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1. Introduction

Generalized linear mixed models are a natural and widely used class of models,
but one in which the likelihood often involves an integral of very high dimension.
Because of this intractability, many alternative methods have been developed
for inference in these models.

One class of approaches involves replacing the likelihood with some approxi-
mation, for example using Laplace’s method or importance sampling. However,
these approximations can fail in cases where the structure of the model is sparse,
in that only a small amount of information is available on each random effect,
especially when the data are binary.

The likelihood may be written as an integral over the random effects. If there
are a large number of random effects, then it will be computationally infeasible
to obtain an accurate approximation to this integral by direct numerical inte-
gration. However, it is not always necessary to compute this high-dimensional
integral to find the likelihood. In a two-level random intercept model, indepen-
dence between clusters may be exploited to write the likelihood as a product
of one-dimensional integrals, so it is relatively easy to obtain a good approxi-
mation to the likelihood, even if there are large number of random effects. In
more complicated situations it is often not immediately obvious whether any
such simplification exists.

The ‘sequential reduction’ method developed in this paper exploits the struc-
ture of the integrand to simplify computation of the likelihood, and as a result
allows a fast and accurate approximation to the likelihood to be found in many
cases where existing approximation methods fail. Examples are given to demon-
strate the new method, including pairwise competition models and a model with
nested structure.

2. The generalized linear mixed model

2.1. The model

A generalized linear mixed model allows the distribution of a response Y =
(Y1, . . . , Ym) to depend on observed covariates through a linear predictor η.
Conditional on η, the distribution of Y is assumed to have exponential family
form, with mean µ = E(Y|η) = g−1(η), for some known link function g(.). We
model

η = Xβ + Z(ψ)u,
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where β = (β1, . . . , βp) are fixed effects, with fixed design matrix X , and u =
(u1, . . . , un) are random effects, with design matrix Z(ψ) whose entries may
depend on a parameter ψ. We assume that the ui are independent standard
normal variables. At first sight, this assumption of independent and identically
distributed random effects appears restrictive, but by suitable choice of Z(ψ),
we may let Z(ψ)u have any multivariate normal distribution with mean zero,
to coincide with the standard parameterization of a generalized linear mixed
model (as in Breslow and Clayton, 1993, for example).

For each item i, we define the ‘active’ set Ai = {j : Zji(ψ) 6= 0} to describe
which components of the response involve the random effect ui. We will say the
generalized linear mixed model has ‘sparse structure’ if this active set is small
for most items. These sparse models are particularly problematic for inference,
especially when the data are binary, because the amount of information available
on each random effect is small.

2.2. Example: Pairwise competition models

Consider a tournament among n players, consisting of contests between pairs
of players. For each contest, we observe a binary outcome: either i beats j
or j beats i. We suppose that each player i has some ability λi, and that
conditional on all the abilities, the outcomes of the contests are independent,
with distribution depending on the difference in abilities of the players i and
j, so that Pr(i beats j|λ) = g−1(λi − λj) for a link function g(.) such that
g−1(−t) = 1 − g−1(t). If g(.) = logit(.), then this describes a Bradley-Terry
model (Bradley and Terry, 1952). If g(.) = Φ−1(.) (the probit link), then it
describes a Thurstone-Mosteller model (Thurstone, 1927; Mosteller, 1951).

If covariate information xi is available for each player, then interest may lie
in the effect of the observed covariates on ability, rather than the individual
abilities λi themselves. We allow the ability of player i to depend on the covari-
ates xi through λi = βTxi + σui, where ui are independent N(0, 1) samples.
This gives a generalized linear mixed model, depending on a linear predictor
η with components ηr = λp1(r) − λp2(r), where p1(r) and p2(r) are the first
and second player involved in match r. The active set for each player is the set
of matches that player competes in, so the model will have sparse structure if
each player competes in only a small number of matches, a common scenario in
practice.

2.3. The likelihood

Let f(.|ηi) be the density of Yi, conditional on knowledge of the value of ηi,
and write θ = (β, ψ) for the full set of model parameters. Conditional on η, the
components of Y are independent, so that

L(θ) =

∫

Rn

m
∏

i=1

f
(

yi|ηi = XT
i β + Zi(ψ)

Tu
)

n
∏

j=1

φ(uj)duj , (1)
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where Xi is the ith row of X , and Zi(ψ) is the ith row of Z(ψ). Unless n is
very small, it will not be possible to approximate the likelihood well by direct
computation of this n-dimensional integral.

2.4. Existing approximations to the likelihood

Pinheiro and Bates (1995) suggest using a Laplace approximation to the inte-
gral (1). Write

g(u1, . . . , un|y, θ) =
m
∏

i=1

f
(

yi|ηi = XT
i β + Zi(ψ)

Tu
)

n
∏

j=1

φ(uj)

for the integrand of the likelihood. This may be thought of as a non-normalized
version of the posterior density for u, given y and θ. For each fixed θ, the Laplace
approximation relies on a normal approximation to this posterior density. To
find this normal approximation, let µθ maximize log g(u|y, θ) over u, and write
Σθ = −H−1

θ , where Hθ is the Hessian resulting from this optimization. The
normal approximation to g(.|y, θ) will be proportional to a Nn(µθ,Σθ) density.
Writing gna(.|y, θ) for the normal approximation to g(.|y, θ),

gna(u|y, θ) =
g(µθ|y, θ)

φn(µθ;µθ,Σθ)
φn(u;µθ,Σθ),

where we write φn(.;µ,Σ) for the Nn(µ,Σ) density. When we integrate over u,
only the normalizing constant remains, so that

LLaplace(θ) =
g(µθ|y, θ)

φn(µθ;µθ,Σθ)
= (2π)−

n
2 (detΣθ)

− 1

2 g(µθ|y, θ).

In the case of a linear mixed model, the approximating normal density is
precise, and there is no error in the Laplace approximation to the likelihood. In
other cases, and particularly when the response is discrete and may only take
a few values, the error in the Laplace approximation may be large. In the case
that n is fixed, and m → ∞, the relative error in the Laplace approximation
may be shown to tend to zero. However, in the type of model we consider here,
n is not fixed, but grows with m. The validity of the Laplace approximation
depends upon the rate of this growth. Shun and McCullagh (1995) study this
problem, and conclude that the Laplace approximation should be reliable pro-
vided that n = o(m1/3). However, the Laplace approximation to the difference
in the log-likelihood at two nearby points tends to be much more accurate than
the approximation to the log-likelihood itself. The effect that ratios of Laplace
approximations to similar functions tend to be more accurate than each Laplace
approximation individually has been noted before, for example by Tierney and
Kadane (1986) in the context of computing posterior moments. Nonetheless,
in models with very sparse structure (where we might have n = O(m)), even
the shape of the Laplace approximation to the log-likelihood surface may be
inaccurate, so another method is required.
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In cases where the Laplace approximation fails, Pinheiro and Bates (1995)
suggest constructing an importance sampling approximation to the likelihood,
based on samples from the normal distribution Nn(µθ,Σθ). Writing

w(u; θ) =
g(u|y, θ)

φn(u;µθ,Σθ)
,

the likelihood may be approximated by LIS(θ) =
∑N

i=1 w(u
(i); θ)/N, where

u(i) ∼ N(µθ,Σθ).
Unfortunately, there is no guarantee that the variance of the importance

weights w(u(i); θ) will be finite. In such a situation, the importance sampling
approximation will still converge to the true likelihood as N → ∞, but the
convergence may be slow and erratic, and estimates of the variance of the ap-
proximation may be unreliable.

2.5. Bayesian inference

From a Bayesian perspective, Markov chain Monte Carlo methods could be used
to sample from the posterior distribution. However, such methods are compu-
tationally intensive, and it can be difficult to detect whether the Markov chain
has converged to the correct distribution. Rue, Martino and Chopin (2009) sug-
gest the Integrated Nested Laplace Approximation (INLA) to approximate the
marginal posterior distribution of each parameter. INLA is computationally ef-
ficient, but Fong, Rue and Wakefield (2010) note that the approximation may
perform poorly in models for binary data. In situations where the Laplace ap-
proximation to the likelihood fails, INLA may be also unreliable.

We do not consider these methods further, and instead focus on those meth-
ods which provide a direct approximation to the marginal likelihood (1).

3. The sequential reduction method

3.1. Conditional independence structure

We now consider the distribution of the unknown random effects u given y, at
fixed parameter value θ, which has density proportional to the integrand of the
likelihood g(u|y, θ). We will refer to this distribution as the posterior distribu-
tion of u given y and θ. Despite this terminology, our aim is to approximate the
likelihood, which is the normalizing constant associated with this distribution,
rather than to conduct Bayesian inference.

Recall that for each item i we define the active set Ai to be the indices of
the non-zero components of the ith column of Z(ψ). If the active sets Ai and
Aj are disjoint, ui and uj will be conditionally independent in the posterior
distribution, given the values of all the other random effects.

It is possible to represent this conditional independence structure graphically.
Consider a graph G constructed to have:
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1. A vertex for each random effect
2. An edge between two vertices i and j if Ai ∩ Aj 6= ∅.

If there is no edge between i and j in G, ui and uj are conditionally independent
in the posterior distribution, given the values of all the other random effects,
so the posterior distribution of the random effects has the pairwise Markov
property with respect to G. We call G the posterior dependence graph for u

given y.
In a pairwise competition model, the posterior dependence graph simply con-

sists of a vertex for each player, with an edge between two vertices if those players
compete in at least one contest. For models in which each observation relies on
more than two random effects, an observation will not be represented by a single
edge in the graph.

The problem of computing the likelihood has now been transformed to that
of finding a normalizing constant of a density associated with an undirected
graphical model. In order to see how the conditional dependence structure can
be used to enable a simplification of the likelihood, we first need a few definitions.
A complete graph is one in which there is an edge from each vertex to every
other vertex. A clique of a graph G is a complete subgraph of G, and a clique
is said to be maximal if it is not itself contained within a larger clique. For any
graph G, the set of all maximal cliques of G is unique, and we write M(G) for
this set.

The Hammersley-Clifford theorem (Besag, 1974) implies that g(.|y, θ) factor-
izes over the maximal cliques of G, so that we may write

g(u|y, θ) =
∏

C∈M(G)

gC(uC)

for some functions gC(.). A condition needed to obtain this result using the
Hammersley-Clifford theorem is that g(u|y, θ) > 0 for all u. This will hold
in this case because φ(ui) > 0 for all ui. In fact, we may show that such a
factorization exists directly. One particular such factorization is constructed in
Section 3.4, and would be valid even if we assumed a random effects density
fu(.) such that fu(ui) = 0 for some ui.

3.2. Exploiting the clique factorization

Jordan (2004) reviews some methods to find the marginals of a density factorized
over the maximal cliques of a graph. While these methods are well known,
their use is typically limited to certain special classes of distribution, such as
discrete or Gaussian distributions. We will use the same ideas, combined with a
method for approximate storage of functions, to approximate the marginals of
the distribution with density proportional to g(.|y, θ), and so approximate the
likelihood L(θ) =

∫

Rn g(u|y, θ)du.
We take an iterative approach to the problem, first integrating out u1 to find

the non-normalized marginal posterior density of {u2, . . . , un}. We start with a
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factorization of g(.|y, θ) over the maximal cliques of the posterior dependence
graph of {u1, . . . , un}, and the idea will be to write the marginal posterior
density of {u2, . . . , un} as a product over the maximal cliques of a new marginal
posterior dependence graph. Once this is done, the process may be repeated n
times to find the likelihood. We will write Gi for the posterior dependence graph
of {ui, . . . , un}, so we start with posterior dependence graph G1 = G. Write
Mi =M(Gi) for the maximal cliques of Gi.

Factorizing g(.|y, θ) over the maximal cliques of G1 gives

g(u|y, θ) =
∏

C∈M1

g1C(uC),

for some functions {g1C(.) : C ∈ M1}. To integrate over u1, it is only necessary
to integrate over maximal cliques containing vertex 1, leaving the functions
on other cliques unchanged. Let N1 be the set of neighbors of vertex 1 in G
(including vertex 1 itself). Then

∫

g(u|y, θ)du1 =

∫

∏

C∈M1:C⊆N1

g1C(uC)du1
∏

C̃∈M1:C̃ 6⊆N1

g1
C̃
(uC̃)

=

∫

g1N1
(u1,uN1\1)du1

∏

C̃∈M1:C̃ 6⊆N1

g1
C̃
(uC̃).

Thus g1N1
(.) is obtained by multiplication of all the functions on cliques which

are subsets of N1. This is then integrated over u1, to give

g2N1\1
(uN1\1) =

∫

g1N1
(u1,uN1\1)du1.

The functions on all cliques C̃ which are not subsets of N1 remain unchanged,
with g2

C̃
(uC̃) = g1

C̃
(uC̃).

This defines a new factorization of g(u2, . . . un|y, θ) over the maximal cliques
M2 of the posterior dependence graph for {u2, . . . , un}, whereM2 containsN1\1,
and all the remaining cliques in M1 which are not subsets of N1. The same
process may then be followed to remove each ui in turn.

3.3. The sequential reduction method

We now give the general form of a sequential reduction method for approxi-
mating the likelihood. We highlight the places where choices must be made to
use this method in practice. The following sections then discuss each of these
choices in detail.

1. The ui may be integrated out in any order. Section 3.6 discusses how to
choose a good order, with the aim of minimizing the cost of approximat-
ing the likelihood. Reorder the random effects so that we integrate out
u1, . . . , un in that order.



142 H. E. Ogden

2. Factorize g(u|y, θ) over the maximal cliques M1 of the posterior depen-
dence graph, as g(u|y, θ) =

∏

C∈M1
g1C(uC). This factorization is not

unique, so we must choose one particular factorization {g1C(.) : C ∈ M1}.
Section 3.4 gives the factorization we use in practice.

3. Once u1, . . . , ui−1 have been integrated out (using some approximate
method), we have the factorization g̃(ui, . . . , un|y, θ) =

∏

C∈Mi
giC(uC),

of the (approximated) non-normalized posterior for ui, . . . , un. Write

gNi
(uNi

) =
∏

C∈Mi:C⊂Ni

giC(uC).

We then integrate over ui (using a quadrature rule), and store an approx-
imate representation g̃Ni\i(.) of the resulting function gNi\i(.). In Section
3.5 we discuss the construction of this approximate representation.

4. Write

g̃(ui+1, . . . , un|y, θ) = g̃Ni\i(uNi\i)
∏

C∈Mi:C 6⊂Ni

giC(uC),

defining a factorization of the (approximated) non-normalized posterior
density of {ui+1, . . . , un} over the maximal cliques Mi+1 of the new pos-
terior dependence graph Gi+1.

5. Repeat steps (3) and (4) for i = 1, . . . , n−1, then integrate g̃(un|y, θ) over
un to give the approximation to the likelihood.

3.4. A specific clique factorization

The general method described in Section 3.3 is valid for an arbitrary factoriza-
tion of g(u|y, θ) over the maximal cliquesM1 of the posterior dependence graph.
To use the method in practice, we must first define the factorization used.

Given an ordering of the vertices, order the cliques in M1 lexicographically
according to the set of vertices contained within them. The observation vector
y is partitioned over the cliques in M1 by including in yC all the observations
only involving items in the clique C, which have not already been included in
yB for some earlier clique in the ordering, B. Write a(C) for the set of vertices
appearing for the first time in clique C. Let

g1C(uC) = f(yC |uC)
∏

j∈a(C)

φ(uj).

Then g(u|y) =
∏

C∈M1
g1C(uC), so g

1
C(.) does define a factorization of g(.|y).

3.5. Approximate function representation

3.5.1. A modified function for storage

A key choice in the sequential reduction algorithm is the method used to ‘store’
the function gNi\i(.). The storage consists of a set of points Si at which to
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evaluate gNi\i(.), and a method of interpolation between those points, which
will be used later in the algorithm if we need to evaluate gNi\i(uNi\i) for some
uNi\i 6∈ Si.

We would like to minimize the size of the absolute error in the interpolation
for those points uNi\i at which we will later interpolate. The quality of the
interpolation may be far more important at some points uNi\i than at others.
We will transform to a new function rNi\i(uNi\i) = gNi\i(uNi\i)hNi\i(uNi\i),
where we choose hNi\i(.) so that the size of the absolute interpolation error for
rNi\i(.) is of roughly equal concern across the whole space. Given an interpo-
lation method for rNi\i(.), we obtain interpolated values for gNi\i(.) through

ginterpNi\i
(uNi\i) = rinterpNi\i

(uNi\i)/hNi\i(uNi\i), so we must ensure that hNi\i(.) is
easy to compute.

Recall that we may think of the original integrand g(.|y, θ) as being the
non-normalized posterior density for u|y, θ. The region where where we will in-
terpolate a large number of points corresponds to the region where the marginal
posterior density of uNi\i|y, θ is large. Ideally, we would choose hNi\i(.) to make
rNi\i(.) proportional to the density of uNi\i|y, θ, but this density is difficult to
compute.

To solve this problem, we make use of the normal approximation to g(.|y, θ)
used to construct the Laplace approximation to the likelihood, which approx-
imations the posterior distribution u|y, θ as Nn(µ,Σ). The marginal posterior
distribution of uNi\i|y, θ may therefore be approximated as Nd(µNi\i,ΣNi\i),
where d = |Ni \ i|. We choose hNi\i(.) to ensure that the normal approximation
to rNi\i(.) (computed as described in Section 2.4) is Nd(µNi\i,ΣNi\i). That
is, we choose log hNi\i(.) to be a quadratic function, with coefficients chosen
so that ∇ log hNi\i(µNi\i) = −∇ log gNi\i(µNi\i) and ∇T∇ log hNi\i(µNi\i) =

−Σ−1
Ni\i

−∇T∇ log gNi\i(µNi\i).

3.5.2. Storing a function with a normal approximation

Suppose that f(.) is a non-negative function on R
d, for which we want to

store an approximate representation, and that we may approximate f(.) with
fna(x) ∝ φd(x, µ,Σ), for some µ and Σ. In our case, the function f(.) which
we store is rNi\i(.), of dimension d = |Ni \ i|, and with normal approximation
Nd(µNi\i,ΣNi\i).

We transform to a new basis. Let z = A−1(x− µ), where A is chosen so that
AAT = Σ. More specifically, we choose A = PD, where P is a matrix whose
columns are the normalized eigenvectors of Σ andD is a diagonal matrix with di-
agonal entries the square roots of the eigenvalues of Σ. Write fz(z) = f(Az+µ),
and let c(z) = log fz(z)−log φd(z, 0, I), so that c(.) will be constant if the normal
approximation is precise. We store c(.) by evaluating at some fixed points for z,
and specifying the method of interpolation between them. The choice of these
points and the interpolation method is discussed in the next section. Given the
interpolation method for c(.), we may define f interp(x) = exp{cinterp(A−1(x −
µ))}φd(A−1(x − µ), 0, I), to give an interpolation method for f(.).
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If g(u|y, θ) ∝ φn(u, µ,Σ), there will be no error in the Laplace approxima-
tion to the likelihood. In this situation, c(.) will be constant, and the sequential
reduction approximation will also be exact. In situations where the normal ap-
proximation is imprecise, c(.) will no longer be constant, and we may improve on
the baseline (Laplace) approximation to the likelihood by increasing the number
of points used for storage.

3.5.3. Sparse grid interpolation

In order to store an approximate representation of the standardized modifier
function c(.), we will compute values of c(.) at a fixed set of evaluation points,
and specify a method of interpolation between these points. We now give a
brief overview of the interpolation methods based on sparse grids of evaluation
points. Some of the notation we use is taken from Barthelmann, Novak and
Ritter (2000), although there are some differences: notably that we assume c(.)
to be a function on R

d, rather than on the d-dimensional hypercube [−1, 1]d,
and we will use cubic splines, rather than (global) polynomials for interpola-
tion.

First we consider a method for interpolation for a one-dimensional function
c : R → R. We evaluate c(.) at ml points s1, . . . , sml

and write

U l(c) =

ml
∑

j=1

c(sj)a
l
j ,

where the alj are basis functions. The approximate interpolated value of c(.) at

any point x is then given by U l(c)(x).

Here l denotes the level of approximation, and we suppose that the set of
evaluation points is nested so that at level l, we simply use the first ml points
of a fixed set of evaluation points S = {s1, s2, . . .}. We assume that m1 = 1, so
at the first level of approximation, only one point is used, and ml = 2l − 1 for
l > 1, so there is an approximate doubling of the number of points when the
level of approximation is increased by one.

The full grid method of interpolation is to take mlj points in dimension j,
and compute at each possible combination of those points. We write

(U1 ⊗ · · · ⊗ Ud)(c) =

ml1
∑

j1=1

. . .

mld
∑

jd=1

c(sj1 , . . . , sjd)
(

al1j1 ⊗ · · · ⊗ aldjd

)

,

where

(al1j1 ⊗ · · · ⊗ aldjd)(x1, . . . , xd) = al1j1(x1)× · · · × aldjd(xd).

Thus, in the full grid method, we must evaluate c(.) at
∏d

j=1mlj = O(
∏d

j=1 2
lj ) =

O(2
∑

lj ) points. This will not be possible if
∑d

j=1 lj is too large.
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In order to construct an approximate representation of c(.) in reasonable

time, we could limit the sum
∑d

j=1 lj used in a full grid to be at most d+ k, for
some k ≥ 0. If k > 0, there are many possibilities for ‘small full grids’ indexed
by the levels l = (l1, . . . , ld) which satisfy this constraint. A natural question is
how to combine the information given by each of these small full grids to give a
good representation overall.

For a univariate function c(.), let

∆l(c) = U l(c)− U l−1(c) =

ml−1
∑

j=1

c(sj)
[

ajl − ajl−1

]

+

ml
∑

j=ml−1+1

c(sj)a
j
l ,

for l > 1, and ∆1 = U1. Then ∆l gives the quantity we should add the approx-
imate storage of c(.) at level l − 1 to incorporate the new information given by
the knots added at level l.

Returning to the multivariate case, the sparse grid interpolation of c(.) at
level k is given by

cinterpk =
∑

l:|l|≤d+k

(∆l1 ⊗ · · · ⊗∆ld)(c).

To store c(.) on a sparse grid at level k, we must evaluate at O(dk+1) points,
which allows approximate storage for much larger dimension d than is possible
using a full grid method.

Barthelmann, Novak and Ritter (2000) use global polynomial interpolation
for a function defined on a hypercube, with the Chebyshev knots. We prefer
to use cubic splines for interpolation, since the positioning of the knots is less
critical. Since we have already standardized the function we wish to store, we
use the same knots in each direction, and choose these standard knots sl at level
l to be ml equally spaced quantiles of a N(0, τ2k ) distribution. As k increases, we
choose larger τk, so that the size of the region covered by the sparse grid increases
with k. However, the rate at which τk increases should be sufficiently slow to
ensure that the distance between the knots sk decreases with k. Somewhat
arbitrarily, we choose τk = 1 + k

2 , which appears to work reasonably well in
practice.

3.5.4. Bounded interpolation

To ensure that gNi
(.) remains integrable at each stage, we impose an upper

bound M on the interpolated value of c(.). In practice, we choose M to be the
largest value of c(z) observed at any of the evaluation points.

3.6. Computational complexity

Using sparse grid storage at level k, the cost of stage i of the sequential reduction
algorithm is at most O(|Ni|2k). The overall cost of approximating the likelihood
will be large if maxi |Ni| is large.
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The random effects may be removed in any order, so it makes sense to use
an ordering that allows approximation of the likelihood at minimal cost. This
problem may be reduced to a problem in graph theory: to find an ordering
of the vertices of a graph, such that when these nodes are removed in order,
joining together all neighbors of the vertex to be removed at each stage, the
largest clique obtained at any stage is as small as possible. This is known as
the triangulation problem, and the smallest possible value, over all possible
orderings, of the largest clique obtained at some stage is known as the treewidth
of the graph.

Unfortunately, algorithms available to calculate the treewidth of a graph on
n vertices can take at worst O(2n) operations, so to find the exact treewidth
may be too costly for n at all large. However, there are special structures of
graph which have known treewidth, and algorithms exist to find upper and
lower bounds on the treewidth in reasonable time (see Bodlaender and Koster,
2008, 2010). We use a constructive algorithm for finding an upper bound on the
treewidth, which outputs an elimination ordering achieving that upper bound,
to find a reasonably good (though not necessarily optimal) ordering.

3.7. An R package for sequential reduction

The sequential reduction method is implemented in R (R Core Team, 2014)
by the package glmmsr, included as supplementary material (Ogden, 2015).
The code for sparse grid interpolation is based on the efficient storage schemes
suggested by Murarasu et al. (2011). Code to reproduce the examples of Section
4 is also provided.

4. Examples

We give some examples to compare the performance of the proposed sequential
reduction method with existing methods to approximate the likelihood. The first
two examples here are of pairwise competition models (a simple tree tournament
with simulated data, and a more complex, real-data example); the third is a
mixed logit model with two nested layers of random effects.

4.1. Tree tournament

Consider observing a tree tournament, with structure as shown in Figure 1a.
Suppose that there is a single observed covariate xi for each player, where λi =
βxi+σui and ui ∼ N(0, 1). We consider one particular tournament with this tree
structure, simulated from the model with β = 0.5 and σ = 1.5. We suppose that
we observe two matches between each pair of competing players. The covariates
xi are independent draws from a standard normal distribution.

We fit the model using the Laplace approximation, and the sequential reduc-
tion approximations, for k = 1, 2, 3, 4 and 5. The posterior dependence graph of
a tree tournament is a tree, which has treewidth 2. Using the sequential reduc-
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(a) Tree tournament (b) Lizards tournament
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(c) Three-level model

Fig 1. The posterior dependence graphs for the examples.

Table 1

The parameter estimates and standard errors for the tree tournament

Laplace k=1 k=2 k=3 k=4 k=5

β
estimate 0.44 0.44 0.45 0.46 0.46 0.46

s.e. 0.26 0.27 0.27 0.27 0.27 0.27

σ
estimate 1.13 1.26 1.29 1.30 1.30 1.30

s.e. 0.31 0.36 0.37 0.38 0.38 0.38

tion method with sparse grid storage at level k, the cost of approximating the
likelihood at each point will be O(n4k). In reality, the computation time does
not quadruple each time k is increased, since the computation is dominated by
fixed operations whose cost does not depend on k. To compute the approxima-
tion to the likelihood at a single point took about 0.02 seconds for the Laplace
approximation, 0.22 seconds for k = 1, 0.24 seconds for k = 2, 0.24 seconds for
k = 3, 0.27 seconds for k = 4 and 0.30 seconds for k = 5.

Table 1 gives the estimates of β and σ resulting from each approximation to
the likelihood. The estimates of β are similar for all the approximations, but the
estimate of σ found by maximizing the Laplace approximation to the likelihood
is smaller than the true maximum likelihood estimator.

We also want to consider the quality of an importance sampling approxi-
mation to the log-likelihood, as described in Section 2.4. We are interested in
the shape of the log-likelihood surface, rather than the pointwise quality of the
approximation, so we consider approximations to the difference between the log-
likelihood at two points: the maximum (0.46, 1.30), and the point (0.60, 2.00).
We consider the quality of each approximation relative to the time taken to com-
pute it. Figure 2 shows the trace plots of importance sampling and sequential
reduction approximations to this difference in log-likelihoods, plotted against
the length of time taken to find each approximation, on a log scale. In well
under a second, the sequential reduction approximation converges to such an
extent that differences in the approximations are not visible on this scale. By
contrast, after more than 14 hours, the importance sampling approximation has
still not converged.
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Fig 2. Importance sampling and sequential reduction approximations to ℓ(0.46, 1.30) −

ℓ(0.60, 2.00), plotted against the time taken to find the approximation, on a log scale. The
sequential reduction approximation converges in less than a second, but the importance sam-
pling approximation has still not converged after over 14 hours.

4.2. An animal behavior “tournament”: Augrabies Flat lizards

Whiting et al. (2006) conducted an experiment to determine the factors affecting
the fighting ability of male Augrabies flat lizards, Platysaurus broadleyi. They
captured n = 77 lizards, recorded various measurements on each, and then
released them and recorded the outcomes of fights between pairs of animals.
The tournament structure is shown in Figure 1b. The data are available in R
as part of the BradleyTerry2 package (Turner and Firth, 2012).

There are several covariates xi available for each lizard. Turner and Firth
(2012) suggest to model the ability of each lizard as λi = βTxi + σui, where
ui ∼ N(0, 1). The data are binary, and we assume a Thurstone-Mosteller model,
so that Pr(i beats j|λ) = Φ(λi − λj).

In order to find the sequential reduction approximation to the likelihood, we
must first find an ordering in which to remove the players, an ordering which
will minimize the cost of the algorithm. Methods to find upper and lower bounds
for the treewidth give that the treewidth is either 4 or 5, and we use an ordering
corresponding to the upper bound.

To demonstrate the performance of the sequential reduction approximation,
we consider the cut across the log-likelihood surface at β = 0, as σ varies.
The various approximations to this curve are shown in Figure 3. It becomes
harder to obtain a good approximation to the log-likelihood as σ increases. The
case k = 0 corresponds to the Laplace approximation, and gives a poor-quality
approximation for σ > 0.5. As k increases, the approximation improves. All
values of k ≥ 3 give an excellent approximation to the log-likelihood, and the
approximations for k = 4 and k = 5 are indistinguishable at this scale.
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k = 0 (0.02 s)
k = 1 (0.25 s)
k = 2 (0.28 s)
k = 3 (0.40 s)
k = 4 (0.99 s)
k = 5 (4.74 s)

Fig 3. Sequential reduction approximations to ℓ(β = 0, σ), for various values of k. The
curve for k = 0 (the Laplace approximation) is the lowest line, and the lines get higher as k

increases. The curves for k = 4 and k = 5 are indistinguishable.

If we include all covariates suggested by Turner and Firth (2012) in the
model, the maximum likelihood estimator is not finite. A penalized version of
the likelihood could be used to obtain a finite estimate. In a generalized linear
model, the bias-reduction penalty of Firth (1993) may be used for this purpose.
Further work is required to obtain a good penalty for use with generalized linear
mixed models.

4.3. A three-level model

Rabe-Hesketh, Skrondal and Pickles (2005) note that it is possible to simplify
computation of the likelihood in models with nested random-effect structure.
Using the sequential reduction method, there is no need to treat nested models
as a special case. Their structure is automatically detected and exploited by the
algorithm.

We demonstrate the method for a three-level model. Observations are made
on items, where each item is contained within a level-1 group, and each level-1
group is itself is contained in a level-2 group. The linear predictor is modeled
as ηi = α+ βxi + σ1ug1(i) + σ2vg2(i), where g1(i) and g2(i) denote the first and
second-level groups to which i belongs. We consider the case in which there are
100 second-level groups, each containing two first-level groups, which themselves
each contain two items. The posterior dependence graph of this model is shown
in Figure 1c, and has treewidth 2. The treewidth of the posterior dependence
graph for a similarly defined L-level model is L− 1.

We suppose that yi ∼ Bernoulli(pi), where pi = logit−1(ηi), and and simulate
from this model, with α = −0.5, β = 0.5, σ1 = 1 and σ2 = 0.5, The fitted
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Table 2

The parameter estimates and standard errors for the three-level model

Laplace k=1 k=2 k=3 k=4 k=5

α
estimate −0.46 −0.50 −0.50 −0.50 −0.50 −0.50

s.e. 0.17 0.19 0.19 0.19 0.19 0.19

β
estimate 0.45 0.49 0.49 0.49 0.49 0.49

s.e. 0.23 0.25 0.25 0.25 0.25 0.25

σ1

estimate 0.54 0.92 0.90 0.89 0.89 0.89
s.e. 0.38 0.33 0.35 0.35 0.35 0.35

σ2

estimate 0.54 0.53 0.57 0.58 0.58 0.58
s.e. 0.27 0.32 0.32 0.32 0.32 0.32

values found using the sequential reduction method with various different values
of k are shown in Table 2. The parameter estimates found from the Laplace
approximation to the likelihood are some distance from the maximum likelihood
estimator, especially for the variance parameter of the level-1 group.

5. Conclusions

Many common approaches to inference in generalized linear mixed models rely
on approximations to the likelihood which may be of poor quality if there is
little information available on each random effect. There are many situations in
which it is unclear how good an approximation to the likelihood will be, and
how much impact the error in the approximation will have on the statistical
properties of the resulting estimator. It is therefore very useful to be able to
obtain an accurate approximation to the likelihood at reasonable cost.

The sequential reduction method outlined in this paper allows a good approx-
imation to the likelihood to be found in many models with sparse structure —
precisely the situation where currently-used approximation methods perform
worst. By using sparse grid interpolation methods to store modifications to the
normal approximation used to construct the Laplace approximation, it is pos-
sible to get an accurate approximation to the likelihood for a wide range of
models.
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Supplementary Material

R code for sequential reduction

(doi: 10.1214/15-EJS991SUPP; .zip). The R package glmmsr for sequential re-
duction, and code to reproduce the examples.

http://dx.doi.org/10.1214/15-EJS991SUPP
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