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Abstract: We analyze the AneuRisk65 curvature functions using a likeli-
hood-based warping method for sparsely sampled curves, and combine it
with logistic regression in order to discriminate subjects with aneurysms
at or after the terminal bifurcation of the internal carotid artery (the most
life-threatening) from subjects with no aneurysms or aneurysms along the
carotid artery (the less serious). Significantly lower misclassification rates
are obtained when the warping functions are included in the logistic dis-
crimination model, rather than being treated as mere nuisance parameters.
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1. Introduction

The organizers of this section of the workshop are to be congratulated for their
choice of data. Without being overly complicated, the AneuRisk65 data (San-
galli et al., 2014) presents many non-trivial challenges for analysis. For example:
the 65 angiographic images are misaligned due to the different placement of the
patients with respect to the image-capturing device; the images have different
lengths, with the origin corresponding to a physiologically recognizable land-
mark but the endpoints being arbitrary; and the main feature of interest, the
syphon (Piccinelli et al., 2011), varies in shape and location from person to
person.

My analysis of the data was done on the curvature functions, not on the
3D images themselves; this avoids the problem of rotating and translating the
3D curves to remove subject-placement artifacts, but does not remove the in-
herent variability in shape and location of the artery syphon, corresponding to
the peaks around t = −40 and t = −20 in Figure 1 (the variable t is nega-
tive arc length in this parametrization, so the curves run “backwards”). The
problem of unequal endpoints is also present whether we analyze the original
3D images or the one-dimensional curvature functions. My approach here is to
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Fig 1. Curvature functions, down-sampled to 30 measurements per curve, for (a) the “upper”
group of patients and (c) the “lower” and no-aneurysm groups of patients. The corresponding
warped curves are shown in (b) for the “upper” group and in (d) for the “lower” and no-
aneurysm groups.

treat the shorter curves as incomplete curves (which they are). Since the curves
for patients with aneurysms at or after the terminal bifurcation of the internal
carotid artery (the “upper” group) rarely extend beyond t = −80 (i.e. the data
is not missing at random), we truncated the curves at t = −80 in order to avoid
artifacts. But many curves were shorter than this, so the problem of unequal
endpoints persists; we deal with this by introducing a model that can handle
missing data, as explained below.

2. The model

Let f1, . . . , fn be the curvature functions, fi : I → R with I = [−80, 0]. In this
case the fis were computed from smooth estimators of the original trajectories,
so we do have all values of fi(t) for every t whithin fi’s range. However, a more
typical situation in functional data analysis is that the fis are observed only at
ts on discrete time grids, and possibly with random noise added. So let us call



1932 D. Gervini

{xij} the raw data set, and assume

xij = fi(tij) + εij , j = 1, . . . ,mi, i = 1, . . . , n, (1)

for observational grids {ti1, . . . , timi
} and random errors {εij}. In our example

the curves were pre-smoothed and then the random errors could be assumed to
be zero, but they are a useful slack variable to capture random variation not
explained by the main model, so we will keep them.

The variability in location of the syphon will be accounted for by the warping
functions hi : I → I. We assume, then, that

fi(t) = f̃i{h
−1

i (t)}, (2)

where f̃1, . . . , f̃n are functions that, loosely speaking, possess only amplitude
variability and can therefore be modeled with a parsimonious principal-component
decomposition,

f̃i(t) = µ(t) +

p
∑

k=1

zikξk(t), (3)

where the ξks are orthonormal functions in L
2(I) and the ziks are uncorrelated

with decreasing variances. In fact, we will assume zi = (zi1, . . . , zip) ∼ Np(0,Λ)
with Λ = diag(λ1, . . . , λp) and λ1 ≥ · · · ≥ λp > 0. We will denote by F the
family of functions spanned by (3), generally referred to as “the template” in the
warping literature. The ξks, λks and µ will be estimated from the data; we will
assume µ and the ξks are spline functions, thus reducing the estimation problem
to a common multivariate problem: given e.g. a B-spline basis {φ1, . . . , φq}, we
assume µ(t) =

∑q

k=1
alφl(t) and ξk(t) =

∑q

l=1
cklφl(t) for parameters a =

(a1, . . . , aq) and ck = (ck1, . . . , ckq) to be estimated from the data.
For the warping functions hi we also specify a family of functions H that

is parsimonious but flexible enough to accommodate phase variability at the
salient features of the curves. The family of monotone interpolating Hermite
splines (Fritsch and Carlson, 1980) is very convenient to work with. Given a
knot vector τ0 of “locations on interest” (for example, τ0 = (−60,−40,−20)
in our case) and any τi with monotone increasing coordinates, there exists an
hi ∈ H such that hi(τ0) = τi; this interpolating property provides all the warping
flexibility we want at the features of interest, without increasing the dimension
of H unnecessarily. The monotonicity of Hermite splines is very easy to enforce
for any τis; see Fritsch and Carlson (1980). The individual τis could be either
specified by the researcher (as in landmark registration) or treated as unobserv-
able random effects, as we will do here. Since the coordinates of the τis must be
strictly increasing and fall within the range I, it is more convenient to transform
them into unconstrained vectors θi using e.g. the Jupp transform, and assume
θi ∼ Nr(θ0,Σ) with θ0 the Jupp transform of τ0 and Σ a covariance matrix to
be estimated from the data. Therefore, our warping functions will be parameter-
ized as hi(t) = g(t, θi) for a fixed function g that depends only on τ0 (its exact
form does not matter here).
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A brief digression: the decomposition (2) is clearly not unique; given any fi
and any arbitrary monotone function hi, one can always define f̃i = fi ◦ hi

and then the decomposition fi(t) = f̃i{h
−1

i (t)} trivially follows. So it does not
make sense to talk about “the” warping component hi and “the” amplitude
component f̃i for a given fi. Nevertheless, for a given template F and a given

warping family H, the decomposition (2) is identifiable (except for the usual
indeterminacy on the sign of the ξks). But different combinations of templates
and warping models can give rise to essentially equivalent fits. The usual ex-
ample is the random shift: if fi(t) = µ(t − τi), a simple Taylor approximation
yields fi(t) ≈ µ(t) − τiµ

′(t), so the fis could be modeled by a one-amplitude-
component model without warping just as well. Therefore, when we talk about
“the” amplitude component and “the” warping component in this paper, it is
always in the context of a specific pair (F ,H).

Going back to the original problem: putting together (1), (2), F and H, and
assuming the εijs are i.i.d. N(0, σ2), we obtain the following random-effects
model for the raw data xi = (xi1, . . . , ximi

):

xi|(θi, zi) ∼ Nmi
{Φi(θi)(a+Czi), σ

2
Imi

}, (4)

θi ∼ Nr(θ0,Σ),

zi ∼ Np(0,Λ),

with C = [c1, . . . , cp] and Φi(θi) the mi × q matrix with elements [Φi(θi)]jl =
φl{g

−1(tij , θi)} (the inverse of g is taken with respect to the variable t for
each θi.) The model parameters a, C, σ2, Σ and Λ are estimated by maximum
likelihood using the EM algorithm. A drawback of this approach is that it was
developed for sparse and irregular time grids, and it becomes infeasible for large
mis; therefore we down-sampled the curves so that mi = 30 for all i. Some
high-definition features were lost, but the main peaks are still clearly visible in
Figure 1.

The random-effect approach to warping described in this section is still un-
published for single samples, but a similar approach in a functional analysis-of-
variance context is described in Gervini and Carter (2014), where the interested
reader can find additional technical details.

3. Results

We fitted several models with warping knots τ0 = (−60,−40,−20) and different
numbers of amplitude components p ranging from 0 (mean-only model) to 5. We
used cubic B-splines with 10 equispaced knots for µ and the ξks. The warped
functions for p = 2 are shown in Figures 1(b) and 1(d). Plots of µ̂ plus/minus ξ̂1
and ξ̂2 are shown in Figure 2. The first principal component is mostly associated
with amplitude variation at the syphon peaks, while the second component is
mostly associated with amplitude variation at the origin. Can they be used to
discriminate patients with aneurysms at or after the terminal bifurcation of the
internal carotid artery (the “upper” group) from patients with no-aneurysms or
with aneurysms along the carotid artery (the “lower” group)?



1934 D. Gervini

−80 −60 −40 −20 0
0

0.1

0.2

0.3

0.4

0.5
(a)

−80 −60 −40 −20 0
−0.2

0

0.2

0.4

0.6

0.8
(b)

Fig 2. Amplitude principal components. Mean function (solid line), mean plus principal com-
ponent (dash-dot line), and mean minus principal component (dotted line), for first [(a)] and
second [(b)] principal component.

To answer this question we first tried logistic discrimination based on the
registered curves f̃1, . . . , f̃n. Introducing a binary variable y, with yi = 1 indi-
cating the “upper” group and yi = 0 the rest of the patients, the logistic model
assumes that

p(yi = 1|f̃i) = logist

[

α+

∫

I

β(t){f̃i(t)− µ(t)}dt

]

(5)

for parameters α ∈ R and β ∈ L
2(I). Without loss of generality we can

assume β ∈ span{ξ1, . . . , ξp}, since in view of (3) the part of β orthogonal

to span{ξ1, . . . , ξp} will also be orthogonal to f̃i − µ. Then we have β(t) =
∑p

k=1
bkξk(t) and we can re-write (5) as

p(yi = 1|f̃i) = logist
(

α+ b
T
zi

)

, (6)

which is just a common multivariate logistic model. The parameters α and b

were estimated by conditional maximum likelihood, as usual. The crossvalidated
misclassification rates for each p are given in Table 1 (first column). The low-
est one is attained at p = 4, but in the interest of parsimony we choose the
second-best, the two-component model, for which the misclassification rate is
only slightly larger at 38.5%.

This high misclassification rate is disappointing, and we wonder if the warp-
ing process may not contain additional information that could be useful for
discrimination. An easy way to answer this question is to augment model (6)
with the τis and assume that

p(yi = 1|fi) = logist
(

α+ b
T
zi + d

T τi
)

. (7)

Estimating the parameters by conditional maximum likelihood as before, the
crossvalidated misclassification rates we now obtain (Table 1, second column)
are considerably lower, in particular for the optimal two-component model,
which is 24.6%. The parameter estimators are b̂ = (−8.12,−6.43) and d̂ =
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Table 1

Crossvalidated misclassification rates for models with p amplitude components, with and
without warping parameters included in the model

CMRs (%)
p without τs with τs
0 — 41.5
1 49.2 35.4
2 38.5 24.6
3 47.7 35.4
4 36.9 35.4
5 58.5 46.1

(−.15, .22, .27). The sign of b̂ indicates that the probability of being in the
“upper” group decreases as the height of the peaks at t = −40, t = −20 and t = 0
increases (this is somewhat visible to the naked eye in Figure 1(b) and 1(d).)
The signs of the last two coefficients of d̂ also indicate that for patients in the
“upper” group the peaks at t = −40 and t = −20 tend to occur closer to the
origin; a caveat is that this could be an artifact of the image-capturing process
and not a feature of artery shape, although the negative sign of d̂1 seems to
rule this out (because, if the whole curve had been shifted, d̂1 would also be
positive). Either way, this example shows that the warping process sometimes
does contain useful information for classification and discrimination that should
not be neglected.

There are a number of ways in which this analysis could be refined. For ex-
ample, instead of the two-step process followed above, where estimation of am-
plitude principal components and warping functions is done separately from dis-
crimination, both steps could be brought together by maximizing the likelihood
of model (7) instead of (4). The principal components and warping functions
thus obtained would have been optimized for discrimination and may yield lower
misclassification rates than the two-step process; the author is currently inves-
tigating this approach. The other important issue is the handling of incomplete
curves. The approach in this analysis was to down-sample the curves and apply
a likelihood-based method originally developed for sparsely sampled curves, but
in doing so, the sharpest peaks of the curves are dulled or lost entirely; that did
not matter much for these data, but in other situations the impact may be sig-
nificant. The existing registration methods that handle densely sampled curves
usually involve functional inner products and norms that require computation of
integrals over the whole range I, which cannot be done with incomplete curves
(not in an elegant way at least, i.e. avoiding artificial truncations or extrapola-
tions). Finding a way around this problem would be an interesting contribution
to the registration literature.
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