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Abstract: Structural breaks have become an important research topic in
time series analysis and in many fields of application, e.g. econometrics, hy-
drology, seismology, engineering and industry, chemometrics, and medicine.
In most phenomena encountered in the real world modeling assuming no
change of structure may obviously lead to inconsistent estimates and poor
forecasts. Much research work has been carried out in the past decades and
efforts mostly concentrated on the identification of points in time where
structural breaks possibly occur and on the development of statistical tests
of absence of breaks. Common procedures are the CUSUM based statistics
and the F based statistics proposed by Bai and Perron in several papers
and technical reports. The need of specification of a probability distribution
for conducting the statistical tests has been often a drawback in practical
applications. If the distribution is misspecified the test may turn to be unre-
liable. In this paper a distribution free procedure for identification of change
points and testing for structural breaks is proposed based on the empirical
likelihood and the empirical likelihood ratio statistics. A comparison with
the F test and the CUSUM test is performed on both simulated and real
world data. The size and power of the test is comparable with existing pro-
cedures and the identification procedure is generally accurate and effective.
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1. Introduction

The analysis of structural breaks, or change points, has attracted a great deal
of interest in many fields, and a vast literature is available about this topic. For
a comprehensive review, see e. g. [2, 35]. Independent data, regression models
and time series have been considered, with the aim of detecting whether one or
more structural changes are present in the data, and estimating their dates and
the parameters characterizing the different data subsets.

Structural break detection is usually based on hypothesis tests, where the
null hypothesis states absence of breaks, and the alternative specifies one or
more breaks. Proposed test statistics are likelihood ratios, Lagrange multipliers
or Wald statistics, and are therefore essentially based on the sum of squared
residuals under the two hypotheses.

In recent years a new framework has been proposed for similar test problems,
and related confidence intervals, known as empirical likelihood [e.g. 34]. It has
the advantage of being essentially non-parametric in nature, not requiring any
strong assumption on the probability distribution of the data. In this paper we
propose the use of empirical likelihood methods for addressing the problem of
detection and estimation of level changes and structural breaks both in inde-
pendent and dependent data, and compare this proposal with the most popular
alternative, the multiple structural change analysis in linear models of [4].

The plan of the paper is as follows. Section 2 briefly reviews the structural
change analysis literature for independent data and linear models. Section 3
reviews the empirical likelihood methods relevant to our problem. Section 4 is
concerned with the use of empirical likelihood for detecting level changes in in-
dependent data. In Section 5 an empirical likelihood based method for detecting
structural breaks in regression and autoregression models is proposed. Section 6
discusses some implementation issues, Section 7 presents some simulation results
and applications, and Section 8 concludes.

2. Structural change

We begin with level shifts, i. e., changes in the mean. Let y1, y2, . . . , yn denote
a sample of independent data with common variance σ2, and a level shift at an
unknown date q such that the series is broken in two sub-samples with different
means: E(yi) = µ, i = 1, 2, . . . , q and E(yi) = µ+ ω, i = q + 1, . . . , n. We want
to test the null hypothesis of constant mean: H0 : ω = 0. The most used tool in
this framework is the so-called CUSUM process [see e.g. 15]. Assuming that the
break date is a fixed proportion of the number of observations: q = ⌊nx⌋, the
CUSUM is a scaled difference between the observed average of the two subsets:

zn(x) =
1

σ
√
n





⌊nx⌋
∑

i=1

yi −
⌊nx⌋
n

n
∑

j=1

yj



 x ∈ [0, 1]. (2.1)

As n → ∞, zn(x) converges to a standard Brownian Bridge B(x) under H0. If
we consider the maximum of the CUSUM statistic on any possible splitting of
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the series in two parts:
Mn = max

1≤q≤n
zn(q/n)

the statistic Mn under H0 converges in distribution to that of sup{B(x), 0 ≤
x ≤ 1}, that has been tabulated by several authors [e.g. 39].

However, since the variance of zn(q/n) is [
q
n (1−

q
n )], change points occurring

near the beginning or the end of the data series are much more difficult to detect,
and a weighted version has been suggested. Moreover, in the case of Gaussian
distribution the LR test statistic for a level change at time q is easily seen to be

− 2 logΛq = zn(q/n)
2
[ q

n

(

1− q

n

)]−1

(2.2)

thus one may consider to use the adjusted CUSUM (2.2) rather than the original
one. A supplementary problem arises since on writing

Tn(x)
2 = zn(x)

2[x(1 − x)]−1

we have that max{Tn(x)2, 0 ≤ x ≤ 1} diverges to infinity as n→ ∞: this may be
solved considering only a truncated interval {ǫ ≤ x ≤ 1− ǫ}, which amounts to
allowing only subseries with at least h = nǫ observations. With this limitation,
it may be shown that

max
nǫ≤q≤n(1−ǫ)

Tn(q/n)
2 d−→ sup

ǫ≤x≤1−ǫ

B(x)2

x(1 − x)
.

It has been shown that a similar result holds also for dependent data under
some assumptions [see 2, and references therein], with σ replaced by the (square
root of the) so-called long-run variance

v = lim
n→∞

1

n
Var

(

n
∑

i=1

yi

)

.

Obviously, to compute the CUSUM statistic in practice, a consistent estimate
of the variance σ2, or v, is needed, and this may be difficult in some dependent
case, see e.g. [38].

The case when {yt} is a causal linear process:

yt = µ+

∞
∑

j=0

ψjut−j

where {ut} is a white noise process, is addressed by [37]. They fit an ARMA
model to the data and consider the adjusted CUSUM statistic computed on the
observed residuals, and find that its performance is generally better than the
CUSUM computed directly on the data. Also (like the independent data case)
the LR and F tests are asymptotically equivalent to the CUSUM test, and their
finite sample behavior in some simulated AR(p) series is essentially equivalent.
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Suppose now that the data {yi} is generated by a linear regression model

yi =

p
∑

j=1

θjxij + εi (2.3)

where the parameters θj may be subject to change. This framework was ad-
dressed in several papers by Andrews, Bai, Perron and co-authors [e.g. 1, 4].
Here the change involves not only the mean, but the whole regression structure,
and is called a structural change.

Consider a partition of the whole series into (m+ 1) subseries {y1, . . . , yt1},
{yt1+1, . . . , yt2}, . . . , {ytm+1, . . . , yn} and suppose that for each subseries the re-
gression parameters are different, denoting by θ(k) those of the k−th subseries.
Then, on writing the corresponding model equation for each observation, and
rearranging, we have:

y = X̄θ + ε (2.4)

where θ = (θ(1)
′
, θ(2)

′
, . . . , θ(m+1)′)′, y = (y1, y2, . . . , yn)

′, ε = (ε1, ε2, . . . , εn)
′

and X̄ is the n× (m+ 1)p corresponding expanded design matrix:

X̄ =









X(1) 0 . . . 0

0 X(2) . . . 0
0 0 . . . 0

0 0 . . . X(m+1)









(2.5)

and X(k) = {xij , i = tk−1 + 1, . . . , tk; j = 1, . . . , p}, with t0 = 0, tm+1 = n.
The hypothesis of absence of breaks may be phrased in terms of the param-

eters as H0 : θ
(k)
j = θ

(k+1)
j , j = 1, . . . , p; k = 1, . . . ,m and expressed as a linear

constraint Rθ = 0. Therefore, such hypothesis may be tested via the usual F
test:

F (t1, t2, . . . , tm) =
‖X̄(θ̂ − ˆ̂

θ)‖2

‖y − X̄θ̂‖2
n− (m+ 1)p

mp
(2.6)

where θ̂ = (X̄ ′X̄)−1X̄ ′y is the unrestricted least squares estimate, and
ˆ̂
θ is the

least squares estimate conditional to Rθ = 0 so that:

θ̂ − ˆ̂
θ = (X̄ ′X̄)−1R′{R(X̄ ′X̄)−1R′}−1Rθ̂.

In the case of a level shift in independent data with only one break, it may be
readily seen that the statistic F (q/n) is equivalent to the adjusted CUSUM (2.2).

Since the break dates are unknown, one may consider the maximum value of
(2.6) on all possible partitions of the series into (m+1) subseries. Again, to avoid
divergence we have to limit to partitions where each subseries has at least h = nǫ
observations, with ǫ > 0. To reduce computations, Bai and Perron [5] have
proposed an efficient algorithm, based on the principle of dynamic programming,
which requires at most O(n2) least-squares operations. This algorithm will be
extended in Section 6 to the use of empirical likelihood.
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The asymptotic distribution of the resulting supF statistic has been derived
in [4] under some regularity assumptions, and is a generalization of the sup
Brownian Bridge. It depends on ǫ,m and p and tabulated quantiles by simulation
may be found in [6].

A partial structural break is also considered by [4], where only some of the
regression parameters are allowed to change, while the others are constrained
to remain equal in each regime. To be specific, denote the regression parameter
vector by θ = (β′, δ′)′ where β = (β1, β2, . . . , βp)

′ are the first p parameters
that are assumed constant, and δ = (δ1, δ2, . . . , δq)

′ are the last q regression
parameters, which are subject to change, and partition the design matrix into
blocks: X = (W,Z), where W : (n × p) corresponds to the β parameters, and
Z : (n× q) to the last q parameters δ. Then, given any partition into subseries
induced by m breaks, the analogous model to (2.4) may be written:

y =Wβ + Z̄δ̄ + ε (2.7)

where δ̄ = (δ(1)
′
, δ(2)

′
, . . . , δ(m+1)′)′ and Z̄ is the n × (m + 1)q matrix corre-

sponding to the expansion of Z, analogue to (2.5).
The hypothesis of absence of breaks may be tested using the F statistic

related to the linear restrictions on the parameters δ̄ specifying that δ
(k)
j =

δ
(k+1)
j , j = 1, . . . , q; k = 1, . . . ,m, expressed as a linear system Sδ̄ = 0. Then
the conditional F statistic is:

Fc(t1, t2, . . . , tm) =
‖W (β̂ − ˆ̂

β) + Z̄(δ̂ − ˆ̂
δ)‖2

‖y −Wβ̂ − Z̄δ̂‖2
n− (m+ 1)q − p

mq
. (2.8)

where β̂, δ̂ are the unrestricted LS estimates of (β, δ̄), and (
ˆ̂
β,

ˆ̂
δ) are the estimates

under the hypothesis Sδ̄ = 0. In this case also, to avoid divergence we restrict to
the cases when the subseries have at least h = nǫ observations, and compute the
maximum of (2.8) on any segmentation of the series into (m+1) segments. For
such problem also [5] proposed a dynamic programming algorithm, that is how-
ever more complicated than in the previous case. The resulting supFc statistic
is used to test the null hypothesis of no break. Its asymptotic distribution has
been derived by [4] and is similar to the complete structural break (2.6) but
depends now on m, ǫ and q (the number of regression parameters subject to
change).

Several other methods for identifying and estimating change points (including
e.g. Bayesian methods, least absolute deviation and LASSO procedures) are
discussed in [20].

3. Empirical likelihood

Empirical likelihood methods were originally derived for building confidence in-
tervals for the mean of a random sample, without assumptions on the form of
the probability distribution. They have been later extended to cover inference
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on parameters of linear models and time series. A comprehensive introduction is
[34]. Further applications of empirical likelihood have been recently proposed for
many statistical problems, among them for example generalized linear models
[23, 40], conditional heteroskedasticity models [11, 17, 12], unstable autoregres-
sive models [14], and long-memory time series [41].

Consider an observed random sample (y1, y2, . . . , yn) from the random vari-
able y with E(y) = µ and Var(y) = σ2. That sample may be thought of as
drawn from a discrete probability distribution concentrated only at the values
y1, y2, . . . , yn with probabilities pi (pi > 0,

∑

pi = 1), called the empirical dis-
tribution. In this case the probability of getting exactly that sample would be
p1p2 . . . pn. The mean of that distribution is µ =

∑

i piyi, therefore, given µ,
the possible discrete distributions generating the observed sample are the set
{(p1, p2, . . . , pn) : pi > 0,

∑

pi = 1,
∑

piyi = µ} and the largest probability to
get the observed sample, given µ, is

EL(µ) = max

{

n
∏

i=1

pi : pi > 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piyi = µ

}

. (3.1)

Expression 3.1 as a function of µ is called the empirical likelihood profile for µ.
The maximum is reached for µ = ȳ =

∑

yi/n and equals n−n, corresponding to
pi = 1/n, i = 1, . . . , n. Thus, ȳ is the maximum empirical likelihood estimator of
µ. The empirical likelihood ratio is obtained dividing (3.1) by its maximum n−n:

ELR(µ) = max

{

n
∏

i=1

(npi) : pi > 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piyi = µ

}

. (3.2)

The solution of the maximum problem (3.2) may be obtained through Lagrange
multipliers:

p̂i = {n[1 + λ(yi − µ)]}−1

where the multiplier λ ≡ λ(µ) is the solution of

n
∑

i=1

yi − µ

1 + λ(yi − µ)
= 0.

If we define the empirical log likelihood ratio as ℓ(µ) = −2 log{ELR(µ)}, then

ℓ(µ) = 2

n
∑

i=1

log{1 + λ(yi − µ)}

and [32] has shown that if µ0 is the true mean of y, then as n → ∞, ℓ(µ0)
converges in distribution to a χ2

1 variable, a result similar to the parametric
likelihood. Therefore ℓ(µ) may be used for defining asymptotic confidence inter-
vals, and for hypothesis testing, for the mean.

A similar result holds also for random vectors. The following theorem is
proved in [34].
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Theorem 3.1 (Owen [34]). Let y1, y2, . . . , yn be i. i. d. random vectors with
mean µ0 and finite variance-covariance matrix V0 of rank d. Then −2 logELR(µ0)
converges in distribution to a χ2

d as n→ ∞.

The key step in the proof is to show that −2 logELR(µ0) may be written as

−2 logELR(µ0) = n(ȳ − µ0)
′S−1(ȳ − µ0) + op(1)

where ȳ = 1
n (y1 + y2 + · · ·+ yn) and S = 1

n

∑n
i=1(yi − µ0)(yi − µ0)

′.
The empirical likelihood framework has been generalized to linear regression

and analysis of variance [33] and also to data generated by a statistical paramet-
ric model through estimating equations [36, 29, 34]. Let θ = (θ1, . . . , θp)

′ ∈ Θ
and suppose that the relationship between the parameters θ and the data is
summarized by r estimating equations E{gk(y, θ)} = 0, k = 1, 2. . . . , r that de-
termine θ uniquely. Usually r = p but the case r > p has also been discussed in
[36]. The empirical likelihood ratio is defined by analogy:

ELR(θ)

= max

{

n
∏

i=1

(npi) : pi > 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pigk(yi, θ) = 0, k = 1, 2, . . . , p

}

.

(3.3)

It may be shown that

ℓ(θ) = −2 logELR(θ) = 2

n
∑

i=1

log

{

1 +

p
∑

k=1

λkgk(yi, θ)

}

where the multipliers λk ≡ λk(θ) are the solutions of

n
∑

i=1

gj(yi, θ)

1 +
∑p

k=1 λkgk(yi, θ)
= 0, j = 1, 2, . . . , p.

Finally, if θ0 denotes the true parameter value, then ℓ(θ0) converges in dis-
tribution, as n → ∞, to a χ2

p under some regularity conditions (see Theo-
rem 5.1 below), whose most important one is that the matrix S with entries
Sij = E{gi(y, θ0)gj(y, θ0)} be of full rank. It may be shown [see 36] that, with
g(y, θ) = {g1(y, θ), g2(y, θ), . . . , gp(y, θ)}′,

ℓ(θ0) = n

[

1

n

n
∑

i=1

g(yi, θ0)

]′ [
1

n

n
∑

i=1

g(yi, θ0)g(yi, θ0)
′
]−1 [

1

n

n
∑

i=1

g(yi, θ0)

]

+op(1).

In the case of linear regression model (2.3), that will be of special interest here,
the estimating functions g are provided by the normal equations:

gk(yi, θ0) = xik



yi −
p
∑

j=1

xijθ
0
j



 = xikεi. (3.4)
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Then
∑n

i=1 g(yi, θ0) = X ′ε, 1
n

∑n
i=1 g(yi, θ0)g(yi, θ0)

′ − 1
nσ

2(X ′X) = op(1), and

ℓ(θ0) =
1

σ2
ε′X(X ′X)−1X ′ε+ op(1)

from which the distribution result follows easily.
Since the maximum of ELR(θ) is obtained in p1 = p2 = · · · = pn = 1/n,

the LS estimator θ̂ = (X ′X)−1X ′y is also the maximum empirical likelihood

estimator, and ℓ(θ̂) = 0.
It follows that an empirical likelihood ratio test for the hypothesis H0 : θ = θ0

may be based on the statistic ℓ(θ0), which under H0 is asymptotically chi square
distributed with p degrees of freedom.

A partial ELR test has also been developed by [36, Corollary 5]. Suppose
that θ = (θ′1, θ

′
2)

′, where θ1 has q components and θ2 has p components. Let

(θ̂1, θ̂2) be the minimizer of ℓ, and θ̂02 denote the minimizer of ℓ(θ01 , θ2) with

respect to θ2. Then, the statistic λ(θ01) = ℓ(θ01, θ̂
0
2) − ℓ(θ̂1, θ̂2) may be employed

for testing the hypothesis H0 : θ1 = θ01, since it may be shown that under H0,
λ(θ01) converges in distribution to a χ2

q.
Such results have been extended to autoregressive time series by [29]: if

yt =

p
∑

i=1

yt−iθi + εt

where the ε’s are martingale increments with constant variance, then in (3.4)
xij = yi−j and

∑n
i=1 g(yi, θ) is a martingale and the convergence to chi square

may be shown, see e. g. [14] and Chapter 8 of [34].
The empirical likelihood framework was proposed for testing the difference of

two samples [21, 25], and for the difference of regression coefficients in two sam-
ples [44]. Less attention in literature has received the use of empirical likelihood
for detecting change points. To the best of our knowledge, the first proposal is
[45] who consider an independent sample with one change in some distribution
moments at unknown time, and [26] where a regression model is considered with
one possible change in the parameter values at unknown point. The present pa-
per is an extension to those contributions in three directions: allowing more than
one break, considering parametric models defined by estimating equations and
autoregressions in addition to regression models, and including partial structural
breaks.

Finally, related contributions are [18, 42, 19, 16]. The first paper proposed
empirical likelihood for detecting one change point in a sample where the dis-
tribution before change is F , and that after change is G(x) ∝

∫ y

−∞ w(y, θ)dF (y)
where w(·, θ) is a known weight function depending on a parameter θ. The other
papers [42, 19, 16] deal with partially time-varying regression models:

yi = X ′
iβ + Z ′

iα(ti) + εi

possibly with errors in variables, where the time-varying coefficients α(t) are
assumed continuous and differentiable, and propose empirical likelihood confi-
dence intervals for β.
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4. Testing level changes with empirical likelihood

Let us consider first the simple case of a random sample (y1, . . . , yn) with a
single level shift at a known time q, assuming E(yi) = µ1, (i = 1, . . . , q), E(yi) =
µ2, (i = q + 1, . . . , n), Var(yi) = σ2, all i and independent yi’s. The empirical
likelihood profile is

π(m1,m2) = max

{

n
∏

i=1

wi : wi > 0,

n
∑

i=1

wi = 1,

q
∑

i=1

wi(yi −m1) = 0,

n
∑

i=q+1

wi(yi −m2) = 0

}

and the maximum is n−n obtained for m1 = ȳ1,m2 = ȳ2 (the averages of
the two sub-samples). Therefore the maximum empirical likelihood under the
hypothesis H0 : µ1 = µ2 = µ is obtained as π(µ, µ) and the empirical likelihood
ratio test statistic is −2 logπ(µ, µ)− 2n logn and under H0, keeping q/n fixed,
converges as n→ ∞ to a central chi square variable with one degree of freedom
[see e.g. 21]. The computation of π(µ, µ) is simple because it equals the sum of
the empirical likelihood computed separately on the two sub-series (y1, . . . , yq)
and (yq+1, . . . , yn). We state this result in the more general case of m breaks.

Let 1 < t1 < t2 < · · · < tm < n denote the break dates (and let t0 = 0,
tm+1 = n), and assume that E(yk) = µi for ti−1+1 ≤ k ≤ ti (i = 1, . . . ,m+1),
while the yk’s are independent with equal variance σ2. We denote by

ELR(µ, s, t) = max

{

t
∏

i=s+1

[(t− s)wi] :

t
∑

i=s+1

wi = 1,

t
∑

i=s+1

wi(yi − µ) = 0

}

the empirical likelihood ratio for the sub-series (ys+1, . . . , yt).

Theorem 4.1. The empirical likelihood ratio test statistic for the hypothesis
H0 : µ1 = µ2 = · · · = µm+1 = µ0 is given by

− 2

{

m
∑

k=0

logELR(µ0, tk, tk+1)

}

. (4.1)

If ti/n → ρi (i = 1, . . . ,m) as n → ∞ with 0 < ρ1 < ρ2 < · · · < ρm < 1, then
as n→ ∞, under H0, the statistic converges to a central chi square distribution
with m+ 1 degrees of freedom.

Then, the hypothesis of absence of breaks may be tested using the inf of (4.1)
with respect to the mean:

ℓ0(t1, t2, . . . , tm) = −2 sup
µ

{

m
∑

k=0

logELR(µ, tk, tk+1)

}

. (4.2)
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The statistic (4.2) is equal to the empirical likelihood test statistic for an analysis
of variance model with one factor, and the null hypothesis of equal mean for each
group, thus under H0 is asymptotically chi square distributed with m degrees
of freedom [see 33, p. 1738].

This idea is very similar to the CUSUM framework, and indeed leads to
asymptotically equal results, as detailed in the following Corollary.

Corollary 4.1. In the case of a test of the null hypothesis of absence of breaks
against an alternative of a single break at time q, if q/n → ρ as n → ∞ with
0 < ρ < 1 and E|y|4 <∞ the difference between the ELR test statistic (4.2) and
the adjusted CUSUM statistic (2.2) converges to zero in probability as n → ∞
under H0.

The problem of multiple level changes may be also obviously expressed in
terms of a regression model (2.3) with only one parameter (p = 1) and design
matrix coefficients xi1 = 1 ∀i. The hypothesis of absence of breaks may be tested
using the Bai and Perron method. In this case also an asymptotic equivalence
holds.

Corollary 4.2. For a test of the null hypothesis of absence of breaks against an
alternative of m breaks at dates tj, if ti/n → ρi (i = 1, . . . ,m) as n → ∞ with
0 < ρ1 < ρ2 < · · · < ρm < 1 and E|y|4 < ∞ the difference between the ELR
test statistic (4.2) and m times the F test statistic (2.6) converges to zero in
probability as n→ ∞ under H0.

Given the asymptotic equivalence of the test statistics, the empirical likelihood-
based test for breaks may be accomplished by the same strategy as proposed
by [4]:

1. Select the number of breaks m, and a minimum length of the resulting
sub-series, h = nǫ

2. Compute the maximum of the ELR test statistic

ℓ0(t1, . . . , tm) = −2 sup
µ

m
∑

j=0

logELR(µ, tj , tj+1)

on all partitions of the series into (m+1) sub-series (y1, . . . , yt1), (yt1+1, . . . ,
yt2), . . . , (ytm+1, . . . , yn) with at least h observations each, call it ℓ∗(m).

Under the null hypothesis of absence of breaks, the statistic ℓ∗(m) has the same
asymptotic distribution as the Bai and Perron’s F (m|0) test, derived in Propo-
sition 6 of [4], and quantiles for selected values of ǫ are derived by simulation
in [6]. For the alternative of only one break, the asymptotic distribution is that
of the sup of a Brownian bridge, and the theoretical approximated quantiles of
[37] may be considered.

In the case of scalar yi’s further insight into the nature of the difference
between the statistics ELR and F may be easily gained. Given the segmentation
1 < t1 < t2 < · · · < tm < n, and denoting by ni the length of the i−th sub-
series, with ȳi its average and ȳ the overall average, the Bai and Perron statistic
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F equals

1

m

m+1
∑

i=1

ni(ȳi − ȳ)2/σ̂2

where σ̂2 is an estimate of the variance under the hypothesis of m level changes:

σ̂2 =
1

n−m− 1

m+1
∑

i=1

ti
∑

j=ti−1+1

(yj − ȳi)
2.

On the other side, for each subseries {yti−1+1, . . . , yti} the ELR ratio tends
asymptotically to a quadratic form:

−2 logELR(µ, ti−1, ti) = ni(ȳi − µ)2/Si(µ) + op(1)

where

Si(µ) =
1

ni

ti
∑

j=ti−1+1

(yj − µ)2

is the variance of the i−th sub-series under the hypothesis of absence of breaks,
usually larger than σ̂2. Therefore one can expect that the ELR test statistic
tends to be smaller than the corresponding F test statistic, a closer value might
be obtained with a weighted ELR:

ℓW (t1, . . . , tm) = −2 sup
µ







m+1
∑

j=1

logELR(µ, tj−1, tj)Sj(µ)/σ̂
2







which is asymptotically equal to

inf
µ

m+1
∑

i=1

ni(ȳi − µ)2/σ̂2.

In this case the optimal value of µ is simply ȳ; for the unweighted ELR, and for
vector yi’s, the search is more complicated and will be discussed in Section 6.

When only one break is allowed, our procedure is equivalent to that proposed
in [45], but computations are different. The method of [45] is based on solving
a non linear equations system, while ℓ0 in (4.2) requires evaluation of ELR on
two sub-series, and may be computed using the standard empirical likelihood
routines.

5. Testing structural breaks with empirical likelihood

We consider now the case that the data {y1, . . . , yn} is generated by a model
described by the estimating equations:

E{gk(y, θ)} = 0, k = 1, 2, . . . , p
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where θ = (θ1, . . . , θp)
′ ∈ Θ are the model parameters, and may be subject

to m breaks at times 1 < t1 < · · · < tm < n, so that each i−th subseries

(yti−1+1, . . . , yti) is generated by a model with parameters θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . ,

θ
(i)
p )′, while under the null hypothesis of absence of breaks all the observations
are generated by the same model with parameters θ0 = (θ01 , . . . , θ

0
p)

′. We denote
again the ELR statistic for the sub-series (ys+1, . . . , yt) by

ELR(θ, s, t) = max

{

t
∏

i=s+1

[(t− s)wi] : wi ≥ 0,
t
∑

i=s+1

wi = 1,
t
∑

i=s+1

wig(yi, θ) = 0

}

.

The empirical likelihood test statistic for the null hypothesis of absence of breaks
may be computed as the sum of the ELR statistic on each sub-series, as stated
in the following Theorem.

Theorem 5.1. Under the following assumptions:

1. E{g(y, θ0)g(y, θ0)′} positive definite
2. ∂

∂θ g(y, θ) continuous in θ0, ‖ ∂
∂θ g(y, θ)‖ and ‖g(y, θ)‖2 bounded by an in-

tegrable function

3. ∂2

∂θ∂θ′
g(y, θ) continuous in θ0 and ‖ ∂2

∂θ∂θ′
g(y, θ)‖ bounded by an integrable

function

the empirical likelihood ratio test statistic for the hypothesis H0 : θ(1) = θ(2) =
· · · = θ(m+1) = θ0 is

− 2

{

m
∑

k=0

logELR(θ0, tk, tk+1)

}

(5.1)

and if ti/n → ρi (i = 1, . . . ,m) as n → ∞ with 0 < ρ1 < ρ2 < · · · < ρm <
1, then as n → ∞, under H0, the statistic converges to a central chi square
distribution with (m+ 1)p degrees of freedom.

The null hypothesis of absence of breaks: H0 : θ(1) = θ(2) = · · · = θ(m+1)

may be tested considering the sup of the ELR statistic under H0:

ℓ0(t1, . . . , tm) = −2 sup
θ∈Θ

m
∑

j=0

logELR(θ, tj , tj+1). (5.2)

Here Corollary 5 of [36] (discussed at the end of Section 3) may be applied, on
taking for the free parameter (previously denoted by θ2) the regression coefficient
of the first sub-series θ(1), and for the constrained parameter (previously denoted
by θ1) the differences θ(2) − θ(1), θ(3) − θ(1), . . . , θ(m+1) − θ(1). The hypothesis
H0 corresponds to θ1 = θ01 = 0, and from the Corollary, the statistic (5.2) is
under H0 asymptotically chi square distributed with mp degrees of freedom.

The simplest and most interesting case is when the generating model is linear:

yi =

p
∑

j=1

θjxij + εi (5.3)
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where we assume that the εi’s are independent from the xij and mutually in-
dependent, but only mild boundedness conditions for the xij are required. The
estimating functions are given by the left hand sides of the normal equations:

gk(yi, θ) = xik

(

yi −
∑

xijθj

)

therefore in vector form, and writing εi(θ) = yi −
∑

xijθj :

g(yi, θ) = εi(θ)X
′
i

where Xi is the i−th row of the design matrix X . Note that, with ε(θ) =
[ε1(θ), . . . , εn(θ)]

′,

n
∑

i=1

g(yi, θ) = X ′ε(θ)

[

n
∑

i=1

g(yi, θ)g(yi, θ)
′
]

r,s

=
n
∑

i=1

εi(θ)
2xirxis = [G(θ)]r,s

and if θ0 is the true parameter value, 1
nG(θ0) − 1

nσ
2(X ′X) = op(1). Thus, the

asymptotic value of the ELR ratio at the parameter value θ0 is

−2 logELR(θ0, 0, n)

=

[

n
∑

i=1

g(yi, θ0)

]′ [ n
∑

i=1

g(yi, θ0)g(yi, θ0)
′
]−1 [ n

∑

i=1

g(yi, θ0)

]

+ op(1)

= ε(θ0)
′X(X ′X)−1X ′ε(θ0)σ

−2 + op(1).

When only one break is allowed, our procedure is equivalent to that proposed
in [26], but again the computation strategy is different.

The asymptotic similarity between empirical and Gaussian likelihood ratios
implies an asymptotic relationship between the ELR ratio test statistic and the
Bai and Perron’s F statistic also for linear models:

Corollary 5.1. If the data is generated by model (5.3) and the assumptions of
Theorem 5.1 are satisfied, for a test of the null hypothesis of absence of breaks
against an alternative of m breaks at dates tj, if ti/n → ρi (i = 1, . . . ,m) as
n→ ∞ with 0 < ρ1 < ρ2 < · · · < ρm < 1, the difference between the ELR ratio
test statistic (5.2) and mp times the F test statistic (2.6) converges to zero in
probability under H0.

For linear models too, an essential difference, for finite n, between ELR and
F resides in the evaluation of the residual variance, which is computed under
the null hypothesis in ELR, and under the alternative in F . However, here a
weighted version for reducing such difference is not viable, since the residuals
appear inside the matrix G(θ) to be inverted.

Corollary 5.1 suggests that similar strategies as those proposed by [4] may
be employed for testing breaks using the empirical likelihood:
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1. Select a maximum number of breaks m, and a minimum length of the
sub-series h = nǫ

2. Compute the maximum of the ELR ratio test statistic (5.2) on all possi-
ble partitions. Under H0 the maximum statistic has the same asymptotic
distribution of the Bai and Perron’s F (m|0) statistic, and their quantiles
may be used.

More elaborate strategies, also proposed in [5], and the important issue of
maximizing ELR(θ) with respect to θ and with respect to the break dates, are
discussed in Section 6.

Let us address now the problem of structural breaks for autoregressive pro-
cesses. Consider an AR(p) model:

yt = θ1yt−1 + · · ·+ θpyt−p + εt. (5.4)

The empirical likelihood for these processes has been studied by [14] extend-
ing results on dual likelihood of [29]. Since (5.4) is a linear model it may
be put in the form of a regression model (2.3) with xij = yi−j , and letting
zt = (yt, yt−1, . . . , yt−p)

′ the estimating equations may be written

gk(zt, θ) = yt−k



yt −
p
∑

j=1

θjyt−j





so that, if θ0 is the vector of the true parameter values, g(zt, θ0) = εt(yt−1, . . . ,
yt−p)

′ and an empirical likelihood ratio analogue to (3.3) may be defined:

ELR(θ)

= max

{

n
∏

i=1

(npi) : pi > 0,

n
∑

i=1

pi = 1,

n
∑

t=1

ptgk(zt, θ) = 0, k = 1, 2, . . . , p

}

.

(5.5)

The results of [36] cannot be directly applied since the g(zt, θ) are not indepen-
dent, but [14] have shown that under the following assumptions:

AR1 The process {εt} forms a martingale difference with respect to the se-
quence of σ−fields Ft = {. . . , εt−2, εt−1, . . . , yt−2, yt−1}

AR2 E{ε2t |Ft} = σ2 for every t, E{ε(4+c)
t |Ft} <∞ for a c > 0, the initial values

y0, . . . , y1−p are Ft−measurable

AR3 All roots of the autoregressive polynomial θ(z) = 1− θ01z − · · · − θ0pz
p lie

outside the unit circle

the empirical likelihood ratio ELR(θ0) is asymptotically equivalent to

n
∑

t=p+1

g(zt, θ0)
′
[

n
∑

t=p+1

g(zt, θ0)g(zt, θ0)
′
]−1 n

∑

t=p+1

g(zt, θ0)
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and converges in distribution to a chi square with p degrees of freedom, like in
the case of independent data.

Turning now to the structural change analysis, Bai and Perron’s [4] supF
test may be also applied to autoregressive processes under some additional as-
sumptions, see [4, page 57] and [3, page 302]. Let us denote any partition of the
data into m + 1 sub-series by {(yti+1, . . . , yti+1

), i = 0, 1, . . . ,m} with t0 = 0
and tm+1 = n as in Sections 4 and 5, and let ni = ti+1 − ti; the assumptions
are as follows:

AR4 1
ni

∑ti+[vni]
t=ti+1 ztz

′
t converges in probability to vQi uniformly in v ∈ [0, 1]

where Qi is a positive definite matrix, i = 0, 1, . . . ,m

AR5 1√
ni

∑ti+[vni]
t=ti+1 εtzt converges in distribution to Wi(v), where Wi(v) is a

vector Wiener process in [0, 1] with variance σ2vQi, and W0,W1, . . . ,Wm

are independent of each other.

The above assumptions are sufficient for extending to autoregressive processes
our results concerning the asymptotic distribution of the ELR test statistic and
the asymptotic equivalence between the supF test and the supremum of the
ELR statistic under H0:

ℓ0(t1, . . . , tm) = −2 sup
θ∈Θ

m
∑

j=0

logELR(θ, tj , tj+1), (5.6)

as stated in the following Theorem.

Theorem 5.2. For an AR(p) process with parameters θ0 and under assump-
tions AR1–AR5, the empirical likelihood ratio test statistic for the hypothesis
H0 : θ(1) = θ(2) = · · · = θ(m+1) = θ0 is

−2

{

m
∑

k=0

logELR(θ0, tk, tk+1)

}

and if ti/n→ ρi (i = 1, . . . ,m) as n→ ∞ with 0 < ρ1 < ρ2 < · · · < ρm < 1

(i) as n → ∞, under H0, the statistic converges to a central chi square dis-
tribution with (m+ 1)p degrees of freedom

(ii) for a test of the null hypothesis of absence of breaks against an alternative
of m breaks at dates ti, the difference between the ELR ratio test statistic
(5.6) andmp times the F test statistic (2.6) converges to zero in probability
under H0.

5.1. Partial structural breaks

We address here the hypothesis that the breaks involve only some parameters,
while the others remain unchanged throughout the whole dataset. However,
we believe that only very rarely one may have a priori information sufficient



3104 R. Baragona et al.

to exclude that some parameters of the linear model are subject to possible
breaks. Thus it is advisable, to start with, testing for a complete structural
break. Only if the hypothesis of absence of breaks is rejected, and given the best
specification of the number of breaks m, and their dates t1, . . . , tm, we proceed
to examine the hypothesis that some of the model parameters remain constant,
selecting them among those whose estimates are most variable throughout the
(m + 1) sub-series. Such a procedure has the advantage of requiring only one
maximization stage with respect to the break dates, and only for the complete
break structure.

We shall assume, without loss of generality, that the possibly constant pa-
rameters are the first p, while there are q more parameters (labeled from p+ 1
to p+ q) that are subject to m breaks at dates t1, t2, . . . , tm.

Consider the regression model analogous to (5.3): y = Xθ + ε, where now θ
has (p+ q) parameters. Partition the design matrix as in Section 2: X = (W,Z)
whereW : n×p corresponds to the first p parameters, and Z : n×q corresponds
to the last q parameters, and denote θ = (β′, δ′)′ where β : p× 1 relates to W ,
and δ : q × 1 relates to Z. Now, as in (2.4), we consider a partition of the
whole series into (m+1) sub-series delimited by the break dates, and write the
expanded model:

y = X̄θ̄ + ε

where θ̄ = (θ(1)
′
, θ(2)

′
, . . . , θ(m+1)′)′, and X̄ is the corresponding expanded de-

sign matrix. The partial break model, assuming that the first p parameters
remain fixed, may be written as in (2.7), where Z̄ is the n × (m + 1) matrix
corresponding to the expansion of Z, similar to (2.5).

We first consider the no break hypothesis against the complete structural
break using the statistic

ℓ∗ = −2 sup
θ∈Θ

max
t1,...,tm

m
∑

j=0

ELR(θ, tj, tj+1).

If the null hypothesis is rejected, and given m and the dates t1, . . . , tm, an em-
pirical likelihood ratio statistic for the partial break hypothesis may be obtained
maximizing the sum of the EL ratios:

ℓ1 = −2 sup
θ̄∈Θ1

m
∑

j=0

ELR(θ(j+1), tj , tj+1)

on the set

Θ1 = {θ̄ = (θ(1)
′
, θ(2)

′
, . . . , θ(m+1)′)′ ∈ Θm+1 : θ

(k)
j = θ

(k+1)
j ,

k = 1, . . . ,m; j = 1, . . . , p}.

The results of the previous Section imply that, under the hypothesis of no
break, and given the dates, ℓ1 is asymptotically chi square distributed with mp
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degrees of freedom. The results concerning partial empirical likelihood of [36,
Corollary 5], referred to in Section 3, also ensure that ℓ∗ − ℓ1 is asymptotically
distributed as a chi square with mq degrees of freedom under the hypothesis
that the first p parameters remain constant. This difference may be used as a
test statistic for the partial break, rejecting, if it is significant, the hypothesis
that the change does not involve the first p parameters.

A similar strategy may be adopted also when detecting breaks with F-type
statistics. Three sub-spaces may be defined:

• S: the space generated by the columns of X̄ without restrictions; let θ̂ de-
note the least squares estimate, and therefore P (y) = X̄θ̂ is the projection
of the data onto S.

• S1: the space generated by the columns of X̄ with the restriction that the
first p coefficients are constant. S1 is isomorphic to the space generated by
the columns of (W, Z̄). We denote by θ̃ the least squares estimate under

the conditions {θ(k)j = θ
(k+1)
j , j = 1, 2, . . . , p; k = 1, 2, . . . ,m}, thus the

projection of y onto S1 is P1(y) = X̄θ̃.
• S0: the space generated by the columns of X̄ with the restriction that all
coefficients remain constant, i. e., absence of breaks. S0 is isomorphic to
the space generated by the columns of X . Let θ∗ denote the least squares

estimate in this case, subject to {θ(k)j = θ
(k+1)
j , j = 1, 2, . . . , p + q; k =

1, 2, . . . ,m}, so that the projection of y onto S0 is P0(y) = X̄θ∗.

Since S0 ⊂ S1 ⊂ S we have:

‖y − P (y)‖2 = ‖y − P0(y)‖2 + ‖P (y)− P0(y)‖2

‖P (y)− P0(y)‖2 = ‖P (y)− P1(y)‖2 + ‖P1(y)− P0(y)‖2.

In the framework of the Gaussian likelihood test theory, the hypothesis of
absence of breaks against a complete structural break may be tested using the
statistic

F (t1, . . . , tm) =
‖P (y)− P0(y)‖2
‖y − P (y)‖2

n− (m+ 1)(p+ q)

m(p+ q)
.

This is the Bai and Perron statistic for the complete structural break. The
hypothesis that the first p parameters remain constant in the (m+1) sub-series
could be tested using the statistic

F1(t1, . . . , tm) =
‖P (y)− P1(y)‖2
‖y − P (y)‖2

n− (m+ 1)(p+ q)

mp
.

The Bai and Perron F test statistic for the partial structural break is easily seen
to be

Fc(t1, . . . , tm) =
‖P1(y)− P0(y)‖2
‖y − P1(y)‖2

n− (m+ 1)q − p

mq
(5.7)
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and may be seen as a conditional test of absence of breaks given that the first
p parameters are not subject to change.

The hypothesis of partial break, i. e., that the change does not involve the first
p parameters, may be rejected if the statistic Fc (5.7) is large, compared with
the quantiles of a F variable with mq and n− (m+1)q− p degrees of freedom.
In this case also, our procedure has the advantage of requiring the search of
the number of breaks m, and their dates t1, . . . , tm, only for a complete break
structure, which is much simpler and easier than maximizing the partial break
F statistic.

6. Implementation of the empirical likelihood-based procedure

We start noting a boundedness issue, that is typical of the empirical likelihood
framework, and does not arise in the procedures based on squared residuals.
Consider the level change case. The statistic for testing no level change against
m changes at times t1, . . . , tm is (4.2) and is the sum of the logarithms of the
partial empirical likelihoods:

ELR(µ, tk, tk+1) = max







tk+1
∏

j=tk+1

(tk+1 − tk)wj :

wj > 0,

tk+1
∑

j=tk+1

wj = 1,

tk+1
∑

j=tk+1

wj(yj − µ) = 0







. (6.1)

Their definition depends on the existence of weights wj satisfying the constraints
in (6.1) for each k, in other words on the existence of a number µ belonging to the
convex hull of each sub-series (ytk+1, . . . , ytk), k = 0, 1, . . . ,m. If this does not
happen, at least one of the ratios (6.1) is not defined, and may be conventionally
taken equal to zero [e. g. 34], thus the test statistic (4.2) becomes arbitrarily
large. It implies that if the data contains any sub-series whose values are all
larger than the remaining observations, the null hypothesis of no level change
will be rejected at any significance level; this does not happen with the CUSUM
or F -type tests, unless the difference is significantly large. In our view, this is a
distinctive feature of the empirical likelihood, and not necessarily a shortcoming.
However, to avoid such problem, the definition itself of empirical likelihood
may be slightly modified in order to ensure the existence of a solution with
all positive weights in any case. An adjusted empirical likelihood is proposed
in [13], consisting in the addition of an artificial observation with the aim of
satisfying the constraint. Suppose that the series is (y1, . . . , yn) and the empirical
likelihood is expressed in terms of the estimating functions g(y, θ). Then we add
an artificial observation yn+1, and define

g(yn+1, θ) = −an
n

n
∑

i=1

g(yi, θ) (6.2)
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and instead of the empirical likelihood ratio ELR(θ) (3.3) we consider the ad-
justed empirical likelihood ratio:

ELR∗(θ)

= max

{

n+1
∏

i=1

(n+ 1)pi : pi > 0,
n+1
∑

i=1

pi = 1,
n+1
∑

i=1

pigk(yi, θ) = 0, k = 1, 2, . . . , p

}

.

The behavior of the adjusted ELR and the choice of the term an are discussed
in [13], showing asymptotic coincidence if an = op(

√
n). The authors suggest to

choose an = max{1, 12 logn} and the use of a truncated mean in (6.2). In our
experience we found such adjustment satisfactorily effective, and the difference
with ELR(θ) negligible when the hypothesis of absence of breaks is true.

A further issue is Bartlett correctability. A Bartlett correction may be applied
to the empirical likelihood [see e. g. Chapter 13 of 34], both in the case of a
level change and for structural change in linear models, resulting essentially in
dividing the ELR by (1+A/n). However, the appropriate value to be used for A
may be difficult to select; a rough approximation based on Gaussian distribution
is A = d2 + d/2 if the data, or the estimating functions, belong to R

d, but more
research is still needed on this topic.

An open problem in the implementation of an empirical likelihood-based
procedure resides in the actual maximization for finite n of the sum of the
log empirical likelihood ratios with respect to the mean µ in the case of level
change (4.2), and the maximization of (5.2) with respect to the parameter θ in
the case of estimating functions. Consider first the level change identification,
when only one break is allowed, at time q. The statistic to be minimized is
−2 logELR(z, 0, q)− 2 logELR(z, q, n) with respect to z. Under the hypothesis
of no break, and for z = µ+Op(n

−1/2), we have [33, p. 1727]:

− 2 logELR(z, 0, q)− 2 logELR(z, q, n)

= q(ȳ1 − z)′S−1
1 (ȳ1 − z) + (n− q)(ȳ2 − z)′S−1

2 (ȳ2 − z) + op(1) (6.3)

with

ȳ1 =
1

q

q
∑

i=1

yi ȳ2 =
1

n− q

n
∑

i=q+1

yi

S1 =
1

q

q
∑

i=1

(yi − z)(yi − z)′ S2 =
1

n− q

n
∑

i=q+1

(yi − z)(yi − z)′.

The choice of the overall average ȳ = qȳ1+(n−q)ȳ2, that would be the minimizer
if S1 = S2 = S independent of z, may be appropriate for n large, but for smaller
n the optimal value of z may be different. In the case of scalar data it is easy to
show that the minimizer is a convex linear combination of ȳ1 and ȳ2, as stated
in the following Theorem.
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Theorem 6.1. Let {y1, y2, . . . , yn} be n independently identically distributed
random variables with finite variance, and 1 < q < n. The minimizer of the
asymptotic part of (6.3) is a convex linear combination of ȳ1 and ȳ2:

z∗ = cȳ1 + (1− c)ȳ2, 0 < c < 1.

For k > 1 breaks, it easily follows that, under the assumptions of Theorem
6.1, the optimal choice of z belongs to the convex hull of the sub-series averages:
{ȳ1, ȳ2, . . . , ȳk+1}.

We conjecture that also in the multivariate case the optimal z is a linear
combination of ȳ1 and ȳ2, as some simulation experience suggests, but no proof
is available.

We turn now to the structural break case, on considering a linear model
(5.3): y = Xθ + ε and only one break, that splits the data into two sub-series
(y1, y2, . . . , yq) and (yq+1, . . . , yn). Let us partition accordingly the data vector,
the design matrix and the residuals: y = (y′1, y

′
2)

′, X = (X ′
1, X

′
2)

′, ε1(θ) =
y1 −X1θ, ε2(θ) = y2 −X2θ. For the estimating equations we have:

q
∑

i=1

g(yi, θ) = X ′
1ε1(θ)

n
∑

i=q+1

g(yi, θ) = X ′
2ε2(θ)

[

q
∑

i=1

g(yi, θ)g(yi, θ)
′
]

r,s

=

q
∑

i=1

[ε1(θ)]
2
i xirxis = [G1(θ)]r,s





n
∑

i=q+1

g(yi, θ)g(yi, θ)
′





r,s

=

n
∑

i=q+1

[ε2(θ)]
2
i−qxirxis = [G2(θ)]r,s .

Thus if θ0 is the true parameter value, for θ = θ0 +Op(n
−1/2):

− 2[logELR(θ, 0, q) + logELR(θ, q, n)]

= ε1(θ)
′X1G1(θ)

−1X ′
1ε1(θ) + ε2(θ)

′X2G2(θ)
−1X ′

2ε2(θ) + op(1) (6.4)

and 1
qG1(θ0) − 1

qσ
2(X ′

1X1) = op(1),
1

n−qG2(θ0) − 1
n−qσ

2(X ′
2X2) = op(1). On

denoting the least squares estimate on each sub-series by θ̂1 = (X ′
1X1)

−1X ′
1y1

and θ̂2 = (X ′
2X2)

−1X ′
2y2, the test statistic (6.4) may be written:

(θ̂1 − θ)′(X ′
1X1)G1(θ)

−1(X ′
1X1)(θ̂1 − θ)

+ (θ̂2 − θ)′(X ′
2X2)G2(θ)

−1(X ′
2X2)(θ̂2 − θ) + op(1). (6.5)

Like in the case of level change, minimization of (6.5) with respect to θ is made
difficult by the dependence of the matrices G1 and G2 on θ. To obtain an ap-
proximate solution, one can ignore such dependence, and put G1(θ)

−1(X ′
1X1) ≃
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G2(θ)
−1(X ′

2X2) ≃ σ2 I. Then, equating derivatives to zero, we obtain:

(X ′
1X1)θ̂1 + (X ′

2X2)θ̂2 = (X ′
1X1 +X ′

2X2)θ

that is solved by θ̂ = (X ′X)−1X ′y, the least squares estimate under absence of
breaks. However, in practice for small n the dependence of G1(θ) and G2(θ) on θ
may not be negligible, and a numerical optimization routine could be advisable.

A further required stage is to determine the best segmentation, i. e., given the
number of breaksm, determining their dates t1, t2, . . . , tm. However, the additive
nature of the statistics (4.1) and (5.1) makes it possible to solve such problem by
means of a procedure based on dynamic programming, similar to that introduced
by [5] for the supF tests. The key idea is that if 1 < t1 < · · · < tm < n is the
best segmentation into (m+ 1) sub-series, then t1, t2, . . . , tm−1 are the optimal
dates for the segmentation of the “truncated” series (y1, y2, . . . , ytm) into m sub-
series. Thus, having already computed the best break dates for k breaks of any
series (y1, . . . , yt) for any t, and if λ(t) is the resulting test statistic, the best
dates for the whole series (y1, . . . , yn) and (k+1) breaks are obtained by taking
for the last break date the time tk+1 that solves:

tk+1 = argmax
t

{λ(t)− 2 logELR(θ, t, n)} (6.6)

and the other dates equal to the best segmentation of the series (y1, . . . , ytk+1
)

into k + 1 sub-series. This allows to solve iteratively the search for the break
dates with an increasing number of breaks, by considering only one-dimensional
maximization problems similar to (6.6). The value of the parameter θ is set
for simplicity equal to its approximate optimum θ∗ (the least squares estimate
under the hypothesis of no break; and respectively ȳ in case of level changes).

Thus, the proposed procedure for determining the optimal dates, allowing up
to m breaks, runs in the following stages (remember that we assume at least h
observations in each sub-series):

• 1st stage. On assuming only one break, for any length τ from 2h to n− h,
and for τ = n, the series (y1, . . . , yτ ) is split into 2 parts by means of the
date t1 solving

t1(τ) = argmin
t

{logELR(θ, 0, t) + logELR(θ, t, τ), h < t ≤ τ − h}

Let ℓ
(1)
0 (1, τ) = −2{logELR[θ, 0, t1(τ)] + logELR[θ, t1(τ), τ ]} the result-

ing value of the test statistic.
• 2nd stage. Assuming two breaks, for any length τ from 3h to n − h, and
for τ = n, the series (y1, . . . , yτ ) is split into 3 parts. The second break
date t2 is obtained by solving

t2(τ) = argmin
t

{

−1

2
ℓ
(1)
0 (1, t) + logELR(θ, t, τ), 2h < t ≤ τ − h

}

while the first break date will be selected equal to t1[t2(τ)], and ℓ
(2)
0 (1, τ)

will denote the resulting value of the test statistic.
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• k-th stage. For k breaks, for any length τ from (k + 1)h to n− h, and for
τ = n, the series (y1, . . . , yτ ) is split into (k+1) parts. The last break date
tk is given by:

tk(τ) = argmin
t

{

−1

2
ℓ
(k−1)
0 (1, t) + logELR(θ, t, τ), (k + 1)h < t ≤ τ − h

}

and the preceding break dates are the optimal ones for (k − 1) breaks of
the data from 1 to tk(τ).

Though this dynamic programming strategy is based only on one-dimensional
optimization problems like (6.6), it may be computationally heavy, specially if
n is not small; an alternative is the search for nearly-optimal solutions by means
of a meta-heuristic method. Genetic algorithms have been successfully employed
for similar problems, e. g. in threshold autoregressive models building [see 8, for
a review].

The final problem is identifying the number of breaks, if any, given a maxi-
mum number of allowable breaks m. The simplest way is computing the ELR
test statistic for absence of breaks against an alternative of k breaks (k =
1, 2, . . . ,m) and selecting the most significant figure, or using an information
criterion. Identification criteria such as AIC and BIC applied to empirical
likelihood are discussed, e. g., in [24] and [40]. Alternatively, [4] proposed a
sequential method, symbolized by F (ℓ + 1|ℓ), to decide whether to accept the
hypothesis of ℓ + 1 breaks against that of ℓ breaks. Essentially, in its simpler
version, it amounts to consider the (ℓ + 1) optimal sub-series obtained under ℓ
breaks, and to test each of them for the presence of an additional break.

Given the asymptotic equivalence between the F and ELR test statistics,
such strategies may also be adopted for the empirical likelihood-based proce-
dure. Practical recommendations are provided by [5]. They suggest to use the
sequential procedure, but not stopping as soon as the test is not significant,
rather computing the F (ℓ + 1|ℓ) statistic for sufficiently many values of ℓ, and
selecting the number of breaks m so that the tests F (ℓ + 1|ℓ) are insignificant
for ℓ ≥ m.

7. Simulations and applications

A simulation study has been conducted to check the behavior of the two tests
on finite length samples (n = 50, 100, 200). Thousand random samples were
simulated according to the following probability distributions: standard Gaus-
sian N(0, 1), standardized Gamma distribution G(5, 1) and G(10, 1), exponen-
tial G(1, 1) and Student’s t with different degrees of freedom t(2), t(5), t(10).
The tests for the hypothesis of absence of breaks against the alternative of
one level change were applied to the simulated samples with sizes 0.10, 0.05
and 0.01. Since the essential findings were similar, only results for size 0.05 are
presented. Moreover, the two tests yielded the same practical results for series
length n = 200, we shall report only findings for n = 50 and 100.
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Table 1

Frequency of rejection of the null hypothesis of no break on 1000 replications, data
without break

N(0, 1) t(2) t(5) t(10) G(1, 1) G(5, 1) G(10, 1)
n = 50 F 51 33 33 46 41 49 57

ELR 61 131 62 63 87 74 75
n = 100 F 36 37 40 54 37 45 54

ELR 66 153 73 66 67 61 62

Table 2

Frequency of rejection of the null hypothesis of no break on 1000 replications, data with one
level change equal to 0.5

N(0, 1) t(2) t(5) t(10) G(1, 1) G(5, 1) G(10, 1)
n = 50 F 297 281 284 286 299 263 275

ELR 315 481 336 327 366 284 307
n = 100 F 549 540 545 530 549 529 530

ELR 538 679 582 542 591 543 529

The frequencies of rejections of H0 when it is true for a nominal size α = 0.05
are shown in Table 1. An overall consideration is that the observed size of F
tends to be generally slightly smaller, and that of ELR slightly larger, than
0.05. A moderate leptokurtosis as in t(5) and t(10) does not modify such a
behavior, while this phenomenon is more visible in asymmetric distributions
like G(5, 1) and G(10, 1) and specially for exponential data, though lighter for
n = 100. Notably different are the results for t(2) data, where the ELR shows an
exceptionally large frequency of rejection, indicating that the hypothesis of finite
moments (this distribution has not finite variance) is critical for convergence to
the asymptotic distribution.

The difference between the F and ELR statistics in case of absence of
breaks is generally moderate and decreases rapidly when n increases. Gaus-
sian, G(5, 1), G(10, 1), t(5) and t(10) distributions give similar results, while the
behavior is somewhat different specially for Student’s t with infinite variance
t(2) and partly for exponential G(1, 1), where ELR tends to be slightly larger
than F .

In order to check the power of the tests, we inserted a level change at the
midpoint of the simulated series and repeated the exercise. The power of the
tests as a function of the break size (from 0.1 to 0.9 times the series standard
error) is reported in Figure 1 for the Gaussian case and series length n = 50,
showing a marginal advantage in power for the ELR test; when n = 100 the
two lines are undistinguishable.

The results for a moderate break size 0.5 are now described in more detail.
The overall behavior is described in Figure 2 where the distribution of results
for Gaussian data in the cases of no break and one break is presented for n=100.
To make the graph more readable, we have computed histograms on 100 equal
width classes, and plotted the class frequencies against the central class values.

The frequencies of rejection of the null hypothesis of absence of breaks is
shown in Table 2. For n = 50 the ELR test has a slightly larger observed
power, while for n = 100 the power of the two tests is essentially equivalent.
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Fig 1. Observed power of the tests for Gaussian data, n=50 and break sizes from 0.1 to 0.9
times the standard error of the series. Continuous line ELR, dashed line F .
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Fig 2. Distribution of the observed values of ELR and F statistics for Gaussian data, n=100.
Black: no level change, Red: level change 0.5. Continuous line ELR, dashed line F .

In the level change case the differences between F and ELR tend to increase
slightly. ELR is often a bit larger than F , specially for exponential G(1, 1) and t
distributions with 2 and 5 degrees of freedom rather than in the Gaussian case.

Finally, the distributions of the selected break dates according to the two
tests appear similar, an example is Figure 3 concerning the case of the t(10)
data, n=100 (here also the frequency of each histogram class is plotted against
the central value of the class).

We have also simulated data according to two linear models (among those
considered in [7]), with n = 100 and 1000 replications.

Model 1 (regression) xt = α + βzt + εt where {εt} and {zt} are i. i. d.
standard Gaussian, α = 2, β = 1, changes in the parameter α at t = 50.

Model 2 (autoregression) xt = α+βxt−1+εt where {εt} are i. i. d. standard
Gaussian, α = 10, β = 0.5 and changes in the parameter α at t = 50.
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Fig 3. Distribution of the selected break dates, n=100, data generated according to t(10),
break size 0.5. Continuous line ELR, dashed line F .
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Fig 4. Observed power of the tests for Model 1 (black) and Model 2 (red), break sizes from
0.1 to 0.9 times the standard error of the innovations. Continuous line ELR, dashed line F .

The power of the two tests for break sizes 0(0.1)0.9 are shown in Figure 4. Here
also it may be observed that the behavior of the two tests is similar, though the
ELR test has an observed size slightly larger than the nominal 0.05.

The tests for partial structural change were also considered. Sets of thousand
replications of series generated according to Model 1, and breaks with different
size in the first parameter were simulated with n = 200, and the partial ELR
and F tests for the hypothesis that the second parameter remains constant were
applied. The experiment was repeated with series containing also a moderate
increase in the second parameter at the break date. The results are reported
in Table 3. Figures are relative frequencies of rejection of the hypothesis of
constancy of the second parameter, computed only on the replications where
the null hypothesis of absence of a complete structural change was rejected.
The first rows (bs2 = 0.0) show the observed test size, that is always close to
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Table 3

Observed power of the partial tests for constancy of the second parameter in Model 1, break
sizes of the first parameter bs1 = 0.5(0.1)0.9, break size of the second parameter

bs2 = 0.0, 0.1, 0.2

bs1 0.5 0.6 0.7 0.8 0.9
bs2 = 0.0 F 0.05 0.04 0.03 0.03 0.03

ELR 0.08 0.07 0.06 0.06 0.06
bs2 = 0.1 F 0.13 0.12 0.11 0.10 0.10

ELR 0.17 0.15 0.14 0.14 0.14
bs2 = 0.2 F 0.40 0.36 0.34 0.33 0.32

ELR 0.41 0.37 0.35 0.34 0.34

the nominal value 0.05, though a little larger for ELR and smaller for F . The
second and third row sets relate to cases when the structural change is complete,
since the break has an effect, though moderate, on the second parameter too;
thus, they denote observed power. The figures for ELR are generally slightly
larger than those for F . An overall comment is that the results are not largely
influenced by the break size of the first parameter, implicitly indicating that its
estimation bias is not serious.

We present now two applications of the break detection methods to real data.
The two series are not satisfactorily described by linear models since they exhibit
non linear or non stationary features, possibly due to structural changes, and
more complicated models were proposed.

The first dataset is the help-wanted advertising index (monthly from Jan-
uary 1960 to December 1996, n = 444) analyzed by [27]. They fitted a smooth
transition time-varying model with a structural change at December 1979. The
same series was considered by [9] who proposed a non-linear non-stationary two-
regime model of a similar type but with change at April 1969. We tried a model
with a constant, a linear trend Tt = (t/n) and two autoregressive terms at lags
1 and 2; the Bai and Perron and ELR procedures gave the same results, indi-
cating three regimes with structural change at t = 106 (May 1969) and t = 359
(June 1990). The sum of squared residuals is 0.766, slightly larger than the
model of [9] (0.649) and the model of [27] (0.691), that both allow non-linearity
in addition. Figure 5 shows the data and the break dates, the first one appears
nearly equal to [9], the second structural change is less clear-cut. The Bai and
Perron procedure indicated a third possible break at October 1979 (similar to
the break date proposed by [27]), but the F (3|2) statistic was not significant.

The second series relates to the average annual temperature at Innsbruck,
1803–2005. This dataset was analyzed by [10] who proposed an autoregressive
model with the autoregressive coefficients linearly time-varying, and a regime
change at year 1973. We fitted a simple linear model with a constant, a linear
trend Tt = (t/n) and an autoregressive term at lag 1. Here also the Bai and
Perron and ELR suggest essentially the same structural changes: three breaks at
t = 55 (t = 57 for ELR), 93, 158 (years 1857, 1895, 1960). The data are shown in
Figure 6. The residual variance of the 3-break resulting model is about 43, while
the residual variance of the model in [10] is 46.7, it seems that their method
privileges parsimony, as found also for the help-wanted data.
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Fig 5. Help-wanted advertising index. Vertical bars indicate the two breaks, triangle and
square indicate the regime change date according to the models of [9] and [27] respectively.
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Fig 6. Average annual temperature at Innsbruck. Vertical bars indicate the three breaks, the
regime change date according to the model of [10] is indicated by a triangle.

8. Conclusions

We have discussed how the empirical likelihood paradigm may be adopted for
the problem of identifying and estimating structural changes in time series. The
proposed empirical likelihood ratio test is shown to be asymptotically equivalent
to the tests based on F -type and Cusum statistics.
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Therefore, similar strategies as those proposed by Bai and Perron [4] may
be used for identifying the number of breaks and their dates with empirical
likelihood. In particular, a dynamic programming algorithm analogue to that
proposed in [5] is introduced for detecting the optimal break dates.

When testing the null hypothesis of absence of breaks against the alternative
of m breaks, the ELR test statistic is simply the sum of the ELR computed
on each of the (m + 1) sub-series having a different structure under the alter-
native. However, the required ELR test statistic value may be computationally
heavy, since a maximization with respect to the model parameters under the
null hypothesis is needed, and for some models the solution is not near the max-
imum likelihood, or the least squares, estimates of the parameters, but must be
actually obtained through an optimization algorithm.

It has also been suggested how to use the empirical likelihood test in the case
of partial structural breaks, when the possible change involves only some of the
model parameters.

Experience on a set of simulated series with finite length suggests that the
results of the two tests are equivalent for long series, but not so different also for
smaller lengths n = 50 and 100, when generally the ELR test shows a slightly
larger power, but also a slightly larger size than nominal. Finally, we applied
the tests on some real series with non linear or non stationary features induced
by structural changes, and found that both the ELR and F procedures are able
to detect the breaks.

The basic idea of the present paper may be applied in principle to any model
for which an empirical likelihood inference has been proposed. Thus, future re-
search may be concerned with break detection in GARCH models using the
results of [11], or random coefficient INAR(p) processes basing on [43]. More-
over, it may be possible to consider periodogram ordinates rather than data,
extending to break detection the frequency domain empirical likelihood infer-
ence proposed by [28] for ARMA models, extended to long-memory ARFIMA
models by [41] and further developed for more general models by [31, 30, 22].

Appendix A: Proofs

Proof of Theorem 4.1. The maximum unconstrained empirical likelihood is n−n,
while H0 states that each sub-series (ytk+1, . . . , ytk+1

), k = 0, 1, . . . ,m has mean
equal to µ0. Therefore the empirical likelihood ratio for H0 is

nn max







n
∏

i=1

wi : wi > 0,

n
∑

i=1

wi = 1,

tk+1
∑

j=tk+1

wj(yj − µ0) = 0, k = 0, 1, . . . ,m







.

(A.1)
Let sk = wtk+1 + · · · + wtk+1

, with s0 + s1 + · · · + sm = 1. On writing πj =
wj/sk, tk + 1 ≤ j ≤ tk+1, k = 0, . . . ,m, (A.1) may be written:

nnmax







m
∏

k=0

tk+1
∏

j=tk+1

wj :

tk+1
∑

j=tk+1

wj = sk,

tk+1
∑

j=tk+1

wj(yj − µ0) = 0, k = 0, . . . ,m






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= nn max







m
∏

k=0

tk+1
∏

j=tk+1

skπj :

tk+1
∑

j=tk+1

πj = 1,

tk+1
∑

j=tk+1

πj(yj − µ0) = 0, k = 0, . . . ,m







= nn max
s

m
∏

k=0

snk

k max
π







tk+1
∏

j=tk+1

πj : πj > 0,

tk+1
∑

j=tk+1

πj = 1,

tk+1
∑

j=tk+1

πj(yj − µ0) = 0







= nn max
s

m
∏

k=0

snk

k ELR(µ0, tk, tk+1)n
−nk

k .

where we have put nk = tk+1− tk, (k = 0, 1, . . . ,m), n0+n1+ · · ·+nm = n, and
the maximum is taken for s belonging to the simplex {si > 0, s0+s1+· · ·+sm =
1}. Therefore the test statistic is

− 2 logELR0(µ0) = −2

m
∑

k=0

logELR(µ0, tk, tk+1)+

− 2

{

n logn−
m
∑

k=0

nk lognk +max
s

m
∑

k=0

nk log sk

}

. (A.2)

Since the maximum of
∑

k nk log sk constrained to
∑

k sk = 1 is obtained for
sk = nk/n, the term on the second line vanishes and the equality is proved.
Each term of (4.1) is computed on a series of nk observations. If as n → ∞
each nk → ∞, given the independence of the yi’s, each converges to a chi square
distribution with one degree of freedom, thus (4.1) converges to a chi square
with (m+ 1) degrees of freedom.

A Lemma is needed for the proof of Corollary 4.1.

Lemma A.1. Let E|yi|4 <∞. Then under the hypothesis of no break

−2 logELR(ȳ, 0, q) = q(ȳ1 − ȳ)2/s21 + op(1)

−2 logELR(ȳ, q, n) = (n− q)(ȳ2 − ȳ)2/s22 + op(1)

where

s1 =
1

q

q
∑

i=1

(yi − ȳ)2, s2 =
1

n− q

n
∑

i=q+1

(yi − ȳ)2.

Proof. Note that ȳ = µ+Op(n
−1/2) therefore the thesis is a direct consequence

of Eq. (2.1) of [33] applied to the two sub-series.

Proof of Corollary 4.1. From Lemma A.1 we have

−2 logELR(ȳ, 0, q) = q(ȳ1 − ȳ)2/s21 + op(1)

−2 logELR(ȳ, q, n) = (n− q)(ȳ2 − ȳ)2/s22 + op(1).
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Note that q(ȳ1 − ȳ)2 + (n− q)(ȳ2 − ȳ)2 = σ2zn(q/n)
2
[

q
n (1−

q
n )
]−1

, and, since
s21 and s22 are consistent estimates of the variance σ2, we may write

q
(ȳ1 − ȳ)2

s21
+ (n− q)

(ȳ2 − ȳ)2

s22
− zn(q/n)

2
[ q

n

(

1− q

n

)]−1

= op(1).

Since ȳ1 and ȳ2 are the maximum empirical likelihood estimators of the mean
of the two sub-series,

sup
µ
ELR(µ, 0, q) ≤ ELR(ȳ1, 0, q); sup

µ
ELR(µ, q, n) ≤ ELR(ȳ2, q, n)

and

−2 sup
µ

{logELR(µ, 0, q) + logELR(µ, q, n)}

= inf
µ

−2 {logELR(µ, 0, q) + logELR(µ, q, n)}

≥ 0 = −2 {logELR(ȳ1, 0, q) + logELR(ȳ2, q, n)} .

Now, under the hypothesis H0 of no level change, as n→ ∞, ȳ1 − ȳ and ȳ2 − ȳ
converge to zero in probability, therefore

−2 sup
µ

{logELR(µ, 0, q) + logELR(µ, q, n)}

= −2 {logELR(ȳ, 0, q) + logELR(ȳ, q, n)}+ op(1)

= zn(q/n)
2
[ q

n

(

1− q

n

)]−1

+ op(1).

Proof of Corollary 4.2. If tj denotes the j−th break date as before, and nj =
tj+1 − tj , the F statistic for m level changes (p = 1 and θj equal to the mean
of the j−th sub-series) may be written:

F (t1, t2, . . . , tm) =
n0(ȳ1 − ȳ)2 +n1(ȳ2 − ȳ)2 + · · · +nm(ȳm+1 − ȳ)2

S

n− (m+1)

m

where

S =

m+1
∑

k=1

tk
∑

j=tk−1+1

(yj − ȳk)
2

Since S/(n−m− 1) is a consistent estimate of σ2 under H0, using Lemma A.1
for each sub-series (ytk+1, . . . , ytk+1

), k = 0, . . . ,m we obtain that the difference
between mF (t1, . . . , tm) and (4.2) converges to zero in probability.

Proof of Theorem 5.1. Under our assumptions, Theorem 2 of [36] may be ap-
plied to each subseries (ytk+1, . . . , ytk+1

) and ensures that, if H0 is true, then
−2 logELR(θ0, tk, tk+1) converges to a chi square distribution with p degrees
of freedom. Since the sub-series are independent (5.1) converges to a χ2 with
(m+ 1)p degrees of freedom.
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Proof of Corollary 5.1. Let, as in Section 2, θ̂ = (X̄ ′X̄)−1X̄ ′y denote the least
squares estimate under the alternative of m breaks, R denote the restriction

matrix such that Rθ = 0 under the null of no break, and
ˆ̂
θ denote the restricted

least squares estimate under H0:

ˆ̂
θ = θ̂ − (X̄ ′X̄)−1R′{R(X̄ ′X̄)−1R′}−1Rθ̂.

Let θ∗ be the maximizer of (5.2) with respect to θ; then under H0 both θ∗

and
ˆ̂
θ converge in probability to θ0, therefore in a similar way to Corollary 4.1,

extended to more than two sub-series, it follows that the difference between

(5.2) and −2 logELR(
ˆ̂
θ, 0, n) tends to 0 in probability as n → ∞ [see e.g. 33].

We may conclude that

ℓ0(t1, . . . , tm) = −2 logELR(
ˆ̂
θ, 0, n) + op(1)

=
∑

g(yi,
ˆ̂
θ)′
[

∑

g(yi,
ˆ̂
θ)g(yi,

ˆ̂
θ)′
]−1∑

g(yi,
ˆ̂
θ) + op(1)

= ε(
ˆ̂
θ)′X̄(X̄ ′X̄)−1X̄ ′ε(

ˆ̂
θ)σ−2 + op(1).

Put ε(
ˆ̂
θ) = ε(θ̂)− α, where

α = X̄(X̄ ′X̄)−1R′{R(X̄ ′X̄)−1R′}−1Rθ̂

and note that α = X̄(θ̂ − ˆ̂
θ) and X̄(X̄ ′X̄)−1X̄ ′α = α. Moreover, since θ̂ is the

unconstrained LS estimate, ε(θ̂)′X̄(X̄ ′X̄)−1X̄ ′ε(θ̂) = 0, then:

ℓ0(t1, . . . , tm) = α′X̄(X̄ ′X̄)−1X̄ ′α+ op(1)

= ‖X̄(θ̂ − ˆ̂
θ)‖2σ−2 + op(1)

= mpF (t1, . . . , tm)
‖y − X̄θ̂‖2

[n− (m+ 1)p]σ2
+ op(1)

= mpF (t1, . . . , tm) + op(1).

Proof of Theorem 5.2. Part (i) follows from an application of Lemma 1 of [14]
to each sub-series {yti+1, . . . , yti+1

}, i = 0, 1, . . . ,m. Assumptions AR4 and AR5
ensure that the empirical likelihood ratios for the sub-series are asymptotically
independent, therefore the asymptotic distribution follows. Part (ii) may be
shown in the same way as Corollary 5.1, since under assumptions AR1–AR5 both

the maximizer θ∗ of (5.6) and the restricted estimate
ˆ̂
θ converge in probability

to θ0 under H0.

Proof of Theorem 6.1. Let (ȳ1, σ1) and (ȳ2, σ2) denote the average and variance
of the two sub-series {y1, . . . , yq} and {yq+1, . . . , yn}. We may write

S1 =
1

q

q
∑

i=1

(yi − z)2 = σ1 + (ȳ1 − z)2
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S2 =
1

n− q

n
∑

i=q+1

(yi − z)2 = σ2 + (ȳ2 − z)2.

Then the function to be minimized is

q(ȳ1 − z)2/{σ1 + (ȳ1 − z)2}+ (n− q)(ȳ2 − z)2/{σ2 + (ȳ2 − z)2}. (A.3)

Let δ = ȳ1−ȳ2 and c = (z−ȳ2)/δ so that z = cȳ1+(1−c)ȳ2; also, ȳ1−z = (1−c)δ
and ȳ2 − z = −cδ. On substituting into (A.3):

q
(1− c)2δ2

σ1 + (1− c)2δ2
+ (n− q)

c2δ2

σ2 + c2δ2
.

The derivative with respect to c of the above function:

−2q(1− c)
σ1

[σ1 + δ2(1 − c)2]2
+ 2(n− q)c

σ2
[σ2

2 + δ2c2]

is positive for c > 1, and negative for c < 0. It follows that the minimum is
attained in the interval (0, 1).
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