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Abstract: Ordinary Least Squares (OLS) is recognised as being useful in
the context of multiple linear regression but can also be effective under the
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1. Introduction

It is well known that Ordinary Least Squares (OLS) is an efficient and effective
estimator of coefficients from a multiple linear regression (MLR) model. Addi-
tionally it is also applicable to a much wider framework of models. Consider
a regressor vector x ∈ R

p, random response variable Y ∈ R and random er-
ror term ǫ assumed to be independent of x with mean 0. In extending results
from Brillinger (1977, 1983), Li & Duan (1989) showed that, for mild conditions
on x, the OLS slope vector is equal to cβ for a c ∈ R under the assumed model
Y = f(β⊤x, ǫ). Here the form of f is unknown. However, given that the OLS
slope vector, which we will denote as b, is a scalar multiple of β, a plot of Y
versus b⊤x may be used to visually explore possibilities for f .

Depending on the form of f , OLS is not always a good estimator of the direc-
tion of β in practice. Nevertheless as the error term is not necessarily additive,
response transformations are possible that may result in significant improve-
ments in estimation. The purpose of this paper is two-fold. Firstly, we introduce
an influence diagnostic for OLS in dimension reduction based on recent results
from Prendergast & Smith (2010). This influence diagnostic can be used to as-
sess the effectiveness of OLS as a dimension reduction method under various
assumed models. The second purpose is to discuss the suitability of response
transformations when using OLS. To do so, we use our influence diagnostic to
show that simple response transformations can lead to very notable improve-
ments in estimation.

We discuss OLS in Section 2 and show by example how poorly it can perform.
We also explain how response transformations are supported by the theory. In
Section 3 we introduce the influence diagnostic for OLS before establishing the
associated diagnostic following a response transformation in Section 4. This sec-
tion affords general insights as to how and when simple transformation functions
can improve estimation. Finally, the main findings of the paper are summarized
in Section 5 and further research is discussed.

2. Sufficient summary plots using ordinary least squares

Consider a random response variable denoted Y ∈ R and a vector of predictors
x ∈ R

p. The MLR model assumes Y = β0 + β⊤x+ ǫ where β0 is the unknown
intercept coefficient and β is the unknown slope vector consisting of regression
coefficients for the predictors. Here ǫ is the random error assumed independent
of x with E(ǫ) = 0. Let {Yi,xi}

n
i=1 denote a random sample of n observations

drawn from the MLR model. Then, based on this random sample, OLS is an
efficient estimator of both β0 and β. The population OLS slope vector is denoted

b = Σ−1Σxy (1)

where Σ = var(x) and Σxy = cov(x, Y ). Under the MLR conditions b = β. The

OLS estimator for the slope vector is then b̂ = Σ̂−1Σ̂xy where Σ̂ and Σ̂xy are
the usual sample-based estimators of Σ and Σxy respectively.
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2.1. The single-index model

An important development for OLS was provided by Brillinger (1977, 1983)
which allowed OLS to be applied to a wider variety of models. Li & Duan
(1989) provided further generalizations and extensions, the result of which is
a very diverse range of suitable applications for OLS. Continuing the previous
definitions for Y , β, x and ǫ, the single-index model is of the form

Y = f(β⊤x, ǫ) (2)

where f is an unknown link function on which there are no conditions (see for
example Theorem 2.1 of Li & Duan, 1989). In seeking information regarding f ,
x ∈ R

p can be replaced by β⊤x ∈ R without loss of information. Li (1991) and
Carroll & Li (1992) refer to this as dimension reduction in a visualisation sense
as Y is plotted against the lower-dimensional β⊤x enabling inference regarding
the form of f .

Li & Duan (1989) gave the following condition, generally known as the Linear
Design Condition (LDC):

Condition 1. For any d ∈ R
p, E(d⊤x|β⊤x) is linear in β⊤x.

This condition holds when x is elliptically symmetrically distributed (e.g. see
Cook &Weisberg, 1991). Moreover, Hall & Li (1993) show that Condition 1 often
holds approximately when p is large. Under Condition 1 and when the model in
(2) holds, Li & Duan (1989) show that b = cβ for a c ∈ R. Consequently, when
c 6= 0, OLS is expected to find the direction of β. Since f in (2) is unknown, it
is only the direction of β that is important. For instance, for any γ which is a
non-zero scalar multiple of β, the model can be re-specified as Y = g(γ⊤x, ǫ).
A plot of Y versus γ⊤x is called a Sufficient Summary Plot (SSP, e.g. see Cook,
1998). The sample-based equivalent is referred to as an Estimated SSP (ESSP)
for which the Yi’s are plotted against the γ̂⊤xi’s such that γ̂ is an estimate to
the direction of β. As a consequence, b̂ can be used to obtain an ESSP in an
effort to seek an appropriate link function when Condition 1 holds.

2.2. When OLS is ineffective as a dimension reduction estimator

OLS can often work very well under the framework of (2), yet in some cases it
can fail spectacularly even when Condition 1 is satisfied. As noted in Section 2.1,
the OLS slope vector under the required conditions is equal to b = cβ for c ∈ R.
To successfully find the direction of β it is naturally required that c 6= 0. A cause
of c = 0 is when f is symmetric around β⊤E(x) for an elliptically symmetric x.
For example, suppose x ∼ N(0, Ip) and Y = (β⊤x)2 + ǫ so that cov(x, Y ) = 0.
OLS is expected to fail since b = 0. However, there are other situations for
which OLS will fail that are not so obvious. To show this we will consider the
following example.
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Fig 1. For Example 2.1.(a) Plot of the model in (3) for which m = 3.25. (b) Boxplots of

cor(Xβ,Xb̂)2 plotted as a function of m clearly showing the estimate of the direction of β

produced by OLS deteriorating in the neighborhood of 3.25. Each simulation is run 1000 times
on a sample of 1000 observations. Please refer to main text for interpretation.

Example 2.1. For x = [X1, . . . , X10]
⊤ ∼ N(0, I10), suppose that

Y = (β⊤x− 2)3 − 400 sin

(
1

2
β⊤x

)
(3)

where β = [1,m, 0, . . . , 0]⊤ with m ∈ R.
Initially, we expected OLS to provide a reasonable estimate of the direction

of β due to the lack of symmetry of the link function about β⊤E(x) = 0. For
example, plot (a) of Figure 1 depicts Y versus β⊤x when m = 3.25 where it
is clear symmetric dependency is not evident. However, simulation results show
that OLS is typically a poor estimator for choices ofm close to 3.25 even for very
large sample sizes. To assess OLS as an estimator we will report cor(Xβ,Xb̂)2

where X is the matrix whose ith row contains the predictor for the ith observa-
tion. This is the squared correlation between the true and estimated dimension
reduced predictors. Plot (b) of Figure 1 provides boxplots of cor(Xβ,Xb̂)2 for
varying m run over 1000 simulations with n = 1000 observations. It is clear that
as m approaches 3.25, the ability of OLS to successfully find the direction of β
deteriorates since cor(Xβ,Xb̂)2 is typically small for m in this vicinity.

To further explore the cause of OLS failing, we consider the population slope
vector b = cov(x, Y ). For any m, it can be shown that

b =

[
15 + 3m2 − 200 exp

(
−
1

8
(1 +m2)

)]
β. (4)

As Li & Duan (1989) suggest, the OLS slope in (4) is a scalar multiple of β.
However, b = 0 when m = ±3.258 and close to 0 for m in this vicinity. Hence
OLS estimates the zero vector for this m resulting in poor performance.
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2.3. Response transformations

The original results of Brillinger (1977, 1983) assumed that the error term was
additive. However, the generalization by Li & Duan (1989) to allow for a non-
additive error as in (2) is important when contemplating response transforma-
tions. Consider a function t : R 7→ R. Under (1), we may write

t(Y ) = g(β⊤x, ǫ) (5)

for a new and still unknown link function g. Now let

bt = Σ−1cov [x, t(Y )] (6)

denote the OLS slope vector with respect to the transformed Y . Since Condi-
tion 1 is unaffected by the transformation, bt is a scalar multiple of β providing
that Condition 1 holds. Two obvious options for SSP’s are:

1. Plot t(Y ) versus b⊤
t x to seek g; or

2. Plot Y versus b⊤
t x to seek f

with similarly defined ESSP’s in practice. The second option is generally most
appealing as it allows for examination of the predictors and response on the
original scale. Consequently, it is important to realize that the transformation
need only occur in the step involving the estimation of the direction of β.

3. Influence analysis of OLS for ESSP’s

Prendergast (2008) introduced an influence diagnostic that can be used in prac-
tice to detect influential observations when using OLS for ESSP’s. Here we
introduce an influence diagnostic that can be used to provide general insights
with respect to various models. The diagnostic shares similarities with Hampel’s
influence function (Hampel, 1974) and extends on work by Prendergast & Smith
(2010) who introduce diagnostics for certain dimension reduction methods.

Consider (Y,x) ∼ F and let the contamination distribution be defined as

Fǫ = (1 − ǫ)F + ǫ∆(y0,x0) (7)

where ∆(y0,x0) is the Dirac distribution that places all of its mass at the con-
tamination point (y0,x0), and ǫ denotes the proportion of contamination.

Now let T be a functional for an estimator defined in both F and Fǫ. The
Influence Function, IF, (Hampel, 1974) is defined by

IF(T, F ; y0,x0) = lim
ǫ↓0

T (Fǫ)− T (F )

ǫ
=

∂

∂ǫ
T (Fǫ)

∣∣∣∣
ǫ=0

(8)

which can be used to quantify the relative influence of contamination on an
estimator. For example, a power series expansion of T (Fǫ) gives

T (Fǫ) = T (F ) + ǫ IF(T, F ; y0,x0) +
1

2
ǫ2

∂2

∂ǫ2
T (Fǫ)

∣∣∣∣
ǫ=0

+O(ǫ3). (9)
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When ǫ is small, T (Fǫ) ≈ T (F ) + ǫ IF(T, F ; y0,x0) hence IF(T, F ; y0,x0) can
be used to quantify the approximate influence of the contamination. This type
of sensitivity analysis has important connections with the empirical setting.
For example, IF(yi,xi) is proportional to the difference in estimation with and
without the ith observation.

A generalization of the model in (2), although not applicable to OLS, allows
for numerous vectors of regressor coefficients. For such a model, an influence
diagnostic for some dimension reduction estimators based on average canonical
correlations was introduced by Prendergast & Smith (2010). Whilst their diag-
nostic is applicable to the model in (2), it is not directly relevant to OLS due
to scaling differences. For OLS, the influence diagnostic given by Prendergast
& Smith (2010) is based on the squared correlation between the b⊤x and b⊤

ǫ x

where b is the OLS slope vector at F and bǫ is the OLS slope vector at Fǫ.
Recall the target for OLS is cβ⊤x for any non-zero c ∈ R. Consequently, if con-
tamination results in bǫ = cǫβ where cǫ is nonzero, then an influence diagnostic
based on the squared correlation between b⊤x and b⊤

ǫ x will appropriately indi-
cate zero influence. We now consider the following theorem, the proof of which
can be found in Appendix A.

Theorem 1. Let b denote the functional for the OLS slope vector estimator
where b(F ) = b and b(Fǫ) = bǫ. Then, for x ∼ F with E(x) = µ and Cov(x) =
Σ, the power series for cor2(b⊤x,b⊤

ǫ x) can be written as

cor2(b⊤x,b⊤
ǫ x) = 1− ǫ2ρb(y0,x0) +O(ǫ3)

where, for Pb = (b⊤Σb)−1Σ1/2bb⊤Σ1/2 and r0 = y0 − E(Y )− b⊤(x0 − µ)

ρb(y0,x0) =
r20∥∥Σ1/2b

∥∥2
∥∥∥(Ip −Pb)Σ

−1/2(x0 − µ)
∥∥∥
2

.

Remark 3.1. The sensitivity analysis and resulting diagnostic that we consider
within this paper is based on Hampels influence function (Hampel, 1974). How-
ever, further research could also explore other more general sensitivity analysis
approaches that have been considered for least squares. One alternative could be
to consider small perturbations of the design matrix X and vector of responses.
Golub & Van Loan (1996) p. 242, for example, detail this approach allowing for
the computation of error bounds. Other sensitivity approaches have also been
discussed by Chatterjee & Hadi (1988). For example, Chatterjee & Hadi (1988)
consider an asymptotic approach which examines the effect of measurement
errors in X on estimates.

ρb(y0,x0) shares similarities with the sample-based leave-one-out diagnostic
introduced by Prendergast (2008) and, from Theorem 1, we can use it to assess
sensitivity of OLS as an estimator in the dimension reduction setting. The in-
fluence diagnostic can provide interesting general insights to OLS estimation in
this setting. For example, even extreme predictor outliers can have very small
influence regardless of the choice of accompanying response. We highlight this
in the example below.
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Fig 2. Plots of ρb(y0,x0) for Example 3.2 for (a) varying cos(θ0) and ‖x0‖ and (b) varying
cos(θ0) with a fixed ‖x0‖ = 2.

Example 3.1. For simplicity suppose that µ = 0 and Σ = Ip. Also suppose
that x0 is in the same direction as β and therefore in the same direction as b.
From Theorem 1, ρb(y0,x0) = 0 for all y0 ∈ R since (Ip −Pb)x0 = 0. This also
holds for x0 in the opposite direction to β.

Zero influence resulted in Example 3.1 since the contaminant regressor x0

was in the same, or opposite, direction to β. The corollary below is useful for
assessing the role that the direction of x0 has in exertion of influence on OLS.

Corollary 1. Let z0 = Σ−1/2(x0 −µ) and θ0 denote the angle between z0 and
Σ1/2b. Then the influence diagnostic can be represented as

ρb(y0,x0) =
[
y0 − µy − ‖Σ1/2b‖.‖z0‖. cos(θ0)

]2
[1− cos2(θ0)].

‖z0‖
2

‖Σ1/2b‖2
.

Proof. The proof is straightforward by noting that, since (Ip−Pb) is idempotent,
‖(Ip−Pb)z0‖

2 = z⊤0 (Ip−Pb)z0 and that cos(θ0) = b⊤(x0−µ)/(‖Σ1/2b‖.‖z0‖).

From Corollary 1, the influence diagnostic is a function of ‖Σ−1/2(x0 − µ)‖
and cos2(θ0). We now consider another example to highlight the role of the angle
between the predictor contaminant and b.

Example 3.2. For simplicity suppose µ = 0 and Σ = Ip, and let ‖b‖ = 1
and y0 = E(Y ) so that y0 is a typical response. Then, from Corollary 1, we
have ρb(y0,x0) = ‖x0‖

4 cos2(θ0)[1 − cos2(θ0)]. In plot (a) of Figure 2 we show
ρb(y0,x0) for varying cos(θ0) and ‖x0‖. It is clear that the influence diagnostic
is highly sensitive to the angle between x0 and b. That is, for different x0’s with
similar ‖x0‖, there can be very different influence in estimation. This is further
emphasized in plot (b) where we provide a cross-section of (a) with ‖x0‖ = 2.
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These plots also show that even extreme predictor outliers (i.e. large ‖x0‖) may
not have a large influence. For example, when cos(θ0) = 0 or ±1 (which occurs
when x0 = cb for some c ∈ R) then ρb(y0,x0) = 0.

Prendergast & Smith (2010) also reported the expected value of the influence
diagnostic for the contaminant equal to a random (Y,x) from F . Noting that
the influence function can be used to derive the asymptotic variance of an esti-
mator as, for an estimator with functional T , the asymptotic variance, at F , is
ASV(T ) = E[IF(T, F ;Y,X)2]); then the E[ρb(Y,x)] provides similar insight in
the sense that it is the average sensitivity in estimation across all (Y,x) ∼ F .
Therefore, E[ρb(Y,x)] will provide a useful means for which to compare estima-
tors and we report this in the following corollary to Theorem 1.

Corollary 2. For (Y,x) ∼ F where x ∼ Np(µ,Σ),

E[ρb(Y,x)] = (p− 1)

[
Var(Y )

‖Σ
1

2b‖2
− 1

]
.

Proof. Using similar arguments to those by Prendergast & Smith (2010) in the
proof of their Corollary 3, it can be shown that E[ρb(Y,x)] = (p− 1)E[c(Y,x)]
for c(Y,x) = [Y − µy − b⊤(x− µ)]2/‖Σ1/2b‖2. For Σxy = cov(x, Y ),

E[c(Y,x)] =E
{
[Y − µY − b⊤(x− µ)]2

}
‖Σ

1

2b‖−2

=
[
Var(Y )− 2b⊤Σxy + b⊤Σb

]
‖Σ

1

2b‖−2.

Since b = Σ−1Σxy, E[c(Y,x)] = [Var(Y ) − b⊤Σb]/‖Σ
1

2b‖2 which completes
the proof.

Although we do not discuss Corollary 2 further here, the results will be
important in the considerations provided in the next section.

4. Influence following response transformations

As discussed in Section 2.3, response transformations may be employed without
disrupting the theory. Here we consider such response transformations and use
the influence diagnostic introduced previously to compare the estimator with
and without transformation. In the following corollary we provide the influ-
ence diagnostic from Theorem 1 following response transformation. This result
also holds for transformation functions that are affected by contamination, see
Appendix A, when Condition 1 holds. Thus we have two cases:

(i) t is unaffected by contamination,
(ii) t is affected by contamination but Condition 1 holds.

Corollary 3. For both cases consider a response transformation function t
defined at F which may be different at Fǫ. The influence diagnostic presented
in Theorem 1 is

ρt(y0,x0) =
r2t,0∥∥Σ1/2bt

∥∥2
∥∥∥(Ip −Pt)Σ

−1/2(x0 − µ)
∥∥∥
2
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where (Y,x) ∼ F , bt is the OLS slope vector for the regression of t(Y ) on
x, rt,0 = t(y0) − E[t(Y )] − b⊤

t (x0 − µ) and Pt = (b⊤
t Σbt)

−1Σ1/2btb
⊤
t Σ

1/2.
Additionally, from Corollary 2,

E [ρt(Y,x)] = (p− 1)

[
Var [t(Y )]

‖Σ
1

2bt‖2
− 1

]
.

Note that when the model in (2) and Condition 1 hold, b and bt are scalar
multiples of β. Hence, provided they are not the zero vector, Pb and Pt are iden-
tical. Subsequently, a comparison of OLS with and without a response transfor-
mation can be carried out by comparing r2t,0/‖Σ

1/2bt‖
2 and r20/‖Σ

1/2b‖2. Next
we will consider some example transformations.

4.1. Log-transformation for exponential growth models

Consider an exponential growth model defined by

Y = ab0+b1β
⊤
x+σǫ (10)

for an a ∈ R
+, b0 ∈ R, b1 ∈ R and σ ∈ R

+. This model satisfies the model in (2)
so that the OLS slope vector is equal to cβ for a c ∈ R. Ignoring trivial cases
such as a = 1 or b1 = 0, OLS is expected to find the direction of β. Throughout
suppose that x ∼ N(µ,Σ), ǫ ∼ N(0, 1) and define β such that β⊤Σβ = 1. This
is not a restriction since b1 in (10) can be chosen to be any value.

To compare influence with and without the log transformation, we will de-
rive E[ρb(Y,x)] and E[ρlog(Y,x)], the expected influence at (Y,x) ∼ F for the
original and log transformed OLS estimators respectively. These are provided
below and the associated derivations can be found in Appendix B.

For ln denoting the natural log we have

(p− 1)−1E[ρb(Y,x)] =
exp

{
[ln (a)]2

(
b21 + σ2

)}
− 1− [ln (a)]2 b21

[ln (a)]
2
b21

. (11)

Following log transformation of Y , with any base,

(p− 1)−1E[ρlog(Y,x)] =
σ2

b21
(12)

which does not depend on the base chosen or a. Interestingly, for a fixed error
variance σ2, the expected influence following a log transformation decreases with
increasing b1. This is not necessarily the case with E[ρb(Y,x)] in (11) where a
large value of b21 can lead to very large exp{[ln(a)]2(b21 + σ2)} and consequently
large influence despite the denominator [ln(a)]2b21.

Example 4.1. In Figure 3 we plot E[ρb(Y,x)] and E[ρlog(Y,x)] for the model
in (10). For plots (a)-(c) a = 2, σ is chosen to be 0.5, 1.0 and 2.0 respectively.
For small |b1| relative to σ, it is clear both approaches are expected to perform
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Fig 3. Plots of E[ρb(Y,x)]/(p − 1) (red solid line) and E[ρlog(Y,x)] (blue dashed line) for
Example 4.1 for three choices of σ.

Table 1

Values of E[ρb(Y,x)] (OLS with no transformation) and E[ρt(Y,x)] (OLS following log
transformation) for Model 1 with varying a and fixed b1 = 1 including average

cor(Xβ,Xb̂)2 (standard deviations, SD, in parentheses) for 1000 trials of n = 50 randomly
sampled observations

a
Model: Y = a1+β⊤

x+ǫ

No transformation Log transformation

E[ρb(Y,x)] Mean cor(Xβ,Xb̂)2 (SD) E[ρlog(Y,x)] Mean cor(Xβ,Xb̂)2 (SD)
1.25 9.927 0.934 (0.030) 9.0 0.964 (0.019)
1.5 12.312 0.880 (0.060) 9.0 0.964 (0.018)
1.75 16.024 0.825 (0.085) 9.0 0.965 (0.019)
2 21.235 0.773 (0.103) 9.0 0.965 (0.018)

2.25 28.302 0.730 (0.115) 9.0 0.965 (0.018)
2.5 37.749 0.701 (0.126) 9.0 0.964 (0.019)
2.75 50.295 0.671 (0.131) 9.0 0.964 (0.020)
3 66.891 0.653 (0.139) 9.0 0.965 (0.019)

3.25 88.786 0.632 (0.134) 9.0 0.965 (0.018)
3.5 117.602 0.612 (0.138) 9.0 0.965 (0.019)
3.75 155.438 0.598 (0.142) 9.0 0.965 (0.018)
4 204.991 0.594 (0.139) 9.0 0.965 (0.019)

poorly due to the large expected influence. This is not surprising due to the
small contribution of b1β

⊤x to Y relative to the error. As |b1| increases, we
see a marked difference in the expected performance of both approaches. For
the usual OLS approach performance quickly deteriorates even for moderate
sized b1. For the model, extremely large responses are possible when b1 is not
small which should highly influence OLS.

Conversely, OLS following a log transformation is expected to perform well
with small expected influence and, as shown in (12), improve further for increas-
ing |b1|. Using the log transformation, sensitivity of OLS to very large response
values is reduced. This can be seen in Corollary 3 where the diagnostic depends
on the log of the response only. We saw similar results for other choices of a.

For verification, we now give our simulated results in Tables 1 and 2 for vary-
ing a and b1 respectively. Each simulation was run 1000 times with n = 50.
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Table 2

Values of E[ρb(Y,x)] (OLS with no transformation) and E[ρt(Y,x)] (OLS following log
transformation) for Model 1 with varying b1 and fixed a = 2 including average

cor(Xβ,Xb̂)2 (standard deviations, SD, in parentheses) for 1000 trials of n = 50 randomly
sampled observations

b1

Model: Y = 21+b1β
⊤
x+ǫ

No transformation Log transformation

E[ρb(Y,x)] Mean cor(Xβ,Xb̂)2 (SD) E[ρlog(Y,x)] Mean cor(Xβ,Xb̂)2 (SD)
1.25 20.075 0.743 (0.109) 5.760 0.977 (0.012)
1.5 22.352 0.702 (0.123) 4.000 0.984 (0.008)
1.75 27.955 0.677 (0.126) 2.939 0.988 (0.006)
2 38.056 0.650 (0.128) 2.250 0.991 (0.005)

2.25 55.411 0.618 (0.127) 1.778 0.993 (0.005)
2.5 85.610 0.602 (0.129) 1.440 0.994 (0.003)
2.75 140.075 0.594 (0.133) 1.190 0.995 (0.003)
3 242.975 0.574 (0.131) 1.000 0.996 (0.002)

3.25 447.827 0.558 (0.132) 0.852 0.997 (0.002)
3.5 879.031 0.553 (0.132) 0.735 0.997 (0.002)
3.75 1840.818 0.542 (0.131) 0.640 0.997 (0.001)
4 4117.064 0.532 (0.129) 0.563 0.998 (0.001)

Here x ∼ N(0, Ip), ǫ ∼ N(0, 1), β = [1,−2, 0, 0.5, 0, . . . , 0]⊤ and p = 10. From
Table 1, a significant improvement due to the log transformation is evident. In-
cluded is E[ρb(Y,x)] and E[ρlog(Y,x)], which show that without transformation,
increasing a is expected to diminish performance of OLS. This is emphasized by
the mean cor(Xβ,Xb̂)2 decreasing and associated standard deviation increas-
ing with a. Conversely, the transformation gives small, approximately constant
mean cor(Xβ,Xb̂)2 with small standard deviation across all values of a.

From Table 2, increasing b1 results in standard OLS deteriorating in per-
formance, both in mean influence and the correlations. In contrast a vast im-
provement has been achieved using the log transformation which, as mentioned
previously, has improved performance with increasing b1.

4.2. Response-discretization transformations

Let the discretization function be

tF (Y ) =





D1, Y ∈ S1

D2, Y ∈ S2

...
...

DH , Y ∈ SH

(13)

where Dh ∈ R with D1 < D2 < · · · < DH and S1, . . . , SH are non-overlapping
subranges of the range of Y such that

⋃H
h=1 Sh = range(Y ). We denote P (Y ∈

Sh) as ph. The attractive feature of this transformation is that it retains some
co-variability between the response and predictor whilst limiting the minimum
and maximum transformed response values. This transformation shares some



1994 A. L. Garnham and L. A. Prendergast

similarities with SIR (Li, 1991) where the role of the response is to determine
positioning of observations within slices. Consider the model of the form

Y = f(β⊤x+ σǫ) (14)

where f is a strictly increasing link function, x ∼ N(µ,Σ), ǫ ∼ N(0, 1) and
σ ≥ 0. Before we move on, we will provide the form of bt for the model in (14)
under the assumption of a normal x; the proof can be found in Appendix C.

Corollary 4. For the model in (14) where f is a monotonic increasing link
function, x ∼ N(µ,Σ), ǫ ∼ N(0, 1) and σ ≥ 0, the OLS slope vector following
the discretization described in (13) is

bt = ctβ where ct =
1√

β⊤Σβ + σ2

H∑

h=1

Dh [φ(Zh−1)− φ(Zh)]

where Zj is the (j/H)× 100th percentile from the N(0, 1) distribution such that
P (Z ≤ Zj) = j/H for Z ∼ N(0, 1) and where φ denotes the standard normal
probability density function.

A simple choice for the Dh’s in (13) is to let Dh = h and for the Sh’s to
be chosen such that P (Y ∈ Sh) = 1/H . For now we will proceed with this
approach and refer to this transformation as H-fold equally weighted response
discretization. It should be noted for this transformation function, t depends on
F since the Sh’s depend on F . As such, when applied to Fǫ, the contamination
can affect a change in t through changes to the Sh’s. However, Corollary 3 holds
when Condition 1 holds.

Corollary 5. Suppose that (Y,x) ∼ F and where x ∼ Np(µ,Σ). Then, for t
being the discretization function described in (13) with Dh = h and ph = 1/H
for all h = 1, . . . , H (H-fold equally weighted response discretization),

E {ρF [t(Y ),x]} = (p− 1)

[
(H2 − 1)

12‖Σ1/2bt‖2
− 1

]

where bt is provided in Corollary 4 with each Dh replaced by h.

Proof. The proof is straightforward from Corollary 3 when noting that t(Y ) is
a discrete uniform random variable such that Var[t(Y )] = (H2 − 1)/12.

We now consider the effects ofH-fold equally weighted response discretization
on a general model with monotone link function. From Corollary 4, bt is a simple
expression in terms of the standard normal density and specific standard normal
percentiles that are dependent on H . When applying this result to Corollary 5,
it is possible to calculate the expected sensitivity E{ρF [t(Y ),x]}.

In Table 3 we present values of E{ρF [t(Y ),x]}/(p− 1) for the model in (14)
when x ∼ N(0, I), ǫ ∼ N(0, 1) and ‖β‖ = 1, for various choices of H and σ. For
the three choices of σ, E{ρF [t(Y ),x]}/(p−1) decreases with increasingH . Many
other choices ofH were also considered, each showing similar decreases although
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Table 3

Values of E{ρF [t(Y ),x]}/(p − 1) following H-fold equally weighted response discretization
for the model in (14) with various H and σ and with x ∼ N(0, I) and ‖β‖ = 1

σ = 0 H 2 5 10 20 50 100 500 1000
E [ρF (tF (Y ),x)]

(p − 1)
0.57 0.13 0.07 0.05 0.05 0.05 0.05 0.05

σ = 0.5 H 2 5 10 20 50 100 500 1000
E [ρF (tF (Y ),x)]

(p − 1)
0.96 0.41 0.34 0.32 0.31 0.31 0.31 0.31

σ = 1 H 2 5 10 20 50 100 500 1000
E [ρF (tF (Y ),x)]

(p − 1)
2.14 1.25 1.14 1.11 1.10 1.09 1.09 1.09

the difference became negligible for largerH . The limit of E{ρF [t(Y ),x]}/(p−1)
is unknown, however simulations suggest it should be very similar to that for
H = 1000. These results imply a reduction in estimator variability for this model
when H is chosen to be as large as possible. In practice when there are a finite
number of observed responses, n, this would suggest an n-fold discretization
such that each observed response is replaced with its respective rank. At F , the
rank transformation OLS slope is

bt = Σ−1cov [x, rank(Y )] . (15)

A benefit of the rank transformation least squares estimator in (15) is that
H does not need to be chosen. It should be noted that the rank transformation
has been widely considered and discussed with respect to OLS in the multi-
ple linear regression contex when response normality is violated. However, the
rank transformation in OLS here is simpler as it does not involve additional
complications to ensure that the unique β is estimated. For example, Cuzick
(1988) considers models of the form given in (14), where f−1 exists, with an
emphasis on one predictor variable, p = 1, but where extensions to p > 1 are
provided. The approach involves replacing the response with a score based on
rank and also requires estimation of f−1 to target the specific predictor coef-
ficient. Other approaches, such as R-estimates, again under the multiple linear
regression model (see, for e.g., Chapter 3 of Hettmansperger & McKean, 1998),
involve minimization over an objective function based on residuals and scores
of the ranks of residuals. Our approach in (15) is simple since (i) it requires no
knowledge of estimation of f , and (ii) given the ranks of the observed responses,
the estimate in practice exists in a simple closed form and does not require
computational minimization over an objective function.

Example 4.2. Recall the model in (3). Earlier we discussed how poorly OLS
estimated the direction of β when m was close to 3.25. We showed that OLS
without transformation was estimating the zero vector as opposed to the di-
rection of β for this m, causing the cor(Xβ,Xb̂)2 to decrease significantly. We
now demonstrate how discretization can result in a marked improvement to the
results. Here we consider the rank transformation with a large sample size of
n = 1000, thereby replacing all response values with their corresponding rank.
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Fig 4. Boxplots of cor(Xβ,Xb̂)2 for OLS (white boxes labelled OLS) and OLS following rank
transformation of the response (grey boxes labeled rank) for 1000 trials with n = 1000 for
Model 2.

Figure 4 compares the cor(Xβ,Xb̂)2 for 1000 simulated trials where b̂ has
been estimated by OLS with and without the rank transformation. The white
boxplots, like those in plot (b) of Figure 1, show the estimate of the direction β

deteriorating as m approaches 3.258 for standard OLS. However the grey box-
plots show that good results can be obtained in this vicinity of m using the rank
transformation. This does not necessarily mean that the rank transformation
works well for all m, since small correlation values now occur at approximately
3.75 whereas OLS without transformation performs typically well here. There-
fore, if both methods were used in practice, it is likely that one if not both
approaches would provide a good ESSP.

Example 4.3. For x = [X1, . . . , Xp]
⊤ ∼ N(µ,Σ), ǫ ∼ N(0, 1) consider the

Cubic, Y = (1 + b1β
⊤x + σǫ)3, and Exponential, Y = exp(1 + b1β

⊤x + σǫ),
models.

In Figure 5 we show plots of the expected influence for these models, with and
without the H-fold equally weighted response transformation. It is clear the ex-
pected influence decreases with the transformation, particulary for larger values
ofH . The exponential model is notably affected where the expected influence for
this model increases rapidly with increasing b1. The large H transformation sig-
nificantly decreases the influence of both models, indicating the transformation
is expected to improve the performance of OLS.

Our simulated results, shown in Figures 6 and 7, complement these findings.
It should be noted that for each simulation, x ∼ N(0, Ip) and β = [b1, 0, . . . , 0]

⊤,
where b1 ∈ R and p = 5. For simplicity we consider the rank transformation.
These boxplots show the cor(Xβ,Xβ̂)2 for 1000 simulated trials with 100 ob-
servations given by OLS with and without transformation for increasing values
of b1. Here we have three choices for σ to compare how these models are affected
by small and large amounts of error. These results demonstrate how estimation
has been improved, with rank transformation consistently giving better results
compared to general OLS. It is also clear how these boxplots correspond with
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Fig 5. Plots of E[ρb(Y,x)]/(p − 1) (red lines) and E[ρF (tF (Y ),x)] (blue lines) when Y =
(1+b1β⊤x+σǫ)3 and Y = exp(1+b1β⊤x+σǫ), with the E[ρF (tF (Y ),x)]/(p−1) at H = 2, 10
and 100.

the expected influence, with our correlation results resembling the trends shown
in Figure 5.

5. Discussion and further research

In this paper we have demonstrated how an influence diagnostic, similar to
the influence function (Hampel, 1974), can be used to assess performance of
OLS for single-index models. Importantly, we have shown how simple response
transformations can greatly improve OLS. This was done with respect to aver-
age influence under some proposed models and further highlighted with some
simulation studies. Although the log and response discretization transformations
were the focus of this paper in an application sense, the results themselves are
quite general and will be useful for further explorations. For example, the two
extensions below are currently being investigated as part of the lead author’s
doctorate studies:

• Recently, Prendergast & Sheather (2013) carried out a sensitivity study
of inverse response plot estimation and their simulation studies indicated
that robust M -estimators could provide improved estimates compared to
OLS even for normal data. The results of this paper can be used to theo-
retically compare inverse response plot estimators of the coefficient vector
for various response transformations. For example, the rank transforma-
tion should be well suited to this type of estimation and other linearization
transformations under assumptions such as normality are also being ex-
plored. This includes the performance of quantile transformations under
normality assumptions for x and include a sensitivity analysis when x is
non-normal.

• Li (1992) introduced a method call Principal Hessian Directions (pHd)
that can be used in the multiple index setting allowing for more than
one direction. As with OLS, very large or small observed values for the
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Fig 6. Boxplots of cor(Xβ,Xb̂)2 where Y = (1+ b1β⊤x+σǫ)3 for OLS (white boxes labeled
OLS) and OLS following rank response transformation (grey boxes labeled rank), for 1000
trials with n = 100 and three choices of σ.

response can have a large influence on estimation. In developing the work
seen here, we are extending the theory to allow pHd to be used. Response
transformations, such as those studied in this paper, are currently being
considered as part of the first author’s PhD dissertation.

To summarize, since response transformations still allow OLS to be used
for single-index models with exploration sill on the original response scale, we
recommend routinely considering response transformations in this setting. The
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Fig 7. cor(Xβ,Xb̂)2 where Y = exp(1+b1β⊤x+σǫ) for OLS (white boxes labeled OLS) and
OLS following rank response transformation (grey boxes labeled rank), for 1000 trials with
n = 100 and three choices of σ.

response transformations we considered can be easily implemented in any sta-
tistical software package and can yield big improvements to estimation.
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Appendix A

Although F is a joint distribution function for (Y,x), for simplicity throughout
we take Y ∼ F to mean Y distributed according to its marginal distribution
from F . This simplicity is also carried out for x and similarly for Fǫ.

A.1. Proof of Theorem 1

Recall b(F ) = b and let b(Fǫ) = bǫ be the perturbed equivalent at Fǫ. For sim-
plicity let cǫ = cor2(b⊤x,b⊤

ǫ x) and let c′ǫ, c
′′
ǫ be the first and second derivatives

of cǫ with respect to ǫ. Furthermore, let c′0, c
′′
0 be these derivatives at ǫ = 0. The

power series expansion for cǫ, where x ∼ F , is

cǫ =1 + ǫc′0 + ǫ2c′′0/2 +O(ǫ3). (16)

For cov(x) = Σ and using the Product Rule,

c′ǫ =
1

b⊤Σb

[
∂

∂ǫ

(
b⊤Σbǫ

)2

b⊤
ǫ Σbǫ

+
1

b⊤
ǫ Σbǫ

∂

∂ǫ

(
b⊤Σbǫ

)2
+
(
b⊤Σbǫ

)2 ∂

∂ǫ

1

b⊤
ǫ Σbǫ

]
.

(17)

Let the power series for bǫ be b+ ǫb1 + ǫ2b2/2+O(ǫ3) where b1 and b2 are
the first and second order derivatives of bǫ at ǫ = 0. Then b⊤Σbǫ = b⊤Σb +
ǫb⊤Σb1+ ǫ2b⊤Σb2/2+O(ǫ3) and b⊤

ǫ Σbǫ = b⊤Σb+2ǫb⊤Σb1+ ǫ2(b⊤Σb2+
b⊤
1 Σb1). Using the Chain Rule,

{
∂
(
b⊤Σbǫ

)2
/∂ǫ

}∣∣∣
ǫ=0

=
[
2b⊤Σbǫ

{
∂b⊤Σbǫ/∂ǫ

}]∣∣
ǫ=0

= 2(b⊤Σb)(b⊤Σb1).

Similarly {∂(b⊤
ǫ Σbǫ)

−1/(∂ǫ)}|ǫ=0 = −2b⊤Σb1/(b
⊤Σb)2 so that, from (17),

c′0 =
1

(b⊤Σb)
2

∂

∂ǫ

(
b⊤Σbǫ

)2
∣∣∣∣
ǫ=0

+
(
b⊤Σb

) ∂

∂ǫ

1

(b⊤
ǫ Σbǫ)

∣∣∣∣
ǫ=0

= 0. (18)

From (17), using the Product Rule,

c′′0 =
(
b⊤Σb

) ∂2

∂ǫ2
1

(b⊤
ǫ Σbǫ)

∣∣∣∣
ǫ=0

+
1

(b⊤Σb)
2

∂2

∂ǫ2
(
b⊤Σbǫ

)2∣∣∣
ǫ=0

+
2

(b⊤Σb)

[
∂

∂ǫ

1

(b⊤
ǫ Σbǫ)

∣∣∣∣
ǫ=0

]
∂

∂ǫ

(
b⊤Σbǫ

)2
∣∣∣∣
ǫ=0

. (19)

From the expansion for b⊤Σbǫ prior to (18), we have (b
⊤Σbǫ)

2 = (b⊤Σb)2+
2ǫ(b⊤Σb)(b⊤Σb1) + ǫ2[(b⊤Σb1)

2 + (b⊤Σb)(b⊤Σb2)] +O(ǫ3). Hence,

{
∂2

(
b⊤Σbǫ

)2
/(∂ǫ2)

}∣∣∣
ǫ=0

= 2
[(
b⊤Σb1

)2
+
(
b⊤Σb

) (
b⊤Σb2

)]
.
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Similarly, the Chain Rule and Product Rule give

∂2

∂ǫ2
1

b⊤
ǫ Σbǫ

∣∣∣∣
ǫ=0

=

{
2

(b⊤
ǫ Σbǫ)

3

[
∂

∂ǫ
b⊤
ǫ Σbǫ

]2
−

1

(b⊤
ǫ Σbǫ)

2

∂2

∂ǫ2
(
b⊤
ǫ Σbǫ

)
}∣∣∣∣∣

ǫ=0

=8

(
b⊤Σb1

)2

(b⊤Σb)
3 − 2

b⊤Σb2

(b⊤Σb)
2 − 2

b⊤
1 Σb1

(b⊤Σb)
2 .

Using these results (19) simplifies to, noting that b⊤Σb1 = b⊤
1 Σb,

c′′0 =
2

(b⊤Σb)

[(
b⊤Σb1

)2

(b⊤Σb)
−
(
b⊤
1 Σb1

)
]
=

2

(b⊤Σb)
b⊤
1 Σ

1/2 (P− Ip)Σ
1/2b1

(20)

where P = Σ1/2bb⊤Σ1/2/(b⊤Σb). The proof is complete by noting that b1 =
IF(b, F ; y0,x0) where (see, for e.g., page 243 of Staudte & Sheather, 1990),
IF(b, F ; y0,x0) = r0Σ

−1(x0−µ) and by noting that, since Ip−P is idempotent,

(x0 − µ)⊤Σ−1/2 (P− Ip)Σ
−1/2(x0 − µ) = −‖ (Ip −P)Σ−1/2(x0 − µ)‖2.

A.2. Proof of Corollary 3

Let t and tǫ denote the response transformation functions for Y ∼ F and Y ∼ Fǫ

respectively. Furthermore, let T denote the predictor vector mean functional
where, at an arbitrary G, EG(x) = T (G) =

∫
xdG. It is straightforward to

show that T (Fǫ) = (1− ǫ)µ+ ǫx0. Consequently,

covFǫ
[tǫ(Y ),x] =

∫
tǫ(Y ) [(x− µ)− ǫ(x0 − µ)] dFǫ

=(1− ǫ)covF [tǫ(Y ),x]− ǫ(x0 − µ)

∫
tǫ(Y )dF

+ ǫ

∫
tǫ(Y )(x − µ)d∆(y0,x0) +O(ǫ2). (21)

Note covF [tǫ(Y ),x] = dǫΣβ for a dǫ ∈ R when the model in (2) and Condi-
tion 1 hold. Under these conditions, (21) may be rewritten as

covFǫ
[tǫ(Y ),x] = dǫΣβ−ǫ(x0−µ)

∫
tǫ(Y )dF+ǫ

∫
tǫ(Y )(x−µ)d∆(y0,x0)+O(ǫ2).

(22)
Let bt be the OLS slope functional with respect to a transformed response

(t(Y ) at F or tǫ(Y ) at Fǫ). Also, let C denote the functional for the usual
estimator of the covariance of x. Then bt(Fǫ) = [C(Fǫ)]

−1covFǫ
[tǫ(Y ),x] so

that, by using the Product Rule,

IF(bt, F ; y0,x0) =
∂

∂ǫ
bt(Fǫ)

∣∣∣∣
ǫ=0

=

{
∂

∂ǫ
[C(Fǫ)]

−1

∣∣∣∣
ǫ=0

}
CovF [t(Y ),x]

+Σ−1 ∂

∂ǫ
covFǫ

[tǫ(Y ),x]

∣∣∣∣
ǫ=0

. (23)
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Using the Chain Rule, it can be shown the partial derivative involving C(Fǫ)
in the first term of (23), evaluated at ǫ = 0, is equal to −Σ−1IF(C,F ;x0)Σ

−1.
Also let d′0 be the derivative of dǫ evaluated at ǫ = 0. Using this, the fact that
bt = Σ−1covF [t(Y ),x] and (22), then (23) reduces to

IF(bt, F ; y0,x0) =d′0β −Σ−1IF(C,F ;x0)bt +
[
t(y0)− µt(Y )

]
Σ−1(x0 − µ).

Now, IF(C,F ;x0) = (x0−µ)(x0−µ)⊤−Σ (see, for e.g., Critchley, 1985) which
gives

IF(bt, F ; y0,x0) =d′0β − bt +
[
t(y0)− µt(Y ) − b⊤

t (x0 − µ)
]
Σ−1(x0 − µ). (24)

From this point the proof is identical as to that for Theorem 1 but with
b1 = IF(bt, F ; y0,x0) instead of IF(b, F ; y0,x0) when the model in (2) and Con-
dition 1 hold due to the following. In (20) of the proof for Theorem 1, when the
aforementioned conditions hold, P is a projection matrix onto the space spanned
by Σ1/2β. Subsequently, Ip−P projects onto the orthogonal complement of this
space so that, from (24),

(Ip −P)Σ1/2b1 = (Ip −P)Σ1/2IF(bt, F ; y0,x0) = rt,0(Ip −P)Σ−1/2(x0 − µ)

for rt,0 = [t(y0) − µt(Y ) − b⊤
t (x0 − µ)]. Hence, form this point the result is in

the same form as that for usual OLS but under a transformed response with
the transformation function chosen at F . This completes the proof.

Appendix B: Proofs for results in Section 4.1

Using various integration laws and Stein’s Lemma (Stein, 1981), it is simple
to derive the two influence measures shown in (11) and (12). Let φ denote the
density function for the standard normal and Z = β⊤Σ−1/2(x − µ) such that
Z ∼ N(0, 1). Then for some function g and noting Z and ǫ are independent,

E[g(Z)] =

∫ ∫
g(Z)φ(Z)φ(ǫ)dZdǫ.

For Y as in (10), Var(Y ) = a2b0 exp[ln(a)2(b21 + σ2)]{exp[ln(a)2(b21 + σ2)] − 1}.
Using Stein’s Lemma, Cov(Y, Z) = b1 ln(a)a

b0 exp{ 1
2 [ln(a)]

2(b21 + σ2)}. Since

‖Σ1/2b‖2 = Cov(Y, Z)2, using Corollary 2 gives E[ρb(Y,x)] shown in (11).
For the log transformation, E[tF (Y )] = b0 log(a), E[tF (Y

2)] = [log(a)]2(b20 +
b21+σ2) and Var[tF (Y )] = [log(a)]2(b21+σ2). Stein’s lemma gives Cov(t(Y ), Z) =
b1 log(a). Using these in Corollary 3 gives E[ρlogtF (Y )].

Appendix C: Proof of Corollary 4

For x ∼ N(µ,Σ), ǫ ∼ N(0, 1) with ǫ independent of x, and β⊤x + σǫ ∼

N(β⊤µ,β⊤Σβ + σ2). Let S∗
h = [q∗h−1, q

∗
h) where q∗j is the

∑j
h=1 phth quartile
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of N(β⊤µ,β⊤Σβ + σ2) and let Zj denote the
∑j

h=1 phth quartile for N(0, 1).
Then

E(β⊤x+ σǫ | β⊤x+ σǫ ∈ S∗
h) =

√
β⊤Σβ + σ2E(Z | Z ∈ [Zh−1, Zh)) + β⊤µ.

(25)
Since β⊤µ and σǫ are independent normal random variables, it follows that

E(β⊤x | β⊤x+ σǫ) = β⊤µ+
β⊤Σβ

β⊤Σβ + σ2
(β⊤x+ σǫ− β⊤µ). (26)

See page 290 of the Handbook of the Normal Distribution (Patel & Read, 1982).
Recall the response discretization transformation in (13). Now since Y =

f(β⊤x+ σǫ) where f is strictly increasing, then t(Y ) can be re-expressed as

t(Y ) =





D1, β⊤x+ σǫ ∈ S∗
1 ;

D2, β⊤x+ σǫ ∈ S∗
2 ;

...
...

DH , β⊤x+ σǫ ∈ S∗
H .

(27)

Using (25) and (26), where φ is the density function for the standard normal

β⊤Cov[x, t(Y )] =

H∑

h=1

phDh{E[E(β⊤x | β⊤x+ σǫ) | β⊤x+ σǫ ∈ S∗
h]− β⊤µ}

=
β⊤Σβ√

β⊤Σβ + σ2

H∑

h=1

Dh{φ(Zh−1)− φ(Zh)}. (28)

Note that bt = ctβ = Σ−1Cov[x, t(Y )] so that pre-multiplying both sides by
β⊤Σ gives β⊤Σbt = ctβ

⊤Σβ = β⊤Cov[x, t(Y )]. Therefore from (28) we find

ct =
1√

β⊤Σβ + σ2

H∑

h=1

Dh{φ(Zh−1)− φ(Zh)}. (29)
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