is ρ-regularly varying (or equivalently, if the von Mises
function η or even η are regularly varying), then, elaborating on Proposition 1
from (Drees and Kaufmann, 1998), sequences (k∗n) and (kn(1)) are connected
by

lim
n

kn(1)

k∗n
= (2|ρ|)1/(1+2|ρ|)
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and their quadratic risk are related by

lim
n

E[(γ − γ̂(kn(1)))
2]

E[(γ − γ̂(k∗n))
2]

=
2

2|ρ|+ 1
(2|ρ|)2|ρ|/(1+2|ρ|) .

Moreover, under the second-order assumption, the two pivotal sequences (kn(1))
and (kn(rn)) are also connected.

Thus, if the bias is ρ-regularly varying, Theorem 3.8 provides us with a con-
nection between the performance of the simple selection rule and the perfor-
mance of the (asymptotically) optimal choice.

Recall that one of the main aims of this paper is to derive performance
guarantees for the data-driven index selection method k̂n without resorting to
second-order assumptions that is, without assuming that the von Mises function
is regularly varying. The next corollary upper bounds the risk of the preliminary
estimator when we just have an upper bound on the bias.

Corollary 3.12. Assume that, for some C > 0 and ρ < 0, for all t > 1,

η (t) ≤ Ctρ .

Then, there exists a constant κC,δ,ρ depending on C, δ and ρ such that, with
probability larger than 1− 4δ,∣∣∣γ̂(k̂n)− γ

∣∣∣ ≤ κC,δ,ρ

(
γ2 ln ((2/δ) lnn)

n

)|ρ|/(1+2|ρ|)
(1 + α(δ, n))

where α(δ, n) is defined in Theorem 3.8.

This meets the information-theoretic lower bound of Theorem 2.9.

4. Proofs

4.1. Proof of Proposition 2.2

This proposition is a straightforward consequence of Rényi’s representation of
order statistics of standard exponential samples.

As F belongs to MDA(γ) and meets the von Mises condition, there exists a
function η on (1,∞) with limx→∞ η(x) = 0 such that

U(x) = cxγ exp

(∫ x

1

η(s)

s
ds

)
,

and

U(ey) = c exp

(∫ y

0

(γ + η(eu))du

)
.

Then,

γ̂(k)
d
=

1

k

k∑
i=1

i
lnU

(
eY(i)

)
lnU

(
eY(i+1)

)
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d
=

1

k

k∑
i=1

i

∫ Y(i)

Y(i+1)

(γ + η(eu))du

d
=

1

k

k∑
i=1

i

∫ Ei/i

0

(γ + η(eu+Y(i+1)))du

d
=

1

k

k∑
i=1

∫ Ei

0

(γ + η(e
u
i +Y(i+1)))du .

4.2. Proof of Proposition 3.1

Let Z = kγ̂(k). By the Pythagorean relation,

Var(Z) = E
[
Var
(
Z | Y(k+1)

)]
+Var

(
E[Z | Y(k+1)]

)
.

Representation (2.4) asserts that, conditionally on Y(k+1), Z is distributed as a
sum of independent, exponentially distributed random variables. Let E be an
exponentially distributed random variable.

Var
(
Z | Y(k+1) = y

)
= kVar

(
γE +

∫ E

0

η(eu+y)du

)
= kγ2 + 2kγ Cov

(
E,

∫ E

0

η(eu+y)du

)
+Var

(∫ E

0

η(eu+y)du

)
≤ kγ2 + 2kγη(ey) + k (η (ey))

2
,

where we have used the Cauchy-Schwarz inequality and Var
(∫ E

0
η(ey+u)du

)
≤

η(ey)2. Taking expectation with respect to Y(k+1) leads to

E
[
Var
(
Z | Y(k+1)

)]
≤ kγ2 + 2kγE

[
η
(
eY(k+1)

)]
+ kE

[
η
(
eY(k+1)

)2]
.

The last term in the Pythagorean decomposition is also handled using elemen-
tary arguments.

E[Z | Y(k+1)] = kγ + k

∫ ∞

0

e−uη
(
eu+Y(k+1)

)
du .

As Y(k+1) is a function of independent exponential random variables (Y(k+1) =∑n
i=k+1 Ei/i), the variance of E[Z | Y(k+1)] may be upper bounded using Poincaré

inequality (Proposition 2.10)

Var
(
E[Z | Y(k+1)]

)
≤ 4kE

[
η
(
eY(k+1)

)2]
.

In order to derive the lower bound, we first observe that

Var(Z) ≥ E
[
Var
(
Z | Y(k+1)

)]
.
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Now, using Cauchy-Schwarz inequality again,

Var
(
Z | Y(k+1) = y

)
≥ kγ2 − 2kγ

∣∣∣∣Cov(E,

∫ E

0

η(eu+y)du
)∣∣∣∣

≥ kγ2 − 2kγ

(
Var

(∫ E

0

η(eu+y)du

))1/2

≥ kγ2 − 2kγη(ey) .

4.3. Proof of Theorem 3.3

In the proof of Theorem 3.3, we will use the next maximal inequality (see
Boucheron et al., 2013, Corollary 2.6). Recall the definition of Γ+(v, c) (Def-
inition 2.14).

Proposition 4.1. Let Z1, . . . , ZN be real-valued random variables belonging to
Γ+(v, c). Then

E

[
max

i=1,...,N
Zi

]
≤

√
2v lnN + c lnN .

Proofs follow a common pattern. In order to check that some random vari-
able is sub-gamma, we rely on its representation as a function of independent
exponential variables and compute partial derivatives, derive convenient upper
bounds on the squared Euclidean norm and the supremum norm of the gradient
and then invoke Theorem 2.15.

At some point, we will use the next corollary of Theorem 2.15.

Corollary 4.2. If g is an almost everywhere differentiable function on R with
uniformly bounded derivative g′, then g(Y(k+1)) is sub-gamma with variance
factor 4‖g′‖2∞/k and scale factor ‖g′‖∞/k.

Proof of Theorem 3.3. We start from the exponential representation of Hill es-
timators (Proposition 2.2) and represent all γ̂(i) as functions of independent
random variables E1, . . . , Ek, . . . , EJ , Y(J+1) where the Ej , 1 ≤ j ≤ J , are stan-
dard exponentially distributed and Y(J+1) is distributed like the (J+1)th largest
order statistic of an n-sample of the standard exponential distribution. We con-
sistently use the notation Y(k) =

∑J
j=k

Ej

j + Y(J+1), for 1 ≤ k ≤ J .

iγ̂(i) =

i∑
j=1

∫ Ej

0

(
γ + η(e

u
j +Y(j+1))

)
du

=

i∑
j=1

(
γEj + j

∫ Y(j)

Y(j+1)

η(ev) dv

)
.

Let i′ be such that 0 ≤ i′ < i, let us agree on γ̂(0) = 0. Let

g(Ei′+1, . . . , EJ) = iγ̂(i)− i′γ̂(i′)
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=

i∑
j=i′+1

γEj +

i∑
j=i′+1

j

∫ Y(j)

Y(j+1)

η(ev) dv .

For i′ < p ≤ i, as
∂Y(j)

∂xp
= 1

p for j ≤ p and 0 otherwise,

∂g

∂xp
= γ +

p∑
j=i′+1

j
∂
∫ Y(j)

Y(j+1)
η(ev)dv

∂xp

= γ + η(eY(p)) +

p−1∑
j=i′+1

j

p

(
η(eY(j))− η(eY(j+1))

)
= γ +

p∑
j=i′+2

η(eY(j))

p
+

(i′ + 1)η(eY(i′+1))

p
.

This entails that, for i′ < p ≤ i,∣∣∣∣ ∂g∂xp

∣∣∣∣ ≤ γ +

p∑
j=1

η(eY(p∨i′+1))

p
≤ γ + η(eY(p)) . (4.3)

For i < p ≤ J ,

∂g

∂xp
=

i∑
j=i′+1

j
∂
∫ Y(j)

Y(j+1)
η(ev) dv

∂xp

=

i∑
j=i′+1

j

p

(
η(eY(j))− η(eY(j+1))

)

=
1

p

⎛⎝ i∑
j=i′+2

η(eY(j)) + (i′ + 1)η(eY(i′+1))− iη(eY(i+1))

⎞⎠
=

1

p

⎛⎝ i∑
j=i′+1

(
η(eY(j))− η(eY(i+1))

)
+ i′

(
η(eY(i′+1))− η(eY(i+1))

)⎞⎠ .

This is enough to entail that, for i < p ≤ k,∣∣∣∣ ∂g∂xp

∣∣∣∣ ≤ 2i

p
η(eY(p)) . (4.4)

All in all, for 1 ≤ p ≤ k,∣∣∣∣ ∂g∂xp

∣∣∣∣ ≤ (γ + η(T )) ∨ 2η(T ) ≤ γ + 2η(T ) .
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Proof of i) An upper bound on the variance factor for iγ̂(i), conditionally on
T , is obtained by specialising to the case i′ = 0 and using (4.3) and (4.4) as well
as the monotonicity of η,

J∑
p=1

∣∣∣∣ ∂g∂xp

∣∣∣∣2 ≤
i∑

p=1

(
γ + η(eY(p))

)2
+

J∑
p=i+1

4i2

p2
η(eY(p))2

≤ i
(
(γ + η(T ))

2
+ 4 (η(T ))

2
)
≤ i (γ + 3η(T ))

2
.

Using Theorem 2.15 conditionally on T = exp(Y(J+1)), we realise that
√
i(γ̂(i)−

E [γ̂(i) | T ]) is sub-gamma on both sides with variance factor not larger than

4 (γ + 3η(T ))
2
and scale factor not larger than γ + 2η(T ). This yields

P

{
|γ̂(i)− E [γ̂(i) | T ]| ≥ γ + 3η (T )√

i

(√
8s+

s√
i

)
| T
}

≤ 2e−s .

Taking expectation on both sides, this implies that

P

{
|γ̂(i)− E [γ̂(i) | T ]| ≥ γ + 3η (T )√

i

(√
8s+

s√
i

)}
≤ 2e−s .

Proof of ii) The proof of the upper bound on E[Za | T ] in Statement ii)
from Theorem 3.3 relies on standard chaining techniques from the theory of
empirical processes and uses repeatedly the concentration Theorem 2.15 for
smooth functions of independent exponential random variables and the maximal
inequality for sub-gamma random variables (Proposition 4.1).

For general i′, the variance factor for iγ̂(i)− i′γ̂(i′) is upper bounded by

(i− i′) (γ + η(T ))
2
+

J∑
p=i+1

i2

p2
(2η(T ))

2 ≤ (i− i′) (γ + η(T ))
2
+ i(2η(T ))2 .

Let u be such that Jη(u)2 ≤ γ2r2n where rn =
√
c3 ln lnn with c3 = 2. Now, as

we assume, in the sequel, that T > u, we may use the next upper bound for the
variance factor of iγ̂(i)− i′γ̂(i′) (conditionally on Y(J+1)),

4γ2

(
(i− i′)

(
1 +

rn√
J

)2
+ 4r2n

)
.

Recall that
Za = max

�≤i≤k

√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ .
As it is commonplace in the analysis of normalised empirical processes (see
van de Geer, 2000; Giné and Koltchinskii, 2006; Massart, 2007, and references
therein), we peel the index set over which the maximum is computed.

Let Ln = {�log2(�), . . . , �log2(k)} and, for all j ∈ Ln, Sj = {� ∨ 2j , . . . , k ∧
2j+1 − 1}. Define Za

j as

Za
j = max

i∈Sj

√
i
∣∣γ̂(i)− E

[
γ̂(i) | Y(k+1)

]∣∣ .
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Then,

E[Za | Y(k+1)] = E[max
j∈Ln

Za
j | Y(k+1)]

≤ E[max
j∈Ln

(Za
j − E[Za

j | Y(k+1)]) | Y(k+1)]] + max
j∈Ln

E[Za
j | Y(k+1)]] .

We now derive upper bounds on both summands by resorting to the maximum
inequality for sub-gamma random variables (Proposition 4.1). We first bound
E[Za

j | Y(k+1)], for j ∈ Ln.
Note that direct invocation of Lemma 4.1 and Statement i) shows that

E[Za
j | Y(k+1)] ≤ 2γ(1 + 3r/

√
J)
(√

8j ln(2) + j ln(2)
)
. (4.5)

This bound will be useful for handling small values of j. For j ≤ 11,
√
8j ln(2)+

j ln(2) ≤ 16.
We now handle generic j using chaining. Fix j ∈ Ln,

max
i∈Sj

√
i
∣∣γ̂(i)− E[γ̂(i) | Y(k+1)]

∣∣ ≤ 1

2j/2
max
i∈Sj

i
∣∣γ̂(i)− E[γ̂(i) | Y(k+1)]

∣∣ .
In order to alleviate notation, let W (i) = i

(
γ̂(i)− E[γ̂(i) | Y(k+1)]

)
, for i ∈ Sj .

For i ∈ Sj , let

i = 2j +

j∑
m=1

bm2j−m where bm ∈ {0, 1}

be the binary expansion of i. Then, for h ∈ {0, . . . , j}, let πh(i) be defined by

πh(i) = 2j +

h∑
m=1

bm2j−m

so that πj(i) = i, π0(i) = 2j and 0 ≤ πh+1(i)− πh(i) ≤ 2j−h−1.
Using the fact that W (π0(i)) does not depend on i and that

E
[
W (π0(i)) | Y(k+1)

]
= 0 ,

we obtain

E

[
max
i∈Sj

i
(
γ̂(i)− E

[
γ̂(i) | Y(k+1)

])
| Y(k+1)

]
= E

[
max
i∈Sj

W (i) | Y(k+1)

]
= E

[
max
i∈Sj

W (πj(i))−W (π0(i)) | Y(k+1)

]
= E

[
max
i∈Sj

j−1∑
h=0

(W (πh+1(i))−W (πh(i))) | Y(k+1)

]
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≤
j−1∑
h=0

E

[
max
i∈Sj

(W (πh+1(i))−W (πh(i))) | Y(k+1)

]
.

Now, for each h ∈ {0, . . . , j−1}, the maximum is taken over 2h random variables
which are sub-gamma with variance factor

4γ2 ×
(
2j−h−1

(
1 +

rn√
J

)2
+ 4r2n

)
and scale factor (γ+2η(T )) ≤ γ(1+2rn/

√
J). By Proposition 4.1, since i ∈ Sj ,

E

[
max
i∈Sj

i
(
γ̂(i)− E

[
γ̂(i) | Y(k+1)

])
| Y(k+1)

]
≤ γ

j−1∑
h=0

((
1 +

rn√
J

)√
8h2(j−h−1) ln 2 +

√
32h ln 2rn +

(
1 +

2rn√
J

)
h ln 2

)
≤ γ

(
1 +

2rn√
J

)(
2(j−1)/24.15

√
8 ln 2 +

2

3

√
32c2 ln(2)j

2 +
j(j − 1)

2
ln 2

)
where we have used

4.15 ≥
∞∑
h=0

√
h2−h

rn ≤
√
c2 ln(2)j

1/2 as rn =
√
c3 ln ln(n), j + 1 ≥ log2(c2 ln(n)) .

For j ≥ 12,

E

[
max
i∈Sj

i
(
γ̂(i)− E

[
γ̂(i) | Y(k+1)

])
| Y(k+1)

]
≤ 17γ 2j/2

(
1 +

2rn√
J

)
.

Finally, for all j ∈ Ln,

E[Za
j | Y(k+1)] ≤ 34 γ

(
1 +

3rn√
J

)
.

In order to prove Statement ii), we check that, for each j ∈ Ln, Z
a
j is sub-

gamma on the right-tail with variance factor at most 4 (γ + 3η(T ))
2
and scale

factor not larger than (γ + 3η(T )) /
√
�. Under the von Mises condition (Defi-

nition 2.1), the sampling distribution is absolutely continuous with respect to
Lebesgue measure. For almost every sample, the maximum defining Za

j is at-
tained at a single index i ∈ Sj . Starting again from the exponential representa-
tion and repeating the computation of partial derivatives, we obtain the desired
bounds.

By Proposition 4.1,

E

[
max
j∈Ln

(Za
j − E[Za

j | Y(k+1)]) | Y(k+1)

]
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≤
(√

8 ln |Ln|+
ln |Ln|√

�

)
(γ + 3η(T ))

≤ 4
√

ln |Ln| (γ + 3η(T ))

≤ 4 γ
√
ln |Ln|

(
1 +

3rn√
J

)
where we have used ln |Ln| ≤ ln(log2(n)) ≤ ln(n) ≤ �, for n ≥ 2. Combining the
different bounds leads to the upper bound on E[Za | T ].

4.4. Proof of Theorem 3.8

Throughout this proof, let

Tn = exp
(
Y(kn+1)

)
ξn = c1

√
ln log2 n+ c′1 where c1, c

′
1 are defined in Section 3.1,

zδ = (1 + 3rn/
√

kn)

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)√
�n

)
zδ = (1 + 3rn/

√
�n)

(
ξn +

√
8 ln (2/δ) +

ln (2/δ)√
�n

)
.

Let us define the events E1 and E2 as

E1 =
{
c2 lnn ≤ i ≤ kn,

√
i |γ̂(i)− E[γ̂(i) | Tn]| ≤ γzδ

}
,

E2 =
{
Tn ≥ n

kδn

}
with kδn = kn + 2ln (1/δ) +

√
2kn ln(1/δ) .

The fact that P(E2) ≥ 1−δ follows from the following reformulation of Propo-
sition 4.3 from (Boucheron and Thomas, 2012) (a proof is given in Appendix
D).

Proposition 4.6. For δ ∈ (0, 1), with probability larger that 1− δ,

exp(Y(k+1)) ≥
n

kδ
with kδ = k + 2 ln(1/δ) +

√
2k ln(1/δ).

where Y(k+1) is the (k + 1)th largest order statistic of an exponential sample of
size n.

By Theorem 3.3, P(E1 | E2) ≥ 1−δ. Hence, the event E1∩E2 has probability
at least (1− δ)2 ≥ 1− 2δ.

Under E2,

i) η(Tn) ≤ γrn/
√
kn.

ii) for all �n ≤ i ≤ kn, |γ − E[γ̂(i) | Tn]| ≤ η(Tn).

The first step of the proof consists in checking that under E1∩E2, the selected
index is not smaller than kn. It suffices to check that for all i, k such that �n ≤
i < k < kn,

√
i |γ̂(i)− γ̂(k)| ≤ rn(δ)γ̂(i) .
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For all i ∈ {�n, . . . , kn} ,

γ − γ̂(i) ≤ |γ − E[γ̂(i) | Tn]|+ |γ̂(i)− E[γ̂(i) | Tn]|
≤ η(Tn) +

γzδ√
i

≤ γrn√
kn

+
γzδ√
i

so that
γ̂(i)

γ
≥ 1− rn + zδ√

i
.

Meanwhile, for all i, k,

|γ̂(i)− γ̂(k)|
≤

∣∣∣γ̂(i)− E[γ̂(i) | Tn]
∣∣∣︸ ︷︷ ︸

(i)

+ |E[γ̂(i)− γ̂(k) | Tn]|︸ ︷︷ ︸
(ii)

+ |γ̂(k)− E[γ̂(k) | Tn]|︸ ︷︷ ︸
(iii)

.

Under E1 ∩ E2, for �n ≤ i < k ≤ kn,

(i)+ (iii) ≤ γzδ

(
1√
i
+

1√
k

)
≤ 2γ√

i
zδ .

Under E2,

(ii) ≤ |E[γ̂(i)− γ | Tn]|+ |E[γ − γ̂(k) | Tn]|
≤ 2η(Tn)

≤ 2γrn/
√
kn .

Plugging upper bounds on (i), (ii) and (iii), it comes that, under E1 ∩ E2,
for all k ≤ kn − 1 and for all i ∈ {�n, . . . , k},

√
i
|γ̂(i)− γ̂(k)|

γ
≤ 2zδ + 2rn .

In order to warrant that, under E1∩E2, for all k < kn and for all i such that
c2 lnn ≤ i ≤ k,

√
i |γ̂(i)− γ̂(k)| ≤ rn(δ)γ̂(i), it is enough to have

2(zδ + rn) ≤ rn(δ)

(
1− rn + zδ√

i

)
.

The last inequality holds because

2(zδ + rn) ≤ rn(δ)

(
1− rn + zδ√

�n

)
by definition of rn(δ).

Hence, with probability larger than (1 − δ)2, E1 ∩ E2 is realised, and under

E1 ∩ E2, k̂n ≥ kn.
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We now check that if k̂n ≥ kn, the risk of γ̂(k̂n) is not much larger than the
risk of γ̂(kn). ∣∣∣γ − γ̂(k̂n)

∣∣∣ ≤ |γ − γ̂(kn)|+
∣∣∣γ̂(kn)− γ̂(k̂n)

∣∣∣
≤ |γ − γ̂(kn)|+ rn(δ)γ̂(kn)√

kn
.

Therefore, under E1 ∩ E2,∣∣∣γ − γ̂(k̂n)
∣∣∣ ≤ |γ − γ̂(kn)|

(
1 + rn(δ)√

kn

)
+ rn(δ)γ√

kn
. (4.7)

Now, consider the event E1 ∩ E2 ∩ E3 with

E3 =

{√
kn |γ̂(kn)− E[γ̂(kn) | Tn]| ≤ (γ + 3η(Tn))

(√
8 ln (2/δ)+

ln (2/δ)√
kn

)}
.

Since, P(E3 | E2) ≥ 1− δ, thanks to Statement i) from Theorem 3.3, the event
E1 ∩ E2 ∩ E3 has probability at least (1− δ)(1− 2δ) ≥ 1− 3δ.

Then, by definition of kn, under E2,

|γ − E[γ̂(kn) | Tn]| ≤ η(Tn) ≤ γrn/
√
kn .

Hence, under E2 ∩ E3,∣∣∣γ̂(kn)− γ
∣∣∣ ≤ |γ − E[γ̂(kn) | Tn]|+ |γ̂(kn)− E[γ̂(kn) | Tn]|

≤ γ√
kn

(
rn +

(
1 +

3rn√
kn

)(√
8 ln (2/δ) +

ln (2/δ)√
kn

))
.

Therefore, plugging this bound into (4.7), with probability larger than 1− 3δ,∣∣∣γ̂(k̂n)− γ
∣∣∣

≤ γ√
kn

(
rn(δ) +

(
rn +

(
1 +

3rn√
kn

)(√
8 ln (2/δ)

2
+

ln (2/δ)

2
√
kn

))(
1 +

rn(δ)√
kn

))

≤ 2γrn(δ)√
kn

(1 + α(δ, n)) ,

where

α(δ, n) =
rn

2
√
�n

+

√
ln(2/δ)

rn(δ)

(
1 +

3rn(δ)√
�n

)2

.

4.5. Proof of Corollary 3.12

If, for some C > 0 and ρ < 0,

η(t) ≤ Ctρ ,
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then, by the definition of kn,

γrn√
kn + 1

≤ C

(
n

(kn + 1)δ

)ρ

,

which entails that

γrn√
kn + 1

≤ C

⎛⎜⎝ n(√
kn + 1 +

√
2 ln(1/δ)

)2
⎞⎟⎠

ρ

.

Solving this inequality leads to

√
kn + 1 ≥

√(γrn
C

)2/(1+2|ρ|)
n2|ρ|/(1+2|ρ|) − 2|ρ|

√
2 ln(1/δ)

1 + 2|ρ|

and finally to

kn ≥ 1

2

(γrn
C

)1/(1+2|ρ|)
n|ρ|/(1+2|ρ|) − 2

(
2|ρ|
√
2 ln(1/δ)

1 + 2|ρ|

)2

− 1 .

Thus, for sufficiently large n, there exists a constant c depending on ρ, δ such
that √

kn ≥
(γrn

c

)1/(1+2|ρ|)
n|ρ|/(1+2|ρ|) .

Starting from Equation (3.9) of Theorem 3.8, with probability 1− 3δ,

∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ 16γ

√
2 ln((2/δ) log2 n)

kn
(1 + α(δ, n)) ,

and, there exists a constant κC,δ,ρ, depending on C, δ and ρ, such that√
ln((2/δ) log2 n)

kn
≤ κC,δ,ργ

−1/(1+2|ρ|)
(
ln((2/δ) log2 n)

n

)|ρ|/(1+2|ρ|)
.

Hence, with probability larger than 1− 4δ,

∣∣∣γ̂(k̂n)− γ
∣∣∣ ≤ κC,δ,ρ

(
γ2 ln((2/δ) log2 n)

n

)|ρ|/(1+2|ρ|)
(1 + α(δ, n)) .

5. Simulations

Risk bounds like Theorem 3.8 and Corollary 3.12 are conservative. For all prac-
tical purposes, they are just meant to be reassuring guidelines. In this numerical
section, we intend to shed some light on the following issues:
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1. Is there a reasonable way to calibrate the threshold rn(δ) used in the

definition of k̂n? How does the method perform if we choose rn(δ) close
to
√

2 ln ln(n)?

2. How large is the ratio between the risk of γ̂(k̂n) and the risk of γ̂(k∗n) for
moderate sample sizes?

The finite-sample performance of the data-driven index selection method de-
scribed and analysed in Section 3.2 has been assessed by Monte-Carlo simula-
tions. Computations have been carried out in R using packages ggplot2 (Wick-
ham, 2009), knitr, foreach, iterators, xtable and dplyr (see Wickham,
2014, for a modern account of the R environment). To get into the details, we
investigated the performance of index selection methods on samples of sizes
1000, 2000 and 10000 from the collection of distributions listed in Table 1. The
list comprises the following distributions

i) Fréchet distributions Fγ(x) = exp(x−1/γ) for x > 0 and γ ∈ {0.2, 0.5, 1}.
ii) Student distributions tν with ν ∈ {1, 2, 4, 10} degrees of freedom.
iii) The log-gamma distribution with density proportional to (ln(x))2−1x−3−1,

which means γ = 1/3 and ρ = 0.
iv) The Lévy distribution with density

√
1/(2π) exp(− 1

2x )/x
3/2, γ = 2 and

ρ = −1 (this is the distribution of 1/X2 when X ∼ N (0, 1)).
v) The H distribution is defined by γ = 1/2 and von Mises function equal

to η(s) = (2/s) ln 1/s. This distribution satisfies the second-order regular
variation condition with ρ = −1 but does not satisfy Condition (2.7).

vi) Two Pareto change point distributions with distribution functions

F (x) = x−1/γ′
1{1≤x≤τ} + τ−1/γ′

(x/τ)−1/γ1{x≥τ}

and γ ∈ {1.5, 1.25}, γ′ = 1, and thresholds τ adjusted in such a way that
they correspond to quantiles of order 1− 1/15 and 1− 1/25, respectively.

Fréchet, Student, log-gamma distributions were used as benchmarks by (Drees
and Kaufmann, 1998), (Danielsson et al., 2001) and (Carpentier and Kim, 2015).

Table 1, which is complemented by Figure 3, describes the difficulty of tail
index estimation from samples of the different distributions. Monte-Carlo esti-
mates of the standardised root mean square error (rmse) of Hill estimators

E
[
(γ̂(k)/γ − 1)

2
]1/2

are represented as functions of the number of order statistics k for samples
of size 10000 from the sampling distributions. All curves exhibit a common
pattern: for small values of k, the rmse is dominated by the variance term
and scales like 1/

√
k. Above a threshold that depends on the sampling dis-

tribution but that is not completely characterised by the second-order regular
variation index, the rmse grows at a rate that may reflect the second-order
regular variation property (if any) of the distribution. Not too surprisingly, the
three Fréchet distributions exhibit the same risk profile. The three curves are
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Table 1

Estimated oracle index k∗n and standardised rmse E[(γ − γ̂(k∗n))
2]1/2/γ for benchmark

distributions. Estimates were computed from 5000 replicated experiments on samples of size
10000

d.f. γ ρ k∗n RMSE

F0.2 0.2 1.0 1132 3.7e-02
F0.5 0.5 1.0 1145 3.6e-02
F1 1.0 1.0 1155 3.6e-02
t1 1.0 2.0 1161 3.3e-02
t2 0.5 1.0 341 6.5e-02
t4 0.2 0.5 77 1.6e-01
t10 0.1 0.2 15 5.3e-01
H 0.5 1.0 130 1.1e-01
log-gamma 0.3 0.0 213 1.6e-01
Stable 2.0 1.0 3172 2.0e-02
Pcp 1.5 0.3 943 3.3e-02
Pcp (bis) 1.2 0.2 593 4.2e-02

Fig 3. Monte-Carlo estimates of the standardised root mean square error (rmse) of Hill
estimators as a function of the number of order statistics k for samples of size 10000 from
the sampling distributions.

almost undistinguishable. The Student distributions illustrate the impact of the
second-order parameter on the difficulty of the index selection problem. For
sample size n = 10000, the optimal index for t10 is smaller than 30, it is smaller
than the usual recommendations. For such moderate sample sizes, distribution
t10 seems as hard to handle as the log-gamma distribution which usually fits
in the Horror Hill Plot gallery. The 1/2-stable Lévy distribution and the H-
distribution behave very differently. Even though they both have second-order
parameter ρ equal to −1, the H distribution seems almost as challenging as the
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t4 distribution while the Lévy distribution looks much easier than the Fréchet
distributions. The Pareto change point distributions exhibit an abrupt transi-
tion.

Index k̂n(rn) was computed according to the following rule

k̂n(rn) = min

{
k : 30 ≤ k ≤ n and ∃i ∈ {30, . . . , k} , |γ̂(i)− γ̂(k)| > rnγ̂(i)√

i

}
− 1 (5.1)

with rn =
√
c ln lnn where c = 2.1 unless otherwise specified.

The Fréchet, Student, H and stable distributions all fit into the framework
considered by (Drees and Kaufmann, 1998). They provide a favorable ground for
comparing the performance of the optimal index selection method described by
Drees and Kaufmann (1998) which attempts to take advantage of the second-
order regular variation property and the performance of the simple selection
rule described in this paper.

Index γ̂(k̂dkn ) was computed following the recommandations from Theorem 1
and discussion in (Drees and Kaufmann, 1998)

k̂dkn = (2|ρ̂|+ 1)−1/|ρ̂| (2ρ̂γ̂)1/(1+2|ρ̂|)
(

k̂n(r
ζ
n)

(k̂n(rn))ζ

)1/(1−ζ)

(5.2)

where ρ̂ should belong to a consistent family of estimators of ρ (under a second-
order regular variation assumption), γ̂ should be a preliminary estimator of γ
such as γ̂(

√
n), ζ = .7, and rn = 2n1/4. Following the advice from (Drees and

Kaufmann, 1998), we replaced |ρ̂| by 1. Note that the method for computing

k̂dkn depends on a variety of tunable parameters.

Comparison between performances of γ̂(k̂n(rn)) and γ̂(k̂dkn ) are reported in
Tables 2 and 3. For each distribution from Table 1, for sample sizes n =
1000, 2000, and 10000, 5000 experiments were replicated. As pointed out in
(Drees and Kaufmann, 1998), on the sampling distributions that satisfy a second-

order regular variation property, carefully tuned k̂dkn is able to take advantage
of it. Despite its computational and conceptual simplicity and the fact that it is
almost parameter free, the estimator γ̂(k̂n(rn)) only suffers a moderate loss with
respect to the oracle. When |ρ| = 1, the observed ratios are of the same order as

(2 ln lnn)1/3 ≈ 1.65. Moreover, whereas γ̂(k̂dkn ) behaves erratically when facing

Pareto change point distributions, γ̂(k̂n(rn)) behaves consistently.
Figure 4 concisely describes the behaviour of the two index selection meth-

ods on samples from the Pareto change point distribution with parameters
γ = 1.5, γ′ = 1 and threshold τ corresponding to the 1 − 1/15 quantile. The
plain line represents the standardised rmse of Hill estimators as a function
of selected index. This figure contains the superposition of two density plots
corresponding to k̂dkn and k̂(rn). The density plots were generated from 5000

points with coordinates (k̂(rn), |γ̂(k̂(rn))/γ − 1|) and 5000 points with coordi-

nates (k̂dkn , |γ̂(k̂dkn )/γ − 1|). The contoured and well-concentrated density plot

corresponds to the performance of γ̂(k̂n). The diffuse tiled density plot corre-

sponds to the performance of k̂dkn . Facing Pareto change point samples, the two
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Table 2

Ratios between median selected indices k̂n(rn) (Lepski), k̂dkn (Drees-Kaufmann) and
estimated oracle index k∗n.

d.f. γ
k̂dkn /k∗n k̂n(rn)/k∗n

n = 1000 2000 10000 1000 2000 10000

F0.2 0.2 0.61 0.67 0.94 2.94 2.97 3.47
F0.5 0.5 1.12 1.18 1.45 2.90 2.87 2.91
F1 1 1.76 2.05 2.32 2.90 3.10 2.93
t1 1 1.33 1.55 1.98 2.03 2.16 2.16
t2 0.5 1.00 0.99 0.91 3.05 3.06 2.96
t4 0.25 1.27 1.28 1.18 5.62 5.50 5.30
t10 0.1 2.00 1.54 2.28 13.87 10.92 14.12
H 0.5 0.41 0.35 0.30 5.14 4.97 4.96
Stable 2 0.97 0.95 1.04 1.43 1.41 1.55
Pcp 1.5 1.85 0.45 0.15 1.32 1.21 1.10
Pcp (bis) 1.25 3.29 3.03 2.45 1.83 1.50 1.22
log-gamma 0.33 5.13 7.71 12.41 10.50 12.99 12.40

Table 3

Ratios between median rmse and median optimal rmse.

d.f. γ
rmse(γ̂(k̂dkn ))/rmse(γ̂(k∗n)) rmse(γ̂(k̂n(rn)))/rmse(γ̂(k∗n))

n = 1000 2000 10000 1000 2000 10000

F0.2 0.2 1.12 1.12 1.02 2.06 2.26 2.69
F0.5 0.5 1.03 1.03 1.14 2.12 2.23 2.70
F1 1 1.22 1.31 1.59 2.07 2.23 2.64
t1 1 1.26 1.34 1.74 2.31 2.39 3.11
t2 0.5 1.11 1.08 1.05 2.06 2.09 2.20
t4 0.25 1.10 1.07 1.04 1.85 1.81 1.84
t10 0.1 1.10 1.09 1.08 1.76 1.72 1.64
H 0.5 1.28 1.37 1.48 2.15 2.18 2.12
Stable 2 1.01 0.99 0.98 1.99 2.52 3.60
Pcp 1.5 4.25 1.66 2.52 2.50 2.68 3.63
Pcp (bis) 1.25 3.38 4.47 7.45 2.43 2.56 3.10
log-gamma 0.33 1.23 1.28 1.39 1.45 1.43 1.37

selection methods behave differently. Lepski’s rule detects correctly an abrupt
change at some point and selects an index slightly above that point. As the con-
ditional bias varies sharply around the change point, this slight over estimation
of the correct index still results in a significant loss as far as rmse is concerned.
The Drees-Kaufmann rule, fed with an a priori estimate of the second-order
parameter, picks out a much smaller index, and suffers a larger excess risk.

Appendix A: Calibration of the preliminary selection rule

Darling and Erdös (1956) establish (among other things) that let-

ting Zn denote supk≤n

∑k
i=1(Ei − 1)/

√
k, where Ei, 1 ≤ i ≤ k,

are independent exponentially distributed random variables, the sequence√
2 ln lnn

(
Zn −

√
2 ln lnn− ln ln ln(n)/(2

√
2 ln lnn)

)
converges in distribution
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Fig 4. Risk plot for samples of size 10000 from the Pareto change point distribution with
parameters γ = 1.5, γ′ = 1 and threshold τ corresponding to the 1 − 1/15 quantile. The

concentrated density plot corresponds to points (k̂(rn), |γ̂(k̂(rn))/γ − 1|).

towards a translated Gumbel distribution. In other words, asymptotically, Zn

behaves almost like the maximum of lnn independent standard Gaussian ran-
dom variables.

Appendix B: Proof of Corollary 2.16

Let Z = g(E1, . . . , En) = (U ◦ exp)
(∑k

i=1 Ei/i
)
. Then,

|∂ig| ≤
1

i
sup
x

1

h(x)
, for i ≥ k,

and

‖∇g‖2 =

n∑
i=k

1

i2
1

(h ◦ g)2
.

Let c < 1, then for all λ, 0 ≤ λ ≤ c (k infx h(x)),

lnEeλ(Z−EZ) ≤ 4/k (1 + 1/k)E[1/h(Z)2]λ2

2(1− c)
.

Now, start from the first statement in Theorem 2.15,

Ent
[
eλ(Z−EZ)

]
≤ 2λ2

1− c
E
[
eλ(Z−EZ)‖∇f‖2

]
=

4λ2

2(1− c)

1

k

(
1 +

1

k

)
E

[
eλ(Z−EZ)

h(Z)2

]
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≤ 4λ2

2(1− c)

1

k

(
1 +

1

k

)
E
[
eλ(Z−EZ)

]
E

[
1

h(Z)2

]
where the last inequality follows from Chebychev negative association inequality.
Hence,

d

dλ

[
1

λ
lnEeλ(Z−EZ)

]
=

Ent
[
eλ(Z−EZ)

]
λ2E

[
eλ(Z−EZ)

] ≤ 1

2(1− c)

4

k

(
1 +

1

k

)
E

[
1

h(Z)2

]
.

This differential inequality is readily solved and leads to the corollary.

Appendix C: Proof of Abelian Proposition 3.2

The proof proceeds by classical arguments. In the sequel, we use the almost
sure representation argument. Without loss of generality, we assume that all
the random variables live on the same probability space, and that, for any
intermediate sequence (kn),

√
kn(Y(kn+1) − ln(n/kn)) converges almost surely

towards a standard Gaussian random variable. Complemented with dominated
convergence arguments, the next lemma will be the key element of the proof.

Lemma C.1. Let η ∈ RVρ, ρ ≤ 0 and Y(kn+1) be the (kn + 1)th largest order
statistic of a standard exponential sample, then, for any intermediate sequence
(kn) and u > 0,

lim
n→∞

η(eu+Y(kn+1))

η(n/kn)
= eρu p.s .

Proof. Note that

η(eu+Y(kn+1))

η(n/kn)
=

η
(
(n/kn)e

u+Y(kn+1)−log(n/kn)
)

η(n/kn)
.

Then, the result follows since Y(kn+1) − log(n/kn)
p.s−→ 0 and the convergence

η(tx)/η(t) → xρ is locally uniform on (0,∞).

In order to secure dominated convergence arguments, we will use Drees’s
improvement of Potter’s inequality (see de Haan and Ferreira, 2006, page 369).
For every ε, δ > 0, there exists t0 = t0(ε, δ) such that, for t, tx ≥ t0,

|η(tx)/η(t)− xρ| ≤ xρεmax(xδ, x−δ) . (C.2)

To prove Proposition 3.2, we start from Representation (2.4):

γ̂(kn) =
1

kn

kn∑
i=1

∫ Ei

0

(
γ + η

(
eu+Y(kn+1)

))
du .

By the Pythagorean relation,

Var(γ̂(kn)) = Var
(
E[γ̂(kn) | Y(kn+1)]

)
+ E

[
Var
(
γ̂(kn) | Y(kn+1)

)]
,
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so that

kn Var(γ̂(kn))− γ2

η (n/kn)

=
kn Var

(
E[γ̂(kn) | Y(kn+1)]

)
η(n/kn)

+ knE

[
Var
(
γ̂(kn) | Y(kn+1)

)
− γ2

kn

η(n/kn)

]
.

The second summand can be further decomposed using (2.4).

kn Var(γ̂(kn))− γ2

η (n/kn)

=
kn Var

(
E[γ̂(kn) | Y(kn+1)]

)
η(n/kn)︸ ︷︷ ︸

(i)

+ η( n
kn

)E

[
Var

[∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]
︸ ︷︷ ︸

(ii)

+2γE

[
Cov

[
E,

∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]
︸ ︷︷ ︸

(iii)

.

We check that (i) and (ii) tend to 0 and then that (iii) converges towards a
finite limit.

Fix ε, δ > 0 and define M = sup{η(t), t ≤ t0}.
Let An denote the event {Y(kn+1) > ln t0(ε, δ)}. For n such that ln(n/kn) ≤
2 ln t0, as Y(kn+1) is sub-gamma with variance factor 1/kn,

P{Ac
n} ≤ exp

(
−kn(ln(n/kn))

2/8
)
.

We first check that (ii) tends to 0. Let n be such that n/kn ≥ t0 and Wn

denote the random variable Y(kn+1) − ln (n/kn). Note that, for 0 ≤ λ ≤ kn/2,

Eeλ|Wn| ≤ 2e
λ2

kn .

Using Jensen’s inequality and Fubini’s Theorem,

E

[
Var

[∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]

≤ E

[
E

[
E

∫ E

0

(
η(eu+Y(kn+1))

η(n/kn)

)2

du | Y(kn+1)

]]

=

∫ ∞

0

e−vv

∫ v

0

E

[(
η(eu+Y(kn+1))

η(n/kn)

)2
]
dudv
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=

∫ ∞

0

e−vv

∫ v

0

E

[(
η(eu+Wnn/kn)

η(n/kn)

)2
]
dudv

We now apply Potter’s inequality (C.2) on the event An with t = n/kn > t0
and tx = eu+Y(kn+1) > t0, u > 0 :

E

[
Var

[∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]

≤
∫ ∞

0

e−vv

∫ v

0

E

[
1Ane

2ρ(u+Wn)
(
1 + εeδ(u+|Wn|)

)2
+ 1Ac

n

M2

η(n/kn)2

]
dudv

≤
∫ ∞

0

e−vv

∫ v

0

E
[
e2ρWn2

(
1 + ε2e2δ(u+|Wn|)

)]
dudv +

2M2

η(n/kn)2
E1Ac

n
.

The first summand has a finite limit thanks to Lemma C.1. The second summand
converges to 0 as E1Ac

n
tends to 0 exponentially fast while 1/η(n/kn)

2 tends to
infinity algebraically fast.

Bounds on (i) are easily obtained, using Jensen’s Inequality and Poincaré
Inequality.

kn Var
(
E[γ̂(kn) | Y(kn+1)]

)
η(n/kn)

=
kn Var

(∫∞
0

η
(
eu+Y(kn+1)

)
e−udu

)
η(n/kn)

≤ 4η(n/kn)E

⎡⎣(∫ ∞

0

η
(
eu+Y(kn+1)

)
η(n/kn)

e−udu

)2
⎤⎦

≤ 4η(n/kn)E

⎡⎣∫ ∞

0

(
η
(
eu+Y(kn+1)

)
η(n/kn)

)2

e−udu

⎤⎦ .

Using the line of arguments as for handling the limit of (ii), we establish that
(i) converges to 0.

We now check that (iii) converges towards a finite limit. Note that

E

[
Cov

[
E,

∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du | Y(kn+1)

]]

= E

[
(E − 1)

∫ E

0

η(eu+Y(kn+1))

η(n/kn)
du

]
.

By Lemma C.1, for almost every u > 0,

(E − 1)
η(eu+Wnn/kn)

η(n/kn)
−→
n→∞

(E − 1)eρu ,

and

|E − 1|
∫ E

0

∣∣∣∣η(eu+Wnn/kn)

η(n/kn)

∣∣∣∣du
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≤ |E − 1|
∫ E

0

eρ(u+Wn)
(
1 + εeδ(u+|Wn|)

)
du+ 1Ac

n
E|E − 1| M

|η(n/kn)|
.

The first term is finite as the integral of a continuous function on a compact.
Thus,

(E − 1)

∫ E

0

η(eu+Wnn/kn)

η(n/kn)
du →n (E − 1)

∫ E

0

eρudu = (E − 1)
eρE − 1

ρ
.

The expected value of the last random variable is 1/(1− ρ)2.
We check that, for sufficiently large n,

E

[
|E − 1|

∫ E

0

|η(eu+Wnn/kn)|
|η(n/kn)|

du

]

≤ E

[
|E − 1|

∫ E

0

eρ(u+Wn)
(
1 + εeδ(u+|Wn|)

)
+ 1Ac

n
|E − 1| M

|η(n/kn)|
du

]

≤ E

[
eρWn

(
2 +

ε

δ(1− δ)2
eδ|Wn|

)]
+

M

|η(n/kn)|
E1Ac

n

≤ 4e
ρ2

kn +
2ε

δ(1− δ)2
e

(δ−ρ)2

kn +
M

|η(n/kn)|
E1Ac

n
.

We now way conclude by dominated convergence that

(iii) −→
n→∞

2γ

(1− ρ)2
.

Appendix D: Proof of Proposition 4.6

The proof of Proposition 4.3 from (Boucheron and Thomas, 2012) yields that,
with probability larger than 1− δ, for 0 ≤ z,

P
{
exp
(
Y(k+1)

)
≥ n

k
e−z
}
≥ 1− exp

(
−2k sinh (z/2)

2
)
.

We may choose z = 2arsinh(
√

ln (1/δ)/2k) and notice that arsinh(x) = ln(x+√
1 + x2). This yields

ez ≤ 1 + 2
ln (1/δ)

k
+

√
2 ln(1/δ)

k
and exp

(
−2k sinh (z/2)

2
)
= δ .

Appendix E: Revisiting the lower bound on adaptive estimation
error

Lower bounds on tail index estimation error (Drees, 2001, 1998a; Novak, 2014;
Carpentier and Kim, 2015) are usually constructed by defining sequences of lo-
cal models around a pure Pareto distribution with shape parameter γ0. When
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deriving lower bounds for the estimation error under constraints like η is regu-
larly varying, the elements of the local model for sample size n may be defined
by

Un,h(t) = tγ0+dnh(0) exp

∫ t

1

dn
h(cn/s)− h(0)

s
ds

where h is square integrable over [0, 1], dn → 0, nd2n/cn → 1 (Drees, 2001).
The sequences dn and cn are chosen in such a way that dn |h(cn/s)− h(0)| =
|η(s)| satisfies the required constraint. If the local alternatives are Pareto change
point distributions as in (Novak, 2014) and (Carpentier and Kim, 2015), h(x) =

1{x≤1}, cn = τ
1/γ0
n . Drees (2001) explores a richer collection of local alternatives

in order to fit into the theory of weak convergence of local experiments.
In order to explore adaptivity as in (Carpentier and Kim, 2015), it is neces-

sary to handle simultaneously a collection of sequences (dn, cn)n corresponding
to different rates of decay of the von Mises function. The difficulty of estimation
is connected with the difficulty of distinguishing alternatives with different tail
indices that is, with the hardness of a multiple hypotheses testing problem. In
order to lower bound the testing error, Carpentier and Kim chose to use Fano’s
Lemma (Cover and Thomas, 1991, see). Using Fano’s Lemma requires bounding
the Kullback-Leibler divergence between the different local alternatives which
is not as easy as bounding the divergence between a Pareto change point distri-
bution and a pure Pareto distribution.

The next lemma is from (Birgé, 2005). It can be used in the derivation of
risk lower bounds instead of the classical Fano Lemma. Just as Fano’s Lemma,
it states a lower bound on the error in multiple hypothesis testing. However, as
it only requires computing the Kullback-Leibler divergence to the localisation
center, in the present setting, it significantly alleviates computations and makes
the proof more concise and more transparent.

Lemma E.1. (Birgé-Fano) Let P0, . . . , PM be a collection of probability distri-
butions on some space, and let A0, . . . , AM be a collection of pairwise disjoint
events, then the following holds

min
i

Pi{Ai} ≤ 2e

1 + 2e
∨

1
M

∑M
i=1 K(Pi, P0)

ln(M + 1)
.

In order to take advantage of Lemma E.1, we use the Bayesian game designed
in (Carpentier and Kim, 2015).

Theorem E.2. Let γ > 0, ρ < −1, and 0 ≤ v ≤ e/(1 + 2e). Then, for any tail
index estimator γ̂ and any sample size n such that M = �lnn > e1/v, there
exists a collection (Pi)i≤M of probability distributions such that

i) Pi ∈ MDA(γi) with γi > γ,
ii) Pi meets the von Mises condition with von Mises function ηi satisfying

ηi(t) ≤ γtρi

where ρi = ρ+ i/M < 0,
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iii)

max
i≤M

P⊗n
i

{
|γ̂ − γi| ≥

Cρ

4
γi

(
v ln lnn

n

)|ρi|/(1+2|ρi|)
}

≥ 1

1 + 2e

and

max
i≤M

EP⊗n
i

[
|γ̂ − γi|

γi

]
≥ Cρ

4(1 + 2e)

(
v ln lnn

n

)|ρ|/(1+2|ρ|)
,

with Cρ = 1− exp
(
− 1

2(1+2|ρ|)2
)
.

Proof of Theorem E.2. Choose v so that 0 ≤ v ≤ 2e/(1 + 2e). The number of
alternative hypotheses M is chosen in such a way that M/2 ≤ ln (n/(v lnM)) ≤
M . If �lnn ≥ e1/v, M = �lnn will do.

The center of localisation P0 is the pure Pareto distribution with shape pa-
rameter γ > 0 (P0{(τ,∞)} = τ−1/γ). The local alternatives P1, . . . , PM are
Pareto change point distributions. Each Pi is defined by a breakpoint τi > 1
and an ultimate Pareto index γi. If Fi denotes the distribution function of Pi,

F i(x) = x−1/γ1{1≤x≤τi} + τ
−1/γ
i (x/τi)

−1/γi1{x≥τi} .

Karamata’s representation of (1/F i)
← is

Ui(t) = tγi exp

(∫ t

1

ηi(s)

s

)
ds

with ηi(s) = (γ − γi)1{s≤τ
1/γ
i } .

The Kullback-Leibler divergence between Pi and P0 is readily calculated,

K(Pi, P0) = F i(τi)

(
γi
γ

− 1− ln
γi
γ

)
= τ

−1/γ
i

(
γi
γ

− 1− ln
γi
γ

)
.

If γi > γ, the next upper bound holds,

K(Pi, P0) ≤
τ
−1/γ
i

2

(
γi
γ

− 1

)2

.

The breakpoints and tail indices are chosen in such a way that all upper bounds

are equal (namely nτ
−1/γ
i (γi/γ − 1)2 does not depend on i),

τi = (n/(v lnM))
γ/(1+2|ρi|)

γi = γ + γ (n/(v lnM))
ρi/(1+2|ρi|) ,

so that K(P⊗n
i , P⊗n

0 ) = nK(Pi, P0) ≤ v lnM , for all 1 ≤ i ≤ M .
Note that, for all t > 1,

|ηi(t)| = |γ − γi|1{t≤τ
1/γ
i } ≤ γτ

ρi/γ
i 1{t≤τ

1/γ
i } ≤ γtρi

the upper bound being achieved at t = τ
1/γ
i .
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Now, let γ̂ be any tail index estimator. Define region Ai, as the set of samples
such that γi minimises |γ̂ − γj |, for 1 ≤ j ≤ M . Then, if the event Ai is not
realised,

|γ̂ − γi| ≥
1

2
min

1≤j≤M,j �=i
|γj − γi| .

By Birgé’s Lemma,

max
i≤M

P⊗n
i

{
|γ̂ − γi| ≥

1

2
min

1≤j≤M,j �=i
|γj − γi|

}
≥ 1

1 + 2e
.

In order to make the whole construction useful, it remains to choose the “second-
order parameters” ρi’s (the true second-order parameter of each Pi is infinite!).
We will need an upper bound on γi/γ (but we already have γi/γ ≤ 2), as well

as a lower bound on |γj − γi|/γ for j 
= i that scales like (n/ln lnn)
ρi/(1+2|ρi|).

Following Carpentier and Kim (2015), we finally choose ρi as ρi = ρ + i/M
for 1 ≤ i ≤ M . Then, for j < i, using that M/2 ≤ ln(n/(v lnM)) ≤ M and
ρi − ρj = (i− j)/M ,

|γj − γi|
γi

≥ |γj − γi|
2γ

≥ 1

2

( n

v lnM

)ρi/(1+2|ρi|)
∣∣∣∣1− ( n

v lnM

)ρj/(1+2|ρj |)−ρi/(1+2|ρi|)
∣∣∣∣

≥ 1

2

( n

v lnM

)ρi/(1+2|ρi|)
[
1− exp

(
−(i− j)

M(1 + 2|ρi|)(1 + 2|ρj |)
ln
( n

v lnM

))]
≥ 1

2

( n

v lnM

)ρi/(1+2|ρi|)
[
1− exp

(
−(i− j)

2(1 + 2|ρi|)(1 + 2|ρj |)

)]
≥ Cρ

2

( n

v lnM

)ρi/(1+2|ρi|)

where Cρ may be chosen as 1− exp
(
− 1

2(1+2|ρ|)2
)
.
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