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1. Introduction

Longitudinal data arise frequently in many studies where repeated measure-
ments from a subject are correlated. The correlated nature of longitudinal data
makes it difficult to specify the full likelihood function for non-normal responses.
[10] proposed the generalized estimating equation (GEE) for correlated data,
which only requires the first two moments and a working correlation matrix
of errors to account for correlations. Although the GEE provides a consistent
estimator regardless of whether the working correlation is correctly specified or
not, the estimator can be inefficient under misspecified correlation structures.
[13] developed the quadratic inference function (QIF) based on the generalized
method of moments [8] to achieve better estimation efficiency.

For correlated data with large-dimensional cluster size, it is important to
account for the true correlation information since it can reduce the bias and
increase the efficiency of estimation. For example, the QIF utilizing a full set
of basis matrices allows one to select a flexible correlation structure, and can
increase the efficiency of the estimator significantly [15]. However, this generates
many moment conditions for large sized clusters since the dimension of moment
conditions depends on the number of basis matrices, which relies on the cluster
size. This could be problematic in estimating the inverse of the sample covariance
matrix of moment conditions, which is an optimal weighting matrix for the
QIF estimator and plays a crucial role in achieving an efficient QIF estimator.
First, the sample covariance matrix might not be full rank when there are more
moment conditions than the sample size. Second, even if the sample covariance
matrix is invertible, the estimation of its inverse could be biased with high
variation. Therefore the QIF could perform poorly due to infeasible or imprecise
estimation of the optimal weighing matrix.

In the generalized method of moments literature, it has been shown that
over-identified moment conditions may cause poor performance in finite sample
estimation [9, 11]. In this paper, we are motivated by a problem in longitudinal
data where a dimension of moment conditions is relatively large compared to the
sample size, or the moment conditions are highly correlated. The singularity or
near singularity of the weighting matrix makes the QIF estimator infeasible or
unstable. In order to solve this problem, the subset moment selection method
has been developed for large-dimensional moment conditions. [7, 1, 12] pro-
pose to eliminate the least informative moment conditions to reduce the overall
number of moment conditions. However, this requires prior information on the
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moment conditions. [6, 2, 3] utilized penalized objective functions to select in-
formative moment conditions. However, the underlying assumption is that the
most of the moment conditions are not informative. [5, 4] propose selecting mo-
ment conditions based on the criterion of minimizing the mean square error of
the estimator. However, their criterion requires inverting the sample covariance
matrix, which could be infeasible when the dimension of moment conditions
exceeds the sample size. Moreover, most moment selection approaches result in
efficiency loss for parameter estimation, since the information from unselected
moment conditions is not utilized.

We propose a new estimation procedure which combines all valid moment
conditions using principle components analysis. We apply a spectral decompo-
sition of the covariance matrix for the moment conditions and select an optimal
number of linear combinations of the moment conditions through a new objec-
tive function based on a Bayesian information type of criterion [14]. This allows
one to reduce the dimensionality of valid moment conditions, while retaining
most of the information from all moment conditions. The proposed method per-
forms well in the sense of reducing bias and improving the efficiency of QIF
estimation, and is especially effective when the dimension of moment conditions
is high compared to the sample size. Furthermore, it is capable of incorporating
a set of preselected moment conditions, in conjunction with selecting the optimal
linear combinations of remaining moment conditions. This has the advantage
of preventing any information loss from moment conditions which surely should
be included for estimation.

In theory, we show that the proposed criterion is able to select the number
of principal components consistently, when the sample size goes to infinity. The
QIF estimator using the selected linear combinations of moment conditions is
consistent and asymptotically normal. In addition, the proposed approach yields
an efficient estimator in the sense that its asymptotic variance matrix reaches
the minimum. Our numerical studies also confirm that a subset moment selec-
tion approach, or replacing an identity matrix as the weighting matrix approach
result in less accurate and efficient estimation compared to the proposed esti-
mator.

The paper is organized as follows. Section 2 provides the background of the
quadratic inference function and motivation of the problem. Section 3 introduces
an efficient estimation approach which combines all valid moment conditions op-
timally and provides asymptotic properties of the proposed estimator. Section 4
illustrates our method with simulation studies and an application to real data.
The final section gives concluding remarks and discussion. All proofs of the
lemmas and theories are provided in the Appendix.

2. Quadratic inference function

2.1. Notation and preliminaries

Let the response variable for the ith subject be yi = (yi1, . . . , yimi)
′, where yi’s

are independent identically distributed for i = 1, . . . , n, n is the sample size and
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mi is the cluster size. To simplify the notation, we first set mi = m for all i,
and the unbalanced data case will be discussed in more detail in Section 3.3.
The corresponding covariate for the ith subject is xi = (xi1, . . . ,xim)′, which is
m × p-dimensional. For the generalized linear model, the marginal mean of yij
is represented as μij = E(yij |xij) = μ(x′

ijβ), where μ(·) is an inverse link func-
tion and β is a p-dimensional parameter vector. [10] proposed the generalized
estimating equation (GEE) as a marginal model approach for estimating β by
solving

n∑
i=1

μ̇′
iA

−1/2
i R−1A

−1/2
i (yi − μi) = 0,

where μ̇i = (∂μi/∂β), μi = (μi1, . . . , μim)′, Ai is the diagonal marginal vari-
ance matrix of yi and R is a common working correlation matrix for all sub-
jects.

[13] approximate the inverse of the working correlation using a linear combi-
nation of basis matrices,

R−1 ≈ a0I+

q∑
j=1

ajBj , (2.1)

where I is an identity matrix, B1, . . . ,Bq are basis matrices with 0 and 1 com-
ponents and aj ’s are unknown coefficients. Consequently, the GEE can be ap-
proximated as a linear combination of the elements in the following moment
conditions

Gn(β) =
1

n

n∑
i=1

gi(β), (2.2)

where

gi =

⎛
⎜⎜⎜⎜⎝

μ̇′
iA

−1
i (yi − μi)

μ̇′
iA

−1/2
i B1A

−1/2
i (yi − μi)
...

μ̇′
iA

−1/2
i BqA

−1/2
i (yi − μi)

⎞
⎟⎟⎟⎟⎠ . (2.3)

Note that gi in (2.2) does not involve the nuisance parameters a0, . . . , aq as-
sociated with the linear weights in (2.1). However, it is impossible to set each
estimating equation in (2.2) to zero simultaneously in solving β, as the dimen-
sion of the moment conditions exceeds the dimension of parameters.

[13] proposed obtaining an estimator of β by minimizing the quadratic infer-
ence function,

Qn(β) = nGn(β)
′V(β)−1Gn(β), (2.4)

where V(β)−1 =
[
E{gi(β)gi(β)

′}
]−1

is a weighting matrix and V(β) is esti-
mated consistently by a sample covariance matrixCn(β) =

1
n

∑n
i=1 gi(β)gi(β)

′.
Similar to the generalized method of moments, the QIF estimator utilizing
Cn(β) is optimal in the sense that the asymptotic variance matrix of the QIF
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estimator reaches the minimum among all estimators solved by the same linear
class of the moment conditions given in (2.3).

2.2. QIF with large-dimensional moment conditions

For high-dimensional clustered data, utilizing accurate correlation structures for
correlated measurements is essential for improving the efficiency of regression
parameter estimators and reducing the bias of the estimator. Although the GEE
approach requires only a few nuisance parameters to specify a common working
correlation structure, this structure does not represent the true correlation struc-
ture sufficiently well, especially when the cluster size is large. It is well-known
that when the correlation structure is misspecified, the GEE estimator can be
inefficient. The QIF approach is able to improve the efficiency of parameter esti-
mation by representing the correlation structure as pre-specified basis matrices.

The pre-specified basis matrices are useful to approximate the working cor-
relation matrix R if the inverse of the correlation structure has a linear repre-
sentation in (2.1). For example, if R corresponds to an exchangeable structure,
then R−1 = a0I + a1B1, where a0 and a1 are coefficients associated with the
exchangeable correlation parameter, and B1 is a symmetric matrix with 0 on
the diagonal and 1 elsewhere. If R is the first-order autoregressive (AR1), then
R−1 = a0I + a2B2 + a3B3, where a0, a2 and a3 are coefficients associated
with the AR1 correlation parameters, B2 is a symmetric matrix with 1 on the
sub-diagonal entries and 0 elsewhere, and B3 is a symmetric matrix with 1 in
elements (1, 1) and (m,m). However, this kind of representation requires prior
information for working correlation matrices.

Suppose the prior information for correlation structure is unknown. We can
use a linear representation of a complete set of basis matrices with 1 for the (i, j)
and (j, i) entries and 0 elsewhere, which can handle any form of the correlation
matrix. Alternatively, the basis matrices Bj ’s can also be obtained through an
eigenvector decomposition, R−1 ≈ a0I+

∑m
j=1 ajBj , where Bj = eje

′
j is the jth

basis matrix and ej is the eigenvector corresponding to the jth largest eigenvalue
of the sample correlation matrix for yi. However, this will lead to the generation
of many moment conditions when the cluster size is large and prior information
is not provided.

If the number of moment conditions is much larger than the number of pa-
rameters, some moment conditions could be either less informative or highly
correlated. This could lead to a large variability in estimating the weighting
matrix Cn(β)

−1 and result in an unstable QIF estimator in finite samples.
Moreover, if the number of moment conditions is greater than the sample size,
the sample covariance matrix Cn(β) in (2.3) is singular and therefore the QIF
estimator is infeasible. To solve the singularity problem caused by highly over-
identified moment conditions, [7, 1, 12] proposed to select a subset of moment
conditions for parameter estimation. However, a subset selection approach may
lose efficiency in parameter estimation. In the following section, we propose a
new method combining all valid moment conditions optimally which is capable
of achieving high efficiency in estimation.
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3. A new estimation procedure

3.1. Methodology

We first decompose a moment condition vector Gn into two sets of moment
conditions Gn = (G′

n1,G
′
n2)

′, where Gn1 could be an s-dimensional preselected
moment condition vector, and Gn2 are the remaining moment conditions. The
preselected moment conditions are the ones which should definitely be included
in the estimation. For example, in modeling an unspecified correlation structure,
the first set of moment conditions in (2.3) involving the identity basis matrix
should be preselected, since the moment conditions generated from any type of
correlation structure always contain the one with an identity basis matrix. It is
well-known that estimation efficiency can be achieved under the true correlation
information. Thus, there might be a loss of estimation efficiency if the moment
conditions generated from a misspecified correlation structure are selected. Note
that the dimension of preselected moment conditions s is finite, and smaller than
the sample size n, to avoid the singularity problem discussed in Section 2.2.

In the following development, we retain the first set of preselected moment
conditions Gn1 and extract important information from the remaining large-
dimensional moment conditions Gn2 for parameter estimation. We first orthog-
onalize Gn2 against Gn1 to distinguish the contributions of the two sets of
moment conditions for estimation, where the orthogonalized moment conditions
Go

n2 are obtained by Go
n2 = Gn2−V21V

−1
11 Gn1, with V21 = cov(Gn1,Gn2) and

V11 = cov(Gn1). Through orthogonalization, the two moment conditions Gn1

and Go
n2 are no longer correlated, e.g., cov(Gn1,G

o
n2) = 0. In the second step,

we reduce the dimension of Go
n2 through spectral decomposition to extract most

of the information from Go
n2. Specifically, we convert Go

n2 into linearly uncor-
related moment conditions. It follows that the sample covariance matrix Vo

2 for
Go

n2 can be represented as a spectral decomposition Vo
2 =

∑r
j=1 λjeje

′
j , where

ej is the jth eigenvector of Vo
2 corresponding to the jth largest eigenvalue λj

and r = p(q + 1) − s. Equivalently, the jth principal component is e′jG
o
n2, a

linear combination of Go
n2.

To reduce the dimensionality of the moment conditions Gn2, we select the
first t principal components and obtain t orthogonal linear combinations of
Go

n2. That is, the reduced moment conditions G∗
n incorporating the first set of

moment conditions Gn1 and t principal components are:

G∗
n =

(
Is 0
0 U

)(
Is 0

−V21V
−1
11 Ir

)(
Gn1

Gn2

)
= T2T1Gn, (3.1)

where U is the matrix containing t eigenvectors (e1, . . . , et)
′
, and Is and Ir

are identity matrices with s × s and r × r dimensions. Consequently, the QIF
estimator β̂ based on G∗

n is obtained via minimizing

Q∗
n(β) = nG∗

n(β)
′V∗

n(β)
−1G∗

n(β), (3.2)

where V∗
n(β) is the sample covariance matrix of G∗

n(β). Note that the objec-
tive function in (3.2) can be expressed with the full moment conditions Gn
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as Q∗
n = nG′

nT
′
1T

′
2V

∗−1

n T2T1Gn, which utilizes all moment conditions with a

different weighting matrix T′
1T

′
2V

∗−1

n T2T1 (denoted by V−1
n ) to capture im-

portant information, but with much lower dimension of the sample covariance
matrix V∗

n relative to the sample size. Our method is still applicable if there
are no preselected moment conditions Gn1 if we do not have prior knowledge
of a subset of moment conditions to be included for estimation. This will be
discussed with an example in our simulation studies.

One important step is to select t such that most of the information from
the moment conditions Gn2 can be captured. We propose a Bayesian informa-
tion type of criterion to select the number of principal components t through
minimizing the objective function

J(t) =
tr{Vo

2 − Ṽ(t)}
tr(Vo

2)
+ t

log(nr)

nr
, (3.3)

where Ṽ(t) =
∑t

j=1 λjeje
′
j and tr{X} is the trace of a square matrix X. Note

that the first term in (3.3) measures the difference between the sample covariance
matrices of the moment conditions Go

n2 and t-selected linear combinations of
moment conditions. The second term of (3.3) is a penalty function of both n
and r to ensure an appropriate convergence rate for a consistent selection of the
number of principal components. This penalty term also guarantees that the
number of selected principal components is always smaller than the sample size.

The advantage of the proposed approach is that it does not require inversion
of the sample covariance matrix Vo

2. This is quite critical when the dimension
of moment conditions is high relative to the sample size, and the inversion of
the high-dimensional covariance matrix is infeasible. Note that the proposed
approach is very different from [5, 4] which require the inverse of the sample
covariance matrix to minimize the mean square errors.

3.2. Asymptotic properties

In this section, we provide the asymptotic properties of the proposed estimator,
when the number of moment conditions and the sample size both increase. We
denote β0 as the true parameter, t0 as the optimal number of selected principal
components, fi(β) = E{gi(β)} and Fn(β) = 1

n

∑n
i=1 fi(β), where Fn(β) =

{Fn1(β), . . . , Fnk(β)}′. The following regularity conditions are required in order
to establish the asymptotic properties:

(C-1) There exists a β0 such that fi(β) = 0 for all i if and only if β = β0.
(C-2) gi(β) is continuously differentiable with respect to β.
(C-3) The parameter space S is compact and β is an interior point of S.

(C-4) {Gnj(β) − Fnj(β)}
p→ 0 uniformly for all β and j, where Gnj(β) is the

jth element in Gn(β).
(C-5) Eigenvalues of the variance matrix of gi(β) are uniformly bounded by

positive constants and λj = Op(1/nr) for any j > t0.
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Condition (C-1) states that the population moment conditions exist, and the
mean-zero assumption for the estimating function gi(β) enables one to identify
the true parameter β0. Condition (C-2) is required for the minimization of
Q∗

n(β) in (3.2), where the parameter space is closed and bounded under (C-3).
Condition (C-4) ensures that gi(β) satisfies a uniform weak law of large numbers
so that the difference between the average sample moments and population
moments converges in probability to zero. Condition (C-5) indicates that the
asymptotic covariance matrix of our estimator exists and the eigenvalues λjs are
sufficiently small, if they are not selected as one of the principal components.

We first investigate whether the minimizing criterion J(t) in (3.3) leads to
consistent estimation of the covariance matrix. The following lemmas provide
the asymptotic rate of convergence for the estimated covariance matrix through
a consistent selection of t0 principal components.

Lemma 1. If the condition (C-5) holds, there exists t0 such that ‖Vo
2−Ṽ(t0)‖ =

Op(n
−1), where ‖X‖ is defined as

√
tr(X′X)/ij and i × j is the dimension of

matrix X.

Lemma 1 indicates that the discrepancy (in matrix norms) between the esti-
mated covariance matrix Ṽ(t0) and the covariance matrix Vo

2 of Go
n2 converges

to 0 as n → ∞. The following lemma shows that the number of principal com-
ponents can be consistently selected based on the criterion J(t) in (3.3) when
the sample size goes to infinity.

Lemma 2. Under the condition (C-5), there exists a minimizer t̂ of J(t) in
(3.3) such that limn→∞ Prob

[
t̂ = t0

]
= 1.

Note that the choice of a penalty function plays an important role in selecting
the number of principal components consistently. Here the penalty term in (3.3)
vanishes at an appropriate rate such that the number of linear combinations of
moment conditions is consistently selected with probability tending to 1. The
above lemmas ensure that the proposed criterion J(t) results in consistent esti-
mation of the covariance matrix Vo

2 for moment conditions Go
n2. The following

theorem provides the asymptotic normality and efficiency of the estimator β̂.

Theorem 1. If regularity conditions (C-1)–(C-5) hold, there exists a minimizer

β̂ of Q∗
n(β) in (3.2) which has the following asymptotic properties as n → ∞.

I. (Consistency) β̂
p→ β0.

II. (Asymptotic Normality)
(
Ġ′

nV
−1
n VV−1

n Ġn

)−1/2(
Ġ′

nV
−1
n Ġn

)
· √n

(
β̂ −

β0

) d→ N
(
0, I

)
, where Ġn = ∂Gn(β)/∂β and V = var{gi(β)}.

Theorem 1 indicates that the estimator β̂ is consistent and asymptotically
normal. This implies that asymptotically there is no efficiency loss if the number
of principle components t0 is selected based on the proposed criterion in (3.3),

since the sandwich form of the estimated covariance matrix
(
Ġ′

nV
−1
n Ġn

)−1

(
Ġ′

nV
−1
n VV−1

n Ġn

) (
Ġ′

nV
−1
n Ġn

)−1
for the estimator β̂ converges to the asymp-

totic variance matrix
(
Ḟ′V−1Ḟ

)−1
, where Ḟ = E{∂gi(β)/∂β}. Consequently,
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the new weighting matrix V∗
n(β)

−1 in Q∗
n(β) enables one to combine all valid

moment conditions optimally without loss of efficiency. Furthermore, the fol-
lowing theorem illustrates that the estimator based on any subset of moment
conditions is less efficient than the one utilizing all moment conditions. In the
following, we denote β̂A as the estimator based on all moment conditions, and

β̂S as the estimator using a subset of moment conditions.

Theorem 2. Under (C-1)–(C-5), the estimator β̂A is more efficient than the

estimator β̂S, that is, var(a
′β̂A) ≤ var(a′β̂S) for any constant vector a.

The above theorem shows that higher estimation efficiency can be achieved
by combining all valid moment conditions optimally. The proofs of the lemmas
and theorems are provided in the Appendix.

3.3. Implementation with unbalanced data

In longitudinal studies, unbalanced are quite common as cluster size mi for the
ith subject varies due to missing. If the measurements from unbalanced data
are regarded as cluster data without considering the order of lag time, then the
marginal mean of response μi is a mi-dimensional vector and basis matrices
Bj ’s are mi × mi matrices for i = 1, . . . , n. On the other hand, when the lag
time between measurements is considered, we provide a strategy to implement
the proposed method for unbalanced data using a transformation matrix for
each subject.

Let Mi be a m × mi transformation matrix of the ith subject where m =
max(m1, . . . ,mn). The matrix Mi’s are generated by deleting the columns of
the m ×m identity matrix corresponding to the missing measurements for the
ith subject. We transform the unbalanced data to artificial balanced data us-
ing μτ

i = Miμi, y
τ
i = Miyi, and Aτ

i = MiAiM
′
i. We then replace gi in (2.3) by

gτ
i =

{
μ̇τ ′

i Aτ−1

i (yτ
i −μτ

i ), μ̇
τ ′

i Aτ−1/2

i B1A
τ−1/2

i (yτ
i −μτ

i ), . . . , μ̇
τ ′

i Aτ−1/2

i BqA
τ−1/2

i

(yτ
i −μτ

i )
}′
. The QIF estimator with unbalanced data is obtained based on the

transformed extended score vector. Note that the estimator holds the aforemen-
tioned properties if the data is missing completely at random [15].

4. Numerical studies

4.1. Continuous responses

We generate the correlated continuous response variable from a marginal model

yij = x′
ijβ + εij , for i = 1, . . . , n and j = 1, . . . ,m,

where xij =
(
x
(1)
ij , x

(2)
ij

)′
, x

(1)
ij = j

m +N
(
0, 1

m

)
, x

(2)
ij =

(
m−j
m

)2
+N

(
0, 1

m

)
, εi =

(εi1, . . . , εim)′ ∼ N(0,R) and β = (β1, β2)
′ = (1, 1)′. The repeated responses

are generated with a cluster size of m = 25, 50 or 100; and the sample size
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ranges from n = 50 to 500. We design a simulation setting based on a three-
block diagonal correlation structure R, where the first block has a 3m

5 × 3m
5

exchangeable structure with correlation parameter 0.7, the second block has an
m
5 × m

5 AR1 structure with correlation 0.6, and the third block has an m
5 × m

5
exchangeable structure with correlation 0.8.

The basis matrices are obtained via an eigenvector decomposition, R−1 ≈
a0I +

∑m
j=1 ajBj , where Bj = eje

′
j and ej is the eigenvector corresponding to

the jth largest eigenvalue of the sample correlation matrix of yi. There are a
total of m+ 1 basis matrices. When n = 50, the number of moment conditions
2(m+1) exceeds the sample size for any given cluster size of 25, 50 and 100. That
is, the QIF estimator constructed from moment conditions using all eigenvector
bases is infeasible due to the singularity problem if the inverse of the sample
covariance matrix of the moment conditions is used for the weighting matrix in
(2.4).

We compare the performance of the proposed method to the GEE estima-
tors under two types of working correlation structures: exchangeable correlation
structure (GEEEX) and AR1 correlation structure (GEEAR1) based on 200 sim-
ulations. Here we suppose that the first set of moment conditions containing
the identity basis matrix are preselected moment conditions (QIFPC1). To illus-
trate the importance of utilizing all valid moment conditions using a consistent
weighting matrix, we perform QIF parameter estimations based on all valid
moment conditions with the identity weighting matrix (QIFI), and a subset of
moment conditions (QIFSub). In addition, we compare all these estimators with
the GEE estimator using the true correlation structure, denoted as the oracle
estimator. In practice, the oracle estimator cannot be achieved since the true
correlation structure is unknown.

To illustrate estimation efficiency, we define the mean squared error mse(β̂) =∑200
i=1 ‖β̂

(i)−β0‖2/(200×p), where β̂
(i)

is the estimator from the ith simulation,
β0 is the true parameter, and ‖·‖ denotes the Euclidean-norm. Figure 1 provides
the mean squared errors of the estimators corresponding to various cluster sizes
and sample sizes. In addition, Table 1 provides the means and standard errors
of the estimators, and the ratio of the mean squared error obtained from other
approaches to the mean squared error from the proposed method (QIFPC1).

Our simulations show that the proposed method is superior compared to
the GEE under exchangeable and AR1 correlation structures, the QIF using
the identity weighting matrix, and a subset of moment conditions in terms of
the standard errors and the mean squared errors of the estimators. Specifically,
Figure 1 indicates that the mean squared errors of the proposed method’s es-
timators decrease and are closer to those of the oracle estimator as the cluster
size increases when the sample size is 50, while the mean squared errors of the
GEE approach increase. The relatively low efficiency of the GEE estimator can
be explained in that the GEE is inefficient under the misspecified working corre-
lation structure. In contrast, the proposed method is able to improve the finite
sample performance of the QIF estimator with a small loss of efficiency.

When the sample size increases to 500, the mean squared errors of the pro-
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Fig 1. The first row is the mean squared errors of estimators for continuous responses and
the second row is the mean squared errors of estimators for binary responses.

posed method and the oracle estimator are the same regardless of the cluster
size. On the other hand, the QIF using a subset of moment conditions is not able
to recover estimation efficiency, as a subset selection approach fails to capture
information from the remaining unselected moment conditions. For the QIF ap-
proach using the identity weighting matrix, the weighting matrix is not optimal
and therefore has a clear loss in efficiency. The GEE estimators with exchange-
able or AR1 working correlations also have poor performance with more than
eight times the mean squared errors of the proposed method when the cluster
size m = 100. We also apply the proposed approach assuming that there are no
preselected moment conditions where Gn1 in (3.1) is an empty set (QIFPC2).
When the sample size is small, the resulting estimator is not as efficient as
QIFPC1, although it still outperforms the existing methods. However, estima-
tion efficiency of QIFPC2 can be achieved with a large sample size n = 500.

We further investigate whether the BIC criterion selects the optimal number
of principal components in a finite sample. Figure 2 illustrates the mean squared
errors of the QIF approach using the reduced moment condition conditions G∗

n

generated by t principal components when t varies between 0 and 30 for n = 50
and m = 25, 50 and 100. Figure 2 shows that the minimum of the MSE of the
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Table 1

For continuous responses, mean and standard errors (se) of estimators, and the ratio of the
mean squared error (mse) for other approaches to the mse for the proposed method

m Method
n = 50 n = 500

mean(β̂1)se mean(β̂2)se ratio mean(β̂1)se mean(β̂2)se ratio
QIFPC1 1.0020.083 0.9930.109 1.00 0.9970.026 0.9970.027 1.00
QIFPC2 1.0040.100 0.9950.138 1.80 0.9970.026 0.9960.028 1.00
QIFSub 0.9930.089 0.9960.189 2.22 0.9980.028 1.0030.056 2.86

25 QIFI 0.9920.096 0.9960.216 2.82 0.9980.030 1.0030.064 3.57
GEEEX 0.9910.112 0.9930.160 1.95 0.9980.034 1.0030.049 2.57
GEEAR1 0.9990.105 0.9790.164 1.96 0.9980.033 1.0030.049 2.58
Oracle 0.9950.078 0.9950.101 0.83 0.9980.025 0.9980.027 1.00

QIFPC1 1.0050.067 1.0060.078 1.00 1.0000.022 0.9970.023 1.00
QIFPC2 1.0030.092 1.0060.100 1.89 0.9990.022 0.9980.024 1.00
QIFSub 0.9970.073 1.0040.182 3.49 0.9960.027 0.9980.059 4.19

50 QIFI 0.9980.079 1.0040.207 4.44 0.9960.029 0.9990.068 5.58
GEEEX 0.9940.123 1.0000.161 3.72 0.9950.042 0.9970.044 3.83
GEEAR1 1.0040.132 1.0040.170 4.02 0.9970.039 1.0020.052 4.20
Oracle 1.0010.058 1.0060.070 0.76 0.9980.021 0.9970.023 1.00

QIFPC1 0.9970.060 0.9930.061 1.00 0.9990.020 1.0000.017 1.00
QIFPC2 0.9950.063 0.9900.081 2.08 1.0000.021 1.0000.018 1.00
QIFSub 0.9930.071 0.9660.171 4.54 1.0000.026 0.9940.057 6.67

100 QIFI 0.9940.081 0.9620.196 5.95 1.0000.029 0.9930.065 8.66
GEEEX 1.0010.198 0.9740.112 6.72 1.0030.057 0.9980.038 8.00
GEEAR1 0.9740.148 0.9910.181 7.08 1.0020.042 0.9990.055 8.33
Oracle 0.9950.054 0.9940.054 0.74 1.0000.019 1.0000.017 1.00

Fig 2. The mean squared errors of the QIF based on the reduced moment condition vector
generated by t principal components with n = 50. The gray line denotes the mean squared
errors of the proposed approach based on the BIC criterion.

QIF estimator is slightly below the one selected by the BIC when m = 25.
However, when the cluster size m increases to 50 and 100, the MSE of the QIF
estimator based on the BIC reaches the minimum. This indicates that the BIC
criterion is quite effective in selecting the number of moment conditions if the
cluster size and sample size are moderately large.
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Table 2

For binary responses, mean and standard errors (se) of estimators, and the ratio of the
mean squared error (mse) for other approaches to the mse for the proposed method

m Method
n = 50 n = 500

mean(β̂1)se mean(β̂2)se ratio mean(β̂1)se mean(β̂2)se ratio
QIFPC1 0.4900.208 −0.5130.175 1.00 0.4940.064 −0.4960.060 1.00
QIFPC2 0.4880.215 −0.5100.181 1.10 0.4920.064 −0.4950.061 1.01
QIFSub 0.5290.252 −0.5050.214 1.44 0.5070.078 −0.5080.070 1.44

25 QIFI 0.5380.270 −0.5080.231 1.67 0.5080.084 −0.5100.075 1.67
GEEEX 0.5290.252 −0.5070.216 1.45 0.5060.078 −0.5080.070 1.44
GEEAR1 0.5080.259 −0.4960.218 1.50 0.5040.076 −0.5090.077 1.54
Oracle 0.5130.200 −0.5070.169 0.90 0.4980.064 −0.5010.059 0.97

QIFPC1 0.5250.196 −0.4810.167 1.00 0.4940.055 −0.4950.053 1.00
QIFPC2 0.5030.203 −0.4860.178 1.19 0.4950.059 −0.4980.054 1.15
QIFSub 0.5370.245 −0.4920.220 1.63 0.5070.072 −0.5000.069 1.67

50 QIFI 0.5420.265 −0.4960.236 1.89 0.5080.078 −0.5010.074 1.97
GEEEX 0.5370.253 −0.4930.224 1.71 0.5070.072 −0.5000.069 1.93
GEEAR1 0.5410.256 −0.5190.254 1.96 0.5010.081 −0.5010.081 2.20
Oracle 0.5250.183 −0.4840.159 0.89 0.5020.053 −0.5000.053 0.97

QIFPC1 0.5100.164 −0.4940.159 1.00 0.4990.049 −0.4980.047 1.00
QIFPC2 0.5140.190 −0.4940.166 1.24 0.4970.055 −0.4970.050 1.21
QIFSub 0.5190.230 −0.5050.224 1.94 0.4980.078 −0.4990.069 2.29

100 QIFI 0.5230.248 −0.5070.241 2.25 0.4980.084 −0.4980.075 2.67
GEEEX 0.5170.239 −0.5080.243 2.23 0.4980.080 −0.4990.072 2.51
GEEAR1 0.5150.300 −0.4960.290 3.25 0.4940.095 −0.4990.082 3.30
Oracle 0.5070.149 −0.4880.148 0.82 0.4990.049 −0.4990.046 0.92

4.2. Binary responses

We also conduct simulation studies with correlated binary responses, where the

covariates are x
(1)
ij =

(
m−j
m

)
+ N

(
0, 1

m

)
and x

(2)
ij =

(
j
m

)
+ N

(
0, 1

m

)
, and the

correlated binary response variable is generated from a marginal logit model

logit(μij) = x′
ijβ, for i = 1, . . . , n and j = 1, . . . ,m,

where xij =
(
x
(1)
ij , x

(2)
ij

)′
and β = (β1, β2)

′ = (0.5,−0.5)′. We choose the sample
sizes to be 50 and 500, and the cluster sizes to be 25, 50 and 100 from 200 simula-
tions, respectively. The R package mvtBinaryEP is implemented to generate the
correlated binary responses with three-block exchangeable correlation matrices.
The dimensions for each block are m

5 × m
5 ,

3m
5 × 3m

5 and m
5 × m

5 respectively,
and the correlation coefficients are ρ = (0.8, 0.5, 0.7).

Similar to the continuous case, we compare the proposed method with the
QIF based on the identity weighting matrix, a subset of moment conditions, and
the GEE approach with two working correlation matrices. Simulation results
with various cluster sizes and sample sizes are reported in Table 2 and Figure 1,
which confirms that the proposed method combining all moment conditions
outperforms the other methods.

When the sample size increases, Table 2 indicates that the ratio of the mean
squared error of the oracle estimators to the mean squared error for the proposed
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approach is closer to 1. Moreover, Figure 1 shows that the proposed method
provides more efficient estimation as the cluster size increases. However, this
does not hold for the GEE method and the QIF approaches based on the identity
weighting matrix or a subset of moment conditions even when the sample size
reaches 500. The simulation results from binary responses are quite comparable
to those reported for the continuous responses.

4.3. Fortune 500 data example

We apply Fortune 500 data between 2000 and 2010 to illustrate the proposed
approach. The 136 largest US corporations were ranked among the Global 500
in 2010, and 105 of these companies have been ranked over 11 consecutive years
in the Fortune 500 data. Therefore we choose the sample size as 105 with an
equal cluster size of 11. For this data, we apply a log-linear model based on
the employee demand equation, where the response variable is the number of
employees (Employees) from each firm, and corresponding covariates of interest
are the revenue and the assets. The log-linear model is formulated as follows:

log(Employees)ij = β0 + β1log(Revenue)ij + β2log(Assets)ij + εij

for i = 1, . . . , 105 and j = 1, . . . , 11, where log(Employees)ij , log(Revenue)ij
and log(Assets)ij are the log of the employees, the revenue and the assets for
the firm i at the jth year respectively.

Through an eigenvector decomposition of the sample correlation matrix for
the response, a total of 12 basis matrices are generated asR−1 ≈ a0I+

∑11
j=1 ajBj ,

where Bj = eje
′
j and ej is the eigenvector corresponding to the jth largest eigen-

value of its sample correlation matrix. Therefore a total of 36 valid moment con-
ditions are constructed for parameter estimation. We implement the proposed
method, and compare it with the QIF using the identity weighting matrix and
a subset of moment conditions, and the GEE method with exchangeable and
AR1 working correlation structures. Note that the sample covariance matrix
from all available moment conditions is not applicable for the weighting matrix,
since it is nearly singular due to high collinearity among some of the moment
conditions.

Table 3 provides the parameter estimators, the standard errors of the corre-
sponding estimators, Z test statistics and the p-values. In general, the estima-
tors obtained by the proposed method are the most sensible compared to other
approaches. Specifically, the coefficients of log(Revenue) and log(Assets) from
the proposed method are all positive, implying that the response variable of
the number of employees and the predictive variables of revenue and assets are
positively associated, with the corresponding p-values all less than 0.001. On
the other hand, the p-value of the log(Revenue) using the GEE under the AR1
working correlation is insignificant (p-value=0.252). The QIF using the identity
weighting matrix and a subset of moment conditions produces more extreme
coefficient estimators for log(Revenue) and intercept compared to the other
approaches, and negative coefficients of log(Assets) with insignificant p-values.
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Table 3

For the Fortune 500 data, comparison of estimated coefficients along with the standard
errors (se), Z test statistics and p-values

Covariate Method Estimator se Z p-value
QIFPC1 −3.221 1.166 −2.76 0.006
QIFSub −6.466 2.702 −2.39 0.017

intercept QIFI −6.466 0.003 −1992.02 < 0.001
GEEEX −1.996 0.873 −2.29 0.022
GEEAR1 −3.130 1.230 −2.55 0.011

QIFPC1 0.244 0.071 3.40 < 0.001
QIFSub 0.777 0.158 4.90 < 0.001

log(Revenue) QIFI 0.786 0.074 10.56 < 0.001
GEEEX 0.148 0.059 2.50 0.012
GEEAR1 0.070 0.061 1.14 0.252

QIFPC1 0.352 0.055 6.35 < 0.001
QIFSub −0.049 0.088 −0.56 0.577

log(Assets) QIFI −0.058 0.074 −0.78 0.434
GEEEX 0.391 0.057 6.84 < 0.001
GEEAR1 0.515 0.071 7.22 < 0.001

This data example confirms that the proposed method utilizing all available mo-
ment conditions with a consistent weighting matrix provides better interpretable
estimations.

5. Discussion

We propose an efficient and stable QIF estimation procedure through combin-
ing all available moment conditions when the dimension of moment conditions
is large compared to the sample size. The proposed procedure utilizes a set of
preselected moment conditions in addition to optimal linear combinations of
remaining moment conditions through principle component analysis. The new
approach allows one to reduce the dimensionality of moment conditions, while
retaining most of the important information from all valid moment conditions.
This is very different from existing approaches which obtain information from
a subset of moment conditions only. The performance of the QIF approach
relies on selecting the number of principal components accurately, which is es-
sential for estimation efficiency. We provide a new objective function based on
the Bayesian information type of criterion. This selects the optimal number of
principle components consistently and leads to desirable asymptotic properties
such as consistency, asymptotic normality and efficiency for the proposed esti-
mator. We also try other selection criteria such as the AIC, the corrected AIC
and the corrected RIC. However, our simulation studies, which are not provided
here, indicate that the BIC provides better performance than the other selec-
tion criteria in that the BIC selects more accurate t0 and leads to more efficient
parameter estimation. This is because the other criteria tend to over-select the
number of principal components, which leads to a loss of estimation efficiency.



1330 H. Cho and A. Qu

In recent years, estimating the inverse of the high-dimensional covariance ma-
trix has become increasingly important due to the rise of big data. The proposed
method can also be applied in choosing an appropriate rank for a singular or
nearly singular covariance matrix. This is quite useful in low-rank approximation
for high-dimensional matrix problems, which has wide applications such as in
data compression, large-dimensional matrix operations, recommender systems
and machine learning.
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Appendix

Proof of Lemma 1. By spectral decomposition, the sample covariance matrix of
the orthogonalized moment conditionsGo

n2 is decomposed asVo
2 =

∑r
j=1 λjeje

′
j ,

where ej = (e1j , . . . , erj)
′ is the jth eigenvector corresponding to the jth largest

eigenvalue of Vo
2. Since every component of the eigenvector ej for Vo

2 is uni-
formly bounded, there exist constants K1 and K2 such that 0 < K1 < |eij | <
K2 < ∞ for i = 1, . . . , r. It follows from (C-5) that

‖Vo
2 − Ṽ(t0)‖ =

∥∥∥∥
r∑

j=t0+1

λjeje
′
j

∥∥∥∥ ≤ K2

√√√√ r∑
j=t0+1

λ2
j ≤ K2

r∑
j=t0+1

λj = Op(1/n).

Proof of Lemma 2. We need to show that limn→∞ P
{
J(t̂) < J(t0)

}
= 0 for all

t̂ 	= t0 and t̂ is a finite integer. Since we have

J(t0)− J(t̂) =
tr
{
Ṽ(t̂)− Ṽ(t0)

}
tr(Vo

2)
+ (t0 − t̂)

log(nr)

nr
,

it is sufficient to prove that

P
[
tr{Ṽ(t0)− Ṽ(t̂)} − tr(Vo

2)(t0 − t̂)
log(nr)

nr
< 0

]
→ 0 as n → ∞.

First, we consider t̂ < t0. Note that 1
r tr(V

o
2) = Op(1), because it is bounded by

K2
1

∑r
j=1 λj <

1
r tr(V

o
2) < K2

2

∑r
j=1 λj . Since the eigenvector of Vo

2 is bounded,
it follows that
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1

r
tr
{
Ṽ(t0)− Ṽ(t̂)

}
− 1

r
tr(Vo

2)(t0 − t̂)
log(nr)

nr

=
1

r
tr

( t0∑
j=t̂+1

λjeje
′
j

)
− 1

r
tr(Vo

2)(t0 − t̂)
log(nr)

nr

≥ K2
1

t0∑
j=t̂+1

λj −
1

r
tr(Vo

2)(t0 − t̂)
log(nr)

nr
→ K2

1

t0∑
j=t̂+1

λj > 0,

as n → ∞. Therefore, limn→∞ P
{
J(t̂)− J(t0) < 0

}
= 0 holds.

Second, we consider t̂ > t0. We have

P
{
nJ(t̂)− nJ(t0) < 0

}
= P

[
ntr

{
Ṽ(t̂)− Ṽ(t0)

}
>

1

r
tr(Vo

2)(t̂− t0) log(nr)
]
,

and we obtain

ntr
{
Ṽ(t̂)− Ṽ(t0)

}
= ntr

( t̂∑
j=t0+1

λjeje
′
j

)

> K2
1nr

t̂∑
j=t0+1

λj = K2
1nrOp(1/nr) = Op(1).

On the other hand, 1
r tr(V

o
2)(t̂− t0) log(nr) = O

{
log(nr)

}
.

Consequently, this ensures that as n → ∞,

P
{
J(t̂)− J(t0) < 0

}
= P

[
tr
{
Ṽ(t̂)− Ṽ(t0)

}
> tr(Vo

2)(t̂− t0)
log(nr)

nr

]
→ 0.

Proof of Theorem 1. The estimator β̂ is defined as β̂ = argmin Q∗
n(β)

= argmin nG∗
n(β)

′V∗−1

n G∗
n(β) = argmin nGn(β)

′V−1
n Gn(β), (5.1)

where G∗
n = T2T1Gn and V−1

n = T′
1T

′
2V

∗−1

n T2T1. Lemmas 1 and 2 confirm
that the discrepancy between Vn and the sample covariance matrix of gi Cn

converges to 0 in probability. In addition, Cn converges almost surely to V by
the weak law of large numbers. Thus, it immediately follows from (C-4) that
there exists Q̃n(β) = Fn(β)

′V−1Fn(β) such that

Q∗
n(β)− Q̃n(β)

p→ 0 uniformly for all β. (5.2)

We now deduce from (C-1) that Q̃n(β) = 0 if and only if β = β0, and Q̃n(β) > 0
otherwise. Consequently, this ensures that

β0 = argmin Q̃n(β). (5.3)
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Hence, (5.1), (5.2) and (5.3) imply that β̂
p→ β0.

Next we prove the asymptotic normality of the estimator β̂. By Taylor expan-
sion, we have

Gn(β̂) = Gn(β0) + Ġn(β̃)(β̂ − β0), (5.4)

where β̃ lies between β̂ and β0. By multiplying the equation (5.4) by Ġn(β̂)
′V−1

n ,
it immediately follows that

Ġn(β̂)
′V−1

n Gn(β̂) = Ġn(β̂)
′V−1

n Gn(β0) + Ġn(β̂)
′V−1

n Ġn(β̃)(β̂ − β0). (5.5)

Since the left hand side Ġn(β̂)
′V−1

n Gn(β̂) = Q̇n(β̂) = 0 in (5.5), we rearrange
the equation as follows:

{
Ġn(β̂)

′V−1
n VV−1

n Ġn(β̂)
}−1/2{

Ġn(β̂)
′V−1

n Ġn(β̃)
}
· √n

(
β̂ − β0

)
= −

{
Ġn(β̂)

′V−1
n VV−1

n Ġn(β̂)
}−1/2

Ġn(β̂)
′V−1

n V1/2 · √nV−1/2Gn(β0).

Note that we replace Ġn(β̃) on the left side with Ġn(β̂), since β̃ converges

to β0 in probability. Hence it follows from
√
nV−1/2Gn(β0)

d→ N(0, I) by the
central limit theorem that

{
Ġn(β̂)

′V−1
n VV−1

n Ġn(β̂)
}−1/2{

Ġn(β̂)
′V−1

n Ġn(β̂)
}
·
√
n
(
β̂ − β0

) d→ N(0, I).

Proof of Theorem 2. Let Gn(β) =
{
Gn1(β)

′,Gn2(β)
′}′

, which contains two

sets of moment conditions, and denote β̂S as the estimator using any arbitrary
set Gn1(β) only. We orthogonalize Gn2(β) from Gn1(β) as

Go
n2(β) = Gn2(β)−V21V

−1
11 Gn1(β),

where V21 = cov{Gn1(β),Gn2(β)} and V11 = cov{Gn1(β)}. Through the
orthogonalization, cov{Gn1(β),G

o
n2(β)} = 0. We denote Go

n(β) =
{
Gn1(β)

′,

Go
n2(β)

′}′
. The estimator β̂A is obtained by minimizing Gn(β)

′V−1Gn(β),
which is equivalent to Go

n(β)
′Vo−1Go

n(β), where V = cov{Gn(β)} and Vo =
cov{Go

n(β)}.
The information matrix of β̂A is proportional to

Ġn(β̂A)
′V−1Ġn(β̂A) = Go

n(β̂A)
′Vo−1Go

n(β̂A)

=

(
Ġn1(β̂A)

Ġo
n2(β̂A)

)′ (
V−1

11 0
0 Vo−1

22

)(
Ġn1(β̂A)

Ġo
n2(β̂A)

)

= Ġn1(β̂A)
′V−1

11 Ġn1(β̂A) + Ġo
n2(β̂A)

′Vo−1
22 Ġo

n2(β̂A),

where Vo
22 = cov{Go

n2(β)}. Under β̂A
p→ β0, it follows that

Ġn(β̂A)
′V−1Ġn(β̂A) → Ġn1(β0)

′V−1
11 Ġn1(β0) + Ġo

n2(β0)
′Vo−1

22 Ġo
n2(β0).

(5.6)
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On the other hand, we obtain β̂S by minimizing Gn1(β)
′V−1

11 Gn1(β), which

utilizes the first set of moment conditions. Since the estimator β̂S converges to
β0, we have

Ġn1(β̂S)
′V−1

11 Ġn1(β̂S) → Ġn1(β0)
′V−1

11 Ġn1(β0). (5.7)

Considering that Vo
22 in (5.6) is a non-negative definite weighting matrix, it

consequently follows from (5.6) and (5.7) that

Ġn(β0)
′V−1Ġn(β0) ≥ Ġn1(β0)

′V−1
11 Ġn1(β0)

in the sense of Loewner ordering. Therefore, the efficiency of the estimator β̂A

is improved by utilizing all moment conditions instead of using some of the
moment conditions.
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