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Abstract: Model selection criteria proposed over the years have become
common procedures in applied research. This article examines the true
model selection rates of any model selection criteria; with true model mean-
ing the data generating model. The rate at which model selection criteria
select the true model is important because the decision of model selection
criteria affects both interpretation and prediction.

This article provides a general functional form for the mean function of
the true model selection rates process, for any model selection criteria. Until
now, no other article has provided a general form for the mean function
of true model selection rate processes. As an illustration of the general
form, this article provides the mean function for the true model selection
rates of two commonly used model selection criteria, Akaike’s Information
Criterion (AIC) and Bayesian Information Criterion (BIC). The simulations
reveal deeper insight into properties of consistency and efficiency of AIC
and BIC. Furthermore, the methodology proposed here for tracking the
mean function of model selection procedures, which is based on accuracy of
selection, lends itself for determining sufficient sample size in linear models
for reliable inference in model selection.
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1. Introduction

The task of model selection is common in most disciplines where the objective is
to select a simple model that “best” explains or predicts the data. In the search
for the “best” model(s), it is possible for the true data generating model to not
be in the collection of models being considered in the analysis phase. Also, there
is no guarantee that the subset of predictors deemed as “best” will be unique.
However, in practice it is common to assume that the true model is contained
in the class of models under consideration.

The most common approach for comparison and selection of models is pe-
nalized model selection criteria. In various disciplines, the most commonly used
penalized model selection criteria are the Akaike Information Criterion (Akaike,
1974) and Bayesian Information Criterion (Schwarz, 1978). These model selec-
tion procedures are well known and documented in statistical literature. The
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existing literature on AIC and BIC, though extensive in discussing properties of
consistency and efficiency, does not address the important question of their true
model selection rates, when the true model is contained in the class of model
under consideration. The first two papers that discuss the rate of convergence
of AIC are Shibata (1981) and Hurvich and Tsai (1995). The major conclusion
in these two papers implies that the model selected by AIC will contain the true
model with probability 1. However, this conclusions still does not address the
probability with which AIC will select the true model.

The main purpose of this article is to describe the true model selection rate
for any model selection criterion (MSC), when the true model is contained in
the class of model under consideration. When making a decision about a model
that explains the data, it is prudent that we understand the reliability and
consequence of that decision. In response to such questions, this paper quantifies
the reliability of decisions made by commonly used model selection criteria, such
as AIC and BIC. The methodology developed in this paper can be extended to
other diverse model selection criteria.

The rest of the article is organized as follows. Section 2 provides the model
and notation to be used in the succeeding sections and mathematically describes
the objective of this article. Section 3 briefly discusses AIC and BIC in terms
of objective, assumption and formulation. Section 4 provides the intuition and
motivation for the proposed method for tracking the correct of model rate.
Section 5 presents the simulation study designed to illustrate the performance
of each criteria in selecting the correct model. Section 6 provides an application
in sample size determination for reliable model inference by taking advantage of
the proposed success rate function. Section 7 provides a discussion on extension
of the proposed success rate function in data with outliers and in generalized
linear models (GLM). Section 8 provides a summary of findings.

2. Model and notation

This article primarily focuses on the multiple regression model, given as follows:

y = Xβ + ε (1)

where y is a n-dimensional vector, X is a n×p matrix, β is a p-dimensional vec-
tor, and ε is the n-dimensional error vector with ε ∼ Normaln(0, σ

2I). Suppose
the collection of candidate models under consideration, M, contains the data
generating (“true”) model M∗ of dimension p∗. Let D

p∗,n,p
represent the data

generated from M∗ (unknown), with n observations, p potential predictors, and
n > p ≥ p∗. The objective is to perform model selection on D

p∗,n,p
for the linear

model (1) set-up.
Under model (1), suppose that a model is selected using some model selection

criterion (MSC) for the specific purpose of prediction or interpretation. Let
T

p∗,n,p
be the indicator function with success indicating that model selected by

MSC is same as the “true” data generating model. Consequently, if p∗, n and
p are allowed to vary (increase) under the condition that n > p ≥ p∗, then the
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indexed set of random variables given by {T
p∗,n,p

}{(p∗,n,p): n>p≥p∗} represents a
(Bernoulli) process in p∗, n and p.

The main objective of this article is to study this process and estimate its
mean function. Estimation of the mean function requires repeats for each set-
ting of (p∗, n, p). Hence, the new collection {T (i)

p∗,n,p
}{(i,p∗,n,p): i≥1 & n>p≥p∗} de-

notes the process with repeats (given by i). Observe that for any (n, p∗, p),
Var(T

p∗,n,p
) ≤ 0.25, so by weak law of large numbers for any fixed (n, p∗, p)

with n > p ≥ p∗ and 1 ≤ i ≤ J , J−1
∑J

i=1 T
(i)
p∗,n,p

P→ E(T
p∗,n,p

) as J → ∞.

3. Methods

A model selection procedure intends to select the “best” subset of predictor
variables for a specific purpose such as interpretation or prediction. The term
“best” usually refers to a balance between the number of explanatory variables
and goodness of fit. Earlier model selection criteria centered around (adjusted)
residual sums of squares, stepwise methods for selecting significant variables,
or information theoretic approaches (Rao and Wu, 2001). The list of model
selection selection procedure is long and still growing. While some of the new
methods evolve from modifications/improvements to existing procedures like
AIC and BIC, other use a different measures (other than Kullback-Leibler) to
evaluate discrepancy between candidate models and the supposed true model.
Some examples include Divergence Information Criterion (DIC; Spiegelhalter
et al., 1998), Residual Information Criterion (RIC; Shi and Tsai, 2002), Akaike
Information Criterion with Fisher Information (AICF; Cetin and Erar, 2002),
Focused Information Criterion (FIC; Claeskens and Hjort, 2003). An excellent
summary of existing model selection procedures from the frequentist, Bayesian
and nonparametric perspectives is discussed in Rao and Wu (2001) and Kadane
and Lazar (2004). This article explores the true model selection rates of any
model selection procedure and provides an illustration using AIC and BIC. The
purpose of introducing only AIC and BIC in this section and not other modern
model selection methods, was merely because these methods are most familiar
to the general audience and are readily available in most software packages.
Moreover, the methodology proposed in this paper applies generally to any
decision making process, just as those made by model selection procedures.

3.1. Akaike information criterion

Akaike (1974) introduced the Akaike Information Criterion (AIC), an infor-
mation theoretic approach for model (variable) selection, via Kullback-Leibler
divergence. AIC is one of the most common model selection procedures that is
available in most statistical software packages. Under the setting of model (1)
when D

p∗,n,p
is fully observed, AIC for a candidate model (denoted as Mc) is

given as follows:

AIC = n ln(σ̂2
c ) + 2pc
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where σ̂2
c is the maximum likelihood estimate of σ2 under candidate model Mc

of dimension pc. In general, AIC for a candidate model is given by

AIC = −2 ln(Lc) + 2pc (2)

where Lc is the likelihood estimate under Mc. Under this selection criterion,
the model with the smallest AIC value is deemed as best. AIC was derived as an
asymptotically unbiased estimator of the expected Kullback-Leibler discrepancy
between the true and a fitted candidate model. The derivation of (2) requires
two important assumptions – (i) the class of models under consideration contains
the true model, i.e. M∗ ∈ M, and (ii) the parameter estimates obtained from
maximizing the likelihood of Mc satisfy the regularity conditions of Maximum
Likelihood Estimators (Rao, 1945; Cramér, 1946). The popularity of AIC is
due to the fact that its derivation is quite general, it adheres to the concept
of parsimony, and is easy to implement in models such as (1). Like any model
selection criterion, AIC has its drawbacks. Many researchers have shown that
for small samples, AIC is inconsistent and leads to overfitting (e.g., Hurvich
and Tsai, 1989). However, AIC has several advantages – it is asymptotically
efficient, allows for simultaneous comparison of multiple nested or non-nested
models, and allows for model-averaged inference (e.g., Burnham and Anderson,
2004). For details on derivation of AIC refer to Burnham and Anderson (2002)
and Cavanaugh (1997).

3.2. Bayesian Information Criterion

Schwarz (1978) proposed the the Bayesian Information Criterion (BIC) as an
asymptotic approximation to a transformation of the Bayesian posterior prob-
ability of a candidate model. For a candidate model (Mc) the computation
of BIC is based on the empirical log-likelihood (Lc) and does not require the
specification of priors; it is given as follows:

BIC = −2 ln(Lc) + pc ln(n) (3)

where pc is the dimension of Mc. Under the assumption that the true model is
contained in the class of models under consideration (i.e. M∗ ∈ M), it is well
known that BIC is consistent (see, e.g., Shibata, 1981; Nishii, 1984). This means
that BIC selects the true model with probability one as sample size increases,
i.e. n → ∞. A drawback of BIC is inefficiency, which means that asymptotically
BIC selects the candidate model which minimizes the mean squared error of
prediction. For further details readers are referred to Kass and Raftery (1995)
and Neath and Cavanaugh (1997).

4. Intuition & motivation for functional form of rate of correct

selection

First, suppose X ∼ Bernoulli(φnaı̈ve) with φnaı̈ve = 2−1, represents the indica-
tor if a model chosen by a näıve model selection criterion (NSC) with success
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indicating that model selected by NSC is same as the “true” data generating
model. In terms of model selection, a NSC with correct model selection rate of
2−1, is far from ideal. In other words, a MSC with correct model selection rate
φ = 2−a, where a denotes the rate of the MSC and a ∈ [0, 1), is preferred over
NSC.

Second, suppose p∗ denotes the dimension of the “true” model. Then, for any
fixed and unknown p∗, as the number of potential predictors (p ≥ p∗) increases,
a decrease in performance by any MSC (i.e. decreasing φ), is to be expected. In
other words, it is expected that φ decreases when the difference p−p∗ increases.
Hence, it is reasonable to propose the functional form φ(p, p∗) = 2−a(p−p∗) where
p ≥ p∗ and a ∈ [0, 1).

Third, suppose model selection criteria MSC1 and MSC2 with “true” model
selection rates 2−a1(p−p∗) and 2−a2(p−p∗), respectively. Without loss of gener-
ality, let a1 < a2, then for a fixed and unknown p∗, as p increases MSC1 is
preferred over MSC2. This is because MSC2 is the first to reach 2−1 in com-
parison to MSC1, as p increases. For example, if the two model selection criteria
are MSC1 = BIC and MSC2 = AIC, then we expect a

BIC
= a1 < a2 = a

AIC

because AIC is known to overfit (Hurvich and Tsai, 1989). Hence, it is rea-
sonable to suspect that a MSC with value for a further away from 0 tends to
overfit, while a MSC with value for a closer (or equal) to 0 tends to fit smaller
dimension models that are closest to the “true” model.

Fourth, for p ≪ n → ∞, the decreasing sequence {φ(p, p∗)}p≥p∗
for any MSC

is a geometric sequence with

∞
∑

p=p∗

φ(p, p∗) =
1

1− 2−a
; 0 < a < 1.

In the previous statement it is assumed that the rate at which p → ∞ is much
smaller than the rate at which n → ∞. Thus, for sufficiently “large” n it is
reasonable to propose the following functional form:

φ(p, p∗) =

{

2−a(p−p∗) : p ≥ p∗ and 0 < a < 1
0 : otherwise

. (4)

Finally, when n is not sufficiently “large”, then (it is reasonable to assume
that) this should have a negative effect on the correct model selection rate of
any MSC. Also, for estimation of the error variance in model (1) we require that
n− (p+1) ≥ 0. Hence, we propose that the correct model selection rate for any
MSC is inversely proportional to (n − (p + 1))c with proportionality constant
given by w(p − p∗)k, where constants w ∈ (0, 1), k ∈ (0, 1] and c ∈ (0, 1]
are unknown. The reason for such a proportionality constant is two folds –
(i) to make the negative effect of not having sufficiently “large” n purely a
function of p − p∗ (just as it is for when n is “large”), and (ii) the unknown
constants w, k, and c allow for the fine tuning of the negative effect of not
having sufficiently “large” n. Thus, based these assumptions, for any MSC, the
following functional form is proposed for the mean function of the Bernoulli
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process {T
p∗,n,p

}{(p∗,n,p): n>p≥p∗}.

φn(p, p∗) =

{

φ(p, p∗)− w(p−p∗)
k

(n−p−1)c : p ≥ p∗
0 : otherwise

(5)

where

φ(p, p∗) =

{

2−a(p−p∗) : p ≥ p∗
0 : otherwise

. (6)

Also note the following relationship in the limit between φn(p, p∗) and φ(p, p∗)

lim
n→∞

φn(p, p∗) =

{

φ(p, p∗) : p ≥ p∗
0 : otherwise

. (7)

In equation (5), the entities φn(p, p∗), φ(p, p∗) and w(p−p∗)
k

(n−p−1)c represent propor-

tions with max
{

φn(p,p∗),
w(p−p∗)k

(n−p∗−1)c

}

< φ(p, p∗). The previous condition imposes
the following restrictions on the tuning parameters: w ∈ (0, 1), k ∈ (0, 1],
c ∈ (0, 1]. Furthermore, φ(p, p∗) (the entity not dependent on n) is viewed as
a measure of consistency of a MSC whereas the difference φ(p, p∗) − φn(p, p∗)

which equals w(p−p∗)
k

(n−p−1)c is viewed as a measure of efficiency of a MSC. Recall that

φ(p, p∗) is the probability that a MSC will select the true model when sample
size is infinite, and φn(p, p∗) is the probability that a MSC will select the true
model with a finite sample size. Hence, a MSC that has φn(p, p∗) close or equal
to 1 (equivalently, a equal or close to 0) will be consistent. On the other hand,
for a given n and p ≥ p∗, smaller values for the difference φ(p, p∗) − φn(p, p∗)
(

i.e. w(p−p∗)
k

(n−p−1)c

)

means that the model selection criterion is efficient. Hence, the

proposed mean function for true model selection rate for any MSC suggests
that no model selection criterion can have best of both worlds – consistency
and efficiency, i.e. for any MSC, gain in efficiency will come at the cost of loss
in consistency, and vice verse. To end this section, it should be pointed out that
construction of the proposed mean function for the correct selection process
(given by equation (5)) was not built with a particular model selection proce-
dure in mind. It was merely from reflecting on reliability of a decision making
process, such as that made by any model selection criterion.

5. Simulations

5.1. Setup

For the simulation study, different data configurations are considered in order
to track the process described in section 2. The following data parameters are
varied in order to obtain different data configurations. The sample size: n= 20
to 2000 by 20 and true model dimension: p∗ = 2, 3, 4. Given a fixed p∗, the
potential number of predictors considered: p = p∗, p∗ + 1, . . . , 12.

For each combination of (n, p∗, p), the matrix X of dimension n× p is gener-
ated from multivariate distribution F . Given X, if xi represents the ith column
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of X and ε ∼ Normaln(0, I), then y is generated as follows: if p∗ = 2 then
y = 3x1 + 2x2 + ε, if p∗ = 3 then y = 3x1 + 2x2 + 1x3 + ε, and if p∗ = 4 then
y = 3x1 + 2x2 + 1x3 + 3x4 + ε.

For each combination of (n, p∗, p,F), data was simulated J = 100 times.
In each data set, i.e. each combination of (n, p∗, p,F , J), model selection is
performed with AIC and BIC. Given an F and a MSC, for each combination of
(n, p∗, p), φ̂n(p∗, p) = J−1

∑J
i−1 T

(i)
n,p∗,p

(as discussed in section 4) is recorded.

Finally, for sensitivity analysis of the proposed mean function from section 4,
the following distributions are considered for F . First, F = Normalp(0, I), i.e.
columns of X are generated from IID (Independent and Identically Distributed)
standard normals. In the sections that follow, this setting will be referred to as

IID Normal. Second, F = Normalp(0,Σ) where Σij =
{

1 : i=j
0.9 : i<j for i, j =

1, 2, . . . , p. This setting represents highly correlated columns of X and will
be referred to as Correlated Normal in the following sections. Third, F =
Multvariate Gamma where the marginals (each column of X) have an expo-
nential distribution with scale parameter value of 2. In addition the correlation
coefficient between the columns is about 0.85. This kind of structure was cho-
sen to reflect extremely (right) skewed data with high dependence between the
columns of X. In the sections that follow, this setting will be referred to as Cor-

related Gamma. In the simulations, the total number of data configurations
considered for p∗ = 2, 3, 4 was 3267, 2970, and 2673, respectively.

5.2. Results

The extensive simulation study results in numerous tables and graphs so, for
brevity we only discuss some of the graphs corresponding to the setting where
p∗ = 2, p = 3, 4, 5, 6, 7, 8 and F = Normal IID. The graphs corresponding to
setting where p∗ = 2, p = 3, 4, 5, 6, 7, 8, F = Correlated Normal and F =
Correlated Gamma are provided in appendix A. The graphs corresponding to
configuration with p∗ = 3, 4 are not included since the findings about AIC and
BIC were the same across all data configurations considered in the simulation
study.

5.2.1. Results for AIC

In keeping track of φ̂n(p, p∗), for “large” values of n the true φ(p, p∗) (as given
in equation (5)) is estimated by φ̂(p, p∗) =

1
20

∑

n∈N
φ̂n(p∗, p), where N = 1600

to 2000 by 20. In light of equations (4) and (7), (1 − 2a)−1 = φ̂(p, p∗) yields

that the constant a when using AIC (denoted as a
AIC

) is 1+
√
2

10 ≈ 0.2414. This
value of a

AIC
was constant throughout all data configurations of (p, p∗,F). In

light of equation (5), by taking the difference of φ̂n(p∗, p) and φ̂(p, p∗) and

equating it to w(p−p∗)
k

(n−p−1)c we obtain the estimates of w, k and c (using non-linear

estimation techniques) to get 2−2, 1, and 1, respectively. These values were
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constant across all data configurations. Hence, the proposed mean function for
true model selection rate by AIC is given as follows:

φ
AIC

n (p, p∗) =

{

φ
AIC

(p, p∗)− 0.25 (p−p∗)
(n−p−1) : p ≥ p∗

0 : otherwise
(8)

where

φ
AIC

(p, p∗) =

{

2−0.1(1+
√
2)(p−p∗) : p ≥ p∗

0 : otherwise
.

The resiliency of the functional form (8) is validated in the graphs shown in
subplots of figures 1 (and subplots of figure 4 and 6 provided in appendix A).

In equation (8), as n → ∞ with n ≫ p, φ
AIC

(p, p∗) decreases exponentially
as p increases. For illustration of this inconsistency, see figures 1 (a)–(e) which
correspond to the simulation setting p∗ = 2, p = 3, . . . , 8, F = IID Normal

and MSC=AIC. In figures 1 (a)–(e), as p goes from 3 to 8 (respectively) the
horizontal dotted line (φAIC(p, p∗)) is (approx.) 0.85, 0.72, 0.61, 0.52, 0.44, and
0.37, respectively. These plots illustrates that as p increases (with p ≪ n) the
success rate of AIC in selecting the true model drops exponentially towards zero,
and consequently the rate of selecting an over-fitted model by AIC approaches
1. This is not a surprising result because AIC tries to select model that is best
for prediction not interpretation. When looking into the derivation of AIC it is
clear that its objective is based on minimizing final prediction errors (Hurvich
and Tsai, 1995), which AIC successfully accomplishes with probability 1 when
n ≫ p → ∞.

In equation (8), the difference φ
AIC

(p, p∗) − φ
AIC

n (p, p∗) given by 0.25(p−p∗)
(n−p−1)

indicates the rate of efficiency of AIC. From the plots in figure 1 (a)–(e), the

smooth solid curve (φ
AIC

n (p, p∗): success rate at n) catches up with the dotted
horizontal line (φ(p, p∗)) fairly early in n. For example observe that in figures 1
(a)–(e) the solid smooth curve is indistinguishable from the horizontal dotted
line after sample size of (approximately) n = 250. This illustrates the efficiency
of AIC.

5.2.2. Results for BIC

Similar to the method employed in calculating a
AIC

, we find that a
BIC

= 0.
This value was constant throughout all the data configuration described by
combinations of (p, p∗,F). This implies that φ

BIC
(p, p∗) = 1, which is expected

because as n → ∞ BIC will select the generating model with probability one,

i.e. φ
BIC

n (p, p∗) → φ
BIC

(p, p∗) = 1 (Schwarz, 1978). In light of equation (5), by

taking the difference of φ̂
BIC

n (p∗, p) and φ̂BIC(p, p∗) and equating it to w(p−p∗)
k

(n−p−1)c

we obtain the estimates of w, k and c (using non-linear estimation techniques)
to get 0.5,1, and 0.6, respectively. These values were constant across all data
configurations. Hence, the mean function for true model selection rate by BIC
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is given as follows:

φ
BIC

n (p, p∗) =

{

φ
BIC

(p, p∗)− 0.5 (p−p∗)
(n−p−1)0.6 : p ≥ p∗

0 : otherwise
(9)

where

φ
BIC

(p) =

{

1 : p ≥ p∗
0 : otherwise

.

The resiliency of the functional form (9) is validated in the graphs shown in
subplots in figure 2 (and subplots of figure 5 and 7 provided in appendix A).

In equation (9), as n → ∞ with n ≫ p, φ
BIC

(p, p∗) remains at 1 as p increases.
For illustration of this consistency, observe figures 2 (a)–(e) which correspond to
the simulation setting p∗ = 2, p = 3, . . . , 8, F = IID Normal and MSC=BIC.
As p increases from 3 to 8 (respectively) the horizontal dotted line (φ

BIC
(p, p∗))

remains at 1. These plots illustrates that as p increases (with p ≪ n) the success
rate of BIC in selecting the true model remains at 100%, and consequently the
rate of selecting an overfitted model by BIC stays at 0. This is not a surprising
result because the objective of BIC is based on maximizing the accuracy in
selecting a candidate model that is closest to the true model (Schwarz, 1978),
which BIC successfully accomplishes with probability 1 when n ≫ p → ∞.

In equation (9), the difference φ
BIC

(p, p∗) − φ
BIC

n (p, p∗) given by 0.5(p−p∗)
(n−p−1)0.6

indicates the rate of (in)efficiency of BIC. From figures 2 (a)–(e), it is clear that

the smooth solid curve (φ
BIC

n (p, p∗): success rate at n) catches up with the dotted
horizontal line (φ

BIC
(p, p∗)) quite late in n. For example, in figures 2 (a)–(e)

the solid smooth curve is easily distinguishable from the horizontal dotted line
even when the sample size is 2000; this illustrates the inefficiency of BIC.

5.2.3. Comparison of results from AIC and BIC

Now that the functional form of the mean functions for AIC and BIC are estab-
lished, we note that the rate (in n) at which φn(p∗, p) catches up with φ(p∗, p)
is much faster in AIC than BIC. Specifically, for any p∗, p with p ≥ p∗ and given
a fixed positive constant B that represents the difference between φn(p, p∗) (i.e.
true model selection success rate with a finite sample size n) and φ(p, p∗) (i.e. the
asymptotic (in n) true model selection success rate), we have the following state-
ment.

If B = φ
BIC

(p, p∗)− φ
BIC

n (p, p∗) = φ
AIC

(p, p∗)− φ
AIC

n (p, p∗), then

n
BIC

= [2 (n
AIC

− p− 1)]10/6 + p+ 1. (10)

Equation (10) implies that given a model, the sample size required for φ̂n(p∗, p)
to be within a certain (fixed) bound (B) of φ(p∗, p), with BIC will be (much)
larger than the minimum sample size (required for the same fixed bound) with
AIC. The catching up rate of AIC reflects the asymptotic efficiency of AIC
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and inefficiency of BIC. However, the efficiency of AIC comes at a cost be-
cause φ

AIC
(p∗, p) decreases exponentially while φ

BIC
(p∗, p) remains at 1, as p

increases. This result is not surprising when observed from the objective stand-
point of AIC and BIC; AIC places importance on precision of selection for
prediction whereas BIC targets the accuracy of selection. The classic examples
of model selection procedures, AIC and BIC, illustrate that the consistency
of a MSC can be obtained only at the cost of asymptotic efficiency (Schwarz,
1978; Hannan and Quinn, 1979). This statement is also implied by the proposed
mean function (5) which states that as a → 0+ a MSC gains consistency and
loses efficiency, whereas a → 1− a MSC gains efficiency and loses consistency.
A comparison of the proposed means functions for AIC and BIC (in equations
(8) and (9)) confirms these well known facts about AIC and BIC. For example,
recall in section 4 (third paragraph) we claimed that a

BIC
< a

AIC
which was

indeed confirmed in the simulation study: a
BIC

= 0 and a
AIC

= 0.25.
Next we compare the effect of increasing the p on the true model selection

rates of AIC and BIC, using figures 3(a) and 3(b). First for AIC, we see in
figure 3(a) that increasing p from 3 to 5, and then to 8, causes the mean success
rate of AIC (represented by the smooth curve) to drop vertically. In contrast,
for BIC, we see in figure 3(b) a very different migration of the contours corre-
sponding to p = 3, 5 and 8; the contours shift both vertically (downward) and
horizontally (to the right) as p increases. These graphs illustrate that for n, p,
p∗ where n > p ≥ p∗, the true model selection rate of BIC is always larger than

that of AIC, however having φ
BIC

n > φ
AIC

n does not imply that the decision
made by BIC is reliable. For example, when n = 30, p∗ = 2, and p = 8 (see

figures 3(a) and 3(b)), we observe that φ
AIC

n and φ
BIC

n are (approximately) 0.27

and 0.45, respectively. Indeed, φ
BIC

n > φ
AIC

n but with a true model selection
rate of a mere 45% (recall φ values ≫ 0.5 are preferred) doesn’t make BIC
very reliable at that sample size. Based on simulations (results not included),

φ
BIC

n = 0.45 implies the 55% of the time BIC selected an overfitted model, i.e.
a model containing the true model. The issue of reliability at a given sample
size is not limited to AIC or BIC, but pertains to any decision making process.
The next section describes two situations where one can take advantage of the
proposed mean function of AIC and BIC in determining sufficient sample sizes
for reliable inference. Similar approach can be implemented with other model
selection criteria.

6. Application

6.1. Application 1: Sample size determination for design of

experiments

From the perspective of designing experiments, the proposed mean function for
any MSC (given by 5) would aid in power and sample size calculation for de-
signing cost effective experiments. A simple application is given by the following
hypothetical practical scenario. Suppose a researcher is interested in modeling
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an outcome y using predictors x1,x2, . . . ,x10. From existing literature or pi-
lot studies, it is well documented that predictors x1 and x2 (say, Gender and
Race) serve as good predictors of y, so in the designing phase of this study
the researcher elects to always measure these two variables. In addition to x1

and x2, the researchers wants to investigate if y can be better explained using
variables x3,x4, . . . ,x10, which have shown potential as good predictors from
different studies. Specifically, the researcher wants to calculate the sample size
required to provide reliable model selection results. Since measurement of vari-
ables comes at a cost, our proposed mean function for correct model selection
will aid in cost effective ways of choosing the variables of interest in the designing
phase. For example, in this practical scenario p = 10, 2 ≤ p∗ ≤ p, which implies
d = p− p∗ ∈ {0, 1, 2, . . . , 8}. Let us suppose the researcher wants the reliability
of the decision (denoted as R) of at least 80%. In the given scenario, the re-
searcher has limited 2 ≤ p∗ ≤ 10 (usually it would be 1 ≤ p∗ ≤ p). Suppose the
researcher is interested in the accuracy of model selection and chooses BIC as
the criterion of choice. Then, the minimum sample size required for the smallest
(and most difficult) model to be detected as the best model (if it is indeed the
true model) with reliability of at least R ∈ (0, 1) (high values preferred, say
80%) is given by

n
min

= min
{

n ∈ Z
+ : φBIC

n (dmax) ≥ R
}

=

⌈

(

0.5

1− R
dmax

)
5
3

+ p+ 1

⌉

=

⌈

(

0.5(8)

1− 0.80

)
5
3

+ 10 + 1

⌉

(11)

=
⌈

20
5
3 + 10 + 1

⌉

= 159

where ⌈·⌉ is the ceiling function. If nmin = 159 requires a budget beyond what
is available, then a large enough sample cannot be collected for reliable model
inference. In order to meet the budget limitations, compromises have to be made
based on the researcher and/or expert’s opinion about which variables among
x3,x4, . . . ,x10 are more important to the study objective, while taking into
account the costs related to measuring each variable. If the variables of interest
are of similar cost per experimental unit, then emphasis should be placed on
the smallest model (as was done in equation (11)) that a sample size will allow
(as a consequence of fixed budget) to be reliably detected as the true model, if
it is indeed the true model.

In the case where a researcher is interested in models for prediction and
chooses AIC, then the minimum sample size calculation is not as straightforward
and requires some important observations. In the given example, where dmax =
8, the smallest possible probability for correct selection by AIC given p = 10
is φ(dmax) = 0.2622. Note, this is the probability at infinite sample size which
implies that even with infinite sample size, the probability of choosing the (most
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difficult) model of dimension p∗ = 2 as best (if it is indeed the true model) is
at least 26.22%. This in turn implies that probability of selecting an overfitted
model is at most 73.78%. Hence, the researcher in this example cannot expect
the reliability of selecting an overfitted model to exceed 73.78%. In a compromise
for a parsimonious model let us suppose the researcher limits the probability of
overfitting to be at most 60%, and consequently limits the probability of correct
selection to at least 40% (denoted as R). With this in mind, the minimum
sample size is determined as follows:

nmin = min
{

n ∈ Z
+ : φAIC

n (dmax) ≥ R
}

=

⌈

0.25

φAIC(dmax)− R
dmax + p+ 1

⌉

(12)

=

⌈

0.25

2−0.1(1+
√
2)dmax − 0.4

dmax + 10 + 1

⌉

= 49

where (as per our hypothetical example),

dmax = −
⌈

log2(R)

aAIC

⌉

= −
⌈

log2(0.4)

0.1(1 +
√
2)

⌉

= 5. (13)

6.2. Application 2: Reliability and sample size determination in

observational studies

In the case of observational studies, where p is already fixed and n observations
have been measured, our proposed mean function can again be helpful in many
ways. First, it can give a range for the reliably of detecting the smallest or
the largest model as best, if one of the respective models is indeed the true
model. For example, continuing with the hypothetical example, where p = 10
and 2 ≤ p∗ ≤ 10, suppose that an observational study has already collected
100 observations. In this scenario, the first concern is what are the reliability
values for detecting the true model when using BIC. This is simply answered
by evaluating minimum reliability, which is given by φBIC(n = 100, d = 8) =
72.93%. If the researcher of this study, finds 72.93% to be low and requires
reliability of at least 80% then from table 1 (row p = 10 and column R ≥ 80%)
the sample size required is at least 159. 1

In the case of AIC, the minimum reliability of detecting the true model is
given by φAIC(n = 100, d = 8) = 23.97%. If the researcher finds 23.97% to be
too low and wants to boost this probability to at least 40%, then from table 2
(row p = 10 and column R ≥ 40%) the sample size required is at least 49.

To conclude this section, note that it is the mean function of true model selec-
tion that led to application in design of experiments and observational studies
for reliable model inference. Hence, the methodology presented in this paper

1Such tables for BIC were constructed for different values of p∗ and are available on request.
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lends itself to developing average selection rate functions for any model selec-
tion procedure, and consequently its application for reliable model inference.

7. Discussion: Outliers, GLM, and extensions

Thus far our findings have been in the simple class of linear models with normally
distributed errors. It would be interesting to investigate the performance of the
proposed success rate function in more general/complex settings. For example,
it would be worthwhile to study the effect of outliers on the success rate of a
MSC, and the success rate of a MSC in GLM. With focus on these two settings,
a discussion follows next on the mean success rate function of AIC and BIC.

With regards to data with outliers, it is expected that the mean function form
given by equation (5) should hold for large samples. For example, simulations
were conducted with errors from Student’s t-distribution with 5 degrees of free-
dom and Laplace distribution with location parameter 0 and scale parameter 1.
Under the t-distribution with 5 degrees of freedom, the probability of observing
extreme values (less than −3 or greater than 3) is 0.03 which is about 11 times
the probability of observing extreme values under the standard normal distri-
bution. Under the standard Laplace distribution, the probability of observing
extreme values (less than −3 or greater than 3) is 0.05 which is about 18 times
the probability of observing extreme values under the standard normal distribu-
tion. The results of these supplemental scenarios for AIC are given in figures 8
(a)–(f) and 9 (a)–(f), and for BIC are given in figures 10 (a)–(f) and 11 (a)–(f).
These figures again illustrate the resiliency of the functional form proposed for
AIC and BIC in the multiple regression setting.

Lastly, in the addressing the mean function for correct selection in GLM,
a final simulation study was conducted to observe the behavior of the proposed
mean function of BIC in logistic regression where data contains outliers from
Student’s t-distribution (with 5 degrees of freedom) and standard Laplace dis-
tribution. Figures 12 and 13 confirm the validity of the general mean functional
form given by equation (5) in section 4. 2

Additionally, the logistic regression setting also suggests modification to equa-
tion (5) for an even more general form given by

φn(p, p∗) =

{

φ(p, p∗)− w(p−p∗)
k

(n−p−r)c : p ≥ p∗
0 : otherwise

(14)

where

φ(p, p∗) =

{

2−a(p−p∗) : p ≥ p∗
0 : otherwise

. (15)

where “r” is added to list of tuning parameters with p+ r > n. The significance
of “r” is to allow for sample sizes where the MLE properties of estimators in
GLM will hold true.

2Simulations were also done for AIC and since the results were similar, they have been
excluded for brevity.
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In the simulation study considered in this paper, larger discrepancies were
observed between the proposed mean function and observed mean in data con-
figurations with sample size. So, for small samples there is definitely room for
improvement and this is currently being explored in a forthcoming paper. An-
other natural extension includes studying the mean function in GLM where the
response is a polytomous (ordinal or nominal) variable. A general extension is
to study the mean function in GLM where the response variable are counts from
(for example) Binomial, Poisson, Negative Binomial, etc. Other areas of future
research include studying the behavior of the proposed method when X contains
different types of variables: continuous, binary, proportions, ordinal, nominal.
The methodology presented in this paper could be employed with other model
selection criteria. With access to the success rate of a model selection proce-
dure (using the functional form given by equation (14)), we can (i) learn about
about their properties such as consistency and efficiency, and (ii) develop rules
for sample size calculation for reliable model inference.

8. Concluding remarks

Shibata (1981), and later Hurvich and Tsai (1990), were the first to discuss and
formalize model selection rates of AIC. Their conclusions pointed to the well
known characteristics of AIC – inconsistency and efficiency. Their conclusions,
under certain assumptions, state that AIC will either select the true model or
an overfitted model, with probability 1. This paper provides a finer result to
compliment their conclusion. This paper provides the probability with which
AIC selects the true model in linear models. Consequently, our results imply
that when using AIC the probability of overfitting increases exponentially with
number of predictors under consideration.

In addition, this paper also provides a general functional form for the mean
function of the true model selection rate (discrete) process for any model se-
lection criteria, in the generalized linear models. For validation of the general
functional form of the mean function, this paper provides the mean functional
forms of AIC and BIC, and illustrates their exceptional performance in an ex-
tensive simulation study. The simplicity of the proposed mean function (merely
a function of the data dimension) and its resiliency (to data configuration) are
some of many strong suits of the proposed mean function. The mean functions
of the true model selection rates process of AIC and BIC further confirm their
well known properties of consistency and efficiency. The methodology presented
in this paper can be used in deriving mean functions for process relating to other
diverse model selection criteria and learn about their consistency and efficiency.

Furthermore, in the multiple linear regression setup, the notion of what quan-
tifies as “large” sample size relative to the number of predictor variables, has al-
ways remained unclear with respect to model selection. For example, the deriva-
tion of AIC in the elegant and insightful paper by Cavanaugh (1997) requires
that p2 ≪ n so that p2/n → 0, i.e. the rate at which p2 increases is much smaller
than the rate at which n is increases. In practical terms, what ratio of p2 to n
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can be considered as close enough to zero has remained unanswered, until now.
With the proposed mean function, the notion of having a “large” enough sample
size can be quantified in terms of a pre-specified minimum reliability (detection
probability) of correct selection.

In closing, the purpose of this paper was to study and pique interest in evalu-
ating the mean function forms for different model selection procedures. The use
of AIC and BIC was mainly for illustrative purpose. Further research in model
selection criteria as processes is needed in order to study their model selection
rate, which is greatly hindered by the dimension of the data. Focus should be
placed in developing the mean function for the true model selection rate of model
selection procedures, and to consequently determine their (decision) reliability
threshold at a given sample size, and vice versa. Furthermore, the relationship
between the reliability of a model selection procedure and sample size will give
a unique quantification of n ≫ p (where required) for different model selection
procedures based on their model detection rates (power). To our knowledge, this
paper is the first to quantify n ≫ p for the purpose of reliable model selection in
generalized linear models. Just as several authors (eg. Cohen and Cohen, 1975;
Cohen, 1988, 1992; Green, 1991; Aron and Aron, 2003; Kelley and Maxwell,
2003) have provided unique sample size rules for different statistics, this paper
provides a simple but effective methodology (based on accuracy of selection) for
determining unique sample size rules for reliable inference in model selection.

Appendix A: Supporting graphs of configuration considered in the

simulation study

This appendix provides graphs corresponding to some additional settings con-
sidered in the simulation study. The graphs in figures 4–7 correspond to simu-
lations where p∗ = 2, p = 3, . . . , 8, variance structure of Correlated Normal

and Correlated Gamma, for AIC and BIC.
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Legend: φ(p, p∗) – Horizontal dotted line; (Observed) φ̂n(p, p∗) – Choppy solid curve; (Proposed

Mean Function) φn(p, p∗) – Smooth solid curve

Fig 3. Observed and proposed mean (function) of success rates for AIC and BIC when p∗ = 2,
p = 3, 5, 8, and F = IID Normal.
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Appendix B: Sample size and reliability table for application in

design of experiments and observational studies

Included in this appendix are tables 1 and 2 for different reliability values (R),
the minimum sample size required for the furthest (and most difficult) model
to be detected as the best model by BIC and AIC, respectively, if the respec-
tive model is indeed the true model. Other such tables for AIC and BIC were
constructed for different values of p∗ and are available on request.

Table 1

For different reliability values (R), the minimum sample size required for the furthest
(and most difficult) model M∗ (of dimension p∗ = 2) to be detected as the best model by

BIC, if it is indeed the true model

p
Reliability of at least R

0.70 0.75 0.80 0.85 0.90 0.95 0.98 0.99

3 7 8 9 12 19 51 218 683

4 13 16 20 29 52 153 684 2160

5 21 26 35 53 98 296 1340 4241

6 31 40 54 82 155 475 2162 6847

7 43 55 76 117 222 687 3133 9930

8 56 72 101 157 299 929 4244 13454

9 71 92 128 201 385 1199 5486 17393

10 86 113 159 250 479 1497 6851 21727

11 104 136 192 302 582 1820 8336 26438

12 122 161 227 359 692 2168 9935 31512

13 142 187 265 419 810 2540 11644 36935

14 163 215 305 483 935 2935 13460 42698

15 185 245 347 551 1067 3353 15379 48791

16 208 276 392 622 1206 3792 17400 55204

17 232 308 439 697 1352 4253 19519 61930

18 258 342 487 775 1505 4735 21735 68961

19 284 377 538 857 1664 5237 24045 76292

20 311 414 591 941 1829 5760 26447 83917

21 339 452 646 1029 2000 6302 28940 91829

22 369 491 702 1120 2178 6863 31522 100023

23 399 532 761 1213 2361 7444 34191 108496

24 430 574 821 1310 2551 8043 36946 117242

25 462 617 883 1410 2746 8661 39787 126257

26 495 661 947 1513 2947 9296 42710 135537

27 529 707 1013 1618 3153 9950 45716 145078

28 564 754 1080 1727 3366 10621 48804 154877

29 600 802 1150 1838 3583 11310 51971 164931

30 636 851 1220 1952 3806 12015 55218 175237

31 674 902 1293 2069 4035 12738 58542 185790

32 712 953 1367 2188 4268 13478 61945 196589

33 751 1006 1443 2310 4507 14234 65423 207631

34 791 1060 1521 2435 4751 15006 68977 218912

35 832 1114 1600 2562 5000 15795 72606 230432
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Table 2

For different reliability values (R), the minimum sample size required for the furthest
(and most difficult) model M∗ (of dimension p− dmax) to be detected as the best model by

AIC, if it is indeed the true model

p

Reliability of at least R
(

dmax at R
)

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

(5) (4) (4) (3) (3) (2) (2) (1) (1)

2 — — — — — — — 6 9

3 — — — — — 12 37 7 10

4 — — — 19 147 13 38 8 11

5 — 23 90 20 148 14 39 9 12

6 45 24 91 21 149 15 40 10 13

7 46 25 92 22 150 16 41 11 14

8 47 26 93 23 151 17 42 12 15

9 48 27 94 24 152 18 43 13 16

10 49 28 95 25 153 19 44 14 17

11 50 29 96 26 154 20 45 15 18

12 51 30 97 27 155 21 46 16 19

13 52 31 98 28 156 22 47 17 20

14 53 32 99 29 157 23 48 18 21

15 54 33 100 30 158 24 49 19 22

16 55 34 101 31 159 25 50 20 23

17 56 35 102 32 160 26 51 21 24

18 57 36 103 33 161 27 52 22 25

19 58 37 104 34 162 28 53 23 26

20 59 38 105 35 163 29 54 24 27

21 60 39 106 36 164 30 55 25 28

22 61 40 107 37 165 31 56 26 29

23 62 41 108 38 166 32 57 27 30

24 63 42 109 39 167 33 58 28 31

25 64 43 110 40 168 34 59 29 32

26 65 44 111 41 169 35 60 30 33

27 66 45 112 42 170 36 61 31 34

28 67 46 113 43 171 37 62 32 35

29 68 47 114 44 172 38 63 33 36

30 69 48 115 45 173 39 64 34 37

31 70 49 116 46 174 40 65 35 38

32 71 50 117 47 175 41 66 36 39

33 72 51 118 48 176 42 67 37 40

34 73 52 119 49 177 43 68 38 41

35 74 53 120 50 178 44 69 39 42

Note: Since p 6≤ dmax, the corresponding cells are denoted with “—”.
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