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Abstract: Statistical inference in competing risks models is often based
on the famous Aalen-Johansen estimator. Since the corresponding limit
process lacks independent increments, it is typically applied together with
Lin’s (1997) resampling technique involving standard normal multipliers.
Recently, it has been seen that this approach can be interpreted as a wild
bootstrap technique and that other multipliers, e.g. centered Poissons, may
lead to better finite sample performances, see Beyersmann et al. (2013).
Since the latter is closely related to Efron’s classical bootstrap, the question
arises whether this or more general weighted bootstrap versions of Aalen-
Johansen processes lead to valid results. Here we analyze their asymp-
totic behaviour and it turns out that such weighted bootstrap versions in
general possess the wrong covariance structure in the limit. However, we
demonstrate that the weighted bootstrap can nevertheless be applied for
specific null hypotheses of interest and also discuss its limitations for sta-
tistical inference. To this end, we introduce different consistent weighted
bootstrap tests for the null hypothesis of stochastically ordered cumula-
tive incidence functions and compare their finite sample performance in a
simulation study.
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1. Introduction

In the widely used competing risks set-up, survival data is modeled via a sim-
ple time continuous Markov chain, which may be described by an initial state
(e.g. “non-failure”) and a final state (e.g. “failure”). Here the latter is catego-
rized into different absorbing states which are exclusive and may be interpreted
as the “competing” failure causes. In this context the so called cumulative in-
cidence function (CIF), also called sub-distribution function, is of particular
interest. For each absorbing state, i.e. failure cause, it is separately defined as
the probability of occurrence for this particular failure type until a given time.
Time-simultaneous inference for the CIF is often based on its canonical Aalen-
Johansen estimator, see Aalen and Johansen (1978) [1]. However, because of
the complicated covariance structure of its standardized limit process, depend-
ing on the statistical question of interest, often other tools are needed to create
valid statistical procedures. Here a worthwhile and very promising possibility to
attack this problem is the use of adequate resampling procedures like Lin’s mul-
tiplier technique, see Lin (1993, 1997) [26, 24] or Martinussen and Scheike (2006)
[28] for special examples with medical background. Lin’s (1997) [24] resampling
idea is as follows: For fixed data, standard normal multipliers are introduced
into a proper (resampling) statistic which theoretically possesses the same Gaus-
sian limit distribution as the corresponding normalized Aalen-Johansen process
of the CIF. Then the unknown distribution of the Aalen-Johansen process is
approximated by repeatedly generating a large number of realizations of the
resampling statistic. This approach leads to the construction of valid confidence
bands, see Lin (1997) [24].

In the context of hypothesis testing, Bajorunaite and Klein (2007, 2008) [6, 7]
as well as Sankaran et al. (2010) [36] have also studied Lin’s resampling scheme
to test for equality of different CIFs in extensive simulation studies. Spitoni et
al. (2012) [39] investigated Lin’s resampling method for estimating transition
probabilities in semi-Markovian models with applications to survival analysis.

As mentioned by Cai et al. (2010) [13], Lin’s (1997) [24] multiplier method is
a special version of the general wild bootstrap approach, originally introduced
by Wu (1986) [41] for inference in regression models. Recently Beyersman et al.
(2013) [10] have provided a rigorous study of the theoretical properties of the
wild bootstrap for the Aalen-Johansen estimator in competing risks allowing
for independent left-truncation and right-censoring. There it is discussed that
other multipliers such as standardized Poisson variates may help to construct
more accurate confidence bands for the CIF in the competing risk set-up. As
explained in that paper the latter is quite close in spirit to Efron’s (1979) [15]
classical bootstrap, in which the resampling scheme is generated by drawing with
replacement from the sample (or an adequately transformed sample). This mo-
tivates the question whether the classical bootstrap or other related resampling
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techniques may also be applied for statistical inference in one- and two-sample
competing risks designs. In particular, the current paper studies

(1) the theoretical properties of a general exchangeably weighted bootstrap
version of the Aalen-Johansen estimator in this context, covering amongst
others the above mentioned wild bootstrap as well as Efron’s original
bootstrap, and

(2) statistical applications and limitations of this general resampling approach
for testing different null hypotheses of interest for the CIF.

The weighted bootstrap approach was first introduced for i.i.d. samples by Ma-
son and Newton (1992) [29], see also Præstgaard and Wellner (1993) [34], Putter
and van Zwet (1996) [35] as well as van der Vaart and Wellner (1996) [40]. It has
then been further developed and generalized to more general schemes, allowing
for different dependency structures, by Janssen and Pauls (2003) [21], Janssen
(2005) [20], del Barrio et al. (2009) [14], Pauly (2011) [31]. Here we focus on the
technique derived in Janssen (2005) [20] and Pauly (2011) [31].

Inference procedures of interest in competing risk designs are given by one-,
two- and k-sample tests for the null hypotheses of equality (which may cor-
respond to the construction of time-simultaneous confidence bands) as well as
of ordering of the CIF(s). Here we focus on two-sample problems. It will turn
out that for the first problem (i.e. testing equality of CIFs of two indepen-
dent groups) the wild bootstrap is exceptionally suited, whereas for the second
problem general resampling versions of studentized Pepe (1991) [33] tests lead
to consistent inference procedures. The theoretical results are motivated from
competing risks designs with independent left-truncation and right-censoring
but will also hold for more general counting processes satisfying the multiplica-
tive intensity model, see the monograph of Andersen et al. (1993) [5] for more
details.

The paper is organized as follows. In Section 2 we introduce the competing
risks model, the CIF and its canonical Aalen-Johansen estimator. After reca-
pitulating the wild bootstrap technique for these estimators, we introduce their
general weighted bootstrap versions in Section 3 and analyze their weak con-
vergence. Statistical applications for testing the null hypothesis of ordered CIFs
in the two-sample case are given in Section 4 and their finite sample properties
are investigated in simulations in Section 5. Finally our results are discussed in
Section 6 and all proofs are given in the Appendix.

2. Notation, model and estimators

To be as general as possible in the competing risks set-up we consider a non-ho-
mogeneous Markov chain (Xt)t≥0 in continuous time with finite state space {0, 1,
. . . , k}, k ∈ N. Here state 0 is initial with P (X0 = 0) = 1, and all other
states 1, . . . , k, representing the competing risks, are assumed to be absorb-
ing. For convenience we restrict ourselves to the case k = 2 with two absorbing
states. The corresponding transition intensities (or cause-specific hazard func-
tions) of (Xt)t≥0 from state 0 into state j = 1, 2 will be denoted by αj and are
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assumed to exist. Moreover, the event time is given by T = inf{t > 0 | Xt 6= 0}
and allows for the following relation to the cause-specific hazards

αj(t) = lim
∆tց0

P (T ∈ [t, t+∆t), XT = j | T ≥ t)

∆t
, j = 1, 2,

with meaningful practical interpretation. Below we are interested in the risk
development of this Markov process in time on a given interval [0, t] with t < τ .
Here τ is a given terminal time such that P (T > ·) > 0 on [0, τ) and τ ≤ sup{u :∫ u

0
(α1(s)+α2(s))ds < ∞}. Note that the competing risk XT belongs to the set

{1, 2}. For typical practical analyses of such competing risks designs we refer
the reader to Allignol et al. (2010) [3] as well as Beyersmann et al. (2012) [8].

For n independent replicates of this Markov chain, corresponding to the obser-
vation in time from n individuals, we consider the associated bivariate counting
process N = (N1, N2). Here Nj =

∑n
i=1 Nj;i, j = 1, 2, with

Nj;i(t) = 1 (The i−th Markov chain has observed “0 7→ j” transition in [0, t]) ,
(2.1)

counts the number of observed transitions into state j, where 1(·) denotes the
indicator function. It is worth noting, that, under the given assumptions, the
processes N1 and N2 are càdlàg and do not jump simultaneously. Moreover, we
assume that N fulfills the multiplicative intensity model given in Andersen et
al. (1993) [5], i.e. its intensity process λ = (λ1, λ2) is given by

λj = Y αj , j = 1, 2, (2.2)

where Y =
∑n

i=1 Yi with

Yi(t) = 1 ( The i−th Markov chain did not jump in [0, t)) (2.3)

is the number of Markov chains without a jump shortly before time t, i.e. the
number at risk at t−. It is shown in Andersen et al. (1993, Chapter III) [5] that
the assumption (2.2) is satisfied in several important situations with incomplete
observations. In particular, covering the practical important case in which data
is subject to independent right-censoring and left-truncation (or even filtering).
For example, left-truncation means that patient i is only “under study” if Ti >
Li, i.e. its event time Ti is greater than its truncation time Li. We refer to
Andersen et al. (1993) [5] for the explicit modelling of these and other incomplete
observations data structures.

We are now interested in deriving statistical inference procedures for the
cumulative incidence functions, or sub-distribution functions,

Fj(t) = P (T ≤ t,XT = j) =

∫ t

0

P (T > u−)αj(u)du, j = 1, 2.

The corresponding sub-survival function will be denoted by Sj(t) = 1 − Fj(t),
j = 1, 2. Consistent estimators for the CIFs are given by the famous Aalen-
Johansen estimators (AJEs)

F̂j(t) =

∫ t

0

P̂ (T > u−)

Y (u)
J(u) dNj(u), j = 1, 2. (2.4)
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Here J(u) = 1(Y (u) > 0) and P̂ (T > u) denotes the Kaplan-Meier estimator.
In addition, we denote the related estimator of the sub-survival function by
Ŝj(t) = 1− F̂j(t). Construction of simultaneous confidence bands for a CIF, say
F1, is in general based on the corresponding process

Wn(·) = n1/2{F̂1(·)− F1(·)}

which, under certain regularity assumptions, converges to a zero-mean Gaus-
sian process. For example, a sufficient condition, which we will assume through-
out, is the following: For t < τ there exists a deterministic function y with
infu∈[0,t] y(u) > 0 such that

sup
u∈[0,t]

∣∣∣∣
Y (u)

n
− y(u)

∣∣∣∣
p−→ 0. (2.5)

Here, and throughout the paper, “
p−→ ” denotes convergence in probability,

whereas “
d−→ ” stands for convergence in distribution as n → ∞. In particular,

under Assumption (2.5), the process Wn inherits the following representation
in terms of different local martingales

Wn(s) =
√
n

n∑

i=1

(∫ s

0

S2(u)− F1(s)

Y (u)
dM1;i(u)

+

∫ s

0

F1(u)− F1(s)

Y (u)
dM2;i(u)

)
+ oP (1),

(2.6)

where for 1 ≤ i ≤ n, j = 1, 2,

Mj;i(s) = Nj;i(s)−
∫ s

0

Yi(u)αj(u) du (2.7)

are local square integrable martingales. Note that we have suppressed the de-
pendency on the sample size n as well as the appearance of the indicator J(u)
in both integrals in (2.6) for better lucidity. As a consequence of (2.5) and (2.6)
it follows from Theorems IV.1.2 and IV.4.2 in Andersen et al. (1993) [5] that
the process Wn convergences in distribution on the Skorohod space D[0, t]. To
be concrete we have for each fixed t < τ

Wn
d−→U on D[0, t], (2.8)

where U is a zero-mean Gaussian process with covariance function

ζ(s1, s2) =

∫ s1

0

{S2(u)− F1(s2)}{S2(u)− F1(s1)}α1(u)

y(u)
du

+

∫ s1

0

{F1(u)− F1(s2)}{F1(u)− F1(s1)}α2(u)

y(u)
du (2.9)

for s1 ≤ s2. Since the covariance function ζ is unknown and the process U lacks
independent increments, resampling techniques are helpful tools for develop-
ing inference procedures. Here Lin’s resampling technique, as well as the more
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general wild bootstrap approach (see Beyersmann et al., 2013 [10]), attack the
problem by using an adequate resampling process that in some sense reflects
the representation (2.6) and reproduces its distribution in the limit. This will
be the starting point of the following section.

3. Weighted resampling of the Aalen-Johansen estimator

The above mentioned wild bootstrap resampling procedure approximates the
limit distribution of Wn by introducing i.i.d. zero-mean random variables Gj;i,
1 ≤ i ≤ n, 1 ≤ j ≤ 2, with variance 1 and finite fourth moment into the
representation (2.6). Replacing Mj;i with Gj;iNj;i and all unknown quantities
with their estimators leads to the following general wild bootstrap version of
Wn as introduced in Lin (1997) [24], see also Beyersmann et al. (2013) [10],

Ŵn(s) =
√
n

n∑

i=1

( ∫ s

0

G1;i(Ŝ2(u−)− F̂1(s))

Y (u)
dN1;i(u)

+

∫ s

0

G2;i(F̂1(u−)− F̂1(s))

Y (u)
dN2;i(u)

)
,

where F̂j and Ŝj , j = 1, 2, are the AJEs of Fj and Sj , respectively, see Equation
(2.4). Note that we again have suppressed the appearance of the indicator J(u) in
both integrals. In Beyersmann et al. (2013) [10] it was shown that the conditional

distribution of Ŵn asymptotically coincides with the distribution of Wn. That
is, given the data, we have convergence in distribution

Ŵn
d−→U on D[0, t] (3.1)

in probability, where U is as in (2.8). In practice, this result is implemented by
simulating, for fixed data, a large number of independent copies of the multipli-
ers Gj;i, to approximate the conditional distribution of Ŵn. Here, Lin’s (1997)
[24] resampling scheme is obtained for standard normal multipliers.

To obtain a better connection with Efron’s classical bootstrap we rewrite
(after multiplying with

√
2) the above wild bootstrap statistic

√
2Ŵn as

√
2Ŵn(s) =

√
2n

n∑

i=1

(
G1;iXn;i(s) +G2;iYn;i(s)

)
=

√
2n

2n∑

i=1

GiZ2n;i(s), (3.2)

where for 0 ≤ s ≤ t and i = 1, . . . , n

Xn;i(s) =

∫ s

0

Ŝ2(u−)

Y (u)
J(u) dN1;i(u)− F̂1(s)

∫ s

0

1

Y (u)
J(u) dN1;i(u),

Yn;i(s) =

∫ s

0

F̂1(u−)

Y (u)
J(u) dN2;i(u)− F̂1(s)

∫ s

0

1

Y (u)
J(u) dN2;i(u),

Gi = G1;i1(i ≤ n) + G2;i−n1(i > n) and Z2n;i := Xn;i1(i ≤ n) + Yn;i−n1(i >
n). Now, for fixed s, the representation in (3.2) may be interpreted as a wild
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bootstrap version of the linear statistic
√
2n
∑2n

i=1 Z2n;i(s) in the array of real
valued random variables Z2n(s) = (Z2n;i(s))i≤2n. Now recall from Mammen
(1992) [27] that for linear statistics in independent observations, the consistency
of the wild bootstrap and Efron’s bootstrap go hand in hand. Translating the
above representation to the classical bootstrap, where given the observations a
random sample Z∗

2n;1(s), . . . , Z
∗
2n;2n(s) is drawn with replacement from Z2n(s),

the statistic ŴE
n (s) =

√
2n
∑2n

i=1(Z
∗
2n;i(s) − Z2n(s)) can be interpreted as a

bootstrap version of
√
2Wn. Here Z2n denotes the mean ofZ2n. FollowingMason

and Newton (1992) [29] the statistic ŴE
n can be rewritten in a distributionally

equivalent way as

ŴE
n =

√
2n

2n∑

i=1

(Z∗
2n;i − Z2n) =

√
2n

2n∑

i=1

m2n;i(Z2n;i − Z2n)

=
√
2n

2n∑

i=1

(m2n;i − 1)(Z2n;i − Z2n),

where (m2n;1, . . . ,m2n;2n) is a multinomial-Mult(2n, (2n)−1)-distributed ran-
dom vector. This motivates us to study a general weighted bootstrap version of√
2 Wn, namely

Ŵ ∗
n = Ŵ ∗

n ((w2n;i)i, (Z2n;i)i) =
√
2n

2n∑

i=1

w2n;i(Z2n;i − Z2n). (3.3)

Here w2n = (w2n;1, . . . , w2n;2n) is an exchangeable vector of random variables
that is independent of Z2n. For example, the choice of Efron’s bootstrap weights
w2n;i = m2n;i − 1 delivers Ŵ ∗

n = ŴE
n . Following Janssen (2005) [20] and Pauly

(2011) [31] we impose the following regularity conditions on the weights to

achieve convergence of all finite dimensional distributions of the process Ŵ ∗
n(·)

as n → ∞:
n−1/2 max

1≤i≤2n
|w2n;i − w2n|

p−→ 0, (3.4)

1

2n

2n∑

i=1

(w2n;i − w2n)
2 p−→ 1, (3.5)

w2n;1 − w2n
d−→Z, (3.6)

where Z is a random variable with E(Z) = 0 and V ar(Z) = 1. Moreover, it

turns out that sufficient conditions for the tightness of Ŵ ∗
n(·) are given by

lim sup
n→∞

E[(w2n;1 − w2n)
4] < ∞, (3.7)

lim sup
n→∞

nE[(w2n;1 − w2n)
2(w2n;2 − w2n)(w2n;3 − w2n)] < ∞, (3.8)

lim sup
n→∞

n2E[(w2n;1−w2n)(w2n;2−w2n)(w2n;3−w2n)(w2n;4−w2n)] < ∞. (3.9)
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Heuristically, the additional Assumptions (3.7)–(3.9) ensure that the correlation
between multiple factors of centered weights decreases quickly enough for large
n and a high number of different leading terms. Under these assumptions we
can prove the following weak convergence result for the exchangeably weighted
bootstrap version (3.3) of the AJE.

Theorem 3.1. Suppose that (2.5) holds and that the weights fulfill the Condi-

tions (3.4)–(3.9). Then, for every t < τ , the conditional distribution of Ŵ ∗
n(·),

given the data, weakly converges on D[0, t] to a zero-mean Gaussian process U∗

Ŵ ∗
n

d−→U∗ on D[0, t] (3.10)

in probability. Here the covariance function of U∗ is given by (r, s) 7→ ζ∗(r, s) =
2ζ(r, s)− ξ(r)ξ(s) with ζ as in (2.9) and

ξ(s) =

∫ s

0

{S2(u)− F1(s)}α1(u) du+

∫ s

0

{F1(u)− F1(s)}α2(u) du. (3.11)

Remark 3.1. (a) Note that by means of partial integration the covariance per-
turbation functions ξ can be rewritten as ξ(s) =

∫ s

0 (1 − A1 − A2)dF1, where

Aj(s) =
∫ s

0
αj(u)du for j = 1, 2.

(b) Examples for resampling weights that fulfill the Conditions (3.4)–(3.6) can be
found in Janssen (2005) [20] as well as Pauly (2009, 2011) [30, 31]. Weights that
additionally fulfill (3.7)–(3.9) can be found in Example A.1 in the Appendix. As
special examples Efron’s bootstrap, the i.i.d. weighted bootstrap as well as Ru-
bin’s Bayesian bootstrap, the Poisson bootstrap or even row-wise i.i.d. wild boot-
strap weights w2n;i (with E(w2n;1) = 0, V ar(w2n;1) = 1, lim supn→∞ E(w4

2n;1) <

∞ and w2n;1
d−→Z) fulfill the limit theorem (3.10).

The above theorem shows that the weighted bootstrap with exchangeable
weights leads to a bootstrap version of Wn whose limit covariance function dif-
fers from the correct asymptotical covariance of the Aalen-Johansen process Wn

by the summand 1
2ξ(r)ξ(s). In comparison, the wild bootstrap statistic Ŵn from

the beginning of Section 3 reproduces the correct limit process. The reason for
this behaviour can easily be explained at the special case of the classical boot-
strap version (and also holds for many other related resampling versions that
fall into our approach). Efron’s bootstrap version of a linear statistic namely
needs to center each random variable Z2n;i at the mean Z2n. Without this

term, the bootstrap statistic
√
2n
∑2n

i=1 m2n;iZ2n;i (with conditional expectation
(2n)3/2Z2n) would in general not follow a non-degenerated conditional limit the-
orem. However, this centering term affects the (conditional) covariance structure
of the bootstrap process. In particular, it can be seen in the Appendix, that its
asymptotic covariance function ζ∗(r, s) is given by the limit (in probability) of∑2n

i=1 2n(Z2n;i(r) − Z̄2n(r))(Z2n;i(s) − Z̄2n(s)). In comparison the asymptotic

covariance function of the wild bootstrap version
√
2Ŵn is given by the limit

(in probability) of
∑2n

i=1 2nZ2n;i(r)Z2n;i(s), see the proof of Theorem 2 in Bey-
ersmann et al. (2013) [10]. The reason is that due to the i.i.d. structure of the
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zero-mean wild bootstrap weights we can directly work with Z2n;i instead of
(Z2n;i−Z2n) to gain a conditional central limit theorem. Actually, Theorem 3.1
even shows that a modified wild bootstrap version of the AJE of the form (3.3)
with i.i.d. weights (w2n;i)i and centered variables (Z2n;i −Z2n) instead of Z2n;i

would not possess the correct limit structure.

This result now leads to the question whether Efron’s bootstrap (or other
included resampling techniques that fall into our approach) is not applicable
for statistical inference about CIFs in competing risks studies. The answer is
two-fold. Since Ŵ ∗

n reproduces the wrong covariance of the AJE it is not appli-
cable directly. This means that the asymptotic limit distribution of transformed
versions (as sup-distances or integral statistics) of the AJE of a CIF that serve
as test statistic for a particular problem (as testing equality or ordering of a
CIF) can in general not be reproduced by its corresponding transformed ex-
changeably weighted bootstrap version (3.3). However, for some situations it
may nevertheless be applicable by including adequate studentizations to the
corresponding test statistic, see e.g. Janssen (1997, 2005) [18, 20] or Pauly et
al. (2014) [32] for similar examples in the context of testing. Roughly speaking
such a multplicative studentization works if the statistic we are interested in
becomes asymptotically pivotal after studentizing.

To explain this statement we give negative and positive examples. First, let
us consider Cramér-von Mises-type statistics for testing equality of a CIF. In
this case the asymptotic limit is given by a squared L2-norm of a Gaussian
process which admits a principal components decomposition and its covariance
function is a series depending on all eigenfunctions and eigenvalues of a corre-
sponding integral operator, see Adler (1990) [2] or Shorack and Wellner (2009)
[38] for details. In this case it seems reasonable that one studentization alone
cannot transform this random variable into another principal components de-
composition with predefined eigenvalues and eigenfunctions. Hence the result
from Theorem 3.1 is not applicable in this situation. However, if we consider,
e.g., a one- or two-sample version of Pepe’s test for the hypothesis of ordered
CIFs, then it turns out that the resulting test statistic is asymptotically normal.
In this situation a studentized version of the test statistic leads to an asymptotic
standard normal distribution and its finite sample distribution may be approx-
imated by a related studentized bootstrap version. This will be studied in more
detail in the next section for the more interesting two-sample case.

4. Two-sample resampling tests for ordered CIFs

In order to demonstrate the applicability of the above theory we study a specific
inference problem of interest. Suppose we are interested in the comparison of
two CIFs on a subinterval [t1, t2] of [0, τ) with 0 ≤ t1 < t2 < τ . Here we like to
test whether the CIFs from two independent groups with the same competing
risk, say j = 1, possess a specific order. A practical interpretation may be given
by two independent medical studies for the side effects of similar but different
drugs. Another example is given in Bajorunaite and Klein (Example 5, 2007)



2788 D. Dobler and M. Pauly

[6] where bone marrow transplant studies are compared. Note that similar null
hypotheses (mainly the null hypothesis of equality) have already been studied in
the literature, see e.g. Gray (1988) [17], Aly et al. (1994) [4], Barmy et al. (2006)
[16], Bajorunaite and Klein (2007, 2008) [6, 7] or Sankaran et al. (2010) [36] and
the references cited therein, where some of them also apply Lin’s resampling
technique.

In the sequel we extend the notation from Section 2 with a superscript (k) to

denote the quantities of the kth group, k = 1, 2. This yields the CIFs F
(k)
1 for

the competing risk j = 1 as well as counting processes N
(k)
j;i , Y

(k)
i , 1 ≤ i ≤ nk,

where nk is the sample size of group k = 1, 2. The hypotheses of interest may
then be written as

H≤ : {F (1)
1 ≤ F

(2)
1 on [t1, t2]} versus K	 : {F (1)

1 	 F
(2)
1 on [t1, t2]}.

To this end, we suggest an integral-type test statistic, namely

Tn =

∫ t2

t1

ρ(u)

√
n1n2

n
(F̂

(1)
1 (u)− F̂

(2)
1 (u))du, (4.1)

where n = n1 + n2 and ρ : [0, τ ] → (0,∞) is a deterministic and integrable
function that allows for different weighting of time intervals of interest, see e.g.
Pepe (1991) [33] for a similar choice. Note that such statistics are motivated
from related goodness of fit problems, see, e.g., Shorack and Wellner (2009) [38]
or van der Vaart and Wellner (1996) [40]. Well known theorems from stochastic
process theory then show that Tn is asymptotically N(0, σ2

ζ )-distributed under

{F (1)
1 = F

(2)
1 } provided that nk/n → pk ∈ (0, 1) for k = 1, 2. Here, the limit

variance is given by

σ2
ζ =

∫ t2

t1

∫ t2

t1

ρ(s)(p2ζ
(1) + p1ζ

(2))(s, t)ρ(t)dsdt, (4.2)

where ζ(k) denotes the asymptotic covariance function of the Aalen-Johansen

process W
(k)
nk

of group k = 1, 2, see Equation (2.9) above. Note that σ2
ζ > 0

holds if we have α
(k)
1 > 0 on a set with positive Lebesgue-λλ|[t1,t2] measure

for at least one choice of k = 1, 2, which we like to assume in the sequel. As
already explained at the end of Section 3 we need an asymptotically pivotal
test statistic for applying our weighted bootstrap result from Theorem 3.1. This
will be done by studentizing Tn and will correct for the wrong bootstrap limit
covariance. To this end, we construct a consistent estimate V 2

n by replacing

p2ζ
(1)+p1ζ

(2) in (4.2) with ζ̂n := n2

n ζ̂
(1)
n1

+ n1

n ζ̂
(2)
n2

. Thereby ζ̂
(k)
nk

is constructed by

substituting the unknown CIFs F
(k)
j (u), intensities α

(k)
j (u)du and the function

y(k) in ζ(k) with their canonical estimators F̂
(k)
j (u−), dÂ

(k)
j (u) (the increments

of the Nelson-Aalen estimator) and Y (k)/nk. Then, as shown in Theorem 4.1
below, an asymptotic level α test is given by

ϕn = 1(Tn,stud > u1−α),
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where u1−α denotes the (1 − α)-quantile of the standard normal distribution
and Tn,stud = Tn/Vn1(Vn > 0). We will now construct a weighted resampling
version of ϕn. In view of Theorem 3.1 and the martingale representation (2.6)

under {F (1)
1 = F

(2)
1 } a weighted resampling version of Tn may be given by

T ∗
n =

√
n1n2

n

2∑

k=1

2nk∑

i=1

∫ t2

t1

ρ(u)w
(k)
2n;i(Z

(k)
2n;i(u)− Z2n(u))du, (4.3)

where (w
(k)
2n;i)i,k is an array of exchangeable weights fulfilling (3.4)–(3.9) and we

set Z2n = 1
2n

∑2
k=1

∑2nk

i=1 Z
(k)
2n;i with

Z
(k)
2n;i = (−1)k+1(X

(k)
nk;i

1(i ≤ nk) + Y
(k)
nk;i−nk

1(nk < i)).

We like to note that the (−1) in this expression is due to the martingale repre-
sentation of Tn. As shown below, an application of Theorem 3.1 yields that the
conditional distribution of T ∗

n is asymptotically N(0, σ2
ζ̃
)-distributed in proba-

bility, where σ2
ζ̃
6= σ2

ζ due to the wrong limit covariance structure of the weighted

bootstrap AJE.
As has already been seen in Janssen (2005) [20] as well as Konietschke and

Pauly (2014) [23], different, say classes, of weights need different studentiza-
tions. For convenience, and to avoid distinguishing between too many cases,
we therefore now focus only on two resampling procedures: Efron’s bootstrap
with weights w2n;i = m2n;i − 1 and the wild bootstrap with w2n;i = Gi. Here
(m2n;1, . . . ,m2n;2n) is a multinomially distributed random vector with sample

size 2n =
∑2n

i=1 m2n;i and equal selection probability (2n)−1 and (Gi)i is a se-
quence of i.i.d. random variables with E(G1) = 0, V ar(G1) = 1 and E(G4

1) < ∞.
However, other resampling tests can be obtained similarly. Motivated from the
weighted variance estimator given in Janssen (2005, Section 3) [20], a weighted
resampling version of V 2

n , say V ∗ 2
n , is then given by replacing p2ζ

(1) + p1ζ
(2) in

(4.2) with ζ∗n − ξ∗n, where

ζ∗n(s, t) =
n1n2

n

2∑

k=1

2nk∑

i=1

v
(k)
2n;iZ

(k)
2n;i(s)Z

(k)
2n;i(t),

ξ∗n(s, t) =
n1n2

2n2

( 2∑

k=1

2nk∑

i=1

v
(k)
2n;iZ

(k)
2n;i(s)

)( 2∑

k=1

2nk∑

i=1

v
(k)
2n;iZ

(k)
2n;i(t)

)
.

We thereby choose v2n;i = m2n;i in case of Efron’s and v2n;i = G2
i in case of

the wild bootstrap. With this choice it is proved in the Appendix that, un-

der H= : {F (1)
1 = F

(2)
2 on [t1, t2]} and the conditions given in Theorem 4.1

below, the conditional distribution of T ∗
n,stud = T ∗

n/V
∗
n 1(V

∗
n > 0) given the

data is asymptotically N(0, 1)-distributed in probability. Moreover, the result-
ing weighted resampling tests (corresponding either to Efron’s or wild bootstrap
weights)

ϕ∗
n = 1(Tn,stud > c∗n(α)),
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are consistent and even asymptotically exact, where c∗n(α) is the (data-dependent)
(1− α)-quantile of the conditional distribution of T ∗

n,stud given the data.

Theorem 4.1. Suppose that (2.5) holds for both groups. Then ϕn is a con-

sistent and asymptotic level α test, i.e. EH≤
(ϕn) → α1(F

(1)
1 = F

(2)
2 ) and

EK	
(ϕn) → 1. If, in addition, σ2

ζ̃
> 0 then ϕ∗

n is also consistent and of asymp-

totic level α. Moreover, ϕn and ϕ∗
n are asymptotically equivalent, i.e. under H=

it holds EH=
(|ϕn − ϕ∗

n|) → 0.

Remark 4.1. (a) The asymptotic equivalence implies that both tests also pos-
sess the same power under contiguous alternatives.

(b) In case of the wild bootstrap the results remain valid if we omit the center-
ing term Z2n in (4.3) as well as the covariance correction ξ∗n(s, t). Below we will
denote the resulting test as ϕW

n .

(c) Note that the assumption of a deterministic weight function can be re-
laxed. In particular, it can be shown that the above theorem remains also
valid for non-deterministic sequences of weights ρn : [0, τ ] → (0,∞) such that

sups |ρn(s) − ρ(s)| P→ 0 in probability for an integrable and deterministic func-
tion ρ : [0, τ ] → (0,∞). This can be shown using straightforward stochastic
process arguments similar to those applied in Brendel et al. (2014) [12].

(d) Utilizing the squared weights v2n;i = G2
i within the wild bootstrap vari-

ance estimator can be motivated from corresponding symmetry-type tests with
weightsGi =

1
2 (ε1+ε−1). Such tests are typically applied in the context of paired

data, where the involved studentization of the test statistic is often invariant
under reflections of the coordinates, see Janssen (1999) [19] or Konietschke and
Pauly (2014) [23] for details and examples. In this case, the resampling version
of the studentization remains unchanged since G2

i = 1 holds for this choice of
weights. Hence the choice with v2n;i = G2

i generalizes this to all covered wild
bootstrap procedures.

In the next section the finite sample properties of the asymptotic test ϕn,
Efron’s bootstrap test ϕE

n (= ϕ∗
n with weights w2n;i = m2n;i − 1) and the wild

bootstrap test ϕW
n from Remark 4.1 with normal multipliers are investigated in

a small Monte Carlo study.

5. Simulations

The testing procedures from the last section are all valid asymptotically, i.e. as
n → ∞. In the next step their small sample properties are investigated in a small
simulation study with regard to (i) keeping the preassigned error level under the
null hypothesis and (ii) to their power behaviour under certain alternatives. All
simulations were conducted with the help of the R-computing environment,
version 2.15.0 (R Development Core Team, 2010), each with Nsim = 1000 simu-
lation runs. Moreover, for the resampling tests we have additionally run B = 999
bootstrap runs in each simulation step. Here we consider the following simula-
tion set-up for the type-I-error:
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Table 1

Simulated size of ϕn and the resampling tests ϕW
n , ϕE

n for nominal size α = 5% under

different sample sizes and censoring distributions

(n1, n2) (50,50) (50,100) (100,100)
(λ1, λ2) ϕn ϕW

n ϕE
n ϕn ϕW

n ϕE
n ϕn ϕW

n ϕE
n

(0,0) .054 .053 .068 .041 .043 .050 .043 .048 .049

(0.5,0.5) .045 .048 .056 .060 .060 .069 .051 .054 .062
(0.5,1) .056 .053 .062 .057 .055 .064 .054 .054 .060
(1,0.5) .042 .041 .051 .060 .056 .074 .055 .054 .059
(1,1) .053 .054 .063 .063 .062 .072 .054 .056 .062

1. For the event times we have modeled the cause specific intensities of the

first group as α
(1)
1 (u) = exp(−u) and α

(1)
2 (u) = (1− exp(−u)) and for the

second group as α
(2)
1 ≡ c ≡ 2−α

(2)
2 , where 0 ≤ c ≤ 1 holds. Here the case

c = 1 corresponds to the situation under the null with equal CIFs of the
first risk and, for c < 1, the alternative is true.

2. As sample sizes we have chosen (n1, n2) = (50, 50), (50, 100), (100, 100)
and let [t1, t2] = [0, 1.5] be the domain of interest.

3. Moreover, each setting was simulated both with and without right-
censoring, where the censoring times were simulated as independent expo-
nential random variables with parameter λ(k) and pdf f (k)(x) =
λ(k) exp(−λ(k)x)1(0,∞)(x) in group k. In case of censoring we have an-

alyzed situations with equal censoring (λ(1), λ(2)) = (0.5, 0.5) (light cen-
soring) and (λ(1), λ(2)) = (1, 1) (moderate censoring) as well as unequal
censoring distributions with (λ(1), λ(2)) = (0.5, 1).

Note that our simulation designs are driven by the cause specific hazards as
suggested in Beyersmann et al. (2009, Section 3.2) [9]. Here the second group
corresponds to the typical proportional intensity model with constant cause
specific, whereas individuals of the first group have decreasing and increasing
cause specific hazard rates, respectively.

The results for the type I errors (for α = 0.05) of the three tests can be found
in Table 1, where the case without censoring is denoted by (λ1, λ2) = (0, 0).
For easier reading the closest result to the prescribed 5% level is printed in

bold type. Note that in this setting we have equality of the CIFs F
(k)
1 (t) =

0.5(1 − exp(−2t)), k = 1, 2, of the first risk j = 1 but unequal CIFs of the
second risk. It is seen that, for most of the scenarios, the bootstrap test ϕE

n

based on Efron’s multinomially distributed weights has a simulated type I error
far above the 5% level (sizes in [ .049, .074]). Thus, ϕE

n tends to be quite liberal.
On the contrary, the test ϕn based on the 95%-quantile of the standard normal
distribution, and the wild bootstrap test ϕW

n based on i.i.d. standard normally
distributed weights keep the 5% level much better. In most cases, ϕW

n (sizes in
[ .041, .062]) seems to be slightly more accurate than ϕn (sizes in [ .041, .063]),
especially in settings with unbalanced sample sizes (n1, n2) = (50, 100).

The results for the power of all tests are presented in Table 2, where sim-
ulations have been performed for alternative hypotheses corresponding to c =
0.1, 0.2, . . . , 0.9. Here the choice c = 0.9 corresponds to a situation close to
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Table 2

Simulated power of ϕn and the resampling tests ϕW
n , ϕE

n for nominal size α = 5% under

different sample sizes and censoring distributions

(n1, n2) (50,50) (100,100)
(λ1, λ2) (0,0) (1,1) (0,0) (1,1)

c ϕn ϕW
n ϕE

n ϕn ϕW
n ϕE

n ϕn ϕW
n ϕE

n ϕn ϕW
n ϕE

n

0.9 .121 .127 .142 .106 .111 .133 .163 .167 .171 .126 .134 .146
0.8 .244 .245 .280 .206 .210 .241 .345 .349 .373 .302 .300 .330
0.7 .404 .409 .448 .341 .335 .385 .595 .596 .613 .518 .530 .561
0.6 .588 .595 .625 .511 .510 .557 .828 .832 .851 .744 .742 .768
0.5 .774 .775 .814 .662 .667 .711 .962 .963 .968 .893 .892 .911
0.4 .920 .921 .932 .817 .817 .844 .992 .991 .993 .978 .977 .983
0.3 .982 .982 .985 .931 .932 .948 1 .999 1 .995 .996 .998
0.2 1 .999 1 .980 .981 .985 1 1 1 1 1 1
0.1 1 1 1 .997 .997 .997 1 1 1 1 1 1

the null, whereas we move farther into the alternative with decreasing c. Ap-
parently, ϕE

n has the greatest power in all scenarios due to its quite liberal
behaviour. Therefore, we turn our attention to the differences in the results for
ϕn and ϕW

n . Apart from a few exceptions, ϕW
n has a marginal greater power

than ϕn. In particular, all of the differences in the simulated powers of the two
tests amount values in the interval [−.006, .0.012].

Thus, having the simulated type I error rates in mind, there is a clear prefer-
ence for ϕW

n . However, since the improvement compared to ϕn is not very large,
we plan to study the behaviour of the presented tests in a more applied paper
in the future, where they will be additionally compared with other existing pro-
cedures. There, also other resampling versions that fall into our approach (such
as the i.i.d. weighted bootstrap, Rubin’s Bayesian bootstrap or simply other
i.i.d. weigths with finite fourth moment, cf. Example A.1) shall be studied in
extensive simulations for different settings. On the other hand, the simulation
results for the present set-up strongly suggest not to use ϕE

n in this context.

6. Discussion and outlook

We have considered a weighted bootstrap approach for the AJE of a compet-
ing risk including amongst others Efron’s classical, Rubin’s Bayesian as well as
the wild bootstrap. It turned out that the asymptotic covariance structure of
the AJE is not reflected correctly by the weighted bootstrap. This handicap is
due to the utilized resampling from centered data which is a necessity for most
of the presented bootstrap procedures. One exception is the wild bootstrap of
Lin (1997) [24] and Beyersmann et al. (2013) [10], where this centering is not
needed due to the i.i.d. structure of the weights. Nevertheless, we have demon-
strated that the covariance problem can be solved for specific inference prob-
lems. Roughly speaking, the general weighted bootstrap approach can be used
for test statistics (here functionals of AJEs) which are asymptotically pivotal.
This has been demonstrated for the unpaired two-sample testing problem of or-
dered CIFs. There an integral-type statistic is made asymptotically pivotal by an
adequate studentization. If, however, the limit distribution of the test statistic
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is more complicated (e.g. if a variance stabilizing transformation or studentiza-
tion cannot deduce pivotality), the general weighted bootstrap is not applicable.
Hence when dealing with more complicated settings as, e.g., nonparametrically
testing for equality of different CIFs, the (general) wild bootstrap from uncen-
tered observations Z seems to be the only known and reasonable choice and
offers at least some safeguards.

To this end, other possibilities for testing equality of different CIFs than the
wild bootstrap will be studied by the authors in a forthcoming paper.

Finally, we like to note that in semiparametric models the above approach
may be improved by modifying the presented resampling algorithms as in Lin et
al. (2000) [25] or Scheike and Zhang (2003) [37], where the martingale increments

dM0j;i in the resampling step are replaced with estimated increments dM̂0j;i

rather than dN0j;i.

Appendix: The proofs

Proof of Theorem 3.1. In order to prove the result we have to show (conditional)
weak convergence of finite dimensional (fidi) distributions as well as tightness.
For the first we apply Theorem 4.1 in Pauly (2011) [31] and for the latter we use
a tightness criterion as in Billingsley (1999) [11]. To verify the fidi convergence
of the process let t1, . . . , tk ∈ [0, t]. Then, as in the proof of Theorem 2 of
Beyersmann et al. (2013) [10], we have

max
i≤2n

√
2n‖(Z2n;i(t1), . . . , Z2n;i(tk))‖ = oP (1),

where ‖ ·‖ denotes the Euclidean distance. This implies condition (4.1) in Pauly
(2011) [31]. Now the calculation of (4.2) in Pauly (2011) [31] finishes the proof
of the fidi convergence: The matrix

2n∑

i=1

2n
(
(Z2n;i(tj))j − (Z̄2n(tj))j

) (
(Z2n;i(tℓ))ℓ − (Z̄2n(tℓ))ℓ

)T

has the entries

2n

n∑

i=1

[Xn;i(tj)Xn;i(tℓ) + Yn;i(tj)Yn;i(tℓ)]

−
n∑

i=1

[Xn;i(tj) + Yn;i(tj)]

n∑

i=1

[Xn;i(tℓ) + Yn;i(tℓ)]. (A.1)

Similarly as in Beyersmann et al. (2013) [10] the first sum converges to 2ζ(tj , tℓ)
in probability. Moreover, each factor of the second sum has the local martingale
representation

n∑

i=1

[Xn;i(s) + Yn;i(s)] =

∫ s

0

Ŝ2(u−)

Y (u)
J(u) dM1(u)
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+

∫ s

0

F̂1(u−)

Y (u)
J(u) dM2(u)− F̂1(s)

∫ s

0

J(u)

Y (u)
dM·(u) (A.2)

+

∫ s

0

{Ŝ2(u−)− F̂1(s)}J(u)α1(u) + {F̂1(u−)− F̂1(s)}J(u)α2(u) du,

where M· = M1+M2 =
∑2

j=1

∑n
i=1(Nj;i−

∫ ·

0 αjYi dλλ) is the Doob-Meyer local
martingale representation of the counting process N1 + N2. Note that each of
the three first integrals in (A.2) also is a local square integrable martingale by
Theorem II.3.1 of Andersen et al. (1993) [5]. By Rebolledo’s martingale limit
theorem it is easy to see that each local martingale in (A.2) converges to zero
in probability: Consider, for instance, the predictable variation process
〈∫ ·

0

Ŝ2

Y
J dM1

〉
(s) =

∫ s

0

S2
2

Y 2
J d 〈M1〉 =

∫ s

0

S2
2

Y
J dA1 ≤

∫ s

0

J

Y
dA1

p−→ 0

by Condition (2.5), where we have implicitly used the notation of Andersen et al.
(1993) [5]. A similar result holds for the other local martingales. The remaining
integrals, however, converge to

∫ s

0

{S2(u)− F1(s)}α1(u) du and

∫ s

0

{F1(u)− F1(s)}α2(u) du

in probability by the uniform consistency of the AJE and Condition (2.5). This
shows (4.2) in Pauly (2011) [31] and thus the desired fidi convergence.

It remains to prove conditional tightness of the process. To this end, we apply
Theorem 13.5 in Billingsley (1999) [11] and rewrite

Ŵ ∗
n(u) = Ŵ ∗

n((Z2n;i)i)(u) =
√
2n

2n∑

i=1

(w2n;i − w̄2n)Z2n;i(u).

Let 0 ≤ r ≤ s ≤ u ≤ t and β = 1. Then, by the measurability of Z2n and their
independence of w2n, it follows that

E
[
(Ŵ ∗

n (u)− Ŵ ∗
n (s))

2(Ŵ ∗
n(s)− Ŵ ∗

n(r))
2 |Z2n

]

= 4n2
2n∑

i1,i2,j1,j2=1

( ∏

k=1,2

(Z2n;ik(u)− Z2n;ik(s))(Z2n;jk (s)− Z2n;jk(r))
)

× E
[ 2∏

ℓ=1

(w2n;iℓ − w̄2n)(w2n;jℓ − w̄2n)
]

≤ C1D1

∣∣E[(w2n;1 − w̄2n)
4]
∣∣+ C2D2

∣∣E[(w2n;1 − w̄2n)
3(w2n;2 − w̄2n)]

∣∣
+ C3D3

∣∣E[(w2n;1 − w̄2n)
2(w2n;2 − w̄2n)

2]
∣∣

+ C4D4

∣∣E[(w2n;1 − w̄2n)
2(w2n;2 − w̄2n)(w2n;3 − w̄2n)]

∣∣

+ C5D5

∣∣∣E
[ 4∏

i=1

(w2n;i − w̄2n)
]∣∣∣ =

5∑

k=1

CkDkEk,

(A.3)
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where Ck, k = 1, . . . , 5, counts the number of possible index values each leading
to the same expected value. For example, C3 = 3 due to the index combinations
i1 = i2 6= j1 = j2, i1 = j1 6= i2 = j2 and i1 = j2 6= j1 = i2. The Dk are defined
as

Dk = max
(xℓ,yℓ)∈{(r,s),(s,u)},

ℓ=1,...,4

4n2
∑ 4∏

ℓ=1

|Z2n;iℓ(yℓ)− Z2n;iℓ(xℓ)|,

where the sum runs over all indices i1, i2, i3, i4 that yield the expected value Ek.
Each case k = 1, . . . , 5 is treated separately: Recall that each Z2n;i is represented
by a one-jump process N1;i or N2;i so that

D1 ≤ n2
2n∑

i=1

∫ u

0

Jd(N1;i +N2;i)

Y 4
· O(1) =

1

n

∫ u

0

J

(Y/n)3
d(Â1 + Â2) · O(1)

which tends to zero in probability by Lemma A.1. Condition (3.7) yields the neg-
ligibility of C1D1E1. For treating k = 2 first note that, by the Cauchy-Schwarz
inequality,

∑2n
i=1 |Z2n;i(y)−Z2n;i(x)| ≤ (2n

∑2n
i=1(Z2n;i(y)−Z2n;i(x))

2)1/2 holds
for all (x, y) ∈ {(r, s), (s, u)}. It follows that

D2 ≤ max
(x,y)∈{(r,s),(s,u)}

4n2
2n∑

i=1

|Z2n;i(y)− Z2n;i(x)|3

×
(
2n

2n∑

j=1

(Z2n;j(y)− Z2n;j(x))
2
)1/2

≤ max
(x,y)∈{(r,s),(s,u)}

(
n

2n∑

i=1

(Z2n;i(y)− Z2n;i(x))
2
)3/2

· OP (1),

where, by Assumption (2.5) and the involved (Y/n)−1 in the integrand, the
asymptotic boundedness of maxi n|Z2n;i(y)−Z2n;i(x)| in probability (here and
below denoted by OP (1)) yields the last inequality. Applying the Hölder(p, q)-
inequality with p = 3/4, q = 1/4 to the expectation E2, we arrive at an upper
bound for C2D2E2. Now Conditions (3.7)–(3.9) and straightforward applications
of the Cauchy-Schwarz inequality as above imply

5∑

k=3

CkDkEk ≤
(
n

2n∑

i=1

(Z2n;i(y)− Z2n;i(x))
2
)2

· O(1)

≤
(
n

2n∑

i=1

(Z2n;i(y)− Z2n;i(x))
2
)3/2

· OP (1),

where OP (1) can be chosen independently of r, s, u. Thus, we have found a
common upper bound for CkDkEk, k = 1, . . . , 5, that equals OP (1) times

h3/2
n (x, y) :=

(
n

2n∑

i=1

(Z2n;i(y)− Z2n;i(x))
2
)3/2

.
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For example we have hn(r, s) = n
∑n

i=1(X2n;i(s)−X2n;i(r))
2+n

∑n
i=1(Y2n;i(s)−

Y2n;i(r))
2 in case of (x, y) = (r, s). Due to similarity, we only consider the first

term. Since N1;i, 1 ≤ i ≤ n, are all one-jump processes, this term is equal to

n

n∑

i=1

(∫ s

r

(Ŝ2 − F̂1(r))J dN1;i

Y
−
(
F̂1(s)− F̂1(r)

) ∫ s

0

J dN1;i

Y

)2

≤ 2n

n∑

i=1

{∫ s

r

(Ŝ2 − F̂1(r))
2J dN1;i

Y 2
+
(
F̂1(s)− F̂1(r)

)2 ∫ s

0

J dN1;i

Y 2

}

≤ 2

{
n
(
σ̂2
1(s)− σ̂2

1(r)
)
+
(
F̂1(s)− F̂1(r)

)2
nσ̂2

1(s)

}
,

where the left-continuity of all integrands should be kept in mind and

σ̂2
1(u) =

∫ u

0

J/Y 2dN1

as in Beyersmann et al. (2013) [10]. Now (a − b)2 ≤ a2 − b2 for all 0 ≤ b ≤ a
yields the upper bound

2
{
n
(
σ̂2
1(u)− σ̂2

1(r)
)
+
(
F̂ 2
1 (u)− F̂ 2

1 (r)
)
nσ̂2

1(t)
}

which, by Theorems IV.1.2 and IV.4.1 in Andersen et al. (1993) [5], converges
uniformly in r, u ∈ [0, t] to

2
{(

σ2
1(u)− σ2

1(r)
)
+
(
F 2
1 (u)− F 2

1 (r)
)
σ2
1(t)

}
,

where σ2
j (s) =

∫ s

0
αj(v)/y(v)dv for j = 1, 2, see Equation (4.1.11) in Andersen et

al. (1993) [5]. Similarly, the convergence of the second sum holds with σ2
2 instead

of σ2
1 . We can now finish the proof similar to Beyersmann et al. (2013) [10] by the

subsequence principle for convergence in probability: For each subsequence there
exists a further subsequence such that for P a.e. ω ∈ Ω there exists a seqeunce
of non-decreasing, continuous functions Hn such that (A.3) is less than or equal
to C(Hn(u) − Hn(r))

3/2 for large n ≥ n0 and a constant C > 0. Note that
n0 and C are independent of r, s, u ∈ [0, t]. Here Hn converges uniformly to a
non-decreasing, continuous function H given by

H(v) =
(
σ2
1(v) + σ2

2(v)
)
+ F 2

1 (v)
(
σ2
1(t) + σ2

2(t)
)
.

Hence the conditional tightness follows from a slight extension of Theorem 13.5
in Billingsley (1999) [11] pointwise along subsequences which in turn implies the
assertion of this theorem.

Proof of Theorem 4.1. As already outlined above the convergences Tn
D→ T ∼

N(0, σ2
ζ ) and V 2

n
P→ σ2

ζ (see Lemma A.1 below) hold under H=. Moreover,

σ2
ζ > 0 holds by assumption. Hence Tn,stud is asymptotically standard normal

by Slutzky’s Lemma. In addition, since σ2
ζ > 0 even holds for F

(1)
1 6= F

(2)
1 ,

we have that Tn,stud
P→ ∞1K	

− ∞1H�
, where H� : {F (1)

1 � F
(2)
1 on [t1, t2]}.
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Altogether this proves the consistency of ϕn as well as its asymptotic exactness
under H=. It remains to investigate the conditional asymptotic behaviour of
T ∗
n,stud. To this end, Theorem 3.1 together with Example A.1 and the continuous

mapping theorem show that the conditional distribution of T ∗
n given the data is

asymptotically N(0, σ2
ζ̃
)-distributed with

σ2
ζ̃
=

∫ t2

t1

∫ t2

t1

ρ(r)
((

p2ζ
(1) + p1ζ

(2)
)
(r, s)

− p1p2
2

(
ξ(1) − ξ(2)

)
(r)
(
ξ(1) − ξ(2)

)
(s)
)
ρ(s) drds.

Note that the continuous mapping theorem is indeed applicable since there
exist versions of U (k) and U∗ (k), k = 1, 2, with a.s. continuous sample paths.
Moreover, it is proved in Lemma A.1 that V ∗ 2

n converges in probability to σ2
ζ̃

which is also positive by assumption. Hence it follows that the conditional dis-
tribution of T ∗

n,stud given the data is asymptotically standard normal. As above
this proves consistency and asymptotic exactness of ϕ∗

n under H=. Finally, the
asymptotic equivalence of both tests follows from Lemma 1 in Janssen and Pauls
(2003) [21].

Lemma A.1. (a) With the notation of Section 2 suppose that Condition (2.5)
holds. Then for t < τ and for all r < ℓ− 1 and j = 1, 2, the stochastic process

(
σ̂(s) := nr

n∑

i=1

∫ s

0

h(u)
J(u)

Y ℓ(u)
dNj;i(u)

)
s∈[0,t]

converges to zero on D[0, t] in probability if the left-continuous function h is
bounded by a constant C > 0.

(b) Under the assumptions of Theorem 4.1 the variance estimators V 2
n and V ∗ 2

n

are consistent estimates for σ2
ζ and σ2

ζ̃
, respectively.

Proof of Lemma A.1. (a) Clearly, σ̂ is bounded by a process with Doob-Meyer
decomposition

|σ̂(s)| ≤ Cnr
n∑

i=1

∫ s

0

J

Y ℓ
dNj;i = Cnr

∫ s

0

J

Y ℓ
dMj + Cnr

∫ s

0

αJ

Y ℓ−1
dλλ,

where Mj =
∑n

i=1 Mj;i are locally square integrable martingales. The local
martingale in the above decomposition has the predictable covariation process

〈
Cnr

∫ ·

0

J

Y ℓ
dMj

〉
(s) = C2n2r

∫ s

0

αJ

Y 2ℓ−1
dλλ.

Both this expression and nr
∫ s

0 αJ/Y ℓ−1dλλ converge to zero in probability as
n → ∞ if r < ℓ− 1. Eventually, Rebolledo’s Theorem yields the desired conver-
gence on D[0, t].

(b) Note first that the processes ζ̂n and ξ̂n :=
√

n1n2

2n2

∑2n
i=1 Z2n;i can be de-

composed into several additive, monotonic functions on [t1, t2]
2 each of which

converges (pointwise on [t1, t2]
2) towards its real, unknown, monotonic and con-
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tinuous counterpart in probability as n → ∞. This is due to the consistency of
the AJE for CIFs as well as a similar argument as in Beyersmann et al. (2013)
[10]. A simple Polya-type argument now shows that such monotonic process
estimators even converge uniformly on [t1, t2]

2 in probability which implies the

convergence of the weighted integrals over ζ̂n and ξ̂n(r)ξ̂n(s) and thus consis-
tency of V 2

n in probability. We now continue by showing consistency of V ∗ 2
n and

start by proving that

E

[(∫ t2

t1

∫ t2

t1

ρ(r)
(
ζ∗(r, s)− ζ̂(r, s)

)
ρ(s)drds

)2
∣∣∣∣∣Z2n

]
(A.4)

is negligible. Recall, that Z2n;i are defined as integrals with respect to counting
processes. We now pool each quantity in a canonical way by merging the indices

k and i, i.e. (v2n;ℓ)ℓ = (v
(k)
2n;i)i,k, (Nℓ)ℓ = (N

(k)
1;i +N

(k)
2;i )i,k and similarly for J and

Y . Then, after changing the order of integration to drdsdN
(k)
j;i , we see that (A.4)

is bounded from above by

(n1n2

n

)2 2n∑

ℓ1,ℓ2

∫ t2

0

hℓ1Jℓ1
Y 2
ℓ1

dNℓ1

∫ t2

0

hℓ2Jℓ2
Y 2
ℓ2

dNℓ2 |E[(v2n;ℓ1 − 1)(v2n;ℓ2 − 1)]| ,

(A.5)

where

hlk(u) :=

∫∫

[u∧t1,t2]2

1(lk ≤ n1)(Ŝ
(1)
2 (u)− F̂

(1)
1 (r))(Ŝ

(1)
2 (u)− F̂

(1)
1 (s))

+ 1(n1 < lk ≤ n)(F̂
(1)
1 (u)− F̂

(1)
1 (r))(F̂

(1)
1 (u)− F̂

(1)
1 (s))

+ 1(n < lk ≤ n+ n1)(Ŝ
(2)
2 (u)− F̂

(2)
1 (r))(Ŝ

(2)
2 (u)− F̂

(2)
1 (s))

+ 1(n+ n1 < lk)(F̂
(2)
1 (u)− F̂

(2)
1 (r))(F̂

(2)
1 (u)− F̂

(2)
1 (s))drds

are bounded functions. Straightforward calculations show that

C := lim sup
n→∞

|E[(v2n;ℓ1 − 1)(v2n;ℓ2 − 1)]| (n1(ℓ1 6= ℓ2) + 1(ℓ1 = ℓ2)) < ∞

holds for both choices of v2n;ℓ (i.e. in Efron’s or the wild bootstrap case). Hence,
for large n, the absolute value of (A.5) has the upper bound

(C + 1)p21p
2
2



n2

2n∑

ℓ=1

∫ t2

0

h2
ℓJℓ
Y 4
ℓ

dNℓ +

(
n1/2

2n∑

ℓ=1

∫ t2

0

|hℓ|Jℓ
Y 2
ℓ

dNℓ

)2


 .

Part (a) now yields the convergence of
∫ t2

t1

∫ t2

t1

ρ(r)(ζ̂n − ζ∗n)(r, s)ρ(s)drds (A.6)

to zero in probability given the data. In the same way it can be shown that
the remaining integral with (ζ̂n − ζ∗n)(r, s) replaced by ξ∗n(r, s) − ξ̂n(r)ξ̂n(s) in
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(A.6) also converges to zero in probability given the data which completes the
proof.

Finally, we consider the examples mentioned in Remark 3.1(b) and prove that
they fulfill the assumptions of Theorem 3.1. The extensions to the two-sample
case as mentioned in Section 4 are straightforward.

Example A.1. For the following resampling weights the convergence (3.10)
from Theorem 3.1 is fulfilled.

(a) Let (m2n;1, . . . ,m2n;2n) be a multinomially distributed random vector with

sample size 2n =
∑2n

i=1 m2n;i and equal selection probability (2n)−1. Then
Efron’s classical bootstrap weights

w2n;i = m2n;i − 1, 1 ≤ i ≤ 2n, (A.7)

are covered by our approach.

(b) Let G2n;i be row-wise i.i.d. weights with lim supn E(G
4
2n;1) < ∞ as well as

E(G2n;1) = 0, V ar(G2n;1) = 1. Then the wild bootstrap weights

w2n;i = G2n;i, 1 ≤ i ≤ 2n, (A.8)

fulfill the Conditions (3.4) – (3.9) provided that G2n;1
d−→Z.

(c) As special example the choice G2n;i = Gi − 1 for i.i.d. Poi(1)−distributed
random variables G1, . . . , G2n yields the so called Poisson bootstrap which may
be interpreted as drawing N =

∑2n
i=1 Gi times with replacement from Z2n(·).

Moreover, the choice G2n;i = G′
i for G

′
i
i.i.d.∼ N(0, 1) corresponds to Lin’s resam-

pling technique.

(d) Let ηi > 0, 1 ≤ i ≤ 2n, be positive i.i.d. random variables with E(η1) =
µη, σ

2
η = V ar(η1) and finite fourth moment. Then the limit Theorem (3.10)

holds for the i.i.d. weighted bootstrap weights w2n;i = C−1
η (ηi/η2n − 1), where

C2
η = σ2

η/µ
2
η, and η2n = (2n)−1

∑2n
i=1 ηi.

(e) Rubin’s Bayesian bootstrap is achieved by letting ηi
i.i.d.∼ Exp(1) in (d) with

Cη = 1.

Proof of Example A.1. We first show that the weights given in (a)–(c) fulfill
the Conditions (3.4)–(3.9). Since part (a) is the most difficult to prove, we only
consider this part and leave the others as an exercise. Moreover, we only show
that Condition (3.9) holds, since (3.7) and (3.8) can be shown similarly and the
proof for (3.4)–(3.6) can be found in Janssen (2005) [20] and Pauly (2009) [30].
Let n ≥ 2, then we start with

E
( 4∏

i=1

(m2n;i − m̄2n)
)
= E

( 4∏

i=1

m2n;i

)
− 4E

( 3∏

i=1

m2n;i

)

+ 6E
( 2∏

i=1

m2n;i

)
− 4E

(
m2n;1

)
+ 1
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where each single expectation is further calculated with the help of the moment
generating function of (m2n;i)i or by consulting the monograph of Johnson et
al. (1997) [22]. Thus, we have

E
( 4∏

i=1

m2n;i

)
=

2n(2n− 1)(2n− 2)(2n− 3)

16n4
,

E
( 3∏

i=1

m2n;i

)
=

2n(2n− 1)(2n− 2)

8n3

and E[m2n;1m2n;2] = cov(m2n;1,m2n;2) + E[m2n;1]
2 = −2n 1

4n2 + 1 = 1 − 1
2n so

that the initial expectation finally equals

2n(2n− 1)(2n− 2)(2n− 3)

16n4
− 4

2n(2n− 1)(2n− 2)

8n3
+ 6
(
1− 1

2n

)
− 3

which is in O(n−2). Hence (a) follows. Part (b) can be shown in the same way
and (c) is only a special example of (b). We will now prove (d) with the help of

(b). To this end we rewrite Ŵ ∗
n as

Ŵ ∗
n = C−1

η

√
2n

2n∑

i=1

ηi
η2n

(Z2n;i − Z2n)

=
C−1

η ση

η2n

√
2n

2n∑

i=1

(ηi − µη)

ση
(Z2n;i − Z2n),

where we have utilized in the first and last equality the identity
∑

i(Z2n;i −
Z2n) = 0. Here the first factor C−1

η ση/η2n on the right hand side converges
to 1 almost surely by the SLLN and the second factor is the wild bootstrap
version (3.3) of the AJE in the weights Gi = (ηi − µη)/ση. Hence the assertion
is a consequence of Slutzky’s Lemma and part (b). Part (e) is only a special
example of (d).
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