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1. Introduction

Testing the significance of covariates is common in applied regression analysis.
Sound parametric inference hinges on the correct functional specification of the
regression function, but the likelihood of misspecification in a parametric frame-
work cannot be ignored, especially as applied researchers tend to choose func-
tional forms on the basis of parsimony and tractability. Significance testing in a
nonparametric framework has therefore obvious appeal as it requires much less
restrictive assumptions. Fan (1996); Fan and Li (1996); Racine (1997); Chen and
Fan (1999); Lavergne and Vuong (2000); Ait-Sahalia, Bickel and Stoker (2001),
and Delgado and González Manteiga (2001) proposed tests of significance for
continuous variables in nonparametric regression models. A related issue is test-
ing for the equality of nonparametric regression functions across subsamples, see
Delgado (1993); Dette and Neumeyer (2001); Lavergne (2001); Neumeyer and
Dette (2003); Racine, Hart and Li (2006). When the division into subsamples
is governed by a discrete random variable, this is akin to testing the signif-
icance of this discrete variable, see Lavergne (2001). Volgushev et al. (2013)
considered significance testing in nonparametric quantile regression. For each
test, one needs first to estimate the model without the covariates under test,
that is under the null hypothesis. The result is then used to check the signifi-
cance of extra covariates. Two competing approaches are then possible. In the
“smoothing approach,” one regresses the residuals onto the whole set of covari-
ates nonparametrically, while in the “empirical process approach” one uses the
empirical process of residuals marked by a function of all covariates.

In this work, we adopt an hybrid approach to develop a new significance test
of a subset of covariates in a nonparametric regression. Our new test has three
specific features. First, it does not require smoothing with respect to the covari-
ates under test as in the “empirical process approach.” This allows to mitigate
the curse of dimensionality that appears with nonparametric smoothing, hence
improving the power properties of the test. Our simulation results show that
indeed our test can be more powerful than such competitors under different
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kind of alternatives. Second, the test statistic is asymptotically pivotal as in the
“smoothing approach,” while wild bootstrap can be used to obtain small sam-
ples critical values of the test. This yields a test whose level is well controlled
by bootstrapping independently of the smoothing parameter choice, as shown
in our simulations. Third, our test equally applies whether the covariates under
test are continuous or discrete, showing that there is no need of a specific tai-
lored procedure for each situation. Hence our test alos applies to comparing two
or more nonparametric regressions that are characterized by different values of
a discrete random variable.

The paper is organized as follows. In Section 2, we present our testing pro-
cedure. In Section 3, we study its asymptotic properties under a sequence of
local alternatives and we establish the validity of wild bootstrap. In Section 4,
we compare the small sample behavior of our test to some existing procedures.
Section 6 gathers our proofs.

2. Testing framework and procedure

2.1. Testing principle

We want to assess the significance of X ∈ Rq in the nonparametric regression
of Y ∈ R on W ∈ Rp and X . Formally, this corresponds to the null hypothesis

H0 : E [Y |W,X ] = E [Y |W ] a.s.

which is equivalent to

H0 : E [u |W,X ] = 0 a.s. (1)

where u = Y − E[Y |W ]. The corresponding alternative hypothesis is

H1 : P {E [u | W,X ] = 0} < 1.

The following result is the cornerstone of our approach. It characterizes the null
hypothesis H0 using a suitable unconditional moment equation.

Lemma 1. Let (W1, X1, u1) and (W2, X2, u2) be two independent draws of
(W, X, u), ν(W ) a strictly positive function on the support of W such that
E[u2ν2(W )] < ∞, and K(·) and ψ(·) even functions with (almost everywhere)
positive Fourier integrable transforms. Define

I (h) = E
[
u1u2ν (W1) ν (W2)h

−pK ((W1 −W2) /h)ψ (X1 −X2)
]
.

Then for any h > 0, I(h) ≥ 0 and

E [u |W,X ] = 0 a.s.⇔ I(h) = 0 ⇔ lim
h→0

I(h) = 0.

Proof. Let 〈·, ·〉 denote the standard inner product. Using Fourier Inversion The-
orem, change of variables, and elementary properties of conditional expectation,

I (h) = E

[
u1u2ν (W1) ν (W2)

∫

Rp

e2πi〈t, W1−W2〉F [K] (th) dt
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×
∫

Rq

e2πi〈s, X1−X2〉F [ψ] (s) ds

]

=

∫

Rq

∫

Rp

∣∣∣E
[
E [u |W,X ] ν (W ) e2πi{〈t,W 〉+〈s,X〉}

]∣∣∣
2

×F [K] (th)F [ψ] (s) dtds.

Since the Fourier transforms F [K] and F [ψ] are strictly positive, I(h) ≥ 0.
Moreover I(h) = 0 iff

E

[
E [u |W,X ] ν (W ) e2πi{〈t,W 〉+〈s,X〉}

]
= 0 ∀t, s.

This is equivalent to E[u | W,X ]ν(W ) = 0 a.s., which by our assumption on
ν(·) is equivalent to H0.

When h → 0, F [K](th) → F [K](0), so that by Lebesgue dominated con-
vergence limh→0 I(h) ≥ 0, and = 0 iff H0 holds, by the same reasoning as
above.

2.2. The test

Lemma 1 holds whether the covariates W and X are continuous or discrete.
For now, we assume W is continuously distributed, and we later comment on
how to modify our procedure in the case where some of its components are
discrete. We however do not restrict X to be continuous. Since it is sufficient to
test whether I(h) = 0 for any arbitrary h, we can choose h to obtain desirable
properties. So we consider a sequence of h decreasing to zero when the sample
size increases, which is one of the ingredient that allows to obtain a tractable
asymptotic distribution for the test statistic.

Assume we have at hand a random sample (Yi,Wi, Xi), 1 ≤ i ≤ n, from
(Y,W,X). In what follows, f(·) denotes the density of W , r(·) = E[Y | W = ·],
u = Y − r(W ), and fi, ri, ui respectively denote f(Wi), r(Wi), and Yi − r(Wi).
Since nonparametric estimation should be entertained to approximate ui, we
consider usual kernel estimators based on kernel L(·) and bandwidth g. With
Lnik = 1

gpL(
Wi−Wk

g ), let

f̂i = (n− 1)−1
n∑

k 6=i,k=1

Lnik,

r̂i =
1

f̂i

1

(n− 1)

n∑

k 6=i,k=1

YkLnik

so that ûi = Yi − r̂i =
1

f̂i

1

(n− 1)

n∑

k 6=i,k=1

(Yi − Yk)Lnik.

Denote by n(m) the number of arrangements of m distinct elements among n,
and by [1/n(m)]

∑
a, the average over these arrangements. In order to avoid

random denominators, we choose ν(W ) = f(W ), which fulfills the assumption
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of Lemma 1. Then we can estimate I(h) by the U-statistic

În =
1

n(2)

∑

a

ûif̂iûj f̂jKnijψij

=
1

n(2) (n− 1)
2

∑

a

∑

k 6=i

∑

l 6=j

(Yi − Yk) (Yj − Yl)LnikLnjlKnijψij ,

with Knij = 1
hpK(

Wi−Wj

h ) and ψij = ψ(Xi −Xj). We also consider the alter-
native statistic

Ĩn =
1

n(4)

∑

a

(Yi − Yk) (Yj − Yl)LnikLnjlKnijψij .

It is clear that Ĩn is obtained from În by removing asymptotically negligible
“diagonal” terms. Under the null hypothesis, both statistics will have the same
asymptotic normal distribution, but removing diagonal terms reduces the bias
of the statistic under H0. Our statistics Ĩn and În are respectively similar to the
ones of Fan and Li (1996) and Lavergne and Vuong (2000), with the fundamen-
tal difference that there is no smoothing relative to the covariates X . Indeed
these authors used a multidimensional smoothing kernel over (W,X), that is
h−(p+q)K̃((Wi −Wj)/h, (Xi −Xj)/h), while we use Knijψij . For In being ei-

ther Ĩn or În, we will show that nhp/2In converges to N (0, ω2) in distribution

under H0 and nhp/2In
p−→∞ under H1. By contrast, the statistics of Fan and Li

(1996) and Lavergne and Vuong (2000) exhibit a nh(p+q)/2 rate of convergence.
The alternative test of Delgado and González Manteiga (2001) uses the kernel
residuals ûi and the empirical process approach of Stute (1997). This avoids ex-
tra smoothing, but at the cost of a test statistic with a non pivotal asymptotic
law under H0. Hence, our proposal is an hybrid approach that combines the
advantages of existing procedures, namely smoothing only for the variables W
appearing under the null hypothesis but with an asymptotic normal distribution
for the statistic. Given a consistent estimator ω2

n of ω2, as provided in the next
section, we obtain an asymptotic α-level test of H0 as

Reject H0 if nhp/2In/ωn > z1−α,

where z1−α is the (1 − α)-th quantile of the standard normal distribution. In
small samples, we will show the validity of a wild bootstrap scheme to obtain
critical values.

The test applies whether X is continuous or has some discrete components.
When X is discrete, the null hypothesis under test is that the regression func-
tions E[Y | W,X ] are equal across possible values of X . The procedure is also
easily adapted to some discrete components of W . In that case, one would re-
place kernel smoothing by cells’ indicators for the discrete components, so that
for W composed of continuous Wc of dimension pc and discrete Wd, one would
use h−pcK(

Wic−Wjc

h )I(Wid =Wjd) instead of Knij . It would also be possible to
smooth on the discrete components, as proposed by Racine and Li (2004). To
obtain scale invariance, we recommend that observations on covariates should
be scaled, say by their sample standard deviation as is customary in nonpara-
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metric estimation. It is equally important to scale the Xi before they are used
as arguments of ψ(·) to preserve such invariance.

The outcome of the test may depend on the choice of the kernels K(·) and
L(·), while this influence is expected to be limited as usual in nonparametric
estimation. The choice of the function ψ(·) might be more important, but our
simulations reveal that it is not so. From our theoretical study, this function, as
well asK(·) should possess an almost everywhere positive and integrable Fourier
transform. This is true for (products of) the triangular, normal, Laplace, and
logistic densities, see Johnson, Kotz and Balakrishnan (1995), and for a Student
density, see Hurst (1995). Alternatively, one can choose ψ(x) as a univariate
density applied to some transformation of x, such as its norm. This yields ψ(x) =
g(‖x‖) where g(·) is any of the above univariate densities. This is the form we
will consider in our simulations to study the influence of ψ(·).

3. Theoretical properties

We here give the asymptotic properties of our test statistics under H0 and
some local alternatives. To do so in a compact way, we consider the sequence of
hypotheses

H1n : E [Y |W,X ] = r (W ) + δnd (W,X) , n ≥ 1,

where d(·) is a fixed integrable function. Since r(W ) = E[Y |W ], our setup im-
poses E[d(W,X) | W ] = 0. The null hypothesis corresponds to the case δn ≡ 0,
while considering a sequence δn → 0 yields local Pitman-like alternatives.

3.1. Assumptions

We begin by some useful definitions.

Definition 1. (i) Up is the class of integrable uniformly continuous functions
from Rp to R;

(ii) Dp
s is the class ofm-times differentiable functions from Rp to R, with deriva-
tives of order ⌊s⌋ that are uniformly Lipschitz continuous of order s−⌊s⌋,
where ⌊s⌋ denotes the integer such that ⌊s⌋ ≤ s < ⌊s⌋+ 1.

Note that a function belonging to Up is necessarily bounded.

Definition 2. Kp
m, m ≥ 2, is the class of even integrable functions K : Rp → R

with compact support satisfying
∫
K(t)dt = 1 and, if t = (t1, . . . , tp),

∫

Rp

tα1
1 . . . tαp

p K (t) dt = 0 for 0 <

p∑

i=1

αi ≤ m− 1, αi ∈ N ∀i

This definition of higher-order kernels is standard in nonparametric estima-
tion. The compact support assumption is made for simplicity and could be
relaxed at the expense of technical conditions on the rate of decrease of the
kernels at infinity, see e.g. Definition 1 in Fan and Li (1996). In particular, the
gaussian kernel could be allowed for. We are now ready to list our assumptions.
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Assumption 1. (i) For any x ∈ Rq in the support of X, the vector W admits
a conditional density given X = x with respect to the Lebesgue measure in Rp,
denoted by π(· | x). Moreover, E[Y 8] < ∞. (ii) The observations (Wi, Xi, Yi),
i = 1, . . . , n are independent and identically distributed as (W,X, Y ).

The existence of the conditional density given X = x for all x ∈ Rq in the
support of X implies that W admits a density with respect to the Lebesgue
measure on Rp. As noted above, our results easily generalizes to some discrete
components of W , but for the sake of simplicity we do not formally consider
this in our theoretical analysis.

Assumption 2. (i) f(·) and r(·)f(·) belong to Up ∩Dp
s , s ≥ 2;

(ii) E[u2 |W = ·]f(·), E[u4 |W = ·]f4(·) belong to Up;
(iii) the function ψ(·) is bounded and has an almost everywhere positive and

integrable Fourier transform;
(iv) K(·) ∈ Kp

2 and has an almost everywhere positive and integrable Fourier
transform, while L(·) ∈ Kp

⌊s⌋ and is of bounded variation;

(v) let σ2(w, x) = E[u2 | W = w,X = x], then σ2(·, x)f2(·)π(· | x) belongs to
Up for any x in the support of X, has integrable Fourier transform, and
E[σ4(W,X)f4(W )π(W | X)] <∞;

(vi) E[d2(W,X) |W = ·]f2(·) belongs to Up, d(·, x)f(·)π(· | x) is integrable and
squared integrable for any x in the support of X, and
E[d2(W,X)f2(W )π(W | X)] <∞.

Standard regularity conditions are assumed for various functions. A higher-
order kernel L(·) is used in conjunction with the differentiability conditions in
(i) to ensure that the bias in nonparametric estimation is small enough.

3.2. Asymptotic analysis

The following result characterizes the behavior of our statistics under the null
hypothesis and a sequence of local alternatives.

Theorem 1. Let In be any of the statistics În or Ĩn. Under Assumptions 1
and 2, and if as n→∞ (i) g, h→ 0, (ii) ng4p/3/lnn, nhp →∞, (iii) nhp/2g2s → 0,

and (iv) h/g→ 0 if In = Ĩn or h/g2→ 0 if In = În, then

(i) If δ2nnh
p/2 → C with 0 ≤ C <∞, nhp/2In

d−→N (Cµ, ω2) where

µ = E

[∫
d (w,X1) d (w,X2) f

2 (w) π (w | X1)π (w | X2)ψ (X1−X2) dw

]
> 0

and ω2 = 2

∫
K2(s) ds

E

[∫
σ2 (w,X1)σ

2 (w,X2) f
4 (w) π (w | X1) π (w | X2)ψ

2 (X1−X2) dw

]
.

(ii) If δ2nnh
p/2 → ∞, nhp/2In

p−→∞.
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The rate of convergence of the test statistic depends only on the dimension
of W , the covariates present under the null hypothesis, but not on the dimen-
sion of X , the covariates under test. Similarly, the rate of local alternatives that
are detected by the test depends only on the dimension of W . As shown in our
simulations, this yields some gain in power compared to competing tests based
on the smoothing approach that smooth over th whole set of covariates and
whose rate of convergence depends on the dimension of W and X . Conditions
(i) to (iv) together require that s > p/2 for In = Ĩn and s > p/4 for In = În, so

removing diagonal terms in În allows to weaken the restrictions on the band-
widths. Condition (ii) could be slightly weakened to ngp → ∞ at the price of
handling high order U -statistics in the proofs, but allows for a shorter argument
based on empirical processes, see Lemma 3 in the proofs section.

To estimate ω2, we can either mimic Lavergne and Vuong (2000) to consider

ω̃2
n =

2hp

n(6)

∑

a

(Yi −Yk) (Yi− Yk′) (Yj −Yl) (Yj − Yl′)LnikLnik′LnjlLnjl′K
2
nijψ

2
ij ,

or generalize the variance estimator of Fan and Li (1996) as

ω̂2
n =

2hp

n(2)

∑

a

û2i f̂
2
i û

2
j f̂

2
jK

2
nijψ

2
ij .

The first one is consistent for ω2 under both the null and alternative hypothesis,
but the latter is faster to compute.

Corollary 1. Let In be any of the statistics În or Ĩn and let ωn denote any of
ω̂n or ω̃n. Under the assumptions of Theorem 1, the test that rejects H0 when
nhp/2In/ωn > z1−α is of asymptotic level α under H0 and is consistent under
the sequence of local alternatives H1n provided δ2nnh

p/2 → ∞.

3.3. Bootstrap critical values

It is known that asymptotic theory may be inaccurate for small and moder-
ate samples when using smoothing methods. Hence, as in Härdle and Mammen
(1993) or Delgado and González Manteiga (2001), we consider a wild boot-
strap procedure to approximate the quantiles of our test statistic. Resamples
are obtained from Y ∗

i = r̂i + u∗i , where u
∗
i = ηiûi and ηi are i.i.d. variables

independent of the initial sample with Eηi = 0 and Eη2i = Eη3i = 1, 1 ≤ i ≤ n.
The ηi could for instance follow the two-point law of Mammen (1993). With at
hand a bootstrap sample (Y ∗

i ,Wi, Xi), 1 ≤ i ≤ n, we obtain a bootstrapped
statistic nhp/2I∗n/ω

∗
n with bootstrapped observations Y ∗

i in place of original ob-
servations Yi. When the scheme is repeated many times, the bootstrap critical
value z⋆1−α,n at level α is the empirical (1 − α)-th quantile of the bootstrapped
test statistics. The asymptotic validity of this bootstrap procedure is guaranteed
by the following result.

Theorem 2. Suppose Assumptions 1, 2, and Conditions (i) to (iii) of Theo-
rem 1 hold. Moreover, assume infw∈SW

f(w) > 0 and h/g2 → 0. Then for I∗n
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equal to any of Î∗n and Ĩ∗n,

sup
z∈R

∣∣∣P
[
nhp/2I∗n/ω

∗
n ≤ z | Y1,W1, X1, . . . , Yn,Wn, Xn

]
− Φ (z)

∣∣∣ p−→ 0,

where Φ(·) is the standard normal distribution function.

4. Monte Carlo study

We investigated the small sample behavior of our test and studied its perfor-
mances relative to alternative tests. We generated data through

Y = (W ′θ)
3 −W ′θ + δd (X) + ε

where W follows a two-dimensional standard normal, X independently follows
a q-variate standard normal, ε ∼ N (0, 4), and we set θ = (1, −1)′/

√
2. The null

hypothesis corresponds to δ = 0, and we considered various forms for d(·) to
investigate power. We only considered the test based on Ĩn/ω̂n, labelled LMP,
as preliminary simulation results showed that the tests based on Ĩn had similar
or better performances than the test based on În, and ω̂n is computationally
less demanding than ω̃n. We compared it to the test of Lavergne and Vuong
(2000) (hereafter LV) and the test of Delgado and González Manteiga (2001)
(hereafter DGM). The latter is based on the Cramer-von-Mises statistic

n∑

i=1




n∑

j=1

ûj f̂j 1 {Wj ≤Wi} 1 {Xj ≤ Xi}



2

.

As its distribution under H0 is not asymptotically pivotal, critical values must
be obtained by wild bootstrapping. To compute bootstrap critical values, we
used 199 bootstrap replications and the two-point distribution

P

(
ηi =

1−
√
5

2

)
=

5 +
√
5

10
, P

(
ηi =

1 +
√
5

2

)
=

5−
√
5

10
.

We also applied this method to obtain small sample critical values for LV test
as well as our test. For all tests, each time a kernel appears, we used the normal
density. The bandwidth parameters are set to g = C1n

−1/6 and h = C2 n
−2.1/6,

and we let C1 and C2 vary to investigate the sensitivity of our results to the
smoothing parameters choice. To study the influence of ψ(·) on our test, we
considered ψ(x) = l(‖x‖), where l(·) is a triangular or normal density, each with
a second moment equal to one.

Figures 1 and 2 reports the empirical level of the various tests for n = 100
based on 5000 replications when we let C1, C2, and q vary. For our test, boot-
strapping yields more accurate rejection levels than the asymptotic normal crit-
ical values for any bandwidth factors C1 and C2 and dimension q. The choice
of ψ(·) does not influence the results. The empirical level of LV test is much
more sensitive to the bandwidth and the dimension. The empirical level of the
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Fig 1. Empirical rejections under H0 as a function of the bandwidth, n = 100.
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Fig 2. Empirical rejections under H0 as a function of the bandwidth, n = 100.



A significance test for covariates in nonparametric regression 653

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q=1

Deviation δ

E
m

p
ir

ic
a
l 
re

je
c
ti
o
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q=3

Deviation δ

E
m

p
ir

ic
a
l 
re

je
c
ti
o
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q=5

Deviation δ

E
m

p
ir

ic
a
l 
re

je
c
ti
o
n

Theoretical Level
Bootstrap LMP, gaussian ψ, C2 = 1
Bootstrap LMP, gaussian ψ, C2 = 2
Bootstrap LMP, gaussian ψ, C2 = 4
Bootstrap LV, C2 = 1
Bootstrap LV, C2 = 2
Bootstrap LV, C2 = 4
Bootstrap DGM
Fisher

Fig 3. Empirical power curves for a quadratic alternative, n = 100.

DGM test is close to the nominal one for a low dimension q and large enough
bandwidth g, but decreases with increasing q and increases with decreasing
bandwidth g.

We also investigated how power varies with different alternatives as specified
by d(·). We first focus on a quadratic alternative, where d(X) = (X ′β−1)2/

√
2,

with β = (1, , 1, , . . . )′/
√
q. Figure 3 reports power curves of the different tests

for the quadratic alternative, n = 100, and a nominal level of 10% based on
2500 replications. We also report the power of a Fisher test based on a linear
specification in the components of X . The power of our test, as well as the
one of LV test, increases when the bandwidth factor C2 increases, in line with
theoretical findings. Our test always perform as well or better than LV test, but
for q = 1 and C2 = 1. These tests, as well as DGM test, perform better than
the Fisher test. For a low dimension, i.e. q = 1, there is no clear ranking of the
DGM and our test depending on the bandwidth. For larger dimensions, q = 3
or 5, our test dominates DGM test. In Figure 4, we let n vary for a dimension
q = 5. The power of all tests improve, but our main qualitative findings are not
affected. It is noteworthy that the power advantage of our test compared to LV
test become more pronounced as n increases. In Figure 5, we considered a sine
alternative defined as d(X) =

∑q
j=1 sin(γ Xj) for γ = 1.5 or 3. The ranking
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Fig 4. Empirical power curves for a quadratic alternative, q = 5.

of the different tests heavily depends on the frequency and the dimension of
X . For a low frequency alternative, i.e. γ = 1.5, our main findings remain
unchanged. While DGM test is best for a low dimension, its power decreases a
lot when increasing the dimension of variables under test and/or the frequency
of the alternative. The power of our test is affected when increasing q, but to
a lesser extent. For a high frequency alternative, i.e. γ = 3, the LV test always
dominates, as smoothing on the variables under test allows to adapt better to
such alternatives.

We also considered the case of a discrete X . We generated data following

Y =W 3 −W + δd (W ) 1 {X = 1}+ ε

where W follows a univariate standard normal, ε ∼ N (0, 4), and X is Bernoulli
with probability of success 0.6. In this setup, testing the significance of X is
equivalent to testing the equality of the regression curves on Y on W when X
equals 0 or 1. We considered two competitors to our test: the test proposed
by Lavergne (2001), which is similar to our test with the main difference that
ψ(·) is the indicator function, i.e. ψ(Xi − Xj) = 1{Xi = Xj}; and the test of
Neumeyer and Dette (2003) (hereafter ND), which is similar in spirit to the
DGM test. Other details of the simulations are similar to above. Figure 6 show
that bootstrap yield accurate rejection levels.

Figure 7 report power of the tests against the quadratic alternative d(W ) =
W 2 − 1 and the sine alternative d(W ) = sin(1.5W ). Our test and Lavergne’s
one have basically the same power in both cases. Under a quadratic alternative,
ND test is more powerful, while under a sine alternative, our test outperforms
ND test for a moderate (C2 = 2) or large (C2 = 4) bandwidth.

5. Conclusion

We have developed a testing procedure for the significance of covariates in a
nonparametric regression. Smoothing is entertained only for the covariates under
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Fig 5. Empirical power curves for sine alternative, n = 100.

the null hypothesis. The resulting test statistic is asymptotically pivotal, and
wild bootstrap can be used to obtain critical values in small and moderate
samples. The test is versatile, as it applies whether the covariates under test
are continuous and/or discrete. Simulations reveal that our test outperforms its
competitors in many situations, and especially when the dimension of covariates
is large.
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6. Proofs

We here provide the proofs of the main results. Technical lemmas are relegated to
the Appendix. We let FX [δ](u) = E[e−2πi〈X, u〉δ(X)], u ∈ Rq, for any integrable
function δ(X). Moreover, for any index set I not containing i with cardinality |I|,
let

f̂i
I
= (n− |I| − 1)

−1
∑

k 6=i,k/∈I

Lnik.

This is consistent with the notation f̂i, in which case I is the empty set.
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6.1. Proof of Theorem 1

We first consider the case In = Ĩn. Next, we study the difference between Ĩn
and În and hence deduce the result for In = În.

Case In = Ĩn. Consider the decomposition

In =
1

n(4)

∑

a

(ui − uk) (uj − ul)LnikLnjlKnijψij

+
2

n(4)

∑

a

(ui − uk) (rj − rl)LnikLnjlKnijψij

+
1

n(4)

∑

a

(ri − rk) (rj − rl)LnikLnjlKnijψij

= I1 + 2I2 + I3,

where

I1 =
n− 2

n− 3

1

n(2)

∑

a

uiujfifjKnijψij +
2(n− 2)

n− 3

1

n(2)

∑

a

ui
(
f̂ j
i − fi

)
ujfjKnijψij

+
n− 2

n− 3

1

n(2)

∑

a

ui
(
f̂ j
i − fi

)
uj
(
f̂ i
j − fj

)
Knijψij −

2

n(3)

∑

a

uifiulLnjlKnijψij

− 2

n(3)

∑

a

ui
(
f̂ j,l
i − fi

)
ulLnjlKnijψij +

1

n(4)

∑

a

ukulLnikLnjlKnijψij

− 1

n(4)

∑

a

uiujLnikLnjkKnijψij

=
n− 2

n− 3
[I0n + 2I1,1 + I1,2]− 2I1,3 − 2I1,4 + I1,5 − I1,6,

and

I2 =
1

n(3)

∑

a

uifi(rj − rl)LnjlKnijψij +
1

n(3)

∑

a

ui
(
f̂ j,l
i − fi

)
(rj − rl)LnjlKnijψij

− 1

n(4)

∑

a

uk(rj − rl)LnikLnjlKnijψij = I2,1 + I2,2 − I2,3.

In Proposition 1 we prove that, under H0, I0n is asymptotically centered
Gaussian with variance ω2, while in Proposition 2 we prove that, under H1n,
I0n is asymptotically Gaussian with mean µ and variance ω2 provided δ2nnh

p/2

converges to some positive real number. In Propositions 3 and 4 we show that
all remaining terms in the decomposition of In are asymptotically negligible.

Proposition 1. Under the conditions of Theorem 1, nhp/2I0n
d−→N (0, ω2) un-

der H0.

Proof. Let us define the martingale array {Sn,m,Fn,m, 1 ≤ m ≤ n, n ≥ 1}
where Sn,1 = 0, and
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Sn,m =

m∑

i=1

Gn,i with Gn,i =
2hp/2

n− 1
uifi

i−1∑

j=1

ujfjKnijψij , 2 ≤ i,m ≤ n,

and Fn,m is the σ-field generated by {W1, . . . , Wn, X1, . . . , Xn, Y1, . . . , Ym}.
Thus nhp/2I0n = Sn,n. Also define

V 2
n =

n∑

i=2

E
[
G2

n,i | Fn,i−1

]
=

4hp

(n− 1)2

n∑

i=2

σ2
i f

2
i




i−1∑

j=1

ujfjKnijψij




2

where σ2
i = σ2(Wi, Xi). We can decompose V 2

n as

V 2
n =

4hp

(n− 1)2

n∑

i=2

σ2
i f

2
i

i−1∑

j=1

i−1∑

k=1

ujfjukfkKnijKnikψijψik

=
4hp

(n− 1)
2

n∑

i=2

i−1∑

j=1

σ2
i f

2
i u

2
jf

2
jK

2
nijψ

2
ij

+
8hp

(n− 1)
2

n∑

i=3

i−1∑

j=2

j−1∑

k=1

σ2
i f

2
i ujfjukfkKnijKnikψijψik = An +Bn.

The result follows from the Central Limit Theorem for martingale arrays, see
Corollary 3.1 of Hall and Heyde (1980). The conditions required for Corollary

3.1 of Hall and Heyde (1980), among which V 2
n

p−→ω2, are checked in Lemma 2
below. Its proof is provided in the Appendix.

Lemma 2. Under the conditions of Proposition 1,

1. An
p−→ω2,

2. Bn
p−→ 0,

3. the martingale difference array {Gn,i, Fn,i, 1 ≤ i ≤ n} satisfies the Lin-
deberg condition

∀ε > 0,

n∑

i=2

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

] p−→ 0.

Proposition 2. Under the conditions of Theorem 1 and H1n, if δ
2
nnh

p/2 → C

with 0 < C <∞, nhp/2I0n
d−→N (Cµ, ω2).

Proof. Let εi = Yi − E[Yi | Wi, Xi] and let us decompose

nhp/2I0n =
hp/2

n− 1

n∑

i=1

∑

j 6=i

uifiujfjKnijψij

=
hp/2

n− 1

n∑

i=1

∑

j 6=i

(δndi + εi) fi (δndj + εj) fjKnijψij
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=
hp/2

n− 1

n∑

i=1

∑

j 6=i

εifiεjfjKnijψij

+
δnh

p/2

n− 1

n∑

i=1

∑

j 6=i

difi (δndj + 2εj) fjKnijψij

= C0n + Cn.

By Proposition 1, C0n
d−→N (0, ω2). As for Cn, we have

E [Cn] = δ2nnh
p/2

E [difidjfjKnijψij ] = δ2nnh
p/2µn.

By repeated application of Fubini’s Theorem, Fourier Inverse formula, Domi-
nated Convergence Theorem, and Parseval’s identity, we obtain

µn = E [d1f2d1f2Kn12ψ12]

= E

[∫∫
̺ (w1, X1) f (w1) ̺ (w2, X2) f (w2)

× h−pK

(
w1 − w2

h

)
dw1dw2ψ(X1−X2)

]

= E

[∫
F [̺ (·, X1)f(·)](t)F [̺ (·, X2)f(·)](−t)F [K](ht) dt ψ(X1−X2)

]

→ E

[[∫
F [̺ (·, X1)f(·)](t)F [̺ (·, X2)f(·)](−t)dt

]
ψ(X1−X2)

]

= E

[∫
̺ (w,X1) ̺ (w,X2) f

2 (w)ψ(X1−X2) dw

]

=

∫ [∫
FX [̺ (w, ·)] (u)FX [̺ (w, ·)] (−u)F [ψ](u)du

]
f2 (w) dw

=

∫∫
|FX [d (w, ·)π (w | ·)] (u)|2 F [ψ](u)f2 (w) dudw = µ,

where ̺(w, x) = d(w, x)π(w|x). Moreover,

Var [Cn] ≤
4δ4nh

p

(n− 1)
2

∑

a

E
[
d2i f

2
i dkdlfkflKnikKnilψikψil

]

+
2δ4nh

p

(n− 1)2

∑

a

E
[
d2i f

2
i d

2
kf

2
kK

2
nikψ

2
ik

]

+
4δ2nh

p

(n− 1)
2

∑

a

E
[
difidjfjε

2
kf

2
kKnikKnjkψikψjk

]

+
4δ2nh

p

(n− 1)
2

∑

a

E
[
d2i f

2
i ε

2
kf

2
kK

2
nikψ

2
ik

]

= O
(
δ4nnh

p
)
+O

(
δ4n
)
+O

(
δ2nnh

p
)
+ O

(
δ2n
)
.

ThereforeCn = Cµn+Op(δnn
1/2hp/2)

p−→Cµ, and the desired result follows.
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Proposition 3. Under the conditions of Theorem 1,

(i) nhp/2I1,3 = δn
√
nhp/2Op(1) + op(1),

(ii) nhp/2I1,5 = op(1),
(iii) nhp/2I1,6 = δ2nnh

p/2op(1) + op(1),
(iv) nhp/2I2,1 = δn

√
nhp/2op(1) + δn

√
nhp/2gsOp(1) + op(1),

(v) nhp/2I2,3 = op(1),
(vi) nhp/2I3 = nhp/2Op(g

2s) + op(1).

Proposition 4. Under the conditions of Theorem 1,

(i) nhp/2I1,1 = δ2nnh
p/2op(1) + δn

√
nhp/2op(1) + op(1),

(ii) nhp/2I1,2 = δ2nnh
p/2op(1) + δn

√
nhp/2op(1) + op(1),

(iii) nhp/2I1,4 = δ2nnh
p/2op(1) + δn

√
nhp/2op(1) + (ngp)−1/2op(1) + op(1),

(iv) nhp/2I2,2 = δ2nnh
p/2op(1) + δn

√
nhp/2op(1) + op(1).

The proofs of the above propositions follow the ones in Lavergne and Vuong
(2000)). For illustration, we provide in the Appendix the proofs of the first
statements of each proposition.

Case In = În. We have the following decomposition

n(4)Ĩn = n (n− 1)
3
În − n(3)V1n − 2n(3)V2n + n(2)V3n (2)

where V1n =
1

n(3)

∑

a

(Yi − Yk) (Yj − Yk)LnikLnjkKnijψij ,

V2n =
1

n(3)

∑

a

(Yi − Yj) (Yj − Yk)LnijLnjkKnijψij ,

and V3n =
1

n(2)

∑

a

(Yi − Yj)
2
L2
nijKnijψij .

Hence, to show that În has the same asymptotic distribution as Ĩn, it is sufficient
to investigate the behavior of V1n to V3n. Using Yi = ri+ui, it is straightforward
to see that the dominating terms in V1n, V2n and V3n are

V13 =
1

n(3)

∑

a

(ri − rk) (rj − rk)LnikLnjkKnijψij ,

V23 =
1

n(3)

∑

a

(ri − rj) (rj − rk)LnijLnjkKnijψij ,

V33 =
1

n(2)

∑

a

(ri − rj)
2
L2
nijKnijψij ,

respectively. Now

E [|V13|] = E [| (ri − rk) (rj − rk)LnikLnjkKnij |]
= O

(
g−p

)
E [|ri − rk|LnikE [|rj − rk|Knij | Zi, Zk]] = O

(
g−p

)
,
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E [|V23|] = E [| (ri − rj) (rj − rk)LnijLnjkKnij |]
= E [E [|rj − rk|Lnjk | Zj] |ri − rj |LnijKnij ]

= o (1)E [|ri − rj |LnijKnij ] = o
(
g−p

)

E [|V33|] = E

[
(ri − rj)

2 L2
nij |Knij |

]

= O
(
g−2p

)
E

[
(ri − rj)

2
Knij

]
= o

(
g−2p

)
.

It then follows that nhp/2(Ĩn−În) = Op(h
p/2g−p) which is negligible if h/g2 → 0.

The asymptotic irrelevance of the above diagonal terms thus require more re-
strictive relationships between the bandwidths h and g. For the sake of compar-
ison, recall that Fan and Li (1996) impose h(p+q)g−2p → 0 while Lavergne and
Vuong (2000) require only hp+qg−p → 0. Since we do not smooth the covariates
X , we are able to further relax the restriction between the two bandwidths.

6.2. Proof of Corollary 1

It suffices to prove ω2
n − ω2 = op(1) with ω

2
n any of ω̂2

n or ω̃2
n. First we consider

the case ω2
n = ω̂2

n. A direct approach would consist in replacing the definition

of ûif̂i and ûj f̂j , writing ω̂
2
n as a U -statistic of order 6, and studying its mean

and variance. A shorter approach is based on empirical process tools. The price
to pay is the stronger condition n7/8gp/ lnn → ∞ instead of ngp → ∞. Let

∆f̂i = f̂i − fi, ∆r̂if̂i = r̂if̂i − rifi, and write

ûif̂i = uifi + Yi∆f̂i −∆r̂if̂i. (3)

Lemma 3. Under Assumption 1, if r(·)f(·) ∈ Up, L(·) is a function of bounded
variation, g → 0, and n7/8gp/ lnn→ ∞, then

sup
1≤i≤n

{|∆r̂if̂i|+ |∆f̂i|} = op(1).

The proof relies on the uniform convergence of empirical processes and is
provided in the Appendix. Now proceed as follows: square Equation (3), replace

û2i f̂
2
i in the definition of ω̂2

n, and use Lemma 3 to deduce that

ω̂2
n =

2hp

n(2)

∑

a(2)

u2i f
2
i u

2
jf

2
jK

2
nijψ

2
ij + op(1).

Elementary calculations of mean and variance yield

2hp

n(2)

∑

a(2)

u2i f
2
i u

2
jf

2
jK

2
nijψ

2
ij − ω2 = op(1),

and thus ω̂2
n − ω2 = op(1).

To deal with ω̃2
n, note that ω̃2

n − ω̂2
n consists of “diagonal” terms plus a term

which is O(n−1ω̃2
n). By tedious but rather straightforward calculations, one can

check that such diagonal terms are each of the form n−1g−p times a U -statistic
which is bounded in probability. Hence ω̃2

n − ω̂2
n = op(1).
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6.3. Proof of Theorem 2

Let Z denote the sample (Yi,Wi, Xi), 1 ≤ i ≤ n. Since the limit distribution is
continuous, it suffices to prove the result pointwise by Polya’s theorem. Hence
we show that ∀t ∈ R, P[nhp/2I∗n/ω

∗
n ≤ t | Z]− Φ(t) = op(1).

First, we consider the case I∗n = Ĩn. Consider

I∗n,LV =
1

n(4)

∑

a

(ηiûi − ηkûk) (ηj ûj − ηlûl)LnikLnjlKnijψij

+
2

n(4)

∑

a

(ηiûi − ηkûk) (r̂j − r̂l)LnikLnjlKnijψij

+
1

n(4)

∑

a

(r̂i − r̂k) (r̂j − rl)LnikLnjlKnijψij

= I∗1 + 2I∗2 + I∗3

where we can further decompose

I∗1 =
1

n(4)

∑

a

ηiûiηj ûjLnikLnjlKnijψij

− 2

n(4)

∑

a

ηj ûjηkûkLnikLnjlKnijψij

+
1

n(4)

∑

a

ηkûkηlûlLnikLnjlKnijψij

= I∗1,1 + I∗1,2 + I∗1,3

with

I∗1,1 =
(n− 1)

2

(n− 3) (n− 4)
× 1

n(2)

∑

a

ηiûiηj ûj f̂if̂jKnijψij

− 2

n− 4
× 1

n(3)

∑

a

ηiûiηj ûjLnikLnijKnijψij

− 1

n− 4
× 1

n(3)

∑

a

ηiûiηj ûjLnikLnjkKnijψij

− 1

(n− 3) (n− 4)
× 1

n(2)

∑

a

ηiûiηj ûjL
2
nijKnijψij

= I∗0n − 2

n− 4
I∗1,1,1 −

1

n− 4
I∗1,1,2 −

1

(n− 3) (n− 4)
I∗1,1,3.

Now let D∗
n = Ĩ∗n − I∗0n and write

P

(
nhp/2Ĩ∗n
ω̃∗
n

≤ t | Z
)
= P

(
nhp/2 (I∗0n +D∗

n)

ω̃∗
n

≤ t | Z
)
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= P

(
nhp/2I∗0n

ω̂n
+
nhp/2D∗

n

ω̂n

+
nhp/2 (I∗0n +D∗

n)

ω̂n

(
ω̃n

ω̂∗
n

− 1

)
≤ t | Z

)
.

It thus suffices to prove that

P

(
nhp/2I∗0n
ω̂n,FL

≤ t | Z
)
− Φ (t)

p−→ 0 ∀t ∈ R,

nhp/2D∗
n

ω̂n,FL
= op(1), and

nhp/2 (I∗0n +D∗
n)

ω̂n,FL

(
ω̂n,FL

ω̂∗
n,LV

− 1

)
= op (1) .

(4)
The first result is stated below.

Proposition 5. Under the conditions of Theorem 2, conditionally on the ob-
served sample, the statistic nhp/2I∗0n/ω̂n,FL converges in law to a standard nor-
mal distribution.

Proof. We proceed as in the proof of Proposition 1 and check the conditions for
a CLT for martingale arrays, see Corollary 3.1 of Hall and Heyde (1980). Define
the martingale array {S∗

n,m, F∗
n,m, 1 ≤ m ≤ n, n ≥ 1} where F∗

n,m is the σ-field

generated by {Z, η1, . . . , ηm}, S∗
n,1 = 0, and S∗

n,m =
∑m

i=1G
∗
n,i with

G∗
n,i =

2hp/2

n− 1
ηiûi

i−1∑

j=1

ηj ûj f̂if̂jKnijψij .

Then

I∗0n =
(n− 1)2

(n− 3) (n− 4)
× 1

n(2)

∑

a

ηiûiηj ûj f̂if̂jKnijψij =
(n− 1)2

(n− 3) (n− 4)
S∗
n,n.

Now consider

V 2∗
n =

n∑

i=2

E
[
G2∗

n,i | F∗
n,i−1

]

=
4hp

(n− 1)
2

n∑

i=2

i−1∑

j=1

i−1∑

k=1

û2i ηjηkûj ûkf̂
2
i f̂j f̂kKnijKnikψijψik

=
4hp

(n− 1)
2

n∑

i=2

i−1∑

j=1

û2i η
2
j û

2
j f̂

2
i f̂

2
jK

2
nijψ

2
ij

+
8hp

(n− 1)2

n∑

i=3

i−1∑

j=2

j−1∑

k=1

û2i ηjηkûjûkf̂
2
i f̂j f̂kKnijKnikψijψik

= A∗
n +B∗

n.
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Note that E[A∗
n | Z] = [n/(n− 1)]E[ω̂2

n] and that

Var
[
Ã∗

n | Z
]
≤ 16h2pE

[
η4
]

(n− 1)
4

n∑

i=2

n∑

i′=2

i∧i′−1∑

j=1

û2i û
2
i′ û

4
j f̂

2
i f̂

2
i′ f̂

4
jK

2
nijK

2
ni′jψ

2
ijψ

2
i′j

≤ 16h2pE
[
η4
]

(n− 1)4

n∑

i=2

i−1∑

j=1

û4i û
4
j f̂

4
i f̂

4
jK

4
nijψ

4
ij

+
32h2pE

[
η4
]

(n− 1)4

n∑

i=3

i−1∑

i′=2

i′−1∑

j=1

û2i û
2
i′ û

4
j f̂

2
i f̂

2
i′ f̂

4
jK

2
nijK

2
ni′jψ

2
ijψ

2
i′j

= Q1n +Q2n.

On the other hand,

E[B∗2
n | Z]

=
64h2p

(n− 1)4

n∑

i=3

n∑

i′=3

i∧i′−1∑

j=2

j−1∑

k=1

û2i û
2
i′ û

2
j û

2
kf̂

2
i f̂

2
i′ f̂

2
j f̂

2
kKnijKni′jKnikKni′kψijψi′jψikψi′k

=
64h2p

(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

û4i û
2
j û

2
kf̂

4
i f̂

2
j f̂

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

+
128h2p

(n− 1)4

n∑

i=4

i−1∑

i′=3

i′−1∑

j=2

j−1∑

k=1

û2i û
2
i′ û

2
j û

2
kf̂

2
i f̂

2
i′ f̂

2
j f̂

2
kKnijKni′jKnikKni′kψijψi′jψikψi′k

= Q3n +Q4n.

Finally the Lindeberg condition involves

n∑

i=1

E
[
G2∗

n,iI
(∣∣G∗

n,i

∣∣ > ε
)
| F∗

n,i−1

]

≤ 1

ε4

n∑

i=1

E
[
G4∗

n,i | F∗
n,i−1

]

≤ 16h2pE
[
η4
]

ε4 (n− 1)
4

n∑

i=2

i−1∑

j=1

i−1∑

k=1

û4i û
2
j û

2
kf̂

4
i f̂

2
j f̂

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

≤ 16h2pE
[
η4
]

ε4 (n− 1)
4

n∑

i=2

i−1∑

j=1

û4i û
4
j f̂

4
i f̂

4
jK

4
nijψ

4
ij

+
32h2pE

[
η4
]

ε4 (n− 1)
4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

û4i û
2
j û

2
kf̂

4
i f̂

2
j f̂

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

= Q5n +Q6n.

It thus suffices to show that Qjn = op(1), j = 1, . . . 6. Now, there exist positive
random variables γ̃1n and γ̃2n such that γ̃1n + γ̃2n = op(1) and ∀1 ≤ i ≤ n and
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∀k = 1, 2 ∈ {1, 2},

û2ki f̂
2k
i ≤ 32k−1

(
u2ki f

2k
i + Y 2k

i f2k
i γ̃2k1n + γ̃2k2n

)
.

Indeed, ûif̂i = uifi+Yifif
−1
i (f̂i−fi)+ [r̂if̂i− rifi] = uifi+Yifiγ1i−γ2i, where

sup1≤i≤n |γji| ≤ γ̃j and γ̃j = op(1) by Lemma 3. Hence

û2i f̂
2
i ≤ 3

(
u2i f

2
i + Y 2

i f
2
i γ̃

2
1n + γ̃22n

)
.

The inequality for k = 2 is obtained similarly. Using these inequalities, one can
bound the expectations of |Q1n| to |Q6n| and thus show that |Q1n|+· · ·+|Q6n| =
op(1).

Next we show (4). First we need the following.

Proposition 6. Under the conditions of Theorem 2,
ω̂n,FL

ω̂∗

n,FL

p−→ 1 and
ω̂n,FL

ω̂∗

n,LV

p−→ 1.

The proof uses the following result, which is proved in the Appendix.

Lemma 4. Under the conditions of Theorem 2, sup1≤i≤n |û∗i f̂i−u∗i f̂i| = op(1),
where u∗i = ηiûi and

û∗i = Y ∗
i −

∑
k 6=i Y

∗
k Lnik∑

k 6=i Lnik
.

Proof. Using Lemma 4, we have

ω̂∗2
n,FL = ω∗2

n + op (1)

where ω∗2
n = 2hp

n(2)

∑
a u

∗2
i u

∗2
j f̂

2
i f̂

2
jK

2
nijψ

2
ij . Notice that E[ω∗2

n | Z] = ω̂2
n,FL and

that

Var
(
ω∗2
n − ω̂2

n,FL

)
= Var

(
E
[
ω∗2
n − ω̂2

n,FL | Z
])

+ E
[
Var

(
ω∗2
n | Z

)]

where the first term is zero and

Var
(
ω∗2
n | Z

)
=

8h2pVar
(
η2
)

{
n(2)

}2
∑

a

û4i û
4
j f̂

4
i f̂

4
jK

4
nijψ

4
ij .

Then,

ω̂n,FL

ω̂∗
n,FL

= 1 +
ω̂n,FL − ω̂∗

n,FL

ω̂∗
n,FL

= 1 +
op (1)

ω2 [1 + op (1)]
= 1 + op(1).

Since ω̂∗
n,LV − ω̂∗

n,FL contains only diagonal terms, we deduce that ω̂n,FL/

ω̂∗
n,LV

p−→ 1.

We next have to bound D∗
n = I∗n,LV − I∗0n. For this, let us decompose

r̂i − r̂k = (r̂i − ri)− (r̂k − rk) + (ri − rk)
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and replace all such differences appearing in the definition of D∗
n. First, let us

look at I∗3 which does not contain any bootstrap variable η. We obtain

I∗3 =
1

n(4)

∑

a

(r̂i − r̂k) (r̂j − r̂l)LnikLnjlKnijψij

=
1

n(4)

∑

a

(ri − rk) (rj − rl)LnikLnjlKnijψij

+
1

n(4)

∑

a

(r̂i − ri) (r̂j − rj)LnikLnjlKnijψij

+
1

n(4)

∑

a

(r̂k − rk) (r̂l − rl)LnikLnjlKnijψij

+
2

n(4)

∑

a

(r̂i − ri) (rj − rl)LnikLnjlKnijψij

− 2

n(4)

∑

a

(r̂k − rk) (rj − rl)LnikLnjlKnijψij

− 2

n(4)

∑

a

(r̂k − rk) (r̂j − rj)LnikLnjlKnijψij

= I∗3,1 + I∗3,2 + I∗3,3 + 2I∗3,4 − 2I∗3,5 − 2I∗3,6.

Next, use the fact that

r̂i − ri = (n− 1)
−1
f̂−1
i

∑

i′ 6=i

(Yi′ − ri)Lnii′

= (n− 1)
−1
f̂−1
i

∑

i′ 6=i

(ri′ − ri)Lnii′ + (n− 1)
−1
f̂−1
i

∑

i′ 6=i

ui′Lnii′ (5)

and further replace terms like r̂i − ri. Among the terms I∗3,1 to I∗3,6, the term
I∗3,1 could be easily handled with existing results in Lavergne and Vuong (2000).

Namely nhp/2I∗3,1 = nhp/2Op(g
2s) + op(1) by Proposition 7 of Lavergne and

Vuong (2000). For the other five terms we have to control the density estimates
appearing in the denominators. For this purpose, let us introduce the notation
∆(f I

i )
−1 = (f̂ I

i )
−1 − f−1

i and write

n− |I|
n− 1

× f̂−1
i =

(
(n− |I|) f̂ I

i

(n− 1) f̂i
− 1

)(
f̂ I
i

)−1

+
(
f̂ I
i

)−1

=

∑
k∈I Lnik

(n− 1) f̂if̂ I
i

+∆
(
f I
i

)−1
+ f−1

i . (6)

Then we obtain for instance

I∗3,5 =
1

n(4)

∑

a

(r̂k − rk) (rj − rl)LnikLnjlKnijψij
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=
1

n(5)

∑

a(4)

∑

k′ 6=k

f−1
k (rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

∑

k′ 6=k

∆
(
f i,j,l,k′

k

)−1

(rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

(n− 1)n(5)

∑

a(4)

∑

k′ 6=k

(
f̂kf̂

i,j,l,k′

k

)−1

(Lnik + Lnjk + Lnlk + Lnk′k)

× (rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

∑

k′ 6=k

f−1
k uk′ (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

∑

k′ 6=k

∆f−1
k uk′ (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

(n− 1)n(5)

∑

a(4)

∑

k′ 6=k

(
f̂kf̂

i,j,l,k′

k

)−1

(Lnik + Lnjk + Lnlk + Lnk′k)

× uk′ (rj − rl)Lnkk′LnikLnjlKnijψij

= I∗3,5,1 + I∗3,5,2 + I∗3,5,3 + I∗3,5,4 + I∗3,5,5 + I∗3,5,6.

Next, if we consider for instance I∗3,5,1 that contains only terms like f−1
i appear-

ing from the decomposition 6, we obtain

I∗3,5,1 =
1

n(5)

∑

a(5)

f−1
k (rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

f−1
k (ri − rk) (rj − rl)L

2
nikLnjlKnijψij

+
1

n(5)

∑

a(4)

f−1
k (rj − rk) (rj − rl)LnjkLnikLnjlKnijψij

+
1

n(5)

∑

a(4)

f−1
k (rl − rk) (rj − rl)LnlkLnikLnjlKnijψij

= I∗3,5,1,1 + I∗3,5,1,2 + I∗3,5,1,3 + I∗3,5,1,4

where the terms I∗3,5,1,2 to I∗3,5,1,4 are called “diagonal terms”. Such terms re-
quire more restrictions on the bandwidths. Next, the terms containing terms like
∆(f I

i )
−1 produced by the decomposition (6) can be treated like in the Proposi-

tions 8 to 11 of Lavergne and Vuong (2000). Finally, given that I is finite and
with fixed cardinal

(n− 1)
−1
f̂−1
i

(
f̂ I
i

)−1∑

k∈I

Lnik = Op

(
n−1g−p

)
= op(1)

given that ‖f−1‖∞ <∞. Therefore we can be easily handle the terms containing

(n−1)−1f̂−1
i (f̂ I

i )
−1
∑

k∈I Lnik by taking absolute values. Now let us investigate
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the diagonal term I∗3,5,1,2. We have

E
[
|I∗3,5,1,2|

]
= O

(
n−1

)
E
[
f−1
k |rj − rk| |rj − rl| |Lnjk||Lnik||Lnjl||Knij |

]

= O
(
n−1g−p

)
E
[
f−1
k |rj − rk| |rj − rl| |Lnjk||Lnjl||Knij |

]

= O
(
n−1g−p

)
E
[
f−1
k |rj − rk| |Lnjk|E [|rj − rl| |Lnjl| | Zj] |Knij |

]

= o
(
n−1g−p

)
E
[
f−1
k |rj − rk| |Lnjk||Knij |

]

= o
(
n−1g−p

)
.

To prove that he term I∗3,5,1,2 = op(nh
p/2) it suffices to prove E[|I∗3,5,1,2|] =

o(nhp/2) and this latter rate is implied by the condition h/g2 = o(1). This
additional condition on the bandwidths is not surprising as the bootstrapped
statistic introduced “diagonal” terms as in Fan and Li (1996) which indeed
require the condition h/g2 → 0.

Let us now consider a term in the decomposition of D∗
n that involve bootstrap

variables η, namely we investigate I∗2 . The arguments for the other terms are
similar. Consider

I∗2 =
1

n(4)

∑

a

(ηiûi − ηkûk) (r̂j − r̂l)LnikLnjlKnijψij

=
1

n(4)

∑

a

ηiûi (rj − rl)LnikLnjlKnijψij

+
1

n(4)

∑

a

ηiûi (r̂j − rj)LnikLnjlKnijψij

− 1

n(4)

∑

a

ηiûi (r̂l − rl)LnikLnjlKnijψij

− 1

n(4)

∑

a

ηkûk (rj − rl)LnikLnjlKnijψij

− 1

n(4)

∑

a

ηkûk (r̂j − rj)LnikLnjlKnijψij

+
1

n(4)

∑

a

ηkûk (r̂l − rl)LnikLnjlKnijψij

= I∗2,1 + I∗2,2 − I∗2,3 − I∗2,4 − I∗2,5 + I∗2,6.

Next it suffices to use the fact that

ûi = ui − f̂−1
i

∑

i′ 6=i

ui′Lnii′ + f̂−1
i

∑

i′ 6=i

(ri − ri′)Lnii′ .

For instance, using this identity with I∗2,1 we can write

I∗2,1 =
1

n(4)

∑

a

ηiui (rj − rl)LnikLnjlKnijψij
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− 1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f̂−1
i ηiui′ (rj − rl)LnikLnjlKnijψij

+
1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f̂−1
i ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

=
1

n(3)

∑

a

ηiuifi (rj − rl)LnjlKnijψij

+
1

n(4)

∑

a

ηiui (rj − rl)∆f
j,l
i LnjlKnijψij

− 1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f−1
i ηiui′ (rj − rl)LnikLnjlKnijψij

− 1

n(5)

∑

a

∆
(
f j,k,l,i′

i

)−1

ηiui′ (rj − rl)LnikLnjlKnijψij

− 1

(n− 1)n(4)

∑

a

∑

i′ 6=i

(
f̂if̂

j,k,l,i′

i

)−1

ηiui′ (rj − rl)LnikLnjlKnijψij

+
1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f−1
i ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

+
1

n(5)

∑

a

∆
(
f j,k,l,i′

i

)−1

ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

+
1

n(5)

∑

a

(
f̂if̂

j,k,l,i′

i

)−1

ηi (ri − ri′ ) (rj − rl)LnikLnjlKnijψij

= I∗2,1,1 + I∗2,1,2 + I∗2,1,3 + I∗2,1,4 + I∗2,1,5 + I∗2,1,6 + I∗2,1,7 + I∗2,1,8

Handling one problem at a time, let us notice that I∗2,1,1 is a zero-meanU -statistic
of order three with kernel Hn(Z

∗
i , Z

∗
j , Z

∗
l ) = ηiuifi(rj − rl)LnjlKnijψij where

Z∗
i = (Yi,Wi, Xi, ηi). Using the Hoeffding decomposition of I∗2,1,1 in degenerate

U -statistics, it is easy to check that the third and second order projections are
small. For the first order degenerate U -statistic it suffices to note that E[Hn |
Z∗
j ] = E[Hn | Z∗

l ] = 0 and E[Hn | Z∗
i ] = ηiuifiE[(rj − rl)LnjlKnijψij | Zi] so

that

E
[
E
2 [Hn | Z∗

i ]
]
= E

[
η2i u

2
i f

2
i E

2 [(rj − rl)LnjlKnijψij | Zi]
]

= E
[
u2i f

2
i E

2 [(rj − rl)LnjlKnijψij | Zi]
]

which, given that ‖ψ‖∞ <∞, is similar to the term ξ1 bounded in the proof of
Proposition 5 of Lavergne and Vuong (2000).

Finally, let us briefly consider the case I∗n = Ĩn. Like in the decomposition (2),
we have

n (n− 1)
3
I∗n,FL = n(4)I∗n,LV + n(3)V ∗

1n + 2n(3)V ∗
2n − n(2)V ∗

3n

where ∀j ∈ {1, 2, 3}, the V ∗
jns are obtained by replacing the Yis by the Y ∗

i s in
the Vjns. All these terms could be handled by arguments similar to the ones
detailed above. The proof of Theorem 2 is now complete.
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Appendix: Additional proofs

We here provide proofs of technical lemmas and additional details for the proofs
in the manuscript. We define Zi = (Yi,Wi, Xi), ‖ψ‖∞ = supx∈Rq |ψ(x)|,

Knij = |Knij | =
1

hp

∣∣∣∣K
(
Wi −Wj

h

)∣∣∣∣ ,

and

Lnij = |Lnij | =
1

gp

∣∣∣∣L
(
Wi −Wj

g

)∣∣∣∣ .

Proof of Lemma 2. 1. We have

E [An] =
4hp

(n− 1)2

n∑

i=2

i−1∑

j=1

E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
=

2nhp

n− 1
E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
,

and

Var [An] ≤
64h2p ‖ψ‖4∞
(n− 1)

4

n∑

i=3

i−1∑

j=2

j−1∑

j′=1

E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
j′f

2
j′K

2
nijK

2
nij′
]

+
32h2p ‖ψ‖4∞
(n− 1)

4

n∑

i=3

i−1∑

i′=1

i′−1∑

j=2

E
[
σ2
i f

2
i σ

2
i′f

2
i′u

4
jf

4
jK

2
nijK

2
ni′j

]

+
16h2p ‖ψ‖4∞
(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
σ4
i f

4
i u

4
jf

4
jK

4
nij

]

= O
(
n−1

)
E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
kf

2
kKnijKnik

]

+O
(
n−1

)
E
[
σ2
i f

2
i σ

2
i′f

2
i′u

4
jf

4
j KnijKni′j

]

+O
(
n−2h−p

)
E
[
σ4
i f

4
i u

4
jf

4
j Knij

]

= O
(
n−1

)
+O

(
n−2h−p

)
.

Deduce that Var[An] → 0, and hence remains to show that E[An] → ω2. We
have

hp E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
= E

[∫
ϕXi

(t)ϕXj
(−t)F

[
K2
]
(ht)ψ2 (Xi −Xj) dt

]

where ϕx(t) = F [σ2(·, x)f2(·)π(· | x)](t). Let us note that

E

[∫ ∣∣ϕXi
(t)ϕXj

(−t)
∣∣ψ2(Xi −Xj) dt

]
≤ ‖ψ‖∞ E

[∫
|ϕX (t)|2 dt

]

= ‖ψ‖∞ E
[
σ4(W,X) f4(W )π(W |X)

]
,

by Plancherel Theorem. Moreover, F [K2](ht) is bounded and converges point-
wise to

∫
K2(s)ds as h → 0. Then by Lebesgue’s dominated convergence theo-
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rem,

hp E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
→ E

[∫
ϕXi

(t)ϕXj
(−t)ψ2 (Xi −Xj) dt

] ∫
K2 (s) ds

= ω2,

by Parseval’s Theorem.

2. By elementary calculations,

E
[
B2

n

]

=
64h2p

(n− 1)
4

n∑

i=3

n∑

i′=3

i−1∑

j=2

i′−1∑

j′=2

j−1∑

k=1

j′−1∑

k′=1

E
[
σ2
i f

2
i σ

2
i′f

2
i′ujfjuj′fj′ukfkuk′fk′

×KnijKni′j′KnikKni′k′ψijψi′j′ψikψi′k′ ]

≤ 64h2p ‖ψ‖4∞
(n− 1)

4

n∑

i=3

n∑

i′=3

i∧i′−1∑

j=2

j−1∑

k=1

E
[
σ2
i f

2
i σ

2
i′f

2
i′σ

2
j f

2
j σ

2
kf

2
kKnijKni′jKnikKni′k

]

=
64h2p ‖ψ‖4∞
(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
kf

2
kK

2
nijK

2
nik

]

+
128h2p ‖ψ‖4∞

(n− 1)4

n∑

i=3

i−1∑

i′=3

i′−1∑

j=2

j−1∑

k=1

E
[
σ2
i f

2
i σ

2
i′f

2
i′σ

2
j f

2
j σ

2
kf

2
kKnijKni′jKnikKni′k

]

= O
(
n−1

)
E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
kf

2
kKnijKnik

]

+O (hp)E
[
σ2
i f

2
i σ

2
i′f

2
i′σ

2
j f

2
j σ

2
kf

2
kKnijKni′jKnik

]

= O
(
n−1

)
+O (hp) = o(1).

3. We have ∀ε > 0, ∀n ≥ 1, and 1 < i ≤ n,

E
[
G2

n,iI (|Gn,i| > ε) |Fn,i−1

]
≤ E

1/2
[
G4

n,i |Fn,i−1

]
E
1/2 [I (|Gn,i| > ε) |Fn,i−1]

≤
E
[
G4

n,i |Fn,i−1

]

ε2
.

Then

n∑

i=2

E
[
G2

n,iI (|Gn,i| > ε) |Fn,i−1

]

≤ 1

ε2

n∑

i=2

E
[
G4

n,i |Fn,i−1

]

≤ 1

ε2
16h2p

(n− 1)
4

n∑

i=2

E
[
u4i f

4
i |Wi, Xi

]



i−1∑

j=1

ujKnijψij




4
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≤ 1

ε2
16κ4h

2p

(n− 1)
4

n∑

i=2




i−1∑

j=1

ujKnijψij




4

,

where κ4 is any constant that bounds E[u4f4 |W, X ]. The last expression that
multiplies ε−2 is positive and has expectation

16κ4h
2p

(n− 1)
4

n∑

i=2

i−1∑

j1=1

i−1∑

j2=1

i−1∑

j3=1

i−1∑

j4=1

E [uj1fj1uj2fj2uj3jj3uj4fj4

×Knij1Knij2Knij3Knij4ψij1ψij2ψij3ψij4 ]

=
96κ4h

2p

(n− 1)
4

n∑

i=3

i−1∑

j=1

j−1∑

k=1

E
[
u2jf

2
j u

2
kf

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

]

+
16κ4h

2p

(n− 1)
4

n∑

i=2

i−1∑

j=1

E
[
u4jf

4
jK

4
nijψ

4
ij

]

= O
(
n−1

)
E
[
u2jf

2
j u

2
kf

2
kKnijKnik

]
+O

(
n−2h−p

)
E
[
u4jf

4
j Knij

]

= O
(
n−1

)
+O

(
n−2h−p

)
.

The desired result follows.

The following result, known as Bochner’s Lemma (see Theorem 1.1.1. of
Bochner (1955)) will be repeatedly use in the following. We recall it for the
sake of completeness.

Lemma 5. For any function l(·) ∈ Up and any integrable kernel K(·),

sup
x∈Rp

∣∣∣∣
∫
l (y)

1

hp
K

(
x− y

h

)
dy − l (x)

∫
K (u) du

∣∣∣∣→ 0.

In the following we provide the proofs for rates for the remaining terms in
the decomposition of In, see Propositions 3 and 4. For this purpose, we use the
following a decomposition for U−statistics that can be found in Lavergne and
Vuong (2000): if Un = (1/n(m))

∑
aHn(Zi1 , . . . , Zim), then

E
[
U2
n

]
=

(
1

n(m)

)2 m∑

c=0

n(2m−c)

c!

(c)∑

|∆1|=c=|∆2|

I (∆1,∆2)

=

m∑

c=0

O
(
n−c

) (c)∑

|∆1|=c=|∆2|

I (∆1,∆2) ,

where
∑(c)

denotes summation over sets ∆1 and ∆1 of ordered positions of
length c,

I (∆1,∆2) = E [Hn (Zi1 , . . . , Zim)Hn (Zj1 , . . . , Zjm)]

and the i’s position in ∆1 coincide with the j’s position in ∆2 and are pairwise

distinct otherwise. Now, we will bound E[U2
n] using the ξc =

∑(c)
I(∆1,∆2) and
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the fact that by Cauchy’s inequality,

I2 (∆1,∆2) = E
2 [E [Hn (Zi1 , . . . , Zim) | Zc]E [Hn (Zj1 , . . . , Zjm) | Zc]]

≤ E
[
E
2 [Hn (Zi1 , . . . , Zim) | Zc]

]
E
[
E
2 [Hn (Zj1 , . . . , Zjm) | Zc]

]

where Zc denotes the common Zi’s.

Proof of Proposition 3. After bounding the ψij ’s by ‖ψ‖∞ the arguments are
very similar to those used in Lavergne and Vuong (2000). We prove only the
first statement.

(i) I1,3 is a U-statistic with kernelHn(Zi, Zj, Zl) = uifiulLnjlKnijψij . We need
to bound the ξc, c = 0, 1, 2, 3.

1. E[Hn] = 0, thus ξ0 = 0.

2. ξ1 = O(δ2n). Indeed, E[Hn | Zl] = δnulE[difiLnjlKnijψij | Zl] and
E[Hn | Zi] = 0 = E[Hn | Zj]. Then

E
[
E
2 [Hn | Zl]

]
≤ ‖ψ‖2∞ δ2nE

[
u2lE

2 [difiLnjlKnij | Zl]
]

= O
(
δ2n
)
E
[
u2lE

2
[
Lnjldjf

2
j | Zl

]]
= O

(
δ2n
)
.

3. ξ2 = O(g−p). Indeed, we have

E [Hn | Zi, Zj ] = uifiKnijψijE [ulLnjl | Zj ] = 0,

E [Hn | Zi, Zl] = uifiulE [LnjlKnijψij | Zi, Zl] ,

E [Hn | Zj , Zl] = ulLnjlE [uifiKnijψij | Zj ]

= δnulLnjlE [difiKnijψij | Zj ] .

By successive applications of Lemma 5,

E
[
E
2 (Hn | Zi, Zl)

]
≤ ‖ψ‖2∞ E

[
u2i f

2
i u

2
lE [LnjlKnij | Zi, Zl]

× E [Lnj′lKnij′ | Zi, Zl]
]

= O
(
g−p

)
E
[
u2i f

2
i u

2
lE [LnjlKnij | Zi, Zl]

× E [Knij′ | Zi, Zl]
]

= O
(
g−p

)
E
[
u2i f

3
i u

2
lLnjlKnij

]
= O

(
g−p

)
,

E
[
E
2 [Hn | Zj , Zl]

]
≤ ‖ψ‖2∞ δ2nE

[
u2lL

2
njlE

2 [difiKnij | Zj ]
]

≤ O
(
δ2n
)
E
[
u2lL

2
njld

2
jf

4
j

]

= O
(
δ2n
)
O
(
g−p

)
E
[
u2lLnjld

2
jf

4
j

]
= O

(
g−p

)
.

4. ξ3 = O(g−ph−p), as E[H2
n] equals

E
[
u2iu

2
l f

2
i L

2
njlK

2
nijψ

2
ij

]
= O

(
g−ph−p

)
E
[
u2iu

2
l f

2
i LnjlKnij

]

= O
(
g−ph−p

)
.

Collecting results, E[(nhp/2I1,3)
2] = O(δ2nnh

p)+O(hp/gp)+O(n−1g−p) = o(1).
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Proof of Proposition 4. As in Proposition 3, we only prove the first statement.
We will use the following lemma, which is similar to Lemma 2 of Lavergne and
Vuong (2000), and whose proof is then omitted.

Lemma 6. Let ∆f j
i = f̂ j

i − fi. If f(·) ∈ Up and ngp → ∞,

E

[
∆2f j

i | Zi, Zj, Zi′ , Zj′

]
= o (1)

and

E
[
∆2f j,l

i | Zi, Zj, Zl, Zi′ , Zj′ , Zl′

]
= o (1)

uniformly in the indices.

(i) Let us denote ∆f j
i = f̂ j

i −fi.We have I1,1 = (1/n(2))
∑

a ui∆f
j
i ujfjKnijψij

so that

E
[
I21,1
]
=

(
1

n(2)

)2
[
∑

a

ui∆f
j
i ujfjKnijψij

]

×
[
∑

a

ui′∆f
j′

i′ uj′fj′Kni′j′ψi′j′

]
(7)

where the first (respectively the second) sum is taken over all arrangements
of different indices i and j (respectively different indices i′ and j′). Let W
denote the sample ofWi, 1 ≤ i ≤ n, and let λn = E[∆2f j

i | Zi, Zj, Zi′ , Zj′ ].
By Lemma 6, λn = o(1) uniformly in the indices. By Equation (7), E[I21,1]
is equal to a normalized sum over four indices. This sum could split in
three sums of the following types.

1. All indices are different, that is a sum of n(4) terms. Each term in
the sum can be bounded as follows:

E

[
ui∆f

j
i ujfjKnijψijui′∆f

j′

i′ uj′fj′Kni′j′ψi′j′

]

≤ ‖ψ‖2∞ δ4nE
[
∆f j

i fj∆f
j′

i′ fj′E
[
didjdi′dj′KnijKni′j′ |W

]]

≤ ‖ψ‖2∞ δ4nE
[
fjfj′didjdi′dj′KnijKni′j′

× E

[
∆f j

i ∆f
j′

i′ | Zi, Zj, Zi′ , Zj′

]]

≤ O(δ4nλn)E |fjfj′didjdi′dj′KnijKni′j′ | = O
(
δ4nλn

)
.

2. One index is common to {i, j} and {i′, j′}, that is a sum of 4n(3)

terms. For each of such terms we can write

(i′ = i) E

[
u2i∆f

j
i ujfjKnijψij∆f

j′

i uj′fj′Knij′ψij′

]

≤ ‖ψ‖2∞ δ2nE
[
∆f j

i fj∆f
j′

i fj′E
[
u2i djdj′KnijKnij′ |W

]]

≤ O(δ2nλn)E
∣∣fjfj′u2idjdj′KnijKnij′

∣∣ = O
(
δ2nλn

)
,
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(j′ = j) E

[
ui∆f

j
i u

2
jf

2
jKnijψijui′∆f

j
i′Kni′jψi′j

]

≤ ‖ψ‖2∞ δ2nE
[
∆f j

i f
2
j∆f

j
i′E
[
diu

2
jdi′KnijKni′j |W

]]

≤ O(δ2nλn)E
∣∣f2

j diu
2
jdi′KnijKni′j

∣∣ = O
(
δ2nλn

)
,

(i′ = j) E

[
ui∆f

j
i u

2
jfjKnijψij∆f

j′

j uj′fj′Knjj′ψjj′

]

≤ ‖ψ‖2∞ δ2nE
[
∆f j

i fj∆f
j′

j fj′E
[
diu

2
jdj′KnijKnjj′ |W

]]

≤ O(δ2nλn)E
∣∣fjfj′diu2jdj′KnijKnjj′

∣∣ = O
(
δ2nλn

)
.

The case j′ = i is similar to i′ = j.

3. Two indices in common to {i, j} and {i′, j′}, that is a sum of 2n(2)

terms. For each term in the sum we can write

E

[
u2iu

2
j

(
∆f j

i

)2
f2
jK

2
nijψ

2
ij

]
= O

(
λnh

−p
)

and
E

[
u2iu

2
j∆f

j
i ∆f

i
jfifjK

2
nijψ

2
ij

]
= O

(
λnh

−p
)
.

Therefore, E[(nhp/2I1,1)
2] = δ4nn

2hpO(λn) + δ2nnh
pO (λn) + O (λn) = O(λn).

The result then follows from Lemma 6.

Proof of Lemma 3. We only prove the result for ∆r̂if̂i, as the reasoning is sim-
ilar for ∆f̂i. We have

∆r̂if̂i =
1

(n− 1)gp

∑

k 6=i

{
YkL

(
(Wi −Wk)g

−1
)
− E

[
Y L

(
(Wi −W )g−1

)]}

+ E
[
r(W )g−pL

(
(Wi −W )g−1

)]
− r(Wi)f(Wi)

= ∆1i +∆2i.

The uniform continuity of r(·)f(·) implies supi |∆2i| = op(1) by Lemma 5. For
supi |∆1i|, we use empirical process tools. Let us introduce some notation. Let
G be a class of functions of the observations with envelope function G and let

J(δ,G, L2) = sup
Q

∫ δ

0

√
1 + lnN(ε‖G‖2,G, L2(Q))dε, 0 < δ ≤ 1,

denote the uniform entropy integral, where the supremum is taken over all
finitely discrete probability distributions Q on the space of the observations,
and ‖G‖2 denotes the norm of G in L2(Q). Let Z1, . . . , Zn be a sample of
independent observations and let

Gng =
1√
n

n∑

i=1

γ(Zi), γ ∈ G

be the empirical process indexed by G. If the covering number N(ε,G, L2(Q)) is
of polynomial order in 1/ε, there exists a constant c > 0 such that J(δ,G, L2) ≤
cδ
√
ln(1/δ) for 0 < δ < 1/2. Now if Eγ2 < δ2EG2 for every γ and some
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0 < δ < 1, and EG(4υ−2)/(υ−1) < ∞ for some υ > 1, under mild additional
measurability conditions, Theorem 3.1 of van der Vaart and Wellner (2011)
implies

sup
G

|Gnγ| = J(δ,G, L2)


1 + J(δ1/υ,G, L2)

δ2
√
n

‖G‖2−1/υ
(4υ−2)/(υ−1)

‖G‖2−1/υ
2




υ/(2υ−1)

‖G‖2Op(1),

(8)
where ‖G‖22 = EG2 and the Op(1) term is independent of n. Note that the
family G could change with n, as soon as the envelope is the same for all n. We
apply this result to the family of functions G = {Y L((W −w)/g) : w ∈ Rp} for a
sequence g that converges to zero and the envelope G(Y,W ) = Y supw∈Rp L(w).
Its entropy number is of polynomial order in 1/ε, independently of n, as L(·) is
of bounded variation, see for instance van der Vaart and Wellner (1996). Now
for any γ ∈ G, Eγ2(Y,W ) ≤ CgpEG2(Y,W ), for some constant C. Let δ = gp/2,
so that Eγ2(Y,W ) ≤ C′δ2EG2(Y,W ), for some constant C′ and υ = 3/2, which
corresponds to EG8 <∞ that is guaranteed by our assumptions. The bound in
(8) thus yields

sup
G

∣∣∣∣
1

gp
√
n
Gnγ

∣∣∣∣ =
ln1/2(n)√

ngp

[
1 + n−1/2g−2p/3 ln1/2(n)

]3/4
Op(1),

where the Op(1) term is independent of n. Since ng4p/3/ lnn→ ∞, the expected
result follows.

Proof of Lemma 4. We have

û∗i f̂i =
1

n− 1

∑

k 6=i

(Y ∗
i − Y ∗

k )Lnik

= u∗i f̂i −
1

n− 1

∑

k 6=i

u∗kLnik +
1

n− 1

∑

k 6=i

(r̂i − r̂k)Lnik

where

1

n− 1

∑

k 6=i

(r̂i − r̂k)Lnik =
1

n− 1

∑

k 6=i

(ri − rk)Lnik + (r̂i − ri) f̂i

− 1

(n− 1)
2
f̂k

∑

k 6=i

∑

k′ 6=k

(rk′ − rk)Lnkk′Lnik

− 1

(n− 1)
2
f̂k

∑

k 6=i

∑

k′ 6=k

uk′Lnkk′Lnik.

By Lemma 3 and the fact that f(·) is bounded away from zero, deduce that
supi |r̂i − ri| = op(1). From this and applying several times the arguments in
the proof of Lemma 3 we obtain

1

n− 1

∑

k 6=i

(r̂i − r̂k)Lnik = op (1) .
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On the other hand,
∣∣∣∣∣∣

1

n− 1

∑

k 6=i

u∗kLnik

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1

n− 1

∑

k 6=i

ηkukLnik

∣∣∣∣∣∣
+

supj |r̂j − rj |
n− 1

∑

k 6=i

|ηk|Lnik

= op (1) ,

where we used again the arguments for ∆1i in the proof of Lemma 3 (here with
ηkuk and |ηk| in the place of Yk) to derive the last rate.
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