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Abstract: We analyze a data set of spike trains obtained under four dif-
ferent experimental conditions. We model the data curves via mixtures of
normal densities. The peak locations in the fitted curves are modeled via a
non-homogeneous Poisson process and classification of the spike trains into
groups may be done based on the estimated spacings between peaks. We
employ a Bayesian, MCMC-based registration method to align the fitted
curves and summarize the data using meaningful functional statistics and
posterior intervals.
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1. Introduction

The spike train data in Wu et al. (2014) display the characteristic of numerous
sharply peaked spikes in the functions, which is an increasingly common feature
in many practical applications. The experimental data were generated by hav-
ing subjects perform tasks in four different sequences (which represented four
experimental conditions) and recording the response (the activity of a neuron)
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over time. It is of interest to characterize the resulting curves (spike trains) gen-
erally, and to identify differences in the spike trains across the four experimental
groups. We propose to analyze the data in two stages. We will present a model
for the curves, along with a method of estimating the model for each curve.
This modeling itself will allow us to make some characterizations of the nature
of the experimental groups. A major goal of the analysis is to register the curves
so that some summary statistic (such as the cross-sectional mean curve) may
be interpreted sensibly. Hence secondly, we will register the curves in the time
domain to allow for straightforward summarizations and comparisons across
curves.

2. Method of modeling the curves

A visual inspection of the sample data reveals that they consist of curves with
humps or peaks at a series of points. Although the neural activation times are not
given, we initially estimate these times by fitting a set of bumps to each curve.
The peaks appear symmetric and have fairly similar width, and so a natural
way to model curves with such characteristics is to use a linear combination of
normal densities. Given the roughly equal hump widths, we let each Gaussian
component have the same variance:

f(t) =

k∑

i=1

cig(t;µi, σ
2),

where g(t;µ, σ2) is the density of the N(µ, σ2) distribution evaluated at t. This
model enables us to estimate simultaneously both the locations (via the µi’s)
and the heights (via the ci’s) of the peaks. Browne et al. (2010) proposed a
deterministic peak fitting method, which we adapt, to identify the locations of
(significant) peaks. For each functional observation, there are p = 100 measure-
ments made. If we rescale the time domain to [0, 1], we may consider the set
of peak locations to be a point process on [0, 1]. We sequentially fit a series of
scaled Gaussian densities centered at peak locations, beginning with the largest
peak height. First, we choose i1 ∈ {1, 2, . . . , 100} such that i1 = argmax yi
and center the first Gaussian component at this point (call it µi1). To iden-
tify the correct peak height, we estimate the scale of the component density by
ĉ1 = yi1/g(yi1 ;µi1, σ

2), forcing the height of the density to match the maximum
value of the observed curve.

The remaining peaks are found by working on a sequence of “residual curves.”
Let ŷi = ĉig(yi1 ;µi1, σ

2), define the (discretized) residual curve to be ri =
yi−ŷi, i = 1, . . . , p (and consider a normalized residual curve r∗i = ri/(0.01+yi)).
This residual curve should be (near) zero at the location of the first peak, and
should resemble the observed curve elsewhere. We center the next Gaussian
component density at the location of the maximum of the residual curve, and the
heights of both peaks are obtained by solving a system of two linear equations.
This process of identifying peak locations continues until the residual curve is
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Fig 1. Plots of the smoothed experimental data as given (black) and the fitted linear combi-
nation of Gaussian densities (red) with estimated peak locations given by black dots.

sufficiently small, and when there are j peaks the fitted heights are obtained
by solving a system of j linear equations (see Browne et al., 2010). The first
function in the dataset is displayed in Figure 1 together with the fitted function
and the locations of the fitted peaks.

Note that our method could be improved by fitting Gaussian peaks of the
same height to each curve, as it appears this is how the curves were obtained.
By using unequal peak heights, the activation rates will be underestimated in
places where the activations are very close together in time. Also note that the
estimation of peak locations may be unnecessary if the locations are provided
with the spike train data.

3. A point process model

We model the set of peak locations for the jth curve as a non-homogeneous
Poisson process with rate λj(t). Then if we consider the superposition of all
peak locations for all the spike trains, this is a non-homogeneous Poisson pro-
cess with rate λ(t) =

∑n

j=1 λj(t). The set of peak locations (ignoring group) is
distributed relatively uniformly, and hence if we examine the spike trains ignor-
ing the grouping structure, a simpler, homogeneous Poisson process would seem
an appropriate model.

However, if we consider the densities of peak locations separately for the four
groups, interesting distinctions emerge; see the kernel density estimates of the
peak locations, by group, in Figure 2, implemented with the bootruin package
in R using the method of Jones and Henderson (2007). These kernel density
estimates are appropriate when the density is restricted to the domain [0, 1].
In Group 1, the peak location distribution has many peaks near the right end
of the time axis; in Group 2, most peaks occur in the second half of the time
domain. In Group 3, most peaks are in the middle of the time domain, while
most peaks in Group 4 occur in the first half of the time domain.
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Fig 2. Kernel density estimates of the peak locations, separate by group. Top left: Group 1.
Top right: Group 2. Bottom left: Group 3. Bottom right: Group 4.

The Poisson process model serves as a tool for an important aim of this anal-
ysis: the classification of the spike trains. Assuming this Poisson process for the
peak locations, the spacings (waiting times)Xi between peaks are approximately
exponential(λj). For each spike train (with N spacings), the log-likelihood

logL ≈

N∑

i=1

log λ̂i −

N∑

i=1

xiλ̂i

can be calculated for each curve, given an estimate of λi. Estimating λi for each
group, we classified the curve into the group that yields the highest log-likelihood
for that curve. Applying this approach to the real spike train data set, the rate
of correct classification was 78.3%. An analogously derived likelihood assuming
the spacings to be independent Gaussian random variables produced a slightly
higher overall classification rate, 81.7%. These classification rates should become
higher if the original spike locations were available, rather than the smoothed
function which was given.

4. Registration of the curves via an MCMC algorithm

Our method for registering the curves is essentially a Bayesian MCMC imple-
mentation based on the Square Root Velocity Function (SRVF) approach of
Srivastava et al. (2011). The details of the approach are given in Cheng et al.
(2014, Section 2) and Cheng et al. (2013).

In terms of the practical application, we registered a sample of curves with
respect to a single template curve. The initial template curve was chosen by first
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Fig 3. The effect of the prior parameters on the precision of the posterior intervals for the
Group 1 mean. Left: Posterior intervals using Dirichlet prior with a = 1.2. Right: Posterior
intervals using Dirichlet prior with a = 100.

identifying the curves (among the set of curves to be aligned) having the median
number of peaks. Of that set C of “median-peaked” curves, we chose the curve
in C whose vector of peak locations had the smallest Euclidean distance to the
mean vector of peak locations for curves in C. Intuitively, the initial template
curve was among the most typical in terms of number of peaks, and among that
set C was the most typical in terms of peak locations. The initial template was
then updated (via a Gibbs sampler) during the MCMC process.

To allow for sensible interpretation of summary statistics (such as the cross-

sectional mean curve f̄(t) = M−1
∑M

i=1 f(ti)), we choose to register the fitted
curves obtained via the model described in Section 2. The choice of parameters
on the Dirichlet prior makes a substantive difference in the pointwise 95% poste-
rior intervals for the cross-sectional mean (i.e., having 0.95 posterior probability
at each point t of containing the mean). An overly diffuse (near uniform) prior
(a = 1.2) results in posterior intervals that are wider at the edges of the time
domain but perhaps inappropriately narrow in the middle. With a tighter prior
(a = 100), the posterior intervals display the variability more appropriately
(see Figure 3, which shows the pointwise posterior intervals for the mean curve
for Group 1 under each hyperparameter specification). Intuitively, the strong
a = 100 prior encourages the warping function velocity ḣ(t) = 1.

Some differences are apparent in the cross-sectional means of the four groups
using the registered fitted curves of the sample (see Figure 4). The regions in each
group where the mean curve is dense in peaks tend to match what was seen in the
peak-location density estimates (compare Figures 2 and 4). In particular, note
that the central curves for Groups 2, 3, and 4 have their most prominent peak
activity in the late, middle, and early regions of the time domain, respectively.
To some degree, this is dependent on an appropriate choice of initial template
curve for each group. Recall that while we chose the initial template curve as
described in Section 4, this template is updated (via a Gibbs sampler) during
the MCMC process.
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Fig 4. Registered fitted curves, with cross-sectional mean, by group. Top left: Group 1. Top
right: Group 2. Bottom left: Group 3. Bottom right: Group 4.

If the group labels for the observed data are known (as they are for the spike
trains), the cross-sectional means could aid in classifying new spike trains to one
of the groups. One could register the new curves and use standard functional
classification methods (see Báıllo et al., 2011). Another approach is based on
the warping function h(t) of a new curve: One could align the curve to each
group mean (yielding warping functions h[1](t), . . . , h[4](t)) and assign the curve
to group j where the distance between h[j](t) and the identity warp h(t) = t is
minimized, for j = 1, . . . , 4.

5. Conclusion

Although there was a great deal of within-group variation, our approach found
differences in the pattern of peak positions across the spike trains that corre-
sponded fairly well to the four experimental groups. A likelihood-based clas-
sification method performed reasonably well in classifying individual curves to
experimental groups. In addition, our MCMC approach to registration allows us
to simultaneously register the curves and compute functional summary statis-
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tics. We also obtained posterior intervals that reflected the uncertainty in both
the registration process and the mean curve.
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