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1. Introduction

Wald [67] tried to unify statistics in his theory of decision functions. However,
many of the most appreciated statistical methods do not fit well in this set-
ting. In particular, the likelihood methods (such as the maximum likelihood
estimators and the likelihood ratio tests) are usually suboptimal in correspond-
ing (finite-sample) decision problems, from the standpoint of minimax risk. In
fact, the post-data nature of likelihood methods is at variance with the pre-data
evaluation of decision functions.

Since statistical methods based on the likelihood function are extremely suc-
cessful as regards estimation and testing, it is natural to try extending the likeli-
hood approach to more general decision problems. The present paper introduces
criteria for basing decisions on the likelihood function alone. The optimal deci-
sions resulting from such criteria generalize the usual likelihood methods, in the
sense that these methods are optimal in corresponding (finite-sample) decision
problems. In other decision problems, new likelihood methods are obtained.

Surprisingly, only very few authors have studied extensions of the likelihood
approach to cover decision making. Besides the author [18, 19], only Lehmann
and Romano [45, Section 1.7 (substantially unchanged since the first edition in
1959)], Diehl and Sprott [25], and Giang and Shenoy [33] seem to have worked in
this direction. However, the latter three approaches are not directly applicable
to general statistical decision problems in the sense of Wald [67], and their
properties have not been investigated.

Many authors (such as Fisher [30], Barnard [6], Birnbaum [14], Hacking
[35], Kalbfleisch [40], Sprott [61], Edwards [28], Lindsey [48], Azzalini [3], Royall
[57], Reid [55], Pawitan [53], Hills [37]) consider the likelihood function as a de-
scription of uncertain knowledge about the parameters of the statistical model.
More precisely, the likelihood function can be interpreted as a description of a
kind of relative plausibility of the possible values of the parameters in the light
of the observed data. The uncertainty in this description is non-probabilistic,
and therefore the likelihood approach to decision making clearly differs from the
Bayesian approach.

In particular, prior (uncertain) knowledge about the parameters is not needed
in the likelihood approach to decision making: this is a fundamental advantage
over the Bayesian approach. However, the fact that likelihood functions induced
by independent data are combined by (pointwise) multiplication suggests the
possibility of describing prior uncertain knowledge by a prior likelihood function,
which can then be (pointwise) multiplied with the likelihood function induced
by the data (this idea is implicitly or explicitly considered for example in [5, 7,
8, 14, 26, 27, 28, 38, 46, 48, 49, 53]).

That is, when prior information is available, it can be used in the likelihood
approach to decision making. But prior information is not necessary, because
complete ignorance about the values of the parameters can be described by a
constant (prior) likelihood function, which contains no information for discrim-
ination between the possible values of the parameters (in the sense of Kullback
and Leibler [44]). The possibility of describing ignorance distinguish likelihood
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functions from probability measures (as descriptions of uncertain knowledge)
and leads to the above fundamental advantage over the Bayesian approach.

Despite the different descriptions of uncertain knowledge about the parame-
ters of the statistical model, the likelihood and Bayesian approaches to decision
making share a basic property: they both satisfy the (strong) likelihood principle
(see for example [14, 10, 39, 13, 29, 50]). This principle gives theoretical reasons
for the likelihood approach to decision making, in addition to the pragmatic
reasons mentioned above (that is, the successfulness of the likelihood methods).

In particular, the likelihood approach to decision making can be applied post-
data, avoiding the severe difficulties of pre-data evaluations (see for instance [41,
56, 11, 34]), and drastically reducing the complexity of the decision problems.
However, in the tradition of Wald [67], the pre-data properties of the resulting
decision functions, called likelihood decision functions, will be studied in the
present paper.

The paper is organized as follows. In the next section, basic definitions and
notations are introduced. Section 3 presents criteria for basing decisions on
the likelihood function alone. Pre-data properties of the resulting likelihood
decision functions are the subject of Section 4 (the proofs of the theorems are
in Appendix A). The final section is devoted to conclusions and directions for
further research.

2. Settings

Let (Ω,F) be a measurable space, and for each θ ∈ Θ, let Pθ be a probability
measure on (Ω,F). Random variables on Ω are denoted by X or Xn (with
n ∈ N), and their codomains by X and Xn, respectively (it is assumed that all
singleton subsets of X and Xn are measurable). The only assumption about Θ
is that it is not empty. In particular, the statistical model {Pθ : θ ∈ Θ} can be
parametric (in this case, θ describes the parameters of the statistical model) or
nonparametric (in this case, θ simply indexes the probability measures).

2.1. Likelihood function

Let Λ be the set of all functions λ : Θ → [0, 1] such that supθ∈Θ λ(θ) = 1. If the
event A ∈ F satisfies Pθ(A) > 0 for some θ ∈ Θ, then the (relative) likelihood
function given A is the unique function λ ∈ Λ such that λ(θ) ∝ Pθ(A). When
there is a unique θ ∈ Θ such that λ(θ) = 1, it is called maximum likelihood
estimate of θ, and denoted by θ̂. For each subset H of Θ, with a slight abuse of
notation, λ(H) denotes the likelihood ratio test statistic for the null hypothesis
H0 : θ ∈ H against the alternative H1 : θ ∈ Θ\H. That is, λ(H) = supθ∈H λ(θ),
with the convention that λ(∅) = 0.

If x ∈ X satisfies Pθ(X = x) > 0 for some θ ∈ Θ, then the likelihood
function givenX = x is denoted by λx. This definition is not applicable when the
random variable X is continuous for all θ ∈ Θ. In fact, it can be argued that the
realization of a continuous random variable can never be observed with infinite
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precision: it is only possible to observe X ∈ N for a suitable neighborhood N of
x. The likelihood function λN given X ∈ N is then usually well-defined. If for
each θ ∈ Θ the density fθ of X with respect to a fixed σ-finite measure µ on X
exists and satisfies supθ∈Θ fθ(x) ∈ R>0, then λN is possibly well approximated
by the unique function f ∈ Λ such that f(θ) ∝ fθ(x).

The likelihood function given X = x is often simply defined as this function
f , but the definition of likelihood in terms of probability (and the consequent
interpretation of f as a mere approximation of λN ) seems to be preferred by most
authors who consider likelihood functions as descriptions of uncertain knowledge
(see for example [28, 40, 9, 48, 49, 61, 53, 52]). The reasons are that the post-data
interpretation of the function f can be problematic, since the densities fθ are
not unique (but only unique µ-a.e.), and that f is not well-defined when fθ(x)
is an unbounded function of θ. However, for the pre-data properties studied in
Section 4 the nonuniqueness of the densities is not a problem, and therefore, in
order to simplify the results, f will then be called the likelihood function given
X = x and denoted by λx (when it is well-defined).

If the random variables X1, X2 are independent for all θ ∈ Θ, then the like-
lihood function given (X1, X2) = (x1, x2) satisfies λ(x1,x2)(θ) ∝ λx1(θ)λx2(θ)
(when these three functions are well-defined). As noted in Section 1, this sug-
gests the possibility of describing prior uncertain knowledge by a prior likeli-
hood function: when X2 = x2 is observed, the prior (likelihood function) λx1 is
updated to the posterior λ(x1,x2). The prior λx1 is simply interpreted as the like-
lihood function given X1 = x1, regardless of whether the observation X1 = x1

is real or imagined.
The choice of a prior likelihood function seems better supported by intuition

than the choice of a prior probability measure: in particular, the likelihood
function constant equal to 1 describes the complete ignorance about the value
of θ ∈ Θ (see also [19, Subsection 3.1.2]). In fact, this is the likelihood function
obtained when observing no data (that is, when observing the event Ω), and
using it as a prior is equivalent to using no prior likelihood function (since it is
the neutral element of pointwise multiplication). On the other hand, the penalty
term in penalized likelihood methods can often be formally interpreted as a prior
likelihood function (see for example [46]).

2.2. Decision problem

A statistical decision problem is described by a loss (or weight) function W :
Θ × D → R≥0, where D is the (nonempty) set of all possible decisions, one
or more of which must be chosen. For each pair (θ, d) ∈ Θ × D, the value
W (θ, d) represents the loss suffered by choosing the decision d when Pθ is the
correct probability measure. It is assumed that the function W summarizes all
important aspects of the decision problem. In particular, if randomized decisions
are allowed, then they should already be contained in D, and the corresponding
loss described by W .

Let W be the set of all functions w : Θ → R≥0. To each decision d ∈ D can
be associated the function wd ∈ W such that wd(θ) = W (θ, d) for all θ ∈ Θ.



2928 M. Cattaneo

The decision problem can be restated as the problem of choosing one or more
functions w from the subset {wd : d ∈ D} of W , where the loss (as a function
of θ) suffered by choosing w is represented by the function w itself. To each
function w can correspond more than one decision d ∈ D, but these decisions
are equivalent from the standpoint of the decision problem.

When X = x is observed, the likelihood function λx can be interpreted as a
description of a kind of relative plausibility of the possible values of θ, and can
thus be useful for choosing a decision d ∈ D. Possible criteria for this kind of
post-data decision making are the subject of Section 3. Some pre-data properties
of these decision criteria are then studied in Section 4. In order to do this, the
chosen decision must be considered as a function of the observed realization of
X . Such a function δ : X → D, describing a whole decision strategy, is called
decision function.

3. Likelihood decision criteria

Let λ ∈ Λ be the likelihood function given the data (possibly including prior
information), and let the loss function W on Θ×D describe a decision problem.
This section introduces criteria for choosing, on the basis of λ and W , one or
more decisions d ∈ D, or equivalently, on the basis of λ, one or more functions
w ∈ {wd : d ∈ D}.

For instance, when the maximum likelihood estimate θ̂ is well-defined, a sim-
ple criterion for choosing d consists in minimizing W (θ̂, d), or equivalently, for
choosing w, in minimizing w(θ̂). That is, the criterion consists in minimizing
the loss under the assumption that Pθ̂ is the correct probability measure. This
simple criterion is often used in practical applications: for example when in the
portfolio selection problem of Markowitz [51] the parameters of the model are
estimated by maximum likelihood (see for instance [47, 15]). The criterion was
also formally, though hesitantly, considered by Diehl and Sprott [25]. However,
besides being perhaps too optimistic about the quality of maximum likelihood
estimates, this simple criterion is not always well-defined. Before considering
some alternative criteria, in the next subsection a general definition of likeli-
hood decision criteria is introduced.

3.1. General definition

A likelihood decision criterion for choosing one or more decisions d ∈ D consists
in minimizing a certain evaluation V (wd, λ) of the corresponding loss wd on the
basis of the likelihood function λ, where the functional V : W × Λ → R must
satisfy the following three properties:

(P1) If the functions w,w′ ∈ W satisfy w(θ) ≤ w′(θ) for all θ ∈ Θ, then
V (w, λ) ≤ V (w′, λ) must hold for all functions λ ∈ Λ.

(P2) If the function b : Θ → Θ is bijective, then V (w ◦ b, λ ◦ b) = V (w, λ) must
hold for all pairs of functions (w, λ) ∈ W × Λ.
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(P3) If the subset H of Θ and the sequence of functions λn ∈ Λ (with n ∈ N)
satisfy limn→∞ λn(Θ \ H) = 0, then limn→∞ V (c IH + c′ IΘ\H, λn) = c
must hold for all constants c, c′ ∈ R≥0.

Before analyzing these properties, it is important to clarify what is meant
by minimization of V (wd, λ). If there is a decision d ∈ D such that V (wd, λ) =
infd′∈D V (wd′ , λ), then d is optimal according to the likelihood decision criterion
described by the functional V . When there is no optimal decision, the criterion
suggests the choice of a decision d ∈ D such that V (wd, λ) < infd′∈D V (wd′ , λ)+
ε, for a suitably small ε ∈ R>0.

(P1) can be interpreted as a property of monotonicity of the functional V ,
following directly from the assumption that the loss function W summarizes all
important aspects of the decision problem. In fact, if the decisions d, d′ ∈ D
satisfy W (θ, d) ≤ W (θ, d′) for all θ ∈ Θ, then it is unreasonable to prefer d′

to d.
(P2) can be interpreted as a property of parametrization invariance, typical

of the likelihood methods. This invariance is a consequence of the idea that
everything important about θ is described by the loss function W and the like-
lihood function λ. In particular, (P2) excludes the Bayesian criteria when Θ is
infinite. In fact, with some additional measurability restrictions, the Bayesian
criterion with prior π is described by the functional Vπ : (w, λ) 7→

∫

w λdπ.
Hence, (P2) implies in particular the invariance π ◦ b−1 = π for all measurable
bijections b, since Vπ(IH, IΘ) = π(H) for all measurable subsets H of Θ. This
invariance can be satisfied only if Θ is finite (when π is the uniform prior) or if
the measurability conditions are very restrictive.

(P3) can be interpreted as a minimal consistency property, implying that
some information provided by the likelihood function is actually used by the
likelihood decision criterion. In particular, it excludes the minimax (loss) crite-
rion,1 described by the functional (w, λ) 7→ supθ∈Θ w(θ). Moreover, (P3) with
H = Θ implies the following calibration property: V (c IΘ, λ) = c for all con-
stants c ∈ R≥0 and all likelihood functions λ ∈ Λ. This property and (P1) imply
in particular that infθ∈Θw(θ) ≤ V (w, λ) ≤ supθ∈Θw(θ) holds for all pairs of
functions (w, λ) ∈ W × Λ.

A simple example of likelihood decision criterion can be obtained by modify-
ing the minimax (loss) criterion in order to satisfy (P3). It suffices to reduce Θ
to the likelihood confidence region consisting of all θ whose likelihood exceeds
a certain threshold β ∈ ]0, 1[, before applying the minimax (loss) criterion. The
resulting likelihood decision criterion is called Likelihood-based Region Minimax
(LRM) criterion and is described by the functional

VLRM,β : (w, λ) 7→ sup
θ∈Θ: λ(θ)>β

w(θ).

It has been applied for example in the problem of regression with imprecisely
observed data (see for instance [22]).

1Please note that this is the (post-data) decision criterion consisting in choosing a decision
minimizing the maximum loss, in contrast with the pre-data minimax (risk) criterion of Wald
[67], consisting in choosing a decision function minimizing the maximum expected loss.
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If the maximum likelihood estimate θ̂ ∈ Θ is well-defined and there is a
topology on Θ such that w ∈ W is continuous at θ̂ and λ(Θ\N ) < 1 holds for all
neighborhoods N of θ̂, then limβ↑1 VLRM,β(w, λ) = w(θ̂). Hence, the likelihood
decision criterion described by the (pointwise) limit of VLRM,β when β tends
to 1 is strictly related to the idea considered at the beginning of the present
section, but has the advantage of being always well-defined. It is called Maximum
Likelihood Decision (MLD) criterion and is described by the functional

VMLD : (w, λ) 7→ lim
β↑1

sup
θ∈Θ :λ(θ)>β

w(θ).

The MLD criterion clearly generalizes maximum likelihood estimation, while
the LRM criterion can be seen as a generalization of likelihood ratio testing. In
the next subsection, a likelihood decision criterion generalizing both these very
successful components of the likelihood approach to statistics is considered in
more detail.

3.2. MPL criterion

An alternative way of modifying the minimax (loss) criterion in order to satisfy
(P3) consists in applying it after having weighted the loss associated to θ by
means of the likelihood of θ (raised to a certain power α ∈ R>0). The resulting
likelihood decision criterion is called Minimax Plausibility-weighted Loss (MPL)
criterion and is described by the functional

VMPL,α : (w, λ) 7→ sup
θ∈Θ

w(θ)λ(θ)α.

It can be characterized among the likelihood decision criteria by few basic
decision-theoretic properties, but this goes beyond the scope of the present pa-
per (see [19, Subsection 4.1.2]).

The exponent α ∈ R>0 plays a similar role for the MPL criterion as the
threshold β ∈ ]0, 1[ does for the LRM criterion. In fact, limα↓0 VMPL,α(w, λ) =
limβ↓0 VLRM,β(w, λ) holds for all pairs of functions (w, λ) ∈ W × Λ, while
limα↑∞ VMPL,α(w, λ) = limβ↑1 VLRM,β(w, λ) = VMLD(w, λ) holds for all pairs
of functions (w, λ) ∈ W ×Λ such that VMPL,α(w, λ) is finite for some α ∈ R>0.
The simple choice α = 1 for the exponent of the likelihood function is supported
by the analogy with the Bayesian criterion: the integral with respect to π in the
functional Vπ is replaced by the supremum with respect to θ in the functional
VMPL,1.

The analogy of the Bayesian and MPL criteria (with α = 1) emerges also
when considering the likelihood ratio test statistic λ(H) as a function of H ⊆ Θ.
This set function is a completely maxitive measure in the terminology of Shilkret
[60], who introduced also the corresponding theory of integration: the integral
of w ∈ W with respect to the completely maxitive measure λ is VMPL,1(w, λ).
Hence, the MPL criterion with α = 1 corresponds to minimizing the integral
of the loss with respect to the likelihood ratio test statistic, interpreted as a
completely maxitive measure describing the posterior information about θ.
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Example 3.1 (maximum likelihood estimation). The estimation of θ can be
described as a decision problem with D = Θ. When Θ is finite, it makes sense to
employ the simple loss function W such that wd = IΘ\{d} for all d ∈ D. In this
case, if the maximum likelihood estimate θ̂ is well-defined, then it is the unique
optimal decision according to the MLD and MPL criteria (independently of the
exponent α), while for the LRM criterion this holds only if the threshold β is
sufficiently large.

These results can be generalized to the case with infinite Θ, for example when
a metric on Θ is considered. For a suitably small ε ∈ R>0, it makes then sense
to employ the simple loss function W such that wd = IΘ\B(d,ε) for all d ∈ D,
where B(d, ε) denotes the closed ball with center d and radius ε. It can be easily
proved that in this case, if the maximum likelihood estimate θ̂ is well-defined,
B(θ̂, ε) is compact, and λ(Θ \B(θ̂, ε)) < 1, then for the MLD and MPL criteria
(independently of the exponent α) optimal decisions exist and, even when they
are not unique, they all lie in B(θ̂, ε), while for the LRM criterion this holds
only if the threshold β is sufficiently large.

Hence, the MPL and MLD criteria lead practically to maximum likelihood es-
timates in this simple decision-theoretic description of estimation, and therefore
they can be interpreted as generalizations of maximum likelihood estimation
(while this is not true for the LRM criterion).

Example 3.2 (likelihood ratio testing). For each subset H of Θ, testing for
the null hypothesis H0 : θ ∈ H against the alternative H1 : θ ∈ Θ \ H can be
described as a decision problem with D = {1, 0}, where 1 and 0 represent the
rejection and the acceptance (or non-rejection) of H0, respectively. When con-
stant losses c1, c2 ∈ R>0 (with c1 > c2) are assigned to errors of the first and of
the second kind, respectively, the resulting loss function W satisfies w1 = c1 IH
and w0 = c2 IΘ\H.

In this case, according to the MPL criterion with exponent α, rejection is the
unique optimal decision if and only if λ(H) < (c2/c1)

1/α, while acceptance is the
unique optimal decision if and only if λ(H) > (c2/c1)

1/α. Similarly, according to
the LRM criterion with threshold β, rejection is the unique optimal decision if
and only if λ(H) ≤ β, while acceptance is the unique optimal decision if and only
if λ(H) > β. Finally, according to the MLD criterion, rejection is the unique
optimal decision if and only if λ(H) < 1, while acceptance is the unique optimal
decision if and only if λ(H) = 1.

Hence, the MPL and LRM criteria lead practically to likelihood ratio tests
in this simple decision-theoretic description of hypothesis testing, and therefore
they can be interpreted as generalizations of likelihood ratio testing (while this
is not true for the MLD criterion).

The likelihood decision functions resulting from the MPL criterion thus gen-
eralize the usual likelihood methods, in the sense that these methods are optimal
according to the MPL criterion in simple decision-theoretic descriptions of the
corresponding inference problems. In other decision problems (as in the exam-
ples of the next section), this criterion can lead to new likelihood methods.
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4. Properties

Likelihood decision criteria were introduced in Section 3 as criteria for post-data
decision making. The present section studies pre-data properties of the resulting
likelihood decision functions. Before considering some asymptotic results, in the
next subsection finite-sample invariance properties are presented.

4.1. Invariances

Let X be a random variable such that the likelihood function λx ∈ Λ is well-
defined for all x ∈ X , and let the loss function W on Θ × D describe a de-
cision problem. A likelihood decision criterion described by the functional V
can be applied for each possible realization x of X , by minimizing the evalua-
tion V (wd, λx) over all decisions d ∈ D. In this subsection, in order to simplify
the results, it is assumed that for each possible realization x of X there is a
unique optimal decision δ(x) according to the likelihood decision criterion. The
resulting likelihood decision function δ : X → D is then uniquely defined.

Some basic invariance properties follow directly from the fact that the likeli-
hood approach to decision making satisfies the likelihood principle. In particular,
if s(X) is a sufficient statistic for θ, then δ(x) = δ(x′) holds for all x, x′ ∈ X such
that s(x) = s(x′), since in this case λx = λx′ (see for instance [58, Theorem 2.21
and Proposition 2.23]). That is, the likelihood decision function δ is completely
described by a function δ′ : S → D such that δ = δ′ ◦s, where S is the codomain
of s.

As noted in Subsection 3.1, a certain kind of parametrization invariance is
implied by (P2). In fact, a bijection b : Θ → Θ can be interpreted as the
description of a reparametrization of the statistical model, in which θ ∈ Θ is
replaced by ϑ ∈ Θ, with b(ϑ) = θ. For the reparametrized statistical model, the
likelihood function given X = x is λx ◦ b, and the decision problem is described
by the loss function (ϑ, d) 7→ W (b(ϑ), d). Hence, (P2) implies that the likelihood
decision function δ is left invariant by this reparametrization of the statistical
model.

Another direct consequence of (P2) is the following important invariance
property. Given three bijections g : X → X , b : Θ → Θ, and h : D → D, if for
each x ∈ X the likelihood function given X = g(x) is λx ◦ b, and wh(d) = wd ◦ b
holds for all d ∈ D, then the likelihood decision function satisfies δ ◦ g = h ◦ δ.
That is, if the decision problem is invariant, then δ is equivariant (see for exam-
ple [12, Section 6.2], [58, Subsection 6.2.1]). In particular, it is not even necessary
to identify the symmetries of the decision problem: the likelihood decision func-
tions are guaranteed to respect them anyway. Among the invariance properties
considered in the present subsection, this is the only one that does not neces-
sarily hold when a prior likelihood function is used. In fact, prior information
can destroy the symmetries of the decision problem.

Example 4.1 (variance components). Let X1, . . . , Xm be independent and n-
variate normally distributed random variables (with n ≥ 2) such that for all
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i ∈ {1, . . . ,m}, each component of Xi has expected value µ and variance τ2+σ2,
and each pair of different components ofXi has covariance τ

2, where θ = (µ, τ, σ)
and Θ = R×R>0×R>0. That is, each vector Xi represents the n observations in
one of the m groups of a balanced one-way random effect model under normality
assumptions (see for example [59]). In order to simplify the results, assume that
the model is conditioned on the (a.s.) event that for no vectorXi all components
are equal, and so X1 = · · · = Xm = R

n \ {(y1, . . . , yn) ∈ R
n : y1 = · · · = yn}.

The problem of estimating the variance component τ2 is particularly interest-
ing, because the analysis of variance estimate can be negative. For this problem,
Portnoy [54] suggested the following location and scale invariant version of the
squared error loss function (with D = R):

W : ((µ, τ, σ), d) 7→ (τ2 − d)2

(σ2 + n τ2)2
.

For each i ∈ {1, . . . ,m}, let X̄i and Si be the mean and the sum of squared
deviations from the mean, respectively, for the components of Xi. Furthermore,
let X̄ and S be the mean and the sum of squared deviations from the mean,
respectively, for the sample X̄1, . . . , X̄m. That is, X̄ is the grand mean, while
nS and

∑m
i=1 Si are the sum of squares due to differences between groups and

within groups, respectively. Finally, define the ratio

R =
nS

nS +
∑m

i=1 Si
.

Since (X̄, n S,
∑m

i=1 Si) is a sufficient statistic for (µ, τ, σ), and the decision
problem described by the loss function W is location and scale invariant, when
a likelihood decision function δ : X1 × · · · × Xm → R is uniquely defined, it
satisfies

δ(X1, . . . , Xm) = (nS +
∑m

i=1Si) δ
′(R)

for some function δ′ : [0, 1[ → R. This holds in particular for the likelihood
decision function resulting from the MPL criterion with exponent α = 1: for
each r ∈ [0, 1[, the value δ′(r) can be easily obtained numerically as the unique
d ∈ R minimizing

max
(τ,σ)∈R≥0×R>0

(τ2 − d)2

(σ2 + n τ2)
m
2 +2 σ(n−1)m

exp

(

− r

2 (σ2 + n τ2)
− 1− r

2 σ2

)

.

The resulting function δ′ in the case m = n = 3 is plotted in the left panel
of Figure 1, together with the functions δ′ corresponding to some other decision
criteria or estimation methods. The right panel of Figure 1 shows the expected
loss (that is, the risk) of these estimators as a function of ρ = τ2

/(τ2+σ2). Be-
sides the MPL criterion, the methods considered are the analysis of variance,
maximum likelihood (corresponding to the MLD criterion), restricted maximum
likelihood (the function δ′ is the pointwise maximum of the ones corresponding
to analysis of variance and maximum likelihood, see for example [63]), and the
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Fig 1. Functions δ′ and risk functions corresponding to the variance component estimators

considered in Example 4.1.

Bayesian criterion with the Jeffreys’ (improper) prior proposed by Tiao and Tan
[64]. The results are qualitatively similar for other values of m and n.

Hence, the MPL criterion leads to a new estimator, which uniformly improves
upon the maximum likelihood, restricted maximum likelihood, and analysis of
variance estimators from the standpoint of risk. Moreover, unlike these three
estimators, the new likelihood method resulting from the MPL criterion does
not face the problem of negative or zero estimates of the positive variance com-
ponent τ2.

Since the pre-data choice of a decision function (an estimator) is much more
complicated than the post-data choice of a decision (an estimate), a minimax
(risk) estimator is not known. However, Portnoy [54] showed that the estimator
resulting from the Bayesian criterion with the Jeffreys’ (improper) prior pro-
posed by Tiao and Tan [64] is nearly minimax (from the standpoint of risk).
Therefore, the new estimator resulting from the MPL criterion is nearly min-
imax as well, and has the fundamental advantage of avoiding the problematic
choice of a prior probability measure (see for instance [36, 64, 62, 43, 54]).

4.2. Consistency

Let the loss function W on Θ ×D describe a decision problem, and consider a
sequence of random variables Xn (with n ∈ N). A sequence of decision functions
δn : X1×· · ·×Xn → D (with n ∈ N) is said to be (strongly) consistent at θ0 ∈ Θ
if

lim
n→∞

W (θ0, δn(X1, . . . , Xn)) = inf
d∈D

W (θ0, d)

holds Pθ0 -a.s. That is, consistency at θ0 means that when Pθ0 is the correct
probability measure, the sequence of decisions δn(X1, . . . , Xn) tends to minimize
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the loss (almost surely). For example, if D = Θ, andW is a metric on Θ, then the
decision problem describes the estimation of θ, and the sequence of estimators
δn is (strongly) consistent in the usual sense if and only if it is consistent in the
above sense at each θ ∈ Θ.

A sequence of decision functions δn : X1 × · · · × Xn → D (with n ∈ N) is
said to be optimal according to the likelihood decision criterion described by a
functional V if

V (wδn(x1,...,xn), λ(x1,...,xn)) < inf
d∈D

V (wd, λ(x1,...,xn)) + 2−n

holds for all n ∈ N and all (x1, . . . , xn) ∈ X1 × · · · × Xn such that the likeli-
hood function λ(x1,...,xn) ∈ Λ is well-defined. Hence, for each likelihood decision
criterion an optimal sequence of decision functions δn always exists, though in
general it is not unique and no single decision δn(x1, . . . , xn) needs to be optimal.
However, this weak definition of optimality of a sequence of decision functions
is strong enough to warrant important asymptotic results.2

In general, a sequence of decision functions that is optimal according to
a likelihood decision criterion can be consistent at θ0 ∈ Θ only if the like-
lihood tends to concentrate on θ0, in the following sense. Given a topology
on Θ, the likelihood is said to tend to concentrate on θ0 if Pθ0-a.s. the like-
lihood function λ(X1,...,Xn) ∈ Λ is well-defined for sufficiently large n, and
limn→∞ λ(X1,...,Xn)(Θ\H) = 0 holds Pθ0 -a.s. for all neighborhoods H of θ0. Suf-
ficient conditions for the likelihood to tend to concentrate on θ0 are well-known:
see for example [66, Theorem 1], [42, (2.12)], or [4, (xxvii)]. The tendency of the
likelihood to concentrate on θ0 is not affected by the use of a prior likelihood
function bounded away from 0 in a neighborhood of θ0.

As noted in Subsection 3.1, some kind of minimal consistency is implied by
(P3). In fact, a simple consequence of (P3) and (P1) is that

lim
n→∞

V (w, λ(X1,...,Xn)) = w(θ0)

holds Pθ0 -a.s. when the function w ∈ W is bounded and there is a topology on
Θ such that w is continuous at θ0 and the likelihood tends to concentrate on
θ0. This implies in particular the consistency at θ0 of all sequences of decision
functions that are optimal according to some likelihood decision criterion, when
D is finite and for each d ∈ D the loss wd is bounded and there is a topology
on Θ such that wd is continuous at θ0 and the likelihood tends to concentrate
on θ0. The following theorem shows that in the case of infinite D it suffices to
replace the assumptions of continuity at θ0 of the functions wd with the stronger
assumption of their equicontinuity at θ0.

Theorem 4.1. If the loss wd is bounded for each decision d ∈ D, the sequence
of decision functions δn : X1 × · · · × Xn → D (with n ∈ N) is optimal according
to a likelihood decision criterion, and there are a θ0 ∈ Θ and a topology on

2The sequence 2−n (with n ∈ N) in the definition is arbitrary: it could be replaced by any
sequence of positive real numbers tending to 0 exponentially fast.
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Θ such that the likelihood tends to concentrate on θ0 and the set of functions
{wd : d ∈ D} is equicontinuous at θ0, then the sequence of decision functions δn
is consistent at θ0.

Example 4.2 (hypothesis testing). In the decision problem of Example 3.2,
if there is a topology on Θ such that for each θ0 ∈ Θ the likelihood tends to
concentrate on θ0, then Theorem 4.1 implies the consistency at each θ ∈ Θ\∂H
(where ∂H denotes the boundary of H) of all sequences of decision functions
that are optimal according to some likelihood decision criterion. That is, each
likelihood decision criterion will Pθ-a.s. give the correct test result for sufficiently
large n, for all θ ∈ Θ \ ∂H.

In Theorem 4.1, it is assumed that the functions wd are bounded and equicon-
tinuous at θ0. As noted by Wald [67, Subsection 3.1.2], such assumptions are
not seriously restrictive from a practical point of view. However, they are not
satisfied in many standard formulations of statistical decision problems, such
as for example the estimation of θ when Θ is a Euclidean space and W repre-
sents squared error. In order to prove the consistency of sequences of likelihood
decision functions in such standard decision problems as well, the assumptions
of Theorem 4.1 can be replaced by the weaker, but more complex ones of the
following theorem.

Theorem 4.2. If the sequence of decision functions δn : X1 × · · · × Xn → D
(with n ∈ N) is optimal according to the likelihood decision criterion described
by a functional V , and there are a θ0 ∈ Θ, a topology on Θ, a constant c ∈ R>0

with c > infd∈D W (θ0, d), and a neighborhood H of θ0 such that the following
three conditions are satisfied:

(i) the likelihood tends to concentrate on θ0,
(ii) the set of functions {wd : d ∈ D, infθ∈HW (θ, d) < c} is equicontinuous

at θ0,
(iii) limm→∞ lim supn→∞

(

V (wd, λ(X1,...,Xn)) − V (wd ∧m,λ(X1,...,Xn))
)

= 0
(where wd ∧ m denotes the pointwise minimum of wd and m ∈ N) holds
Pθ0-a.s. for all d ∈ D such that W (θ0, d) < c,

then the sequence of decision functions δn is consistent at θ0.

Example 4.3 (uniform distribution). Let the sequence of random variables
Xn (with n ∈ N and Xn = R>0) be independent and uniformly distributed
on the interval ]0, θ[, where Θ = R>0. Consider the problem of estimating θ
with the scale invariant version W : (θ, d) 7→ |θ−d|/θ of the absolute error loss
function, whereD = R>0. For each n ∈ N, since the maximumX(n) is a sufficient
statistic of X1, . . . , Xn for θ, and the decision problem is scale invariant, when
a likelihood decision function δn : Rn

>0 → R>0 is uniquely defined, it satisfies
δn(X1, . . . , Xn) = κn X(n) for some constant κn ∈ R>0. More generally, for each
likelihood decision criterion an optimal sequence of decision functions of the
form δn(X1, . . . , Xn) = κn X(n) always exists.

For each θ0 ∈ R>0, the likelihood tends to concentrate on θ0 with respect to
the Euclidean topology, since limn→∞ X(n) = θ0 holds Pθ0 -a.s., and λ(X1,...,Xn) :
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θ 7→ (X(n)/θ)n I]X(n),∞[(θ) for all n ∈ N. Moreover, it can be easily checked that
for any c ∈ R>0 and any bounded neighborhood H of θ0, condition (ii) of The-
orem 4.2 is satisfied, while condition (iii) holds for instance when the functional
V satisfies V (w, λ) = V (w Iλ−1(]0,1]), λ) for all pairs of functions (w, λ) ∈ W×Λ.
That is, Theorem 4.2 implies the (strong) consistency of all sequences of esti-
mators δn resulting from likelihood decision criteria with the property that each
evaluation V (wd, λ) does not depend on the loss associated with values of θ with
zero likelihood.

The three examples of likelihood decision criteria explicitly considered in
Section 3 have this property, and for each n ∈ N, they lead to uniquely defined
likelihood decision functions δn : (x1, . . . , xn) 7→ κn x(n). Therefore, Theorem 4.2
implies limn→∞ κn = 1. In fact, for the MLD criterion κn = 1 holds for all n ∈ N,
while κn = κ(αn) and κn = κ′(n

√
β) hold for the MPL criterion with exponent

α and the LRM criterion with threshold β, respectively, where κ : R>0 → ]1, 2[
and κ′ : ]0, 1[ → ]1, 2[ are decreasing bijections. More precisely, κ′ : y 7→ 2/(y+1),
while κ assigns to each y ∈ R>0 the unique solution s > 1 of the equation
(s− 1) sy = yy

/(y+1)y+1.

Though all sequences of estimators κn X(n) resulting from the MPL, LRM,
and MLD criteria are (strongly) consistent, the estimators κ(n)X(n) and
κ′(1/n

√
2)X(n) resulting from the MPL criterion with α = 1 and the LRM crite-

rion with β = 1/2, respectively, have smaller expected losses than the (maximum
likelihood) estimators X(n) resulting from the MLD criterion (for all n ∈ N and
all θ ∈ Θ). For instance, when n = 1, the estimators (

√
2+1)/2X1 and 4/3X1 re-

sulting from the MPL criterion with α = 1 and the LRM criterion with β = 1/2
have expected losses smaller than that of the maximum likelihood estimator X1

by factors of approximately 1.16 and 1.20, respectively (independently of θ).
These factors are slightly smaller than the largest possible one for a scale equiv-
ariant estimator, which is approximately 1.21 (independently of θ) and is ob-
tained with Pitman’s estimator

√
2X1 (that is, the estimator resulting from the

Bayesian criterion with Jeffreys’ improper prior).

4.3. Efficiency

Stronger assumptions about the statistical model, the loss function, and the like-
lihood decision criterion allow asymptotic properties stronger than consistency
for the sequences of likelihood decision functions. For example, in a parametric
estimation problem, the following theorem gives simple sufficient conditions for
a sequence of likelihood decision functions to be an asymptotically efficient se-
quence of estimators. Its proof uses the result (strictly related to the Bernstein–
von Mises theorem) that, under some regularity conditions, the likelihood func-
tion tends to a normal density around the maximum likelihood estimate (see
for example [16, 32], [58, Subsection 7.4.2], [65, Section 10.2]).

When a continuous prior likelihood function taking only positive values is
used, the theorem still holds. For simplicity, its statement is restricted to the
estimation of the natural parameter of a minimal regular exponential family
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(see for example [17]) under a power loss function, and to the three examples of
likelihood decision criteria explicitly considered in Section 3 (for a version of the
theorem with weaker, but more complex assumptions see [19, Subsection 5.1.1]).
An example of a likelihood decision criterion for which the result does not hold is
the minimin version of the LRM criterion, described by the functional (w, λ) 7→
infθ∈Θ:λ(θ)>β w(θ) (for some threshold β ∈ ]0, 1[).

Theorem 4.3. Let the sequence of random variables Xn (with n ∈ N and
Xn = X ) be independent and identically distributed according to a minimal
regular exponential family with natural parameter space Θ ⊆ R

k. Let W be the
loss function (θ, d) 7→ |θ − d|γ , where D = Θ and γ ∈ R>0. If the sequence of
decision functions δn : Xn → Θ (with n ∈ N) is optimal according to the MPL
criterion (for some exponent α ∈ R>0), the LRM criterion (for some threshold
β ∈ ]0, 1[), or the MLD criterion, then it is asymptotically efficient.

Example 4.4 (normal distribution). Let the sequence of random variables Xn

(with n ∈ N and Xn = R) be independent and normally distributed with ex-
pected value θ and variance 1, where Θ = R. Consider the problem of estimating
θ with the power loss function W : (θ, d) 7→ |θ−d|γ , where D = R and γ ∈ R>0.
For each n ∈ N, let X̄n denote the mean of the sample X1, . . . , Xn. From (P2)
with the reflection with respect to X̄n as bijection b : R → R it follows that for
each n ∈ N, when a likelihood decision function δn : Rn → R is uniquely de-
fined, it satisfies δn(X1, . . . , Xn) = X̄n. This holds in particular for the likelihood
decision functions resulting from the MPL, LRM, and MLD criteria (indepen-
dently of the exponent α and the threshold β), which is in accordance with
Theorem 4.3, since the sequence of estimators X̄n is asymptotically efficient.

On the other hand, asymptotic efficiency is not necessarily a desirable prop-
erty when the loss function is asymmetric. Consider for instance the so-called
pinball (or check) loss function W : (θ, d) 7→ (θ − d)

(

τ − I]θ,∞[(d)
)

, where
τ ∈ ]0, 1[. This loss function penalizes the overestimation of θ more than its un-
derestimation when τ < 1/2, and vice versa when τ > 1/2. For each n ∈ N, since
the mean X̄n is a sufficient statistic ofX1, . . . , Xn for θ, and the decision problem
is location invariant, when a likelihood decision function δn : Rn → R is uniquely
defined, it satisfies δn(X1, . . . , Xn) = X̄n + κn for some constant κn ∈ R. More
generally, for each likelihood decision criterion an optimal sequence of decision
functions of the form δn(X1, . . . , Xn) = X̄n + κn always exists. Such a sequence
of estimators is asymptotically efficient if and only if limn→∞

√
nκn = 0. How-

ever, when τ 6= 1/2, a sequence of estimators with limn→∞
√
nκn 6= 0 can have

expected loss smaller than that of X̄n by a factor of up to exp(z
2
τ/2) (where zτ

denotes the τ -quantile of the standard normal distribution), independently of θ
and n.

In particular, if the likelihood decision function δ1 : x1 7→ x1 + κ1 is uniquely
defined, and the likelihood decision criterion is described by a functional V
such that V (cw, λ) = c V (w, λ) for all pairs of functions (w, λ) ∈ W × Λ and
all constants c ∈ R>0 (that is, the evaluation of the loss is scale equivariant),
then δn : (x1, . . . , xn) 7→ x̄n + κ1/

√
n is the uniquely defined likelihood deci-

sion function for each n ∈ N. This follows from (P2) with the scaling by
√
n
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as bijection b : R → R, and is true in particular for the likelihood decision
functions resulting from the MPL, LRM, and MLD criteria. More precisely,
κ1 = 0 and κ1 =

√−2 lnβ (2 τ − 1) hold for the MLD criterion and LRM
criterion with threshold β, respectively, while κ1 = s/

√
α holds for the MPL

criterion with exponent α, where s is the unique real solution of the equation
1 + s/2 (s−

√
s2 + 4) = (1/τ − 1) exp(s/2

√
s2 + 4).

Therefore, the sequence of (maximum likelihood) estimators X̄n resulting
from the MLD criterion is asymptotically efficient for all τ ∈ ]0, 1[, while the
sequences of estimators resulting from the MPL and LRM criteria are asymp-
totically efficient if and only if τ = 1/2. However, when τ 6= 1/2, the estimators
resulting from the MPL and LRM criteria have smaller expected losses than
X̄n. For instance, when τ = 1/10, the estimators resulting from the MPL cri-
terion with α = 1 and the LRM criterion with β = 1/2 have expected losses
smaller than that of X̄n by factors of approximately 2.21 and 2.13, respectively
(independently of θ and n). These factors are slightly smaller than the largest
possible one for a location equivariant estimator, which is approximately 2.27
(independently of θ and n) and is obtained with Pitman’s estimators (that is, the
estimators resulting from the Bayesian criterion with Jeffreys’ improper prior).

5. Conclusion

In the present paper, the likelihood approach to statistics is extended and uni-
fied by the concept of likelihood decision function. Such a decision function is
obtained by a post-data evaluation of the possible decisions on the basis of the
likelihood function (interpreted as a description of uncertain knowledge about
the parameters of the statistical model, and possibly including prior informa-
tion).

In particular decision problems, the likelihood decision functions correspond
to the usual likelihood methods (such as maximum likelihood estimators and
likelihood ratio tests), which are among the most successful statistical meth-
ods. In other decision problems, the likelihood decision functions describe new
likelihood methods, which maintain some key properties of the usual ones (such
as invariance or asymptotic properties). The likelihood approach to decision
making thus offers a new perspective on statistical methodology and on the
connections among likelihood methods.

The extended likelihood approach presented here can be applied to any de-
cision problem. In the examples of this paper, standard problems of estimation
and testing are considered, in order to allow the comparison of likelihood de-
cision functions and usual statistical methods. However, decision problems go
well beyond estimation and testing, and even in problems of estimation and test-
ing the use of more elaborate loss functions can be of interest. The likelihood
approach to decision making has been applied for instance to the problems of
(distribution-free) regression with imprecisely observed data (see [22, 23]) and
supervised classification (see [20, 1]).

The likelihood approach to decision making can be applied post-data: this is
the main advantage over classical decision theory. It is an advantage from both
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the standpoint of interpretation (the goal is the actual decision, not the decision
function) and the standpoint of practical application (the post-data choice of a
decision is possible also in situations in which the pre-data choice of a decision
function is hopeless). However, pre-data properties of decision functions can
be important, and some have been studied in the present paper. In particular,
likelihood decision functions have several invariance properties, and also (under
regularity conditions) asymptotic properties such as consistency and efficiency.

Another advantage of the likelihood approach to decision making over classi-
cal decision theory is the possibility of using prior information. However, prior
information is not necessary in the likelihood approach, and this is the main ad-
vantage over the Bayesian approach. These two approaches are otherwise strictly
related, since both satisfy the (strong) likelihood principle. The advantage of
the Bayesian approach over the likelihood one are some additional invariance
properties, and in particular the essential equivalence of pre-data and post-data
evaluations (see for example [12, Subsection 4.4.1], [58, Subsection 3.1.3]).

Besides further applications of the likelihood approach to decision making,
future work will include a detailed analysis of the decision-theoretic properties
characterizing the MPL criterion (see [19, Sections 3.1 and 4.1]), in connection
with the theories of risk measurement (see for instance [31, 2]) and of nonadditive
measures and integrals (see for example [21, 24]).

Appendix A: Proofs

A.1. Proofs of Theorems 4.1 and 4.2

Theorem 4.1 is a special case of Theorem 4.2, so it suffices to prove the latter.
Define i0 = infd∈D W (θ0, d), and choose an ε ∈ ]0, (c−i0)/6[. Let d′ ∈ D be
a decision such that wd′(θ0) < i0 + ε. Condition (ii) implies that there is a
neighborhood H′ of θ0 such that H′ ⊆ H and |wd(θ

′)− wd(θ0)| < ε for all
θ′ ∈ H′ and all d ∈ D with infθ∈Hwd(θ) < c. The assumptions of Theorem 4.2
ensure that there is an m ∈ N such that Pθ0-a.s. the following five properties
hold for sufficiently large n:

(a) the likelihood function λ(X1,...,Xn) ∈ Λ is well-defined (this is part of con-
dition (i)),

(b) V (wδn(X1,...,Xn), λ(X1,...,Xn)) < V (wd′ , λ(X1,...,Xn)) + ε (as implied by the
optimality of the sequence δn),

(c) V (wd′ , λ(X1,...,Xn)) < V (wd′ ∧m,λ(X1,...,Xn)) + ε (this is a consequence of
condition (iii)),

(d) V
(

(wd′(θ0) + ε) IH′ +mIΘ\H′ , λ(X1,...,Xn)

)

< wd′(θ0) + 2 ε (as follows
from (P3) and condition (i)),

(e) V
(

(i0 + 6 ε) IH′ , λ(X1,...,Xn)

)

> i0+5 ε (this is again a consequence of (P3)
and condition (i)).

From the above choice of H′ it follows that the (pointwise) inequality
wd′ ∧m ≤ (wd′(θ0) + ε) IH′ + mIΘ\H′ is valid. Therefore, (P1) and the prop-
erties (a), (b), (c), and (d) imply that Pθ0 -a.s. the following result holds for
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sufficiently large n:

V (wδn(X1,...,Xn), λ(X1,...,Xn))

< V (wd′ , λ(X1,...,Xn)) + ε

< V (wd′ ∧m,λ(X1,...,Xn)) + 2 ε

≤ V
(

(wd′(θ0) + ε) IH′ +mIΘ\H′ , λ(X1,...,Xn)

)

+ 2 ε

< wd′(θ0) + 4 ε

< i0 + 5 ε.

In order to complete the proof, it suffices to show that from this result and the
properties (a) and (e) it follows that Pθ0 -a.s. the inequality wδn(X1,...,Xn)(θ0) <
i0+7 ε holds for sufficiently large n. In particular, it suffices to show that for any
decision d ∈ D and any likelihood function λ ∈ Λ, the inequality wd(θ0) < i0+7 ε
is implied by the inequalities V (wd, λ) < i0 + 5 ε and V ((i0 + 6 ε) IH′ , λ) >
i0 + 5 ε.

This implication is a simple consequence of (P1) and the above choice of
H′, and can be proved as follows. First note that infθ∈H′ wd(θ) < c holds,
since otherwise (P1) would imply V (wd, λ) ≥ V ((i0 + 6 ε) IH′ , λ) > i0 + 5 ε.
Now, from infθ∈H′ wd(θ) < c and the above choice of H′ it follows that the
(pointwise) inequality wd > (wd(θ0)− ε) IH′ is valid. Therefore, the desired
result wd(θ0) < i0 + 7 ε holds, because otherwise (P1) would imply V (wd, λ) ≥
V ((i0 + 6 ε) IH′ , λ) > i0 + 5 ε.

A.2. Proof of Theorem 4.3

For each n ∈ N, let Xn denote the random variable (X1, . . . , Xn), and define
the function θn : Xn → Θ as follows: θn(xn) = θ̂ for all xn ∈ Xn such that
the likelihood function λxn

∈ Λ and the maximum likelihood estimate θ̂ are
well-defined, and θn(xn) = θ0 otherwise (with θ0 ∈ Θ arbitrary). Under each
Pθ (with θ ∈ Θ), the probability that the likelihood function λXn

∈ Λ and the
maximum likelihood estimate θ̂ are well-defined tends to 1 as n tends to ∞, and

√
n (θn(Xn)− θ)

d−→ Nk

(

0, I(θ)−1
)

,

where I(θ) is the Fisher information matrix (see for example [58, Theorem 7.57]).
Hence, in order to prove the theorem it suffices to show that

√
n (δn(Xn)− θn(Xn))

Pθ−→ 0

for all θ ∈ Θ (see for instance [65, Theorem 2.7 (iv)]).
For each n ∈ N, define the function λn : Xn × R

k → [0, 1] as follows:
λn(xn, τ) = λxn

(

θn(xn) + (1/
√
n) I(θn(xn))

−1/2 τ
)

for all (xn, τ) ∈ Xn × R
k

such that the likelihood function λxn
∈ Λ is well-defined and its argument

θn(xn) + (1/
√
n) I(θn(xn))

−1/2 τ lies in Θ, and λn(xn, τ) = 0 otherwise. The fol-
lowing result (strictly related to the Bernstein–von Mises theorem) is implied
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by Theorem 7.89 of Schervish [58], whose regularity conditions can be easily
checked thanks to the analytic properties of exponential families (see for exam-
ple [17, Chapter 2]):

sup
τ∈Rk : |τ |<t

∣

∣λn(Xn, τ)− exp
(

− 1
2 |τ |2

)
∣

∣

Pθ−→ 0

for all t ∈ R>0 and all θ ∈ Θ.
Assume that the sequence δn is optimal according to the MPL criterion with

exponent α ∈ R>0. For each n ∈ N, define the function vn : Xn ×R
k → R≥0 by

vn(xn, ζ) = n−γ/2 supτ∈Rk

∣

∣I(θn(xn))
−1/2 τ − ζ

∣

∣

γ
λn(xn, τ)

α. Then

VMPL,α(wd, λxn
) = sup

θ∈Θ
|θ − d|γ λxn

(θ)α = vn
(

xn,
√
n (d− θn(xn))

)

for all n ∈ N, all d ∈ Θ, and all xn ∈ Xn such that the likelihood function
λxn

∈ Λ is well-defined.
For each θ ∈ Θ, let υθ : R

k → R≥0 be the function defined by υθ(ζ) =
supτ∈Rk

∣

∣I(θ)−1/2 τ − ζ
∣

∣

γ
exp

(

−α
2 |τ |2

)

. Since the function τ 7→ λn(xn, τ) is log-
arithmically concave for all xn ∈ Xn, and the Fisher information matrix is a
continuous function of θ,

sup
ζ∈Rk : |ζ|<z

∣

∣

∣
n

γ/2 vn(Xn, ζ)− υθ(ζ)
∣

∣

∣

Pθ−→ 0

holds for all z ∈ R>0 and all θ ∈ Θ. For each xn ∈ Xn, the function ζ 7→
nγ/2 vn(xn, ζ) is quasiconvex, and for each θ ∈ Θ, the function υθ is strictly
quasiconvex with a unique minimum at ζ = 0. Therefore, for each ε ∈ R>0

there is an η ∈ R>0 such that under each Pθ (with θ ∈ Θ), the probability that
there is a ζ ∈ R

k with |ζ| > ε and nγ/2 (vn(Xn, ζ)− vn(Xn, 0)) < η tends to 0
as n tends to ∞. Hence,

sup
ζ∈Rk : vn(Xn,ζ)<vn(Xn,0)+2−n

|ζ| Pθ−→ 0

for all θ ∈ Θ, and this proves the desired result for the MPL criterion. The
proofs for the LRM and MLD criteria are analogous.
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