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Abstract: In extreme value theory, the so-called extreme-value index is a
parameter that controls the behavior of a distribution function in its right
tail. Knowing this parameter is thus essential to solve many problems re-
lated to extreme events. In this paper, the estimation of the extreme-value
index is considered in the presence of a random covariate, whether the
conditional distribution of the variable of interest belongs to the Fréchet,
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1. Introduction

The problem of studying extreme events arises in many fields of statistical ap-
plications. In hydrology, one could for instance be interested in forecasting the
maximum level reached by the seawater along a coast over a given period, or
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studying extreme rainfall at a given location; in actuarial science, it is of pri-
mary interest for a company to estimate the probability that a claim which
represents a threat to its solvency is filed. The pioneering result in extreme
value theory, known as the Fisher-Tippett-Gnedenko theorem (see Fisher and
Tippett [13] and Gnedenko [19]) states that if (Yn) is an independent sequence
of random copies of a random variable Y such that there exist normalizing non-
random sequences of real numbers (an) and (bn), with an > 0 and such that the
sequence

1

an

(
max
1≤i≤n

Yi − bn

)

converges in distribution to some nondegenerate limit, then the cumulative dis-
tribution function (cdf) of this limit can necessarily be written y 7→ Gγ(ay+ b),
with a > 0 and b, γ ∈ R where

Gγ(y) =

{
exp

(
−(1 + γy)−1/γ

)
if γ 6= 0 and 1 + γy > 0,

exp (− exp(−y)) if γ = 0.

If the aforementioned convergence holds, we shall say that Y (or equivalently,
its cdf F ) belongs to the max-domain of attraction (MDA) of Gγ , with γ being
the extreme-value index of Y , and we write F ∈ D(Gγ). Clearly, γ drives the
behavior of F in its right tail:

• if γ > 0, namely Y belongs to the Fréchet MDA, then 1 − Gγ is heavy-
tailed, i.e. it has a polynomial decay;

• if γ < 0, namely Y belongs to the Weibull MDA, then 1 − Gγ is short-
tailed, i.e. it has a support bounded to the right;

• if γ = 0, namely Y belongs to the Gumbel MDA, then 1 − Gγ has an
exponential decay.

The knowledge of γ is therefore necessary to tackle a number of problems in
extreme value analysis, such as the estimation of extreme quantiles of Y , which
made its estimation a central topic in the literature. Recent monographs on
extreme value theory and especially univariate extreme-value index estimation
include Beirlant et al. [3] and de Haan and Ferreira [21].

In practical applications, it is often the case that the variable of interest Y
can be linked to a covariate X . In this situation, the extreme-value index of
the conditional distribution of Y given X = x may depend on x; the prob-
lem is then to estimate the conditional extreme-value index x 7→ γ(x). Mo-
tivating examples in the literature include the description of the right tail of
the distribution of claim sizes in insurance or reinsurance (see [3]), the esti-
mation of the maximal production level as a function of the quantity of labor
(see Daouia et al. [6]), studying extreme temperatures as a function of various
topological parameters (see Ferrez et al. [12]), the estimation of some quanti-
tative physical characteristics of Martian soil (see Gardes et al. [17]), or an-
alyzing extreme earthquakes as a function of the location (see Pisarenko and
Sornette [26]).
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In most recent works, this problem has been addressed in the “fixed design”
case, namely when the covariates are nonrandom. For instance, Smith [27] and
Davison and Smith [10] considered a regression model while Hall and Tajvidi [22]
used a semiparametric approach in this context; a nonexhaustive list of fully
nonparametric methods include Davison and Ramesh [9] for a local polynomial
estimator, Chavez-Demoulin and Davison [5] for a method using splines, Gardes
and Girard [14] for a moving window approach and Gardes and Girard [15] who
used a nearest neighbor approach.

By contrast, the case when the covariate is random, which is very interesting
as far as practical applications are concerned, has only been tackled in even
newer works. In the actuarial science setting, one could for instance think of a
situation in which an insurance firm covers damage done to policyholders by
natural disasters: a typical covariate in this case is the location where a natural
disaster happens. Another situation, which will be examined in this paper, is
the case of an insurance firm covering damage done by fire accidents: a possible
covariate of the claim size is the total sum insured by the firm. We refer to Wang
and Tsai [28] for a maximum likelihood approach, Daouia et al. [7] who used
a fixed number of nonparametric conditional quantile estimators to estimate
the conditional extreme-value index, Gardes and Girard [16] who generalized
the method of [7] to the case when the covariate space is infinite-dimensional,
Goegebeur et al. [20] who studied a nonparametric regression estimator and
Gardes and Stupfler [18] who introduced a smoothed local Hill estimator. Be-
sides, the method of [7] was recently generalized in Daouia et al. [8] to a regres-
sion context with a response distribution belonging to the general max-domain
of attraction: the latter study is the only one in this list which is not restricted
to the case of the Fréchet MDA.

The aim of this paper is to introduce a moment estimator of the conditional
extreme-value index, working in the three domains of attraction. In Section 2,
we define our estimator of the conditional extreme-value index. The pointwise
weak consistency and asymptotic normality of the estimator are stated in Sec-
tion 3. The finite sample performance of the estimator is studied in Section 4. In
Section 5, we illustrate the behavior of the proposed estimator on a real set of
fire insurance data. Proofs of the main results are given in Section 6 and those
of the auxiliary results are postponed to Section 7.

2. Estimation of the conditional extreme-value index

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X,Y )
taking its values in E × (0,∞) where E is a metric space endowed with a
metric d. For all x ∈ E, we assume that the conditional survival function (csf)
F (·|x) = 1−F (·|x) of Y given X = x belongs to D(Gγ(x)). Specifically, we shall
work in the following setting:

(M1) Y is a positive random variable and for every x ∈ E, there exist a real
number γ(x) and a positive function a(·|x) such that the left-continuous inverse
U(·|x) of 1/F(·|x), defined by U(z|x) = inf{y ∈ R | 1/F (y|x) ≥ z} for every
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z ≥ 1, satisfies

∀z > 0, lim
t→∞

U(tz|x)− U(t|x)
a(t|x) =





zγ(x) − 1

γ(x)
if γ(x) 6= 0

log z if γ(x) = 0.

Model (M1) is the conditional analogue of the classical extreme-value frame-
work, see for instance [21], p. 19. In this model, for every x ∈ E, the function
U(·|x) has a positive limit U(∞|x) at infinity; the function U(∞|·) is called the
conditional right endpoint of Y .

We now introduce our estimator, which is an adaptation of the moment
estimator of Dekkers et al. [11]. To this end, we let, for an arbitrary x ∈ E
and h = h(n) → 0 as n → ∞, Nn(x, h) be the total number of observations in
the closed ball B(x, h) having center x and radius h:

Nn(x, h) =

n∑

i=1

1{Xi∈B(x,h)} with B(x, h) = {x′ ∈ E | d(x, x′) ≤ h},

where 1{·} is the indicator function. The purpose of the bandwidth sequence
h(n) is to select those covariates which are close enough to x. Given Nn(x, h) =
p ≥ 1, we let, for i = 1, . . . , p, Zi = Zi(x, h) be the response variables whose
associated covariates Wi = Wi(x, h) belong to the ball B(x, h). Let further
Z1,p ≤ · · · ≤ Zp,p be the related order statistics (this way of denoting order
statistics shall be used throughout the paper) and set for j = 1, 2

M (j)
n (x, kx, h) =

1

kx

kx∑

i=1

[log(Zp−i+1,p)− log(Zp−kx,p)]
j

if kx ∈ {1, . . . , p− 1} and 0 otherwise. Given Nn(x, h) = p, the random variable

M
(j)
n (x, kx, h) is then computed by using only the response variables whose

values are greater than the random threshold Zp−kx,p and whose associated
covariates belong to a (small) neighborhood of x. For j = 1, this statistic is an
analogue of Hill’s estimator (see Hill [24]) in the presence of a random covariate;
see also [15] for a nearest neighbor analogue of this quantity in the fixed design
case. Our estimator, in the spirit of [11], is then

γ̂n(x, kx, h) = γ̂n,+(x, kx, h) + γ̂n,−(x, kx, h)

where

γ̂n,+(x, kx, h) = M (1)
n (x, kx, h)

and γ̂n,−(x, kx, h) = 1− 1

2


1−

[
M

(1)
n (x, kx, h)

]2

M
(2)
n (x, kx, h)




−1

if [M
(1)
n (x, kx, h)]

2 6=M
(2)
n (x, kx, h), with γ̂n,−(x, kx, h) = 0 otherwise.
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The assumption that Y is a positive random variable makes the quantities

M
(j)
n (x, kx, h) well-defined for every kx. This simplifies somewhat a couple of

technical results (see for instance Lemma 3). We point out that since we shall
only compute our estimator using upper order statistics of the Zi, this hypothesis
may be replaced by the assumption U(∞|x) > 0 for every x ∈ E, at the price
of extra regularity conditions on the joint cumulative distribution function F of
the pair (X,Y ).

3. Main results

3.1. Weak consistency

We first wish to state the pointwise weak consistency of our estimator. To this
end we let, for x ∈ E, nx = nx(n, h) = nP(X ∈ B(x, h)) be the average total
number of points in the ball B(x, h) and we assume that nx(n, h) > 0 for every n.
Let kx = kx(n) be a sequence of positive integers; furthermore, let Fh(·|x) be
the conditional cdf of Y given X ∈ B(x, h):

Fh(y|x) = P(Y ≤ y |X ∈ B(x, h))

and Uh(·|x) be the left-continuous inverse of 1/Fh(·|x). For u, v ∈ (1,∞) such
that u < v, we introduce the quantity

ω(u, v, x, h) = sup
z∈[u,v]

∣∣∣∣log
Uh(z|x)
U(z|x)

∣∣∣∣ .

Recall the notation a ∧ b = min(a, b) and a ∨ b = max(a, b) for a, b ∈ R. Our
consistency result is then:

Theorem 1. Assume that (M1) holds. Pick x ∈ E. We assume that nx → ∞,

kx → ∞, kx/nx → 0 and for some δ > 0

U(nx/kx|x)
a(nx/kx|x)

ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞. (1)

Then, setting γ+(x) = 0 ∨ γ(x) and γ−(x) = 0 ∧ γ(x), it holds that

γ̂n,+(x, kx, h)
P−→ γ+(x) and γ̂n,−(x, kx, h)

P−→ γ−(x) as n→ ∞

and therefore γ̂n(x, kx, h)
P−→ γ(x) as n→ ∞.

Theorem 1 is the conditional analogue of the consistency result proven in [11];
see also [21], Theorem 3.5.2. As far as the hypotheses of Theorem 1 are con-
cerned, note that conditions nx → ∞, kx → ∞ and kx/nx → 0 are standard hy-
potheses for the estimation of the conditional extreme-value index: they are the
exact analogues of the conditions n → ∞, k = k(n) → ∞ and k/n → 0 needed
to ensure the convergence of Hill’s estimator. Moreover, condition nx → ∞ is
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necessary to make sure that there are sufficiently many observations close to x,
which is a standard assumption in the random covariate case.

Condition (1) is somewhat harder to grasp. To analyze this hypothesis fur-
ther, we introduce the following conditions:

(E) E is a linear space.

(A1) For every x ∈ E, U(·|x) is a continuous increasing function on (1,∞)
and for every y ∈ R, the function F (y|·) is continuous on E.

We may now state the following result, which relates the behavior of the
function logUh(z|·) around x to that of logU(z|·):
Proposition 1. Assume that (E) and (A1) hold. Assume further that x ∈ E is

such that

∀x′ ∈ B(x, h), ∀r > 0, P(X ∈ B(x′, r)) > 0.

Then for every x ∈ E and for every z > 1, it holds that
∣∣∣∣log

Uh(z|x)
U(z|x)

∣∣∣∣ ≤ sup
x′∈B(x,h)

∣∣∣∣log
U(z|x′)
U(z|x)

∣∣∣∣ .

Note that if E = R
d with X having a probability density function f on

this space and with x being such that f(x) > 0 and f is continuous at x, the
condition

∀x′ ∈ B(x, h), ∀r > 0, P(X ∈ B(x′, r)) > 0

appearing in Proposition 1 is satisfied when n is large enough.
With this result at hand, we define for u, v ∈ (1,∞) such that u < v:

Ω (u, v, x, h) = sup
z∈[u,v]

sup
x′∈B(x,h)

∣∣∣∣log
U(z|x′)
U(z|x)

∣∣∣∣ .

Proposition 1 entails that

ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
≤ Ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
.

Consequently, if conditions (E) and (A1) are satisfied, a sufficient condition
for (1) to hold is

U(nx/kx|x)
a(nx/kx|x)

Ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞ (2)

which is a hypothesis on the uniform oscillation of logU in its second variable.
To understand more about condition (2), we introduce an additional regularity
assumption:

(A2) The function γ is a continuous function on E.

If we omit the case γ(x) = 0 of the Gumbel MDA, then under (A2), condi-
tion (2) can be made more explicit:
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• If γ(x) > 0, namely F (·|x) belongs to the Fréchet MDA, then Lemma 1.2.9
in [21] entails that a(·|x)/U(·|x) converges to γ(x) at infinity. Condition (2)
then becomes

Ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞. (3)

Since γ is continuous, one has γ(x′) > 0 for x′ close enough to x. Corol-
lary 1.2.10 in [21] then yields for n large enough and every x′ ∈ B(x, h)

∀z ≥ 1, U(z|x′) = zγ(x
′)L(z|x′)

where for every x′ ∈ B(x, h), L(·|x′) is a slowly varying function at infinity.
Letting

∀z ≥ 1, L(z|x′) = c(z|x′) exp
(∫ z

1

∆(v|x′)
v

dv

)
(4)

be Karamata’s representation of L(·|x′) (see Theorem 1.3.1 in Bingham
et al. [4]), where c(·|x′) is a positive Borel measurable function converging
to a positive constant at infinity and ∆(·|x′) is a Borel measurable function
converging to 0 at infinity, condition (3) is thus a consequence of the
convergences

lognx sup
x′∈B(x,h)

|γ(x′)− γ(x)| → 0,

sup
z∈Kx,δ

sup
x′∈B(x,h)

| log c(z|x′)− log c(z|x)| → 0,

and lognx sup
z∈Kx,δ

sup
x′∈B(x,h)

|∆(z|x′)−∆(z|x)| → 0

as n → ∞, where Kx,δ = [nx/[(1 + δ)kx, n
1+δ
x ]. Besides, if γ, log c and ∆

satisfy some sort of Hölder condition, for instance

sup
x′∈B(x,h)

|γ(x′)− γ(x)| = O(hα) , (5)

sup
z∈Kx,δ

sup
x′∈B(x,h)

| log c(z|x′)− log c(z|x)| = O(hα) (6)

and sup
z∈Kx,δ

sup
x′∈B(x,h)

|∆(z|x′)−∆(z|x)| = O(hα) (7)

for some α ∈ (0, 1] as n → ∞, then condition (3) becomes hα lognx → 0
as n → ∞. The regularity conditions above are fairly standard when
estimating the conditional extreme-value index in the Fréchet MDA, see
for instance [7].

• If γ(x) < 0, namely F (·|x) belongs to the Weibull MDA, then according
to Lemma 1.2.9 in [21], one has

U(∞|x)− U(z|x)
a(z|x) → − 1

γ(x)
as z → ∞.
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Furthermore, since one has γ(x′) < 0 for x′ close enough to x, Corol-
lary 1.2.10 in [21] yields for n large enough and every x′ ∈ B(x, h) that

∀z ≥ 1, U(∞|x′)− U(z|x′) = zγ(x
′)L(z|x′)

where for every x′ ∈ B(x, h), L(·|x′) is a slowly varying function at infinity.
Especially

U(z|x)
a(z|x) = −U(∞|x)

γ(x)

z−γ(x)

L(z|x) (1 + o(1)) as z → ∞.

Consequently, in this framework, condition (2) becomes

(nx/kx)
−γ(x)

L(nx/kx|x)
Ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞. (8)

Write then for an arbitrary z > 1 and for x′ ∈ B(x, h)

logU(z|x′)− logU(z|x)

= log
U(∞|x′)
U(∞|x) + log

(
1− [U(∞|x′)]−1zγ(x

′)L(z|x′)
1− [U(∞|x)]−1zγ(x)L(z|x)

)
. (9)

The first term on the right-hand side in (9) is readily controlled if the
conditional right endpoint x 7→ U(∞|x) is a positive Hölder continuous
function on E:

sup
x′∈B(x,h)

∣∣∣∣
U(∞|x′)
U(∞|x) − 1

∣∣∣∣ = O

(
sup

x′∈B(x,h)

|U(∞|x′)− U(∞|x)|
)

= O(hβ) (10)

say, with β ∈ (0, 1]. The second one can be bounded from above as follows:
since nx/kx → ∞ and zγ(x)L(z|x) → 0 as z → ∞ (see Proposition 1.5.1
in [4]), we can write for n large enough

∣∣∣∣∣
1− [U(∞|x′)]−1zγ(x

′)L(z|x′)
1− [U(∞|x)]−1zγ(x)L(z|x) − 1

∣∣∣∣∣

≤ 2
∣∣∣[U(∞|x)]−1zγ(x)L(z|x)− [U(∞|x′)]−1zγ(x

′)L(z|x′)
∣∣∣

≤ 2
zγ(x)L(z|x)
U(∞|x)

∣∣∣∣∣1−
[
U(∞|x′)
U(∞|x)

]−1
zγ(x

′)L(z|x′)
zγ(x)L(z|x)

∣∣∣∣∣ (11)

for every z ≥ nx/[(1 + δ)kx]. Note now that for every z ∈ Kx,δ we have
∣∣∣∣∣log

(
zγ(x

′)L(z|x′)
zγ(x)L(z|x)

)∣∣∣∣∣ ≤ (1 + δ) lognx sup
x′∈B(x,h)

|γ(x′)− γ(x)|

+ sup
z∈Kx,δ

sup
x′∈B(x,h)

∣∣∣∣log
L(z|x′)
L(z|x)

∣∣∣∣ .
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Using Karamata’s representation of L(·|x′) (see (4)) and assuming that
for some α ∈ (0, 1]

sup
x′∈B(x,h)

|γ(x′)− γ(x)| = O(hα), (12)

sup
z∈Kx,δ

sup
x′∈B(x,h)

| log c(z|x′)− log c(z|x)| = O(hα), (13)

and sup
z∈Kx,δ

sup
x′∈B(x,h)

|∆(z|x′)−∆(z|x)| = O(hα) (14)

as n→ ∞, then using the inequality

∀t ∈ R, |et − 1| ≤ |t|e|t| (15)

it is readily seen that if hα lognx → 0 as n→ ∞, we have

sup
z∈Kx,δ

sup
x′∈B(x,h)

∣∣∣∣∣
zγ(x

′)L(z|x′)
zγ(x)L(z|x) − 1

∣∣∣∣∣ = O(hα lognx). (16)

Note that conditions (12), (13) and (14) are exactly (5), (6) and (7).
Equations (10), (11), (16) and inequality (15) now entail

sup
z∈Kx,δ

sup
x′∈B(x,h)

∣∣∣∣∣
1− [U(∞|x′)]−1zγ(x

′)L(z|x′)
1− [U(∞|x)]−1zγ(x)L(z|x) − 1

∣∣∣∣∣

= O

(
(hα lognx ∨ hβ) sup

z∈Kx,δ

zγ(x)L(z|x)
)
.

Potter bounds for the regularly varying function z 7→ zγ(x)L(z|x) (see
Theorem 1.5.6 in [4]) yield

lim sup
n→∞

sup
z∈Kx,δ

zγ(x)L(z|x)
(nx/kx)γ(x)L(nx/kx|x)

<∞

so that

sup
z∈Kx,δ

sup
x′∈B(x,h)

∣∣∣∣∣
1− [U(∞|x′)]−1zγ(x

′)L(z|x′)
1− [U(∞|x)]−1zγ(x)L(z|x) − 1

∣∣∣∣∣

= O

(
(hα lognx ∨ hβ) L(nx/kx|x)

(nx/kx)−γ(x)

)
. (17)

Finally, use together (9), (10) and (17) to get

Ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
= O

(
hβ ∨

[
(hα lognx)

L(nx/kx|x)
(nx/kx)−γ(x)

])
. (18)

Equation (18) makes it clear that in this case, condition (8) shall be sat-
isfied provided it holds that hα lognx → 0 (which was already required in
the Fréchet MDA) and

(nx/kx)
−γ(x)

L(nx/kx|x)
hβ → 0 as n→ ∞.
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We can conclude that compared to the case of the Fréchet MDA, there is
an additional condition for the pointwise consistency of our estimator to
hold in the Weibull MDA. This condition compares the oscillation of the
conditional right endpoint to the proportion of order statistics used in the
expression of the estimator.

We end this paragraph by noting that Theorem 1 is only a pointwise result. In
the case when E = R

d andX has a probability density function f whose support
S has a nonempty interior, it may be possible to obtain a uniform consistency
result on every compact subset Ω of the interior of S, using for instance a method
introduced by Härdle and Marron [23]: since Ω is a compact subset of Rd we
may, for all n ∈ N \ {0}, find a finite subset Ωn of Ω such that

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x− χ(x)‖ ≤ n−η and ∃c > 0, |Ωn| = O(nc)

as n → ∞, where |Ωn| stands for the cardinality of Ωn and η > 0 is suitably
chosen (i.e. large enough). In other words, we may cover for every n the set Ω
by a finite number of balls having a common radius which converges to 0 at a
polynomial rate; we may also require that the set Ωn of the centers of these balls
is such that the cardinality of Ωn grows at a polynomial rate. If γ is continuous
on S, it is then enough to prove that for every δ > 0,

|Ωn| sup
ω∈Ωn

P(|γ̂n(ω, kω , h)− γ(ω)| > δ) → 0 (19)

and P

(
sup
x∈Ω

∣∣γ̂n(x, kx, h)− γ̂n(χ(x), kχ(x), h)
∣∣ > δ

)
→ 0 (20)

as n→ ∞. Showing (19) involves finding a uniform bound for the probabilities

P(|γ̂n(ω, kω, h)− γ(ω)| > δ), ω ∈ Ωn

while the proof of (20) relies on a careful study of the oscillation of the random
function x 7→ γ̂n(x, kx, h). This is of course a challenging task, which shall be
part of future research on this estimator.

3.2. Asymptotic normality

To prove a pointwise asymptotic normality result for our estimator, we need to
introduce a second-order condition on the function U(·|x):

(M2) Condition (M1) holds and for every x ∈ E, there exist a real number
ρ(x) ≤ 0 and a function A(·|x) of constant sign converging to 0 at infinity such
that the function U(·|x) satisfies

∀z > 0, lim
t→∞

U(tz|x)−U(t|x)
a(t|x) − zγ(x)−1

γ(x)

A(t|x) = Hγ(x),ρ(x)(z)
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where

Hγ(x),ρ(x)(z) =

∫ z

1

rγ(x)−1

[∫ r

1

sρ(x)−1ds

]
dr.

Hypothesis (M2) is the conditional analogue of the classical second-order
condition on U , see for instance Definition 2.3.1 and Corollary 2.3.4 in [21]: the
parameter ρ(x) is the so-called second-order parameter of Y given X = x. Note
that Theorem 2.3.3 in [21] shows that the function |A(·|x)| is regularly varying
at infinity with index ρ(x). Moreover, as shown in Lemma B.3.16 therein, if
(M2) holds with γ(x) 6= ρ(x) and ρ(x) < 0 if γ(x) > 0, then defining q(·|x) =
a(·|x)/U(·|x), a second-order condition also holds for the function logU(·|x),
namely:

∀z > 0, lim
t→∞

logU(tz|x)−logU(t|x)
q(t|x) − zγ−(x)−1

γ−(x)

Q(t|x) = Hγ−(x),ρ′(x)(z) (21)

with

ρ′(x) =





ρ(x) if γ(x) < ρ(x) ≤ 0

γ(x) if ρ(x) < γ(x) ≤ 0

−γ(x) if 0 < γ(x) < −ρ(x) and ℓ(x) 6= 0

ρ(x) if (0 < γ(x) < −ρ(x) and ℓ(x) = 0) or 0 < −ρ(x) ≤ γ(x)

where we have defined

ℓ(x) = lim
t→∞

(
U(t|x)− a(t|x)

γ(x)

)

and Q(·|x) has ultimately constant sign, converges to 0 at infinity and is such
that |Q(·|x)| is regularly varying at infinity with index ρ′(x); note that Lem-
ma B.3.16 in [21] entails that one can choose

Q(t|x) =





A(t|x) if γ(x) < ρ(x) ≤ 0

γ+(x) −
a(t|x)
U(t|x)

if ρ(x) < γ(x) ≤ 0
or 0 < γ(x) < −ρ(x) and ℓ(x) 6= 0
or 0 < γ(x) = −ρ(x)

ρ(x)

γ(x) + ρ(x)
A(t|x) if 0 < γ(x) < −ρ(x) and ℓ(x) = 0

or 0 < −ρ(x) < γ(x).

Besides, if γ(x) > 0 and ρ(x) = 0, then according to Lemma B.3.16 in [21], one
has

∀z > 0, lim
t→∞

logU(tz|x)−logU(t|x)
q(t|x) − log z

Q(t|x) = 0 (22)

for every Q(·|x) such that A(t|x) = O(Q(t|x)) as t→ ∞; especially, we can and
will take Q(·|x) = A(·|x) in this case.

We can now state the asymptotic normality of our estimator.
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Theorem 2. Assume that (M2) holds. Pick x ∈ E. We assume that nx → ∞,

kx → ∞, kx/nx → 0,
√
kxQ(nx/kx|x) → λ(x) ∈ R and for some δ > 0

√
kx
U(nx/kx|x)
a(nx/kx|x)

ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞. (23)

Then if γ(x) 6= ρ(x), it holds that
√
kx(γ̂n(x, kx, h) − γ(x)) is asymptotically

Gaussian with mean λ(x)B(γ(x), ρ(x)) and variance V (γ(x)) where we have set

B(γ(x), ρ(x)) =





(1− γ(x))(1− 2γ(x))

(1− γ(x)− ρ(x))(1− 2γ(x)− ρ(x))
if γ(x)<ρ(x)≤ 0

γ(x)(1+ γ(x))

(1− γ(x))(1− 3γ(x))
if ρ(x)<γ(x)≤ 0

− γ(x)

(1+ γ(x))2
if 0<γ(x)<−ρ(x)
and ℓ(x) 6=0

γ(x)− γ(x)ρ(x)+ ρ(x)

ρ(x)(1− ρ(x))2

if (0<γ(x)<−ρ(x)
and ℓ(x)= 0)
or 0<−ρ(x)≤ γ(x)

1 if 0=ρ(x)<γ(x)

and

V (γ(x)) =





γ2(x) + 1 if γ(x) ≥ 0

(1 − γ(x))2(1− 2γ(x))(1 − γ(x) + 6γ2(x))

(1− 3γ(x))(1 − 4γ(x))
if γ(x) < 0.

Theorem 2 is the conditional analogue of the asymptotic normality result
stated in [11]; see also Theorem 3.5.4 in [21]. In particular, the asymptotic
bias and variance of our estimator are similar to those obtained in the uni-
variate setting. Note that in this result, contrary to the asymptotic normality
result of [18], we do not condition on the value of Nn(x, h). Besides, condition√
kxQ(nx/kx|x) → λ(x) ∈ R as n→ ∞ in Theorem 2 is a standard condition

needed to control the bias of the estimator. Finally, hypothesis (23) can be re-
placed by a hypothesis on the uniform relative oscillation of the function logU
in its second argument, see Proposition 1, which in turn can be made explicit if
suitable regularity conditions are satisfied, see Section 3.1.

To illustrate this last remark, we use Theorem 2 to obtain optimal rates
of convergence for our estimator. For the sake of simplicity, we assume that
E = R

d, d ≥ 1 is equipped with the standard Euclidean distance and that X
has a probability density function f on R

d which is continuous on its support S,
assumed to have nonempty interior. If x is a point lying in the interior of S
which is such that f(x) > 0, it is straightforward to show that

nx = n

∫

B(x,h)

f(u)du = nhdVf(x)(1 + o(1)) as n→ ∞
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with V being the volume of the unit ball in R
d. Letting

k =
kx

hdVf(x)

it becomes clear that kx = khdVf(x) and that hypotheses nx → ∞, kx → ∞
and kx/nx → 0 as n→ ∞ are equivalent to khd → ∞ and k/n→ 0 as n→ ∞. If
k and h have respective order na and n−b, with a, b > 0, the rate of convergence
of the estimator γ̂n(x, kx, h) to γ(x) is then n

(a−bd)/2. Under the hypotheses of
Theorem 2, provided that (A1) and (A2) hold, one can find the optimal values
for a and b in the case γ(x) 6= 0:

• If γ(x) > 0, then under the Hölder conditions (5), (6) and (7), hypothe-
sis (23) shall be satisfied if

√
khdhα log(nhd) → 0 as n→ ∞.

Recalling the bias condition
√
khdQ(n/k|x) → λ(x)/

√
Vf(x) ∈ R as n→

∞ and letting

ρ′′(x) =

{
ρ′(x) if ρ(x) < 0

0 if ρ(x) = 0

the problem is thus to maximize the quantity a− bd under the constraints
a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0

and a− bd+ 2(1− a)ρ′′(x) ≤ 0.

The solution of this problem is

a∗ =
−(d+ 2α)ρ′′(x)

α− (d+ 2α)ρ′′(x)
and b∗ =

−ρ′′(x)
α− (d+ 2α)ρ′′(x)

for which

a∗ − b∗d =
−2αρ′′(x)

α− (d+ 2α)ρ′′(x)
.

The optimal convergence rate for our estimator in this case is therefore

n(a∗−b∗d)/2 = n−αρ′′(x)/(α−(d+2α)ρ′′(x)).

• If γ(x) < 0, then under the Hölder conditions (10), (12), (13) and (14),
hypothesis (23) shall be satisfied if

√
khdhα log(nhd) → 0 and

√
khd

(n/k)−γ(x)

L(n/k|x) h
β → 0 as n→ ∞.

Recalling the bias condition
√
khdQ(n/k|x) → λ(x)/

√
Vf(x) ∈ R as n→

∞, the problem thus consists in maximizing the quantity a− bd under the
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constraints a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0,

a− bd+ 2(1− a)ρ′(x) ≤ 0

and a− 2(1− a)γ(x)− b(d+ 2β) ≤ 0.

To make things easier, we shall assume that the conditional right endpoint
U(∞|·) is not more regular than γ, or in other words, that β ≤ α. In this
case, since γ(x) < 0, the constraints reduce to a ∈ (0, 1), a− bd ≥ 0,

a− bd+ 2(1− a)ρ′(x) ≤ 0

and a− 2(1− a)γ(x)− b(d+ 2β) ≤ 0.

The solution of this problem is

a∗ =
−(d+ 2β)ρ′(x)− dγ(x)

β − (d+ 2β)ρ′(x) − dγ(x)
and b∗ =

−ρ′(x)− γ(x)

β − (d+ 2β)ρ′(x) − dγ(x)

for which

a∗ − b∗d =
−2βρ′(x)

β − (d+ 2β)ρ′(x)− dγ(x)
.

The optimal convergence rate for our estimator in this case is then

n(a∗−b∗d)/2 = n−βρ′(x)/(β−(d+2β)ρ′(x)−dγ(x)).

4. Simulation study

To have an idea of how our estimator behaves on a finite sample situation, we
carried out a simulation study in the case E = [0, 1] ⊂ R equipped with the
standard Euclidean distance with a covariate X which is uniformly distributed
on E. Furthermore, we let γ : E → R be the positive function defined by

∀x ∈ [0, 1], γ(x) =
2

3
+

1

3
sin(2πx).

We consider three different models for the csf of Y given X = x: the first one is

∀y > 0, F 1(y|x) =
(
1 + y−τ

)1/τγ(x)
,

where the parameter τ is chosen to be independent of x and its value is picked
in the set {−1.2,−1,−0.8}. In other words, Y given X = x is Burr type XII
distributed; note that in this case the csf F 1(·|x) belongs to the Fréchet MDA
for every x ∈ E, the conditional extreme-value index is γ(x) and the conditional
second-order parameter is ρ(x) = τγ(x) (see [3], p. 93). The second model is

∀y ∈ [0, g(x)], F 2(y|x) =
Γ(2/γ(x))

Γ2(1/γ(x))

∫ 1

y/g(x)

t1/γ(x)−1(1− t)1/γ(x)−1dt
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where Γ : (0,∞) → R is Euler’s Gamma function, defined by

∀α > 0, Γ(α) =

∫ ∞

0

e−ttα−1dt

and the frontier function g is defined by

∀x ∈ [0, 1], g(x) = 1− c+ 8cx(1− x)

with the constant c > 0 being picked in the set {0.1, 0.2, 0.3}. In this case,
givenX = x, Y/g(x) is a Beta(1/γ(x), 1/γ(x)) random variable: this conditional
model is contained in the Weibull MDA with the conditional extreme-value index
being −γ(x). The final model is

∀y > 0, F 3(y|x) =
∫ ∞

log y

1√
2πσ2(x)

exp

(
− (t− µ(x))2

2σ2(x)

)
dt

where µ and σ are the functions defined by

∀x ∈ [0, 1], µ(x) =
2

3
+

1

3
sin(2πx) and σ(x) = 0.7 + 2.4x(1− x).

In this model, Y given X = x has a log-normal distribution with parameters
µ(x) and σ2(x), which is an example of a conditional distribution belonging to
the Gumbel MDA.

The aim of this simulation study is to estimate the conditional extreme-
value index on a grid of points {x1, . . . , xM} of [0, 1]. We need to choose two
parameters: the bandwidth h and the number of upper order statistics kx. We
use a selection procedure that was introduced in [18], which we recall for the
sake of completeness.

1) For every bandwidth h in a grid {h1, . . . , hP } of possible values of h, we
first make a preliminary choice of kx. Let γ̂i,j(k) = γ̂n(xi, k, hj) and ⌊·⌋
denote the floor function: for each i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and
k ∈ {qi,j + 1, . . . , Nn(xi, hj) − qi,j}, where qi,j = ⌊Nn(xi, hj)/10⌋ ∨ 1, we
introduce the set Ei,j,k = {γ̂i,j(ℓ), ℓ ∈ {k−qi,j, . . . , k+qi,j}}. We compute
the variance of the set Ei,j,k for every possible value of k and we record
the number Ki,j for which this variance is minimal. More precisely,

Ki,j = argmin
k

1

2qi,j + 1

k+qi,j∑

ℓ=k−qi,j

(
γ̂i,j(ℓ)− γ̂i,j(k)

)2

with γ̂i,j(k) =
1

2qi,j + 1

k+qi,j∑

ℓ=k−qi,j

γ̂i,j(ℓ).

We record the value ki,j such that γ̂i,j(ki,j) is the median of the set
Ei,j,Ki,j

. For the sake of simplicity, the estimate γ̂i,j(ki,j) will be denoted
by γ̃i,j .

2) We now select the bandwidth h: let q′ be a positive integer such that
2q′ + 1 < P . For each i ∈ {1, . . . ,M} and j ∈ {q′ + 1, . . . , P − q′}, let
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Fi,j = {γ̃i,ℓ, ℓ ∈ {j − q′, . . . , j + q′}} and compute the standard deviation
σi(j) of Fi,j :

σ2
i (j) =

1

2q′ + 1

j+q′∑

ℓ=j−q′

(γ̃i,ℓ − γ̃i,j)
2 with γ̃i,j =

1

2q′ + 1

j+q′∑

ℓ=j−q′

γ̃i,ℓ.

Our stability criterion is then the average of these quantities over the grid
{x1, . . . , xM}:

σ(j) =
1

M

M∑

i=1

σi(j).

We next record the integer j∗ such that σ(j∗) is the first local minimum
of the application j 7→ σ(j) which is less than the average value of σ. In
other words, j∗ = q′ + 1 if σ is increasing, j∗ = P − q′ if σ is decreasing
and

j∗ = min

{
j such that σ(j) ≤ σ(j − 1) ∧ σ(j + 1)

and σ(j) ≤ 1

P − 2q′

P−q′∑

ℓ=q′+1

σ(ℓ)

}
(24)

otherwise, where we extend σ by setting σ(q′) = σ(q′ +1) and σ(P − q′ +
1) = σ(P − q′).

The selected bandwidth is then independent of x and is given by h∗ = hj∗
where j∗ is defined in (24). The selected number of upper order statistics is
given, for x = xi, by k∗xi

= ki,j∗ . The main idea of this procedure is that
the bandwidth and the number of upper order statistics are selected in order to
satisfy a stability criterion. This estimation procedure is carried out on N = 100
independent samples of size n = 500. The conditional extreme-value index is
estimated on a grid of M = 50 evenly spaced points in [0, 1]. Regarding the
selection procedure, P = 25 values of h ranging from 0.05 to 0.3 are tested; the
parameter q′ is set to 1.

To have an idea of our estimator behaves compared to another estimator
in the conditional extreme-value index estimation literature, we introduce the
estimator γ̃D = γ̂RP,1

n of [8]. Let K be the triweight kernel:

K(t) =
35

32
(1 − t2)31[−1,1](t).

Let F̂ (·, h|x) be the empirical kernel estimator of the csf:

F̂ (y, h|x) =

1

nhd

n∑

i=1

K

(
x−Xi

h

) 1{Yi>y}

1

nhd

n∑

i=1

K

(
x−Xi

h

)
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Table 1

MSEs associated to the estimators in all cases

Situation Moment estimator γ̂ Estimator γ̃D of Daouia et al.
Model 1
τ = −0.8 0.1496 0.1962
τ = −1 0.0781 0.1616
τ = −1.2 0.0553 0.1586
Model 2
c = 0.1 0.0686 0.1329
c = 0.2 0.0689 0.1257
c = 0.3 0.0825 0.1313
Model 3 0.3384 0.2801

and let q̂n(·, h|x) be the generalized inverse of F̂ (·, h|x): for α ∈ (0, 1),

q̂n(α, h|x) = inf
{
y ∈ R, F̂ (y, h|x) ≤ α

}
.

The quantity q̂n(·, h|x) is the empirical estimator of the conditional quantile
function. The estimator γ̃D is then

γ̃D(x, αn,x, h) =
1

− log 3
log

(
q̂n(αn,x, h|x)− q̂n(αn,x/3, h|x)
q̂n(αn,x/3, h|x)− q̂n(αn,x/9, h|x)

)

where αn,x → 0 as n → ∞ is a nonrandom sequence. This estimator is exactly
the estimator γ̂RP,1

n of [8] with J = 3 and r = 1/J ; it is a kernel version of the
Pickands estimator, see Pickands [25]. To choose the parameters αn,x and h for
γ̃D, we restrict our search to a parameter αn,x having the form kx/Nn(xi, hj),
so that we are led to a choice of kx and h just as for our estimator, and we use
the procedure detailed above.

We give in Table 1 the empirical mean squared errors (MSEs) of each estima-
tor, averaged over the M points of the grid. Table 1 shows that our estimator
outperforms the estimator γ̃D in terms of MSEs in every case except the Gumbel
one. Besides, one can see that in the Fréchet MDA, the MSEs of both estimators
increase as |ρ(x)| gets closer to 0, which was expected since ρ(x) controls the rate
of convergence in (M2): the closer |ρ(x)| is to 0, the slower is this convergence
and the harder is the estimation. Some illustrations are given in Figures 1–3,
where the estimations corresponding to the median of the MSE are represented
in each case for both estimators. One can see on these pictures that our estima-
tor generally oscillates less than γ̃D; in the case when the conditional survival
function belongs to the Fréchet or Weibull MDA, it also does a better job of
mimicking the shape of the conditional extreme-value index.

5. Real data example

In this section, we introduce a real fire insurance data set, provided by the rein-
surance broker Aon Re Belgium. The data set consists of n = 1823 observations
(Si, Ci) where Ci is the claim size related to the i−th fire accident and Si is the
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Fig 1. Model 1, case τ = −1: the true function γ (solid line), its estimators γ̂ (dashed line)
and γ̃D (dashed-dotted line), each corresponding to the median of the MSE.
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Fig 2. Model 2, case c = 0.3: the true function γ (solid line) and its estimators γ̂ (dashed
line) and γ̃D (dashed-dotted line), each corresponding to the median of the MSE.
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Fig 3. Model 3: the true function γ (solid line) and its estimators γ̂ (dashed line) and γ̃D

(dashed-dotted line), each corresponding to the median of the MSE.

associated total sum insured. It was, among others, considered by Beirlant and
Goegebeur [2] and Beirlant et al. [1]; see also [3]. Our variable of interest is the
ratio claim size/sum insured: in other words, we focus on the random variables
Yi = Ci/Si. The covariate we consider is the total sum insured, which we can
also consider as random; specifically, we let Xi = logSi. A scatterplot of the
data is given in Figure 4.

In Section 7.6 of [3], the authors show that the distribution of the Yi given
logSi can be approximated rather well by a General Pareto (GP) distribution.
Our goal is then to provide an estimate of the conditional extreme-value index of
the Yi using our estimator. To this end, we use the selection procedure detailed
in Section 4: the bandwidth h is selected among h1 ≤ · · · ≤ h25 where the hi
are evenly spaced and

h1 = 0.05(Xn,n −X1,n) and h25 = 0.3(Xn,n −X1,n)

with X1,n ≤ . . . ≤ Xn,n being the order statistics deduced from the Xi. This
leads us to choose h∗ ≈ 1.35; a boxplot of the proportions k∗xi

/Nn(xi, h
∗) of

order statistics used to compute the estimator is given in Figure 5. This allows
us to give an estimate of the conditional extreme-value index, see Figure 6.

The first conclusion we draw from this study is that γ(x) > 0 for all x.
This is somewhat surprising since one could expect the random variables Yi to
be bounded from above by 1. However, the GP fits discussed in [3] and the
estimations carried out in [2] and [1] also lead to the same conclusion. One
can think that in this case, modelling the distribution of the Yi given logSi
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Fig 4. Scatterplot of the Aon Re insurance data: x−axis: logarithm of the sum insured, y−axis:
ratio claim/sum insured.
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Fig 5. Aon Re insurance data: boxplot of the proportions of order statistics used.
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Fig 6. Aon Re insurance data: x−axis: logarithm of the sum insured, full line: estimate γ̂n.

by a distribution belonging to the Fréchet domain of attraction is accurate in
the “intermediate–upper” tail, namely, not too far into the upper tail of the
distribution; an element backing this intuition is the exponential quantile plot
given in Figure 7.17 of [3].

A second information is given by the shape of the estimated conditional
extreme-value index. One can see that the estimator returns values that are
greater than 1.1 for every considered value of the covariate. The study in [2],
which considered the random variables Ci as variables of interest and splitted
the random sample into three subgroups according to the type of buildings
insured (which is an additional covariate information that we do not consider in
this paper), provides estimations ranging from 1.027 to 1.413, while [1], which
did not consider any covariate information at all, gives the estimate γ̂ = 1. Our
estimate can therefore be considered as a somewhat conservative one, especially
when logSi ≥ 19.5. Note that in this particular range, there are only very
few (if any) high values of Yi in the sample, which may be the cause for this
phenomenon.

All in all, we can conclude that this study confirms previous findings about
this data set, although the proposed estimator may at times give fairly con-
servative results. A possible direction for future research on this estimator is
therefore to correct this behavior. One should keep in mind though that the
essential advantage of the estimator studied in this paper is the fact that it
works in every domain of attraction, making it superior to most others in this
respect.
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6. Proofs of the main results

6.1. Weak consistency

We start by proving the pointwise weak consistency of our estimator at a point

x lying in E. To this end, since the M
(j)
n (x, kx, h) are defined conditionally on

the value of the total number Nn(x, h) of covariates belonging to B(x, h), which
is random, a natural idea is to condition on this value. A preliminary classical
lemma is then required to control this random variable.

Lemma 1. If nx → ∞ as n→ ∞ then for every δ > 0

√
n1−δ
x

∣∣∣∣
Nn(x, h)

nx
− 1

∣∣∣∣
P−→ 0 as n→ ∞.

From Lemma 1, we deduce that if

Ix = N ∩
[(

1− n−1/4
x

)
nx,
(
1 + n−1/4

x

)
nx

]
,

it holds that Nn(x, h) lies in Ix with arbitrarily large probability as n→ ∞; in
other words, ∑

p∈Ix

P(Nn(x, h) = p) → 1 as n→ ∞.

Furthermore, since kx/nx → 0 as n → ∞, we may and will, in the sequel, take
n so large that kx < inf Ix.

The next step is to show that when n is large, studying the convergence

in probability of the quantities M
(j)
n (x, kx, h) is equivalent to studying the be-

havior of analogous quantities defined in terms of upper order statistics of a
sample of independent and identically distributed random variables having cdf
F (·|x). To achieve that we begin by stating a lemma which gives the conditional
distribution of the random variables Zi.

Lemma 2. Given Nn(x, h) = p ≥ 1, the random variables Zi, 1 ≤ i ≤ p, are
independent and identically distributed random variables having cdf Fh(·|x).

Letting Ti, i ≥ 1 be independent standard Pareto random variables, i.e.
having cdf t 7→ 1−1/t on (1,∞), we deduce from this result that the distribution
of the random vector (Z1, . . . , Zp) given Nn(x, h) = p ≥ 1 is the distribution
of the random vector (Uh(T1|x), . . . , Uh(Tp|x)). In other words, since Uh(·|x) is
nondecreasing, we may focus on the behavior in probability of the quantities

M
(j)
np (x, kx, h) =

1

kx

kx∑

i=1

[logUh(Tp−i+1,p|x) − logUh(Tp−kx,p|x)]j

for p > kx and j = 1, 2. Lemma 3 below is the desired approximation of the

statistics M
(j)
np (x, kx, h).
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Lemma 3. Given Nn(x, h) = p ≥ 1, one has if p > kx that

∣∣∣M(1)
np (x, kx, h)−M(1)

np (x, kx, h)
∣∣∣ ≤ 2ω(Tp−kx,p, Tp,p, x, h)

and
∣∣∣M(2)

np (x, kx, h)−M(2)
np (x, kx, h)

∣∣∣

≤ 4ω(Tp−kx,p, Tp,p, x, h)
[
ω(Tp−kx,p, Tp,p, x, h) +M(1)

np (x, kx, h)
]

where for j = 1, 2, we let

M(j)
np (x, kx, h) =

1

kx

kx∑

i=1

[logU(Tp−i+1,p|x) − logU(Tp−kx,p|x)]j .

The final lemmas are technical results. The first one is a simple result we
shall repeatedly make use of.

Lemma 4. Let (Rij), (R
′
ij), 1 ≤ j ≤ i be triangular arrays of random vari-

ables. Assume that there exist ℓ, ℓ′ ∈ R and a sequence of non-empty sets (In)
contained in {1, . . . , n} such that for every t > 0

sup
p∈In

P(|Rnp − ℓ| > t) → 0 and sup
p∈In

P(|R′
np − ℓ′| > t) → 0 as n→ ∞.

Then for every Borel measurable function h : R2 → R which is continuous at

(ℓ, ℓ′), one has for every t > 0

sup
p∈In

P(|h(Rnp, R
′
np)− h(ℓ, ℓ′)| > t) → 0 as n→ ∞.

The following result is the main technical tool we shall use to prove our
asymptotic results. It is basically a conditional analogue of the additive version
of Slutsky’s lemma.

Lemma 5. Let r be a positive integer, (Sn) = (S
(1)
n , . . . , S

(r)
n ) be a sequence of

random vectors and S = (S(1), . . . , S(r)) be a random vector. Assume that there

exist

1. a triangular array of events (Aij)0≤j≤i and a sequence of non-empty sets

(In) contained in {1, . . . , n} such that

• for every n the Anp, 0 ≤ p ≤ n have positive probability, are pairwise

disjoint and
n∑

p=0

P(Anp) = 1;

• it holds that ∑

p∈In

P(Anp) → 1 as n→ ∞;
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2. two triangular arrays of random vectors

(Dij = (D
(1)
ij , . . . , D

(r)
ij ))1≤j≤i and (Rij = (R

(1)
ij , . . . , R

(r)
ij ))1≤j≤i

such that

• for 1 ≤ p ≤ n, the distribution of Sn given Anp is the distribution of

Dnp +Rnp;

• it holds that for every t = (t1, . . . , tr) ∈ R
r

sup
p∈In

∣∣∣E[exp[it′Dnp]]− E[exp[it′S]]
∣∣∣→ 0 as n→ ∞

where t′ is the transpose vector of t;

• it holds that for every t > 0 and every j ∈ {1, . . . , r}

sup
p∈In

P(|R(j)
np | > t) → 0 as n→ ∞.

Then Sn
d−→ S as n → ∞. In particular, if Dij = 0 for every 1 ≤ j ≤ i, then

Sn
P−→ 0 as n→ ∞.

The next lemma, which specifies the asymptotic behavior in probability of
the order statistic Tp−kx,p uniformly in p ∈ Ix, shall be used several times.

Lemma 6. Assume that nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞. Then

for every t > 0 it holds that

sup
p∈Ix

P

(∣∣∣∣
kx
p
Tp−kx,p − 1

∣∣∣∣ > t

)
→ 0 as n→ ∞.

Especially, for every t > 0

sup
p∈Ix

P (Tp−kx,p ≤ t) → 0 as n→ ∞

and for every function ϕ which is regularly varying at infinity, we have both

sup
p∈Ix

P

(∣∣∣∣
ϕ(Tp−kx,p)

ϕ(p/kx)
− 1

∣∣∣∣ > t

)
→ 0 and sup

p∈Ix

P

(∣∣∣∣
ϕ(Tp−kx,p)

ϕ(nx/kx)
− 1

∣∣∣∣ > t

)
→ 0

as n→ ∞.

Lemma 7 below is a useful corollary of Rényi’s representation (see e.g. [21],
p. 37).

Lemma 7. For every Borel measurable functions f and g, every p ≥ 2 and

k ∈ {1, . . . , p− 1}, the random vectors

(
1

k

k∑

i=1

f

(
log

Tp−i+1,p

Tp−k,p

)
,
1

k

k∑

i=1

g

(
log

Tp−i+1,p

Tp−k,p

))
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and (
1

k

k∑

i=1

f(logTi),
1

k

k∑

i=1

g(logTi)

)

have the same distribution.

The final lemma shows that the asymptotic behavior of the random variables

M(j)
np (x, kx, h) is in some way uniform in p ∈ Ix. Before stating this result, we

note that applying Theorem B.2.18 in [21], condition (M1) entails that there
exists a positive function q0(·|x) which is equivalent to a(·|x)/U(·|x) at infinity
such that the following property holds: for each ε > 0, there exists t0 ≥ 1 such
that for every t ≥ t0 and z > 0 with tz ≥ t0,

∣∣∣∣
logU(tz|x)− logU(t|x)

q0(t|x)
− zγ−(x) − 1

γ−(x)

∣∣∣∣ ≤ εzγ−(x)(z−ε ∨ zε). (25)

Lemma 8. Assume that (M1) holds, and nx → ∞, kx → ∞ and kx/nx → 0 as

n→ ∞. Then for every t > 0 the convergences

sup
p∈Ix

P

(∣∣∣∣∣
M(1)

np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣ > t

)
→ 0,

and sup
p∈Ix

P

(∣∣∣∣∣
M(2)

np (x, kx, h)

q20(p/kx|x)
− 2

(1 − γ−(x))(1 − 2γ−(x))

∣∣∣∣∣ > t

)
→ 0

hold as n→ ∞.

We are now in position to examine the convergence in probability of the

statistics M
(j)
n (x, kx, h), of which the consistency of our estimator is a simple

corollary.

Proposition 2. Assume that (M1) holds, that nx → ∞, kx → ∞, kx/nx → 0
and for some δ > 0

U(nx/kx|x)
a(nx/kx|x)

ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞.

Then it holds that

U(Nn(x, h)/kx|x)
a(Nn(x, h)/kx|x)

M (1)
n (x, kx, h)

P−→ 1

1− γ−(x)

and

[
U(Nn(x, h)/kx|x)
a(Nn(x, h)/kx|x)

]2
M (2)

n (x, kx, h)
P−→ 2

(1− γ−(x))(1 − 2γ−(x))

as n→ ∞.

This result is the analogue of Lemma 3.5.1 in [21] when there is a covariate: of
course, a major difference here is that the total number of observations Nn(x, h)
is random.
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Proof of Proposition 2. We start the proof by remarking that with the notation
of (25), applying Lemma 1 yields

U(Nn(x, h)/kx|x)
a(Nn(x, h)/kx|x)

q0(Nn(x, h)/kx|x) P−→ 1 as n→ ∞. (26)

Pick then an arbitrary t > 0 and introduce the two events

A(1)
n =

{∣∣∣∣∣
M

(1)
n (x, kx, h)

q0(Nn(x, h)/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣ > t

}

and A(2)
n =

{∣∣∣∣∣
M

(2)
n (x, kx, h)

q20(Nn(x, h)/kx|x)
− 2

(1− γ−(x))(1 − 2γ−(x))

∣∣∣∣∣ > t

}
.

From (26), it is enough to prove that P(A
(1)
n ) → 0 and P(A

(2)
n ) → 0 as n→ ∞.

We start by controlling P(A
(1)
n ). Note that according to Lemma 2, one has

P(A(1)
n |Nn(x, h) = p) = P

(∣∣∣∣∣
M

(1)
np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣ > t

)
.

Moreover, Lemma 3 entails
∣∣∣∣∣
M

(1)
np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
M(1)

np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣

+
2ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)
.

Introducing for an arbitrary t′ > 0

u(1,1)np = P

(∣∣∣∣∣
M(1)

np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣ > t′

)

and u(1,2)np = P

(
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)
> t′

)
,

Lemmas 4 and 5 with Anp = {Nn(x, h) = p} make it enough to prove that

u
(1,j)
np → 0 as n→ ∞ uniformly in the integers p ∈ Ix for every j ∈ {1, 2}.
To control u

(1,1)
np we apply Lemma 8 to obtain the convergence

sup
p∈Ix

u(1,1)np → 0 as n→ ∞. (27)

To control u
(1,2)
np we recall that the function q0(·|x) is regularly varying at infinity

with index γ−(x) so that we can apply a uniform convergence result (see e.g.

Theorem 1.5.2 in [4]) to get

sup
p∈Ix

∣∣∣∣
q0(nx/kx|x)
q0(p/kx|x)

− 1

∣∣∣∣→ 0 as n→ ∞.
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Especially, for n large enough, recalling that q0(·|x) and a(·|x)/U(·|x) are equiv-
alent at infinity, we have

sup
p∈Ix

1

q0(p/kx|x)
≤ 2

U(nx/kx|x)
a(nx/kx|x)

. (28)

This inequality gives for n sufficiently large

sup
p∈Ix

u(1,2)np ≤ sup
p∈Ix

P

(
U(nx/kx|x)
a(nx/kx|x)

ω(Tp−kx,p, Tp,p, x, h) >
t′

2

)
.

Using condition (1), we get for n large enough

sup
p∈Ix

u(1,2)np ≤ sup
p∈Ix

P

({
Tp−kx,p <

nx

(1 + δ)kx

}
∪
{
Tp,p > n1+δ

x

})
.

Because the random variables Ti are independent standard Pareto random vari-
ables, one has for n sufficiently large

sup
p∈Ix

u(1,2)np ≤ sup
p∈Ix

P

(
Tp−kx,p <

nx

(1 + δ)kx

)
+ sup

p∈Ix

[
1−

(
1− n−1−δ

x

)p]

≤ sup
p∈Ix

P

(
Tp−kx,p <

nx

(1 + δ)kx

)
+
[
1−

(
1− n−1−δ

x

)3nx/2
]
(29)

and the right-hand side in the last inequality converges to 0 as n → ∞, by

Lemma 6. Collecting (27) and (29) shows that P(A
(1)
n ) → 0 as n→ ∞.

Let us now consider P(A
(2)
n ). Applying Lemma 2, one has

P(A(2)
n |Nn(x, h) = p) = P

(∣∣∣∣∣
M

(2)
np (x, kx, h)

q20(p/kx|x)
− 2

(1− γ−(x))(1 − 2γ−(x))

∣∣∣∣∣ > t

)
.

Lemma 3 yields
∣∣∣∣∣
M

(2)
np (x, kx, h)

q20(p/kx|x)
− 2

(1 − γ−(x))(1 − 2γ−(x))

∣∣∣∣∣

≤
∣∣∣∣∣
M(2)

np (x, kx, h)

q20(p/kx|x)
− 2

(1− γ−(x))(1 − 2γ−(x))

∣∣∣∣∣

+

[
2ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)

]2
+

4ω(Tp−kx,p, Tp,p, x, h)

q20(p/kx|x)
M(1)

np (x, kx, h).

Letting for an arbitrary t′ > 0

u(2,1)np = P

(∣∣∣∣∣
M(2)

np (x, kx, h)

q20(p/kx|x)
− 2

(1− γ−(x))(1 − 2γ−(x))

∣∣∣∣∣ > t′

)
,

u(2,2)np = P

([
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)

]2
> t′

)

and u(2,3)np = P

(
ω(Tp−kx,p, Tp,p, x, h)

q20(p/kx|x)
M(1)

np (x, kx, h) > t′
)
,
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Lemmas 4 and 5 with Anp = {Nn(x, h) = p} make it enough to prove that

u
(2,j)
np → 0 as n→ ∞ uniformly in the integers p ∈ Ix for every j ∈ {1, 2, 3}. We

start by noting that Lemma 8 leads to

sup
p∈Ix

u(2,1)np → 0 as n→ ∞ (30)

and since

u(2,2)np = P

(
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)
>

√
t′
)
,

this term is similar to u
(1,2)
np and therefore we obtain from (29) that

sup
p∈Ix

u(2,2)np → 0 as n→ ∞. (31)

Finally, the obvious inequality

ω(Tp−kx,p, Tp,p, x, h)

q20(p/kx|x)
M(1)

np (x, kx, h)

≤
[
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)

] ∣∣∣∣∣
M(1)

np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣

+

[
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)

]
1

1− γ−(x)

together with (27), (29) and Lemma 4 entails

sup
p∈Ix

u(2,3)np → 0 as n→ ∞. (32)

Collecting (30), (31) and (32) shows that P(A
(2)
n ) → 0 as n → ∞ which com-

pletes the proof.

Proof of Theorem 1. Using Lemma 1.2.9 in [21] yields a(t|x)/U(t|x) → γ+(x)
as t→ ∞. Applying Proposition 2, we get

γ̂n,+(x, kx, h)
P−→ γ+(x) and γ̂n,−(x, kx, h)

P−→ γ−(x) as n→ ∞.

The result then follows from summing these two convergences.

We conclude this section by proving Proposition 1. To this end, we state
a couple of preliminary results. The first one of them links the behavior of a
function having the form 1/F , where F is a csf on R, to that of its left-continuous
inverse.

Lemma 9. Let F be a csf on R and U be the left-continuous inverse of 1/F .

1. If U is a continuous function on (1,∞) then

∀y ∈ R, F (y) ∈ (0, 1) ⇒ ∀δ > 0, F (y + δ) < F (y).
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2. If U is an increasing function on (1,∞) then the function F is continuous

on R and

∀z > 1,
1

F (U(z))
= z.

The second lemma examines the properties of the csf Fh(·|x).
Lemma 10. Assume that (E) and (A1) hold. Assume further that x ∈ E is

such that

∀x′ ∈ B(x, h), ∀r > 0, P(X ∈ B(x′, r)) > 0.

Then it holds that the function Fh(·|x) is continuous on R and

∀y ∈ R, Fh(y|x) ∈ (0, 1) ⇒ ∀δ > 0, Fh(y + δ|x) < Fh(y|x).

As a consequence

∀z > 1,
1

Fh(Uh(z|x)|x)
= z.

We may now show Proposition 1.

Proof of Proposition 1. We introduce the functions Fmin and Fmax defined by

∀y ∈ R, Fmin(y|x) = inf
x′∈B(x,h)

F (y|x′) and Fmax(y|x) = sup
x′∈B(x,h)

F (y|x′).

With this definition, we get

Fmin(y|x) ≤ Fh(y|x) =
E(F (y|X)1{X∈B(x,h)})

P(X ∈ B(x, h))
≤ Fmax(y|x). (33)

Applying Lemma 9, we obtain

Fmax

(
sup

x′∈B(x,h)

U(z|x′)
∣∣∣∣∣x
)

≤ sup
x′∈B(x,h)

F (U(z|x′)|x′) = 1

z

which, recalling (33), clearly entails

Uh(z|x) ≤ sup
x′∈B(x,h)

U(z|x′). (34)

Likewise,

Fmin

(
inf

x′∈B(x,h)
U(z|x′)

∣∣∣∣ x
)

≥ inf
x′∈B(x,h)

F (U(z|x′)|x′) = 1

z
.

Inequality (33) and Lemma 10 therefore entail

Fh(Uh(z|x)|x) =
1

z
≤ Fh

(
inf

x′∈B(x,h)
U(z|x′)

∣∣∣∣x
)
.
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Applying Lemma 10 once again leads to the inequality

inf
x′∈B(x,h)

U(z|x′) ≤ Uh(z|x). (35)

From (34) and (35) we deduce that

inf
x′∈B(x,h)

log
U(z|x′)
U(z|x) ≤ log

Uh(z|x)
U(z|x) ≤ sup

x′∈B(x,h)

log
U(z|x′)
U(z|x)

because the logarithm function is increasing. This yields
∣∣∣∣log

Uh(z|x)
U(z|x)

∣∣∣∣ =

[
log

Uh(z|x)
U(z|x)

]
∨
[
− log

Uh(z|x)
U(z|x)

]

≤
[

sup
x′∈B(x,h)

log
U(z|x′)
U(z|x)

]
∨
[
− inf

x′∈B(x,h)
log

U(z|x′)
U(z|x)

]
. (36)

The obvious inequality

−
∣∣∣∣log

U(z|x′)
U(z|x)

∣∣∣∣ ≤ log
U(z|x′)
U(z|x) ≤

∣∣∣∣log
U(z|x′)
U(z|x)

∣∣∣∣

leads to

sup
x′∈B(x,h)

log
U(z|x′)
U(z|x) ≤ sup

x′∈B(x,h)

∣∣∣∣log
U(z|x′)
U(z|x)

∣∣∣∣ (37)

and − inf
x′∈B(x,h)

log
U(z|x′)
U(z|x) ≤ sup

x′∈B(x,h)

∣∣∣∣log
U(z|x′)
U(z|x)

∣∣∣∣ . (38)

Collecting (36), (37) and (38) concludes the proof.

6.2. Asymptotic normality

We proceed by proving the pointwise asymptotic normality of the estimator
at a point x ∈ E when condition (M2) holds. We shall use the same ideas
as in the proof of Proposition 2 to examine the asymptotic behavior of the

statistics M
(j)
n (x, kx, h): if γ(x) 6= ρ(x) and ρ(x) < 0 if γ(x) > 0, then from (21)

and Theorem 2.3.6 in [21], there exist functions q0(·|x) and Q0(·|x) which are
equivalent to q(·|x) and

1

ρ′(x)
Q(·|x)1{ρ′(x)<0} +Q(·|x)1{ρ′(x)=0} (39)

respectively at infinity such that for every ε > 0 there exists t0 ≥ 1 such that
for every t ≥ t0 and z > 0 with tz ≥ t0,
∣∣∣∣∣∣

logU(tz|x)−logU(t|x)
q0(t|x)

− zγ−(x)−1
γ−(x)

Q0(t|x)
− ψγ−(x),ρ′(x)(z)

∣∣∣∣∣∣
≤ εzγ−(x)+ρ′(x)(zε ∨ z−ε)

(40)
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where

ψγ−(x),ρ′(x)(z) =





zγ−(x)+ρ′(x) − 1

γ−(x) + ρ′(x)
if ρ′(x) < 0,

zγ−(x) log z

γ−(x)
if γ−(x) < ρ′(x) = 0,

1

2
(log x)2 if γ−(x) = ρ′(x) = 0.

If now γ(x) > 0 and ρ(x) = 0, recalling the equality q(·|x) = a(·|x)/U(·|x), we
get from Lemma B.3.16 in [21] that

q(t|x)− γ(x) = Q(t|x)(1 + o(1)) as t→ ∞. (41)

Equation (22) thus yields

∀z > 0, lim
t→∞

logU(tz|x)− logU(t|x)− γ(x) log z

Q(t|x) = log z.

We may now apply Theorem B.2.18 in [21] to obtain that for every ε > 0 there
exists t0 ≥ 1 such that for every t ≥ t0 and z > 0 with tz ≥ t0,

∣∣∣∣
logU(tz|x)− logU(t|x)− γ(x) log z

Q(t|x) − log z

∣∣∣∣ ≤ ε(zε ∨ z−ε). (42)

Using together (41), (42) and the fact that the function z 7→ (zε ∨ z−ε)−1 log z
is bounded on (0,∞), we get that for every ε > 0 there exists t0 ≥ 1 (possibly
different) such that for every t ≥ t0 and z > 0 with tz ≥ t0,

∣∣∣∣∣∣

logU(tz|x)−logU(t|x)
q(t|x) − log z

Q(t|x)

∣∣∣∣∣∣
≤ ε(zε ∨ z−ε).

The following result is the analogue of Lemma 3.5.5 in [21] when there is a
random covariate: let V(γ(x)) be the matrix

1

(1− γ−(x))2(1− 2γ−(x))




1
4

1− 3γ−(x)

4

1− 3γ−(x)

4(5− 11γ−(x))

(1− 2γ−(x))(1− 3γ−(x))(1− 4γ−(x))




and note that if γ(x) > 0 then

V(γ(x)) =
(

1 4
4 20

)
.

Lemma 11. Assume that (M2) holds, that nx → ∞, kx → ∞, kx/nx → 0,√
kxQ(nx/kx|x) → λ(x) ∈ R and for some δ > 0

√
kx
U(nx/kx|x)
a(nx/kx|x)

ω

(
nx

(1 + δ)kx
, n1+δ

x , x, h

)
→ 0 as n→ ∞.
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• If γ(x) 6= ρ(x) and ρ(x) < 0 if γ(x) > 0, it holds that the distribution of

the random vector

√
kx

(
M

(1)
np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)
,
M

(2)
np (x, kx, h)

q20(Tp−kx,p|x)
− 2

(1− γ−(x))(1− 2γ−(x))

)

is the distribution of a random vector (D
(1)
np +R

(1)
np , D

(2)
np +R

(2)
np ) where

– the triangular array (D
(1)
ij , D

(2)
ij )1≤j≤i is such that for every (t1,

t2) ∈ R
2,

sup
p∈Ix

∣∣∣E[exp[i(t1D(1)
np+t2D

(2)
np )]−E[exp[i(t1P1+t2P2)]]

∣∣∣→ 0 as n→ ∞

where (P1, P2) is a Gaussian random vector having mean (m(1)(x),
m(2)(x)) with

m(1)(x) = λ(x)

(1{ρ′(x)<0}

ρ′(x)
+ 1{ρ′(x)=0}

)
E(ψγ−(x),ρ′(x)(T )),

m(2)(x) = 2λ(x)

(1{ρ′(x)<0}

ρ′(x)
+ 1{ρ′(x)=0}

)

× E

(
T γ−(x) − 1

γ−(x)
ψγ−(x),ρ′(x)(T )

)

and covariance matrix V(γ(x));
– the triangular arrays of random variables (R

(1)
ij )1≤j≤i and (R

(2)
ij )1≤j≤i

are such that for every t > 0 and j ∈ {1, 2},

sup
p∈Ix

P(|R(j)
np | > t) → 0 as n→ ∞.

• If γ(x) > 0 and ρ(x) = 0, it holds that the distribution of the random

vector
√
kx

(
M

(1)
np (x, kx, h)

q(Tp−kx,p|x)
− 1,

M
(2)
np (x, kx, h)

q2(Tp−kx,p|x)
− 2

)

is the distribution of a random vector (D
(1)
np +R

(1)
np , D

(2)
np +R

(2)
np ) where

– the triangular array (D
(1)
ij , D

(2)
ij )1≤j≤i is such that for every (t1,

t2) ∈ R
2,

sup
p∈Ix

∣∣∣E[exp[i(t1D(1)
np+t2D

(2)
np )]−E[exp[i(t1P1+t2P2)]]

∣∣∣→ 0 as n→ ∞

where (P1, P2) is a Gaussian centered random vector having covari-

ance matrix V(γ(x));
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– the triangular arrays of random variables (R
(1)
ij )1≤j≤i and (R

(2)
ij )1≤j≤i

are such that for every t > 0 and j ∈ {1, 2},
sup
p∈Ix

P(|R(j)
np | > t) → 0 as n→ ∞.

This result paves the way for a proof of Theorem 2.

Proof of Theorem 2. According to Lemma 2, the distribution of the random
pair (γ̂n,+(x, kx, h), γ̂n,−(x, kx, h)) given Nn(x, h) = p is that of


M

(1)
np (x, kx, h), 1−

1

2


1−

[
M

(1)
np (x, kx, h)

]2

M
(2)
np (x, kx, h)




−1

 .

Arguing along the first lines of the proof of Theorem 3.5.4 in [21] and applying
Lemmas 4 and 5 with Anp = {Nn(x, h) = p} together with Lemma 11 and the
continuous mapping theorem, we then get that

( √
kx (γ̂n,+(x, kx, h)− γ+(x))√
kx (γ̂n,−(x, kx, h)− γ−(x))

)

d−→




γ+(x)P1 +
λ(x)

1− γ−(x)

(1{γ(x)>ρ(x)=0} − 1{ρ(x)<γ(x)≤0}

)

(1− 2γ−(x))(1 − γ−(x))
2

[(
1

2
− γ−(x)

)
P2 − 2P1

]




as n → ∞, where (P1, P2) is the limit vector in Lemma 11. The result thus
follows from Lemma 11 and some straightforward but lengthy computations.

7. Proofs of the auxiliary results

Proof of Lemma 1. The proof is a straightforward consequence of the fact that
Nn(x, h) is a binomial random variable with parameters n and P(X ∈ B(x, h))
and of Chebyshev’s inequality.

Proof of Lemma 2. If (z1, . . . , zp) ∈ (0, 1)p, then since the random pairs (Xi, Yi)
have the same distribution, it holds that

P

(
p⋂

i=1

{Zi ≤ zi}, Nn(x, h) = p

)
=

(
n

p

)
P

(
p⋂

i=1

{Yi ≤ zi, Xi ∈ B(x, h)}
)

×
n∏

i=p+1

P (Xi /∈ B(x, h)) .

The definition of Fh(·|x) and the independence of the random pairs (Xi, Yi),
i = 1, . . . , n entail that the above probability is

p∏

i=1

Fh(zi|x)×



(
n

p

) p∏

i=1

P (Xi ∈ B(x, h))×
n∏

i=p+1

P (Xi /∈ B(x, h))
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Since Nn(x, h) is a binomial random variable with parameters n and P(X ∈
B(x, h)), it becomes clear that given Nn(x, h) = p, the Zi, i = 1, . . . , p are
independent and identically distributed random variables having cdf Fh(·|x),
from which the result follows.

Proof of Lemma 3. We start by writing the obvious inequality

|logUh(Tp−i+1,p|x) − logU(Tp−i+1,p|x)| ≤ ω(Tp−kx,p, Tp,p, x, h) (43)

valid for every i ∈ {1, . . . , kx +1}. The first part of the result is thus a straight-
forward consequence of (43) and the triangle inequality. To prove the second
part, note that according to (43), for every i = 1, . . . , kx

∣∣∣∣∣

[
log

Uh(Tp−i+1,p|x)
Uh(Tp−kx,p|x)

]2
−
[
log

U(Tp−i+1,p|x)
U(Tp−kx,p|x)

]2∣∣∣∣∣

≤ 2ω(Tp−kx,p, Tp,p, x, h)

∣∣∣∣log
Uh(Tp−i+1,p|x)
Uh(Tp−kx,p|x)

+ log
U(Tp−i+1,p|x)
U(Tp−kx,p|x)

∣∣∣∣

≤ 4ω(Tp−kx,p, Tp,p, x, h)

[
ω(Tp−kx,p, Tp,p, x, h) + log

U(Tp−i+1,p|x)
U(Tp−kx,p|x)

]
.

The result on M
(2)
np (x, kx, h) then follows from the triangle inequality and from

summing the above inequalities for i = 1, . . . , kx.

Proof of Lemma 4. Since h is continuous at (ℓ, ℓ′), we can write

∀t > 0, ∃δ(t) > 0, |x− ℓ| ∨ |y − ℓ′| ≤ δ(t) ⇒ |h(x, y)− h(ℓ, ℓ′)| ≤ t.

In other words, one has

|h(Rnp, R
′
np)− h(ℓ, ℓ′)| > t⇒ |Rnp − ℓ| ∨ |R′

np − ℓ′| > δ(t).

This entails

sup
p∈In

P(|h(Rnp, R
′
np)− h(ℓ, ℓ′)| > t) ≤ sup

p∈In

P(|Rnp − ℓ| > δ(t))

+ sup
p∈In

P(|R′
np − ℓ′| > δ(t))

and the right-hand side converges to 0 as n→ ∞, which completes the proof.

Proof of Lemma 5. Start by writing, for every t = (t1, . . . , tr) 6= (0, . . . , 0)

E[exp(it′Sn)]− E[exp(it′S)] =
[
E[exp(it′Sn)|An0]− E[exp(it′S)]

]
P(An0)

+

n∑

p=1

[
E[exp(it′Sn)|Anp]− E[exp(it′S)]

]
P(Anp).



2332 G. Stupfler

Pick an arbitrary δ > 0: for n large enough, the triangle inequality yields
∣∣∣E[exp(it′Sn)]− E[exp(it′S)]

∣∣∣

≤ δ

2
+ sup

p∈In

∣∣∣E[exp[it′(Dnp +Rnp)]]− E[exp(it′S)]
∣∣∣. (44)

We now bound the term on the right-hand side of this inequality as

sup
p∈In

∣∣∣E[exp[it′(Dnp +Rnp)]]− E[exp(it′S)]
∣∣∣

≤ sup
p∈In

∣∣∣E[exp[it′(Dnp +Rnp)]]− E[exp[it′Dnp]]
∣∣∣

+ sup
p∈In

∣∣∣E[exp[it′Dnp]]− E[exp[it′S]]
∣∣∣. (45)

The second term of the above inequality is controlled using the hypothesis on
the array (Dij): we have for n sufficiently large

sup
p∈In

∣∣∣E[exp[it′Dnp]]− E[exp[it′S]]
∣∣∣ ≤ δ

4
. (46)

Besides, using once again the triangle inequality entails, if ||t||∞ = max1≤j≤r |tj |,
∣∣∣E[exp[it′(Dnp +Rnp)]]− E[exp(it′Dnp)]

∣∣∣

≤ E

[
| exp(it′Rnp)− 1|1

{max1≤j≤r |R
(j)
np |≤δ/8r||t||∞}

]

+ 2P

(
max
1≤j≤r

|R(j)
np | > δ/8r||t||∞

)
.

Applying the mean value theorem to the function z 7→ eiz and using the hy-
pothesis on the array (Rnp) leads to

sup
p∈In

∣∣∣E[exp[it′(Dnp +Rnp)]]− E[exp(it′Dnp)]
∣∣∣ ≤ δ

4
(47)

for n large enough. Collecting (44), (45), (46) and (47) makes it clear that
∣∣∣E[exp(it′Sn)]− E[exp(it′S)]

∣∣∣ ≤ δ

for n large enough. Using the Cramér-Wold device concludes the proof.

Proof of Lemma 6. Pick t ∈ (0, 1), p ∈ Ix and write, if t′ = log(1+t)∧(− log(1−
t)),

P

(∣∣∣∣
kx
p
Tp−kx,p − 1

∣∣∣∣ > t

)
= P

(
log(Tp−kx,p)− log

(
p

kx

)
> log(1 + t)

)

+ P

(
log(Tp−kx,p)− log

(
p

kx

)
< log(1− t)

)

≤ 2P

(∣∣∣∣log(Tp−kx,p)− log

(
p

kx

)∣∣∣∣ > t′
)
.
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It is therefore enough to prove that

unp = P

(∣∣∣∣log(Tp−kx,p)− log

(
p

kx

)∣∣∣∣ > t′
)

→ 0

uniformly in p ∈ Ix as n → ∞. To this end, since the random variables logTi,
1 ≤ i ≤ p are independent standard exponential random variables, we get
according to Rényi’s representation

log(Tp−kx,p)
d
=

p−kx∑

j=1

logTj
p− j + 1

. (48)

Besides, the inequalities

log

(
p+ 1

kx + 1

)
=

∫ p+1

kx+1

dv

v
≤

p−kx∑

j=1

1

p− j + 1
≤
∫ p

kx

dv

v
= log

(
p

kx

)

yield
∣∣∣∣∣∣
log

(
p

kx

)
−

p−kx∑

j=1

1

p− j + 1

∣∣∣∣∣∣
≤ log

(
p

kx

)
− log

(
p+ 1

kx + 1

)
= log

(
1 + k−1

x

1 + p−1

)
.

Using the classical inequality log(1 + s) ≤ s valid for every s > 0, we get for n
large enough the inequality

sup
p∈Ix

∣∣∣∣∣∣
log

(
p

kx

)
−

p−kx∑

j=1

1

p− j + 1

∣∣∣∣∣∣
≤ 1

kx
≤ t′

2
. (49)

Applying (48) and (49) then entails for n large enough

sup
p∈Ix

unp ≤ sup
p∈Ix

P



∣∣∣∣∣∣

p−kx∑

j=1

log(Tj)− 1

p− j + 1

∣∣∣∣∣∣
>
t′

2


 . (50)

Furthermore, Chebyshev’s inequality and a comparison with an integral give

sup
p∈Ix

P



∣∣∣∣∣∣

p−kx∑

j=1

log(Tj)− 1

p− j + 1

∣∣∣∣∣∣
>
t′

2


 ≤ 4

t′2
sup
p∈Ix

p−kx∑

j=1

1

(p− j + 1)2

≤ 4

t′2kx
→ 0 (51)

as n → ∞. Collecting (50) and (51) yields the first result. The second result is
then a simple consequence of the first result and of the inequality

sup
p∈Ix

P (Tp−kx,p ≤ t) ≤ sup
p∈Ix

P

(
kx
p
Tp−kx,p − 1 < −1

2

)
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valid for n large enough. The third result is obtained by noting that since ϕ is
regularly varying at infinity, writing

ϕ(Tp−kx,p)

ϕ(p/kx)
=

1

ϕ(p/kx)
ϕ

(
p

kx

{
kx
p
Tp−kx,p

})
,

then Theorem 1.5.2 in [4] shows that there exists t′ > 0 such that for n large
enough {∣∣∣∣

kx
p
Tp−kx,p − 1

∣∣∣∣ ≤ t′
}

⊂
{∣∣∣∣
ϕ(Tp−kx,p)

ϕ(p/kx)
− 1

∣∣∣∣ ≤ t

}

for every p ∈ Ix; the first result then applies to yield

sup
p∈Ix

P

(∣∣∣∣
ϕ(Tp−kx,p)

ϕ(p/kx)
− 1

∣∣∣∣ > t

)
→ 0 as n→ ∞.

Finally, since

sup
p∈Ix

∣∣∣∣
p

nx
− 1

∣∣∣∣→ 0 as n→ ∞,

applying once again Theorem 1.5.2 in [4] gives

sup
p∈Ix

∣∣∣∣
ϕ(p/kx)

ϕ(nx/kx)
− 1

∣∣∣∣→ 0 as n→ ∞.

Using Lemma 4 completes the proof.

Proof of Lemma 7. If T is a standard Pareto random variable, then log T is
a standard exponential random variable. One can thus use the Cramér-Wold
device and argue along the lines of the proof of Lemma 3.2.3 in [21].

Proof of Lemma 8. We start by proving the first statement. Pick δ, t > 0 and
ε ∈ (0, 1) such that

2ε

t(1− (γ−(x) + ε))
≤ δ

4
. (52)

With the notation of (25), letting Bnp = {Tp−kx,p ≤ t0}, Lemma 6 shows that
P(Bnp) → 0 uniformly in p ∈ Ix as n→ ∞. For every p ∈ Ix, on the complement
Bc

np of Bnp, one can apply (25) to write

logU(Tp−i+1,p|x) − logU(Tp−kx,p|x)
q0(Tp−kx,p|x)

≤ (T ⋆
i (p))

γ−(x) − 1

γ−(x)
+ ε (T ⋆

i (p))
γ−(x)+ε

(53)
and

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
− ε (T ⋆

i (p))
γ−(x)+ε ≤ logU(Tp−i+1,p|x)− logU(Tp−kx,p|x)

q0(Tp−kx,p|x)
(54)
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where T ⋆
i (p) = Tp−i+1,p/Tp−kx,p ≥ 1 for every p ∈ Ix and i = 1, . . . , kx. Us-

ing (53) and (54), the probability of the event

Cnp =

{∣∣∣∣∣
M(1)

np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)

∣∣∣∣∣ > t

}

is then bounded from above by P(Bnp) + P(C
(1)
np ) + P(C

(2)
np ) ≤ δ/2 + P(C

(1)
np ) +

P(C
(2)
np ) uniformly in p ∈ Ix for n large enough, where

C(1)
np =

{∣∣∣∣∣
1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
− 1

1− γ−(x)

∣∣∣∣∣ >
t

2

}

and C(2)
np =

{
1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x)+ε
>

t

2ε

}
.

Apply Lemma 7 to get for every p ∈ Ix

P(C(1)
np ) = P

(∣∣∣∣∣
1

kx

kx∑

i=1

T
γ−(x)
i − 1

γ−(x)
− 1

1− γ−(x)

∣∣∣∣∣ >
t

2

)

and P(C(2)
np ) = P

(
1

kx

kx∑

i=1

T
γ−(x)+ε
i >

t

2ε

)
.

Because

E

[
T

γ−(x)
i − 1

γ−(x)

]
=

1

1− γ−(x)
,

Chebyshev’s inequality leads to the inequality P(C
(1)
np ) ≤ δ/4 for n large enough,

uniformly in p ∈ Ix. Furthermore, since ε ∈ (0, 1), using together (52) and

Markov’s inequality yields P(C
(2)
np ) ≤ δ/4 for every p ∈ Ix. Hence for n large

enough the inequality

sup
p∈Ix

P(Cnp) ≤ δ.

In other words, it holds that for every t > 0

sup
p∈Ix

P

(∣∣∣∣∣
M(1)

np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)

∣∣∣∣∣ > t

)
→ 0 as n→ ∞. (55)

Recall that q0(·|x) is regularly varying at infinity with index γ−(x) and apply
Lemma 6 to get for every t > 0

sup
p∈Ix

P

(∣∣∣∣
q0(Tp−kx,p|x)
q0(p/kx|x)

− 1

∣∣∣∣ > t

)
→ 0 as n→ ∞. (56)
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Finally, writing

∣∣∣∣∣
M(1)

np (x, kx, h)

q0(p/kx|x)
− 1

1− γ−(x)

∣∣∣∣∣ ≤ q0(Tp−kx,p|x)
q0(p/kx|x)

∣∣∣∣∣
M(1)

np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)

∣∣∣∣∣

+
1

1− γ−(x)

∣∣∣∣
q0(Tp−kx,p|x)
q0(p/kx|x)

− 1

∣∣∣∣

and applying Lemma 4 together with (55) and (56) gives the first part of the
result. To obtain the second part, square the inequalities (53) and (54) with
ε < 1/2 small enough, use the equality

E

[
T

γ−(x)
i − 1

γ−(x)

]2
=

2

(1− γ−(x))(1 − 2γ−(x))

and use the ideas developed for the proof of the first statement.

Proof of Lemma 9. To prove the first statement, pick y0 ∈ R such that 1/α :=
F (y0) ∈ (0, 1) and assume that for some δ > 0, one has F (y0+δ) = F (y0). Then,
since the function F is nonincreasing, it is constant equal to α on [y0, y0 + δ].
Thus

U(α+ ε) = inf{y ∈ R | 1/F(y) ≥ α+ ε} ≥ y0 + δ

for every ε > 0. Taking the limit ε ↓ 0 yields U(α) ≥ y0 + δ, which is a
contradiction.

To show the second statement, assume that F is not continuous at y0 ∈ R:
in other words, since F is right-continuous and nonincreasing,

β− := lim
y→y0
y<y0

F (y) > F (y0) =: β+.

It follows that for every z ∈ (1/β−, 1/β+), one has U(z) = y0, which is a
contradiction. Finally, note that by the right-continuity of F :

∀z > 1, η :=
1

F (U(z))
− z ≥ 0.

If one had η > 0, then it would hold that

U(z + η) = inf{y ∈ R | 1/F (y) ≥ z + η} ≤ U(z)

which is a contradiction.

Proof of Lemma 10. Write for every y ∈ R

Fh(y|x) =
E(F (y|X)1{X∈B(x,h)})

P(X ∈ B(x, h))
.
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The continuity assertion on Fh(·|x) then follows from Lemma 9 and the dom-
inated convergence theorem. Pick now y ∈ R such that Fh(y|x) ∈ (0, 1) and
δ > 0. One has:

Fh(y|x)− Fh(y + δ|x) = E([F (y|X)− F (y + δ|X)]1{X∈B(x,h)})

P(X ∈ B(x, h))
.

Assume that Fh(y|x) = Fh(y + δ|x). In this case, since for every x′ ∈ E the
function F (·|x′) is nonincreasing, we get

[F (y|X)− F (y + δ|X)]1{X∈B(x,h)} = 0 almost surely. (57)

Besides, since Fh(y|x) ∈ (0, 1), there exist measurable sets A0 and A1 such that

∀x′ ∈ A0 ∩B(x, h), F (y|x′) > 0 and P(X ∈ A0 ∩B(x, h)) > 0,

∀x′ ∈ A1 ∩B(x, h), F (y|x′) < 1 and P(X ∈ A1 ∩B(x, h)) > 0.

Since the ball B(x, h) is a connected set in E because it is arc-connected, one
may therefore apply the intermediate value theorem to the continuous map
x′ 7→ F (y|x′) to obtain that there exists x′ ∈ B(x, h) such that F (y|x′) ∈ (0, 1).
Using once again the continuity of this map, we deduce that there exists r > 0,
which we may choose in order to have B(x′, r) ⊂ B(x, h), such that

∀x′′ ∈ B(x′, r), F (y|x′′) ∈ (0, 1). (58)

Because P(X ∈ B(x′, r)) > 0, using together (57) and (58) leads to the existence
of some x′′ ∈ B(x, h) such that

F (y|x′′) = F (y + δ|x′′) and F (y|x′′) ∈ (0, 1)

which, in view of Lemma 9, is a contradiction. Finally, note that together with
the intermediate value theorem, the two properties of Fh(·|x) we have shown
here entail that for every z ∈ (1,∞), the inverse image of z under 1/Fh consists
of a unique point. Hence this point must be Uh(z|x): consequently

1

Fh(Uh(z|x)|x)
= z

which completes the proof.

Proof of Lemma 11. We only consider the case γ(x) 6= ρ(x) and ρ(x) < 0 if
γ(x) > 0, the proof being entirely similar in the case γ(x) > ρ(x) = 0. According
to Lemma 3, the distribution of the random vector

√
kx

(
M

(1)
np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)
,
M

(2)
np (x, kx, h)

q20(Tp−kx,p|x)
− 2

(1− γ−(x))(1 − 2γ−(x))

)

is the distribution of the random vector

√
kx

(
M(1)

np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)
,
M(2)

np (x, kx, h)

q20(Tp−kx,p|x)
− 2

(1 − γ−(x))(1 − 2γ−(x))

)

+ (r(1)np , r
(2)
np ), (59)
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where

∣∣∣r(1)np

∣∣∣ ≤ 2
√
kx
ω(Tp−kx,p, Tp,p, x, h)

q0(Tp−kx,p|x)
,

∣∣∣r(2)np

∣∣∣ ≤ 4
√
kx
ω(Tp−kx,p, Tp,p, x, h)

[
ω(Tp−kx,p, Tp,p, x, h) +M(1)

np (x, kx, h)
]

q20(Tp−kx,p|x)
.

Recall that q0(·|x) is equivalent to q(·|x) at infinity, which is itself regularly
varying at infinity with index γ−(x). As a consequence, applying Lemma 6, we
get for every t > 0 the convergence

sup
p∈Ix

P

(∣∣∣∣
q0(Tp−kx,p|x)
q0(p/kx|x)

− 1

∣∣∣∣ > t

)
→ 0 as n→ ∞. (60)

Besides, using (28) and (29) in the proof of Proposition 2, we get for every t > 0

sup
p∈Ix

P

(√
kx
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)
> t

)

≤ sup
p∈Ix

P

(√
kx
U(nx/kx|x)
a(nx/kx|x)

ω(Tp−kx,p, Tp,p, x, h) >
t

2

)
(61)

for n large enough. Using condition (23), the right-hand side of the above in-
equality is bounded from above by

sup
p∈Ix

u(1,2)np ≤ sup
p∈Ix

P

({
Tp−kx,p <

nx

(1 + δ)kx

}
∪
{
Tp,p > n1+δ

x

})

for n sufficiently large; consequently (see (29))

sup
p∈Ix

P

(√
kx
U(nx/kx|x)
a(nx/kx|x)

ω(Tp−kx,p, Tp,p, x, h) >
t

2

)
→ 0 as n→ ∞.

Inequality (61) thus yields the convergence

sup
p∈Ix

P

(√
kx
ω(Tp−kx,p, Tp,p, x, h)

q0(p/kx|x)
> t

)
→ 0 as n→ ∞. (62)

Applying (27), (60), (62) and Lemma 4 we then obtain for every t > 0:

sup
p∈Ix

P

(∣∣∣r(1)np

∣∣∣ > t
)
→ 0 and sup

p∈Ix

P

(∣∣∣r(2)np

∣∣∣ > t
)
→ 0 as n→ ∞. (63)

As in the proof of Lemma 8, letting Bnp = {Tp−kx,p ≤ t0}, Lemma 6 shows that
P(Bnp) → 0 uniformly in p ∈ Ix as n → ∞. Pick δ, t > 0 and choose ε ∈ (0, 1)
such that

12ε

t(1− (γ−(x) + ρ′(x) + ε))

[
1 +

∣∣∣∣λ(x)
(1{ρ′(x)<0}

ρ′(x)
+ 1{ρ′(x)=0}

)∣∣∣∣
]
≤ δ

4
. (64)
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For n large enough, one has P(Bnp) ≤ δ/4 for every p ∈ Ix. Furthermore, on
the complement Bc

np of Bnp, one can apply (40) to write

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
+Q0(Tp−kx,p|x)ψγ−(x),ρ′(x)(T

⋆
i (p))

− ε|Q0(Tp−kx,p|x)|(T ⋆
i (p))

γ−(x)+ρ′(x)+ε

≤ logU(Tp−i+1,p|x)− logU(Tp−kx,p|x)
q0(Tp−kx,p|x)

≤ (T ⋆
i (p))

γ−(x) − 1

γ−(x)
+Q0(Tp−kx,p|x)ψγ−(x),ρ′(x)(T

⋆
i (p))

+ ε|Q0(Tp−kx,p|x)|(T ⋆
i (p))

γ−(x)+ρ′(x)+ε (65)

where T ⋆
i (p) = Tp−i+1,p/Tp−kx,p ≥ 1 for p ∈ Ix and i = 1, . . . , kx. Note now

that (39) implies that |Q0(·|x)| is regularly varying at infinity, so that Lemma 6
entails for every t′ > 0

sup
p∈Ix

P

(∣∣∣∣
Q0(Tp−kx,p|x)
Q0(nx/kx|x)

− 1

∣∣∣∣ > t′
)

→ 0 as n→ ∞. (66)

Applying Lemma 7 and Chebyshev’s inequality leads to

sup
p∈Ix

P

(∣∣∣∣∣
1

kx

kx∑

i=1

ψγ−(x),ρ′(x)(T
⋆
i (p))− E(ψγ−(x),ρ′(x)(T ))

∣∣∣∣∣ >
t

3

)
→ 0 (67)

as n → ∞. Besides, (39) and the hypothesis
√
kxQ(nx/kx) → λ(x) as n → ∞

yield

√
kxQ0(nx/kx) → λ(x)

(1{ρ′(x)<0}

ρ′(x)
+ 1{ρ′(x)=0}

)
as n→ ∞ (68)

so that collecting (66), (67) and (68) and applying Lemma 4 shows that

sup
p∈Ix

P

(∣∣∣∣∣
√
kxQ0(Tp−kx,p|x)

1

kx

kx∑

i=1

ψγ−(x),ρ′(x)(T
⋆
i (p))−m(1)(x)

∣∣∣∣∣ >
t

3

)
→ 0

(69)
as n→ ∞. Meanwhile, letting

Cnp =

{∣∣∣∣
Q0(Tp−kx,p|x)
Q0(nx/kx|x)

− 1

∣∣∣∣ >
1

2

}

then (66) entails that P(Cnp) → 0 as n → ∞, uniformly in p ∈ Ix; on Cc
np it

holds that for n large enough

√
kx|Q0(Tp−kx,p|x)| ≤ 3

2

√
kx|Q0(nx/kx|x)|

≤ 2

[
1 +

∣∣∣∣λ(x)
(1{ρ′(x)<0}

ρ′(x)
+ 1{ρ′(x)=0}

)∣∣∣∣
]
. (70)
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Therefore, letting n be so large that P(Cnp) ≤ δ/4 for every p ∈ Ix, Lemma 7,
Markov’s inequality and (52) together imply that

sup
p∈Ix

P

(
ε
√
kx|Q0(Tp−kx,p|x)|

1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x)+ρ′(x)+ε >
t

6

)
≤ δ

2
. (71)

Collecting (65), (69) and (71), we get for n large enough

sup
p∈Ix

P

(∣∣∣∣∣
√
kx

[
M(1)

np (x, kx, h)

q0(Tp−kx,p|x)
− 1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x) − 1

γ−(x)

]
−m(1)(x)

∣∣∣∣∣ > t

)
≤ δ.

Recalling (63) and applying Lemma 4, we obtain that

√
kx

(
M(1)

np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)

)
+ r(1)np

=
√
kx

[
1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
− 1

1− γ−(x)

]
+m(1)(x) +R(1)

np (72)

with R
(1)
np as in the statement of the result.

To obtain a similar result for M(2)
np (x, kx, h), we note that using (66), (68),

Lemma 7 and Chebyshev’s inequality, we have for every t′ > 0

sup
p∈Ix

P

(∣∣∣∣∣2
√
kxQ0(Tp−kx,p|x)

1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
ψγ−(x),ρ′(x)(T

⋆
i (p))

−m(2)(x)
∣∣∣ > t′

)
→ 0 (73)

as n → ∞. Besides, picking δ > 0, inequality (70), Lemma 7 and Markov’s
inequality yield for n large enough

sup
p∈Ix

P

(
ε
√
kx|Q0(Tp−kx,p|x)|

1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
(T ⋆

i (p))
γ−(x)+ρ′(x)+ε > t′

)

≤ δ

4
(74)

if ε > 0 is chosen small enough. Using once again (66) and the convergence of
Q0(·|x) to 0, we get

sup
p∈Ix

P

(√
kxQ

2
0(Tp−kx,p|x) > t′

)
→ 0 as n→ ∞

which, together with Lemma 7 and Markov’s inequality, entails

sup
p∈Ix

P

(
√
kxQ

2
0(Tp−kx,p|x)

1

kx

kx∑

i=1

ψ2
γ−(x),ρ′(x)(T

⋆
i (p)) > t′

)
→ 0 (75)
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and

sup
p∈Ix

P

(
√
kxQ

2
0(Tp−kx,p|x)

1

kx

kx∑

i=1

ε2(T ⋆
i (p))

2(γ−(x)+ρ′(x)+ε) > t′

)
→ 0 (76)

as n → ∞. Square now the inequalities (65) and use (73), (74), (75) and (76)
to obtain for n large enough

sup
p∈Ix

P



∣∣∣∣∣∣
√
kx


M

(2)
np (x, kx, h)

q20(Tp−kx,p|x)
− 1

kx

kx∑

i=1

(
(T ⋆

i (p))
γ−(x) − 1

γ−(x)

)2

−m

(2)(x)

∣∣∣∣∣∣
> t


 ≤ δ.

Finally, recall (63) and apply Lemma 4 to get

√
kx

(
M(2)

np (x, kx, h)

q20(Tp−kx,p|x)
− 2

(1 − γ−(x))(1 − 2γ−(x))

)
+ r(2)np

=
√
kx

[
1

kx

kx∑

i=1

(
(T ⋆

i (p))
γ−(x) − 1

γ−(x)

)2

− 2

(1 − γ−(x))(1 − 2γ−(x))

]

+ m(2)(x) +R(2)
np (77)

with R
(2)
np as in the statement of the result. Letting

D(1)
np =

√
kx

[
1

kx

kx∑

i=1

(T ⋆
i (p))

γ−(x) − 1

γ−(x)
− 1

1− γ−(x)

]
+m(1)(x),

D(2)
np =

√
kx

[
1

kx

kx∑

i=1

(
(T ⋆

i (p))
γ−(x) − 1

γ−(x)

)2

− 2

(1 − γ−(x))(1 − 2γ−(x))

]
+m(2)(x)

and applying Lemma 7, it is obvious that for fixed n and every p > kx, the

random pair (D
(1)
np , D

(2)
np ) has the same distribution as (D(1)

n ,D(2)
n ) where

D(1)
n =

√
kx

[
1

kx

kx∑

i=1

T
γ−(x)
i − 1

γ−(x)
− 1

1− γ−(x)

]
+m(1)(x),

D(2)
n =

√
kx


 1

kx

kx∑

i=1

(
T

γ−(x)
i − 1

γ−(x)

)2

− 2

(1 − γ−(x))(1 − 2γ−(x))


+m(2)(x).

The standard central limit theorem and some cumbersome computations show

that the random vector (D(1)
n ,D(2)

n ) is asymptotically Gaussian with mean
(m(1)(x),m(2)(x)) and covariance matrix V(γ(x)), so that clearly

sup
p∈Ix

∣∣∣E[exp[i(t1D(1)
np + t2D

(2)
np )]− E[exp[i(t1P1 + t2P2)]]

∣∣∣

=
∣∣∣E[exp[i(t1D(1)

n + t2D(2)
n )]− E[exp[i(t1P1 + t2P2)]]

∣∣∣→ 0 as n→ ∞
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for every t1, t2 ∈ R. Now, according to (59), (72) and (77) the distribution of
the random vector

√
kx

(
M

(1)
np (x, kx, h)

q0(Tp−kx,p|x)
− 1

1− γ−(x)
,
M

(2)
np (x, kx, h)

q20(Tp−kx,p|x)
− 2

(1 − γ−(x))(1 − 2γ−(x))

)

is the distribution of (D
(1)
np +R

(1)
np , D

(2)
np +R

(2)
np ), which completes the proof.
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