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Abstract: False Discovery Rate (FDR) and the Bayes risk are two dif-
ferent statistical measures, which can be used to evaluate and compare
multiple testing procedures. Recent results show that under sparsity FDR
controlling procedures, like the popular Benjamini-Hochberg (BH) proce-
dure, perform also very well in terms of the Bayes risk. In particular asymp-
totic Bayes optimality under sparsity (ABOS) of BH was shown previously
for location and scale models based on log-concave densities. This article
extends previous work to a substantially larger set of distributions of effect
sizes under the alternative, where the alternative distribution of true sig-
nals does not change with the number of tests m, while the sample size n
slowly increases. ABOS of BH and the corresponding step-down procedure
based on FDR levels proportional to n−1/2 are proved. A simulation study
shows that these asymptotic results are relevant already for relatively small
values of m and n. Apart from showing asymptotic optimality of BH, our
results on the optimal FDR level provide a natural extension of the well
known results on the significance levels of Bayesian tests.
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ery rate, multiple testing, two groups model.

Received December 2012.

1. Introduction

Driven by a vast number of applications, over the last few years multiple hypoth-
esis testing with sparse alternatives has become a topic of intensive research (see
[1, 9, 12, 13, 24] or [31]). As a result of this interest many new multiple testing
procedures have been proposed, which can be compared according to several
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different optimality criteria. In the classical context, a multiple testing proce-
dure is considered to be optimal if it maximizes the number of true discoveries,
while keeping one of the type I error measures (like Family Wise Error Rate,
False Dicovery Rate or the expected number of false positives) at a certain fixed
level (see [10, 19, 23, 30, 34, 36, 41] or [42]). A different notion of optimality
is proposed in [38] and [6], which investigate multiple testing procedures in the
context of minimizing the Bayes risk.

The frequentist measures of accuracy for multiple testing procedures, like
the False Discovery Rate (FDR) or the Family Wise Error Rate (FWER), are
seemingly very different from the Bayes risk. Nevertheless several papers (see
e.g. [4, 5] or [21]) reported that under sparsity (i.e. when the proportion p of
alternatives among all tests is small) the popular Benjamini-Hochberg procedure
(BH, [2]) has very good properties with respect to minizing the Bayes risk
under 0-1 loss. These empirical findings have been confirmed by the theoretical
results reported in [6] and [33], where BH is proved to have some asymptotic
optimality properties with respect to minimizing the Bayes risk under sparsity.
These results complement findings of [1], where it is shown that the estimator
of the vector of means based on the hard-thresholding rule, with cutoff values
provided by BH, is asymptotically minimax under sparsity.

Asymptotic results of [6] are concerned with testing hypotheses about means
of normal distributions, where the true means under the alternative have a
normal distribution with a standard deviation slowly increasing with m. These
results were further extended in [33] to a very general class of location and scale
models. While the results of [33] are of substantial theoretical value, in practical
applications it is perhaps too limiting to consider test statistics whose marginal
distribution under the alternative differs from the null distribution only by a
location or a scale parameter. In this article we present an extension of [6]
which we believe to be of more practical relevance than the setting discussed
in [33].

To motivate our proposed model we want to look at two examples from
statistical genetics. First consider a rather simple two groups model for RNA
micro-array data given in (3.11) of [16]. Each test statistic is assumed to have
a normal distribution N(µi, σ

2), which typically can be justified by the Central
Limit Theorem. Furthermore it is assumed that only a very small proportion p
of the true means µ1, . . . , µm are different from zero, and that their conditional
distribution can be described by a normal distribution N(µ0, σ

2
0). It follows that

the marginal distribution of test statistics under the alternative are N(µ0, σ
2 +

σ2
0), which differs from the null distribution N(0, σ2) both by a location and a

scale parameter. Thus even this simple example goes beyond the framework of
[33], where tests for the difference in only one of these parameters are considered.

A second example are genetic association studies, where it is quite com-
mon that effect sizes are modelled by exponential or Laplace distributions. For
example in the model of [32] the effect sizes of causative SNPs are Laplace,
while the environmental effects are normal, corresponding exactly to our set-
ting. The marginal distribution under the alternative is thus the convolution of
a Laplace and a normal distribution while the null distribution is again normal,
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which again places this practically important example out of the class of models
treated in [33].

In this article we will consider only testing the point null hypotheses that
µi = 0. This is less general than the normal scale mixture model from [6], where
µ was allowed to be normally distributed with small variance under the null
hypothesis. However, this restriction can be justified in many applications. For
example whenever it is assumed in statistical genetics that disease characteristic
phenotypes are influenced only by a small number of genes, then the restriction
to point null hypotheses is legitimate. Considering point null hypotheses further-
more allows nontrivial asymptotic inference (which means positive asymptotic
power) when keeping the distribution of true effects under the alternative fixed
while increasing the number of tests. This assumption, natural in many practical
applications, substitutes the assumptions of [6] and [33], where the magnitude
of true effects increases with the number of tests.

We believe that both assumptions, increasing the effect size and increasing
the sample size, are relevant in certain practical situations. For example in RNA
micro-array experiments the sample size is often rather small, while effect sizes
are believed to be quite large, which relates to the asymptotic analysis of [6] and
[33]. On the other hand in association studies it is common to collect data from
very large samples just to be able to detect relatively moderate effect sizes. For
instance in genome wide association studies one typically has samples of size
n > 1000, while the number of genetic markers is m > 106. On the other hand
the number of markers k which are actually expected to be associated with
the trait in question is usually considered to be rather moderate, like k < 100.
Then for the proportion of markers under the alternative hypothesis it holds
that p < 10−4. These figures motivate an asymptotic scheme where the number
of tests m goes to infinity, while the sample size n = nm increases at a slower
rate, and p = pm converges to 0.

From a mathematical point of view, the major contribution of the present
article is the extension of the results of [6] to cover a wide range of distributions of
effect sizes µi under the alternative. The technical details on the class of feasible
distributions are provided in Assumption (B), which includes for example all
distributions with positive density over the real line. The main mathematical
challenge is that one no longer obtains closed form expressions for the critical
values of the Bayes rule. The rather elaborate asymptotic analysis which is then
necessary to obtain approximate formulas of the Bayes risk uses some techniques
introduced in [25].

We will develop the asymptotic theory under the general condition that p →
0, but to explain the main message of this article we summarize here the results
for the special case where p ∝ m−β , with β ∈ (0, 1]. We will see that in this
scenario nontrivial asymptotic inference is possible only for n converging to
infinity at least at a rate n ∝ logm. In terms of applications this allows the
number of tests to be much larger than the sample size, like for example in
genome wide association studies.

Asymptotic Bayes optimality under sparsity (ABOS) depends on the loss
function under which the Bayes risk is computed. We consider a generalized 0-1
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loss, and define δ as the ratio of losses between type I and type II errors. Our
main result is concerned with BH which controls FDR at the nominal level α.
When the loss ratio δ is kept fixed, and if α converges to 0 at a rate which is
roughly proportional to n−1/2, then BH is ABOS for any β ∈ (0, 1]. In that
sense BH adapts well to any unknown level of sparsity.

Apart from BH we also consider the Bonferroni procedure which controls
FWER at the nominal level α. Under the conditions on α which yield ABOS
of BH, it turns out that the Bonferroni rule is ABOS only for the extremely
sparse case β = 1 (which means that p ∝ 1/m). We will furthermore illustrate
some situations where the Bonferroni rule is optimal when β < 1, but then the
nominal level α depends on β. Thus in contrast to BH the Bonferroni rule does
not adapt well to an unknown level of sparsity.

Apart from these theoretical findings, we report the results of an extensive
simulation study, comparing the performance of BH, Bonferroni correction and
a multiple testing procedure based on the empirical Bayes estimate proposed in
[26]. The study shows that our asymptotic results are relevant already for quite
moderate values of m and n.

The rest of the paper is organized as follows. In Section 2 we present our
statistical model, asymptotic assumptions and Theorem 2.2, which provides
the conditions under which fixed threshold multiple testing rules are ABOS.
The resulting Corollary 2.2 shows that the universal threshold 2 logm of [14] is
ABOS in the extremely sparse case p ∝ m−1 and for sample size n satisfying
logn = o(logm). The most important theorems on multiple testing are given
in Section 3. Specifically, Theorem 3.2 specifies the conditions under which BH
and its corresponding step down procedure are ABOS, while Theorem 3.3 gives
respective conditions for the Bonferroni correction. The results of the simula-
tion study are presented in Section 4. Finally, Section 5 summarizes our results
and discusses the directions for future work. Most of the technical proofs have
been put in the Appendix, which also includes a discussion on the relationship
between rules controlling the Bayesian False Discovery Rate (BFDR) and the
Bayes classifier.

2. Asymptotic Bayes optimality of multiple testing rules with fixed
threshold

2.1. Statistical model

Consider a set of m normal populations N (µi, σ
2), i = 1, . . . ,m. We are in-

terested in testing point null hypotheses H0i : µi = 0 against the alternatives
HAi : µi 6= 0, based on simple random samples Xi = (X1i, . . . , Xni) of size n
from each of these populations. The effects under study µi are supposed to be
independent and identically distributed according to a mixture distribution

νmix = (1− p)d0 + pν , (2.1)

where d0 is the Dirac measure at 0, ν is a probability measure on the real
line describing the distribution of µi under the alternative, and p ∈ (0, 1) is
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the proportion of alternatives among all tests. Since ν describes the alternative
distribution of the different µi, we assume that ν({0}) = 0. Furthermore both
positive and negative values of µi should be possible, that is

ν(−∞, 0) > 0 and ν(0,∞) > 0 . (2.2)

From (2.1) it easily follows that the marginal distribution of the sample mean
X̄i =

1
n

∑n
j=1 Xji is the mixture

X̄i ∼ (1− p)N (0, σ2/n) + p
(

ν ∗ N (0, σ2/n)
)

, (2.3)

where the pdf of the second measure is computed by convolution of ν and
N (0, σ2/n).

Remark 2.1. To reduce the complexity of notation we assume that the popu-
lation variances σ2

i are the same for every i. However, the results on asymptotic
optimality presented in this article hold also if the sequence of possible different
variances σ2

i ∈ (0,∞) satisfies lim infi→∞ σ2
i > 0 and lim supi→∞ σ2

i < ∞.

Remark 2.2. Note that for sufficiently large n the assumption that X̄i|µi ∼
N(µi, σ

2
i /n) can be justified by the Central Limit Theorem, even when the

conditional distribution of Xi|µi is not normal. According to [17], under weak
assumptions on the moments of the distribution of Xi|µi, the level of the si-
multaneous tests based on the t-test statistics

√
n(X̄i|µi − µi)/σ̂i is accurate

provided logm increases at a strictly slower rate than n1/3. Based on these find-
ings we expect that under similar assumptions our asymptotic results can be
generalized to the case where the distribution of Xi|µi is not normal and the
variances σ2

i are estimated separately for every i. This is partially confirmed
by our simulation study, which illustrates the performance of BH based on the
t-statistics, with σi estimated separately for each i.

2.2. Asymptotic framework and the power of the Bayes oracle

Our decision theoretic framework for multiple testing is based on a generaliza-
tion of the standard 0-1 loss. There are m decisions to be made. For each false
rejection (type I error) we assign a loss of δ0, and for missing a true signal (type
II error) a loss of δA. The total loss of a multiple testing procedure is then de-
fined as the sum of losses for individual tests. The total loss is clearly minimized
by applying the Bayes classifier to each individual test, the decision rule which
was called Bayes oracle in [6].

As noted in [25], if p ∈ (0, 1) then for any measure ν satisfying (2.2) and
sufficiently large n, the Bayes classifier chooses H0i if X̄i ∈ (an, bn), where the
critical values an and bn are uniquely defined by

an < 0 < bn

(1 − p)δ0 = p δA

∫

R

exp

(

n(an
µ

σ2
− µ2

2σ2
)

)

dν(µ) , (2.4)

(1 − p)δ0 = p δA

∫

R

exp

(

n(bn
µ

σ2
− µ2

2σ2
)

)

dν(µ) .
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Equivalently one can work with the scaled test statistics Zi =
√
n
σ X̄i, for which

the critical values ca :=
√
n
σ an and cb :=

√
n
σ bn of the Bayes rule are given by

the equations

ca < 0 < cb

(1− p)δ0e
−c2a/2 = p δA

∫

R

exp

(

−1

2

[

ca −
√
n

σ
µ

]2
)

dν(µ) , (2.5)

(1− p)δ0e
−c2b/2 = p δA

∫

R

exp

(

−1

2

[

cb −
√
n

σ
µ

]2
)

dν(µ) .

All the results in the main text will be presented at the scale of the test statistics,
that means in terms of ca and cb. However, some of the technical proofs in the
appendix are more conveniently stated working with (2.4).

As explained in the Introduction, our asymptotic scheme which is motivated
for example by genetic association studies assumes that the number of tests m
goes to infinity, while the sample size n = nm increases at a slower rate, and
p = pm converges to 0. From now on sequences will be indexed with m, but one
has to be aware that m → ∞ will also imply that n → ∞ and p → 0.

Also, in our analysis we are mainly interested in the situation where the
loss ration δ = δ0/δA is kept constant, which directly relates to the risk based
on misclassification loss. However, we also consider the situation when δ = δm
slowly converges to zero, such that log δ = o(log p). This allows us in Theorem
3.2 to obtain optimality results for multiple testing rules at a constant nominal
FDR level α.

We will focus on an asymptotic scenario under which nontrivial asymptotic
inference is possible. Specifically, we concentrate on the situation where the
optimal Bayes rule has non-vanishing asymptotic power. As shown in the proof
of Theorem 2.1 the power of the Bayes rule diminishes when p is getting smaller,
which will be balanced by increasing the sample size. Lemma 2.1 shows that
nontrivial asymptotic inference is possible only if the sequence log p

n remains
bounded.

Lemma 2.1. Assume that the distribution ν of true signals under the alterna-
tive is such that ν(0,∞) > 0 and ν(−∞, 0) > 0. Moreover, assume that p = pm
converges to zero and that the loss function satisfies log δ = o(log p). Then the
asymptotic power of the Bayes classifier is positive only if the sequence log p

n
remains bounded.

Proof. The proof is given in Section A of the Appendix.

Remark 2.3. We will see later that under the conditions of Theorem 2.1 it
actually holds that the asymptotic power of the Bayes classifier is positive if
and only if the sequence log p

n remains bounded. However, at this point the
Lemma mainly serves as a motivation for the asymptotic framework adopted in
Assumption (A).
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Corollary 2.1. Assume that the distribution ν of true signals under the al-
ternative is such that ν(0,∞) > 0 and ν(−∞, 0) > 0. Moreover, assume that
p ∝ m−β for some β > 0 and that the loss function satisfies log δ = o(logm).
Then the asymptotic power of the Bayes classifier is positive only if the sequence
logm
n remains bounded.

Remark 2.4. Corollary 2.1 specifies the relationship between the number of
tests and the sample size under which the asymptotic power of the Bayes clas-
sifier does not vanish in the limit. Similar conditions appear quite often in the
literature on high dimensional inference. For an example in the context of mul-
tiple testing see [17] as discussed in Remark 2.2. Similarly, in the context of
model selection the popular Lasso [43] has asymptotically optimal tuning pa-
rameter λ ∝

√

logm/n, where m is the total number of regressors. As discussed
in [8] Lasso is consistent if the vector of true regression coefficients satisfies
‖β‖1 = o(

√

n/ logm). So, if ‖β‖1 stays constant then for consistency one needs
logm
n → 0.

Motivated by the above considerations we will investigate the performance
of the multiple testing rules under the following asymptotic assumption.

Assumption (A): p → 0, δ is bounded from above and such that log δ =
o(log p) and −2 log p

n → C, where 0 ≤ C < ∞.

The second set of assumptions used throughout this paper imposes a mild
restriction on the measure ν.

Assumption (B): Let T := σ
√
C, where C is the constant defined in As-

sumption (A). Assume that there exists ǫ > 0 such that ν has a positive
bounded density ρ with respect to the Lebesgue measure on [−T−ǫ,−T+ǫ] and
[T − ǫ, T + ǫ]. In case of C = 0 it is further assumed that ρ(0−) := limµ↑0 ρ(µ)
and ρ(0+) := limµ↓0 ρ(µ) both exist and are finite and positive.

Remark 2.5. In principle this assumption requires only that the measure ν
has a positive density in the neighborhood of one or two points, depending on
the constant C specified in Assumption (A). Thus it is for example satisfied
whenever ν has a positive, bounded density on the real line. Note that in case
when C = 0 the Assumption (B) is satisfied whenever ν has a positive density
at µ = 0 (i.e. very small signals are probable).

Using the techniques from [25] it can be shown that under Assumptions (A)
and (B) the threshold values of the Bayes oracle satisfy

ca = −
√

log v (1 + om) and cb =
√

log v (1 + om) , (2.6)

where v := nδ2/p2 (the formula is derived in Section B of the Appendix).

The risk for a multiple testing rule is computed under the additive loss of
individual tests simply as the sum of the risks of individual tests. A multiple
testing rule using for given m the same critical values for all m test statistics
will be called henceforth a fixed threshold rule. Typically the acceptance region
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of such a rule will be an interval of the form

(c̃a, c̃b) =

(√
nãm
σ

,

√
nb̃m
σ

)

, (2.7)

where c̃a, c̃b are the critical values for the scaled test statistics Zi, and ãm, b̃m
are the critical values for the empirical means X̄i.

Note that for the specified mixture model (2.3) type I error rates t1 and type
II error rates t2 of fixed threshold rules are identical for each individual test.
The corresponding risk is therefore defined as

R = R1 +R2 = m(1− p)t1δ0 +mpt2δA . (2.8)

In the following theorem we provide the asymptotic risk Ropt of the Bayes oracle.

Theorem 2.1. Under Assumptions (A) and (B) the risk obtained by the Bayes
rule (2.4) takes for C = 0 the form

Ropt = mpδAσ

√

log v

n

(

ρ(0−) + ρ(0+)
)

(1 + om) (2.9)

whereas for 0 < C < ∞

Ropt = mpδA ν(−T, T )(1 + om) . (2.10)

Proof. The proof combines techniques of [25] and [6], and is given in Section C
of the Appendix.

Remark 2.6. Similarly as in [6], the asymptotics of the optimal Bayes risk is
determined by the cost associated with the Type II error. From the proof of
Theorem 2.1 it immediately follows that the Bayes rule has asymptotic power
1− ν(−T, T ).

Remark 2.7. In a setting of sparsity one might consider the question how the
trivial rule of not rejecting any hypothesis performs. This procedure has the risk
R0 = mpδA, which in case of C > 0 can be rewritten as R0 =

Ropt

ν(−T,T ) (1 + om).

Therefore when the asymptotic power of the Bayes rule is close to zero the
trivial rule is doing almost as well as the Bayes rule, and it will be difficult
for any other statistical procedure to perform reasonably well. From a practical
perspective the following results for C > 0 are therefore more meaningful when
the asymptotic power of the Bayes rule is sufficiently larger than zero.

2.3. Asymptotic Bayes optimality under sparsity

The Bayes classifier defined in (2.4) and in (2.5) requires the full knowledge
of the mixture distribution. Since this information is usually not available, in
practice one needs to consider other multiple testing rules. This section provides
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a theorem characterizing the set of fixed threshold rules, which asymptotically
attain the optimal risk.

Definition. A multiple testing rule is called asymptotically Bayes optimal
under sparsity (ABOS) if its risk R satisfies R

Ropt
→ 1 under Assumption (A).

Theorem 2.2. Consider the fixed threshold testing rule which accepts H0i if
and only if Zi ∈ (c̃a, c̃b), with c̃a < 0 and c̃b > 0. Under Assumptions (A) and
(B) this rule is ABOS if and only if

c̃a = −
√

log v + za and c̃b =
√

log v + zb (2.11)

where
za = o(log v) , zb = o(log v) , (2.12)

and
lim

m→∞
za + 2 log log v = ∞ , lim

m→∞
zb + 2 log log v = ∞ . (2.13)

The proof is provided in Section D of the Appendix.

The following corollary gives a simple multiple testing rule, which is asymp-
totically optimal in case of extreme sparsity, where the number m of tests in-
creases to infinity, but the expected number of true signals mp remains constant
or increases only very slowly with m.

Corollary 2.2. If for n = nm the extreme sparsity assumption

mp → s ∈ (0,∞],
log(mp)

log(n/p2)
→ 0 , (2.14)

is fulfilled, then thresholds of the form

c̃a = −
√

log(nm2) + da, c̃b =
√

log(nm2) + db, da, db ∈ R, (2.15)

yield multiple testing rules which are ABOS.
If additionally logn = o(logm) then the universal threshold of [14]

c̃2a = c̃2b = 2 logm+ d, d ∈ R (2.16)

is ABOS.

Proof. Simply observe that z1 = log(nm2) + d and z2 = 2 logm + d fulfill the
requirements of Theorem 2.2 under the assumption of the corollary.

Remark 2.8. Corollary 2.2 states that under extreme sparsity and when logn =
o(logm) the universal threshold 2 logm of [14] is ABOS. However, when logn
increases to infinity at least at the rate logm then the universal threshold needs
to be supplemented by the logn term to preserve its ABOS property. Simi-
lar criteria in the context of model selection in multiple regression have been
proposed and discussed e.g. in [22, 3] and [7].
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3. ABOS of some popular multiple testing rules

In this Section we will present the main results of this article: First we give con-
ditions under which the FDR controlling procedure BH and its corresponding
step down procedure SD at nominal FDR level α are ABOS. Then we will con-
sider the Bonferroni correction at nominal FWER level α. Specifically ABOS of
BH and SD is derived under the following Condition (Op) on α:

Condition (Op): α → α∞ < 1, logα
n → 0 and

α =
v1/(2(zm−1))

p
with zm → 0 and zm log v + log log v → ∞ . (3.1)

This condition is necessary and sufficient for the asymptotic optimality of
rules based on the Genovese-Wasserman approximation to BH (see Theorem
3.1), and of fixed threshold rules controlling the Bayesian False Discovery Rate,
which are discussed in Section E of the Appendix. In Theorem 3.2 Condition
(Op) is sufficient for ABOS of BH and SD.

Condition (Op) is rather technical and not so easy to interpret. However, we
decided to leave it in this form since it encompasses several important and sim-
ple examples, formulated in the corollaries after Theorem 3.2. To get a better
understanding of the meaning of Condition (Op) consider the following conse-
quences which are easy to check (it is always assumed that Assumption (A)
holds):

a) Condition (Op) is satisfied if α ∝ n−1/2. Simply set zm = 0.
b) Condition (Op) cannot be fulfilled when both α = const and δ = const.
c) If n ∝ − log p and δ → 0 under the restrictions of Assumption (A), then

Condition (Op) is satisfied for α = const.
d) If n ∝ − log p and δ = const, then Condition (Op) is satisfied for α → 0

such that logα = o(log p).

Assertion a) delivers perhaps the most important consequence, that our op-
timality results will hold for nominal levels α ∝ n−1/2. Assertions c) and d)
are concerned with signals being at the verge of detectability, where it is pos-
sible to get optimality for constant α, but only when letting δ getting smaller
with growing m. From a practical perspective this is quite reasonable. It means
that the relative cost of missing a true signal is increased when the signals be-
come more sparse. If one wants to consider only δ = const, which includes the
simple misclassification rate, then the last assertion states that at the verge of
detectability it is possible to attain optimality for α → 0 at a rate which is
substantially slower than α ∝ n−1/2.

3.1. FDR controlling procedures

The Benjamini–Hochberg rule [2], which we will also call step-up FDR control-
ling procedure, is defined as follows: Denote the ordered p-values pi of the scaled
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test statistics Zi as p[1] ≤ p[2] ≤ · · · ≤ p[m]. For the step-up procedure at the
FDR level α compute

kF := max

{

i : p[i] ≤
iα

m

}

(3.2)

and reject the kF hypotheses with p-values smaller or equal p[kF ].
In our asymptotic analysis we will also consider the corresponding step-down

procedure (SD) at level α. For this one needs to compute

kG := min

{

i : p[i] >
iα

m

}

(3.3)

and reject the kG − 1 hypotheses with p-values smaller than p[kG]. It is known
that under sparsity both procedures behave very similar (see [1]). However, the
proof of ABOS for SD turns out to be slightly more challenging than for BH.

The proof of optimality results for the step-up FDR controlling rule in [6]
and [33] relied upon the definition of a random threshold for the BH rule

cBH = min{cBon, c̃BH} ,

with

c̃BH = inf

{

y :
2(1− Φ(y))

1− F
(BH)
m (y)

≤ α

}

. (3.4)

Here 1− F
(BH)
m (y) = #{|Zi| ≥ y}/m. A detailed motivation of (3.4) is given in

[15].

Alternatively let us denote 1 − F
(SD)
m (y) = #{|Zi| > y}/m. Similarly as in

case of BH it is easy to check that SD rejects the null hypothesis H0i if and only
if |Zi| ≥ cSD, where

cSD = sup

{

y :
2(1− Φ(y))

1− F
(SD)
m (y) + 1/m

> α

}

. (3.5)

It was proved by Genovese and Wasserman (GW) in [21] that for fixed p, as
the number of tests increases, the random threshold cBH can be approximated
by the non-random threshold

cGW :
2(1− Φ(cGW ))

1− F (cGW )
= α , (3.6)

where F (y) = P (|Z1| ≤ y). From Corollary F.1 of Appendix F it immediately
follows that for any α ∈ (0, 1) there exists a unique positive solution of (3.6).

Figure 1 illustrates the thresholds cBH , cSD and cGW . Comparing c̃BH and
cSD with cGW the only change is in replacing the cumulative distribution func-
tion of |Zi| by the corresponding empirical distribution function. Thus, for fixed
p and m converging to infinity, cSD will also converge to cGW . Approximations
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Fig 1. Comparison of the random thresholds cBH and cSD with the nonrandom thresh-

old cGW .

of cBH by cGW in case of sparsity were given in [6]. In Section G of the Ap-
pendix we consider the approximation of cSD with cGW under our asymptotic
assumptions. A much simpler result is that under sparsity the multiple testing
rule based on the Genovese-Wasserman threshold cGW is ABOS.

Theorem 3.1. Suppose Assumptions (A) and (B) are true. Consider the rule

rejecting the null hypothesis H0i if
√
n|X̄i|
σ ≥ |cGW |. This rule is ABOS if and

only if the Condition(Op) holds.

Proof. The proof of Theorem 3.1 appears in Section F of the Appendix.

The next theorem provides the optimality result of BH and SD for generally
distributed effect sizes under the alternative.

Theorem 3.2. In addition to Assumptions (A),(B) assume that

mp → s ∈ (0,∞]. (3.7)

For the denser case

p >
(logm)γ1

m
, for some constant γ1 > 1, (3.8)

the additional assumptions

n ≤ mγ2 , for some γ2 > 0, and
log logm

log(p α)
→ 0 (3.9)

should hold. Then both BH and SD are ABOS if their nominal FDR levels α
satisfy the Condition (Op) of Theorem 3.3.

Proof. The proof is given in Section G of the Appendix.
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Remark 3.1. The upper bound on m provided in the second condition of
(3.9) is not very restrictive. Specifically, it is satisfied whenever p ∝ m−β with
β ∈ (0, 1]. For p decreasing to 0 at a slower rate (for example like (logm)−1)
one can replace this bound with the condition

n ≥ mγ3 for some γ3 > 0 . (3.10)

The following Corollaries are easy consequences of Theorem 3.2.

Corollary 3.1. Suppose Assumptions (A) and (B) hold. If p = m−β with
β ∈ (0, 1] and n ≤ mγ2 , for some γ2 > 0, then BH and SD at FDR level
α ∝ n−1/2 are ABOS. Note that in this case the condition log δ = o(log p) in
Assumption (A) reduces to log δ = o(logm).

Corollary 3.2. Suppose Assumptions (A) and (B) hold. If p = m−β with
β ∈ (0, 1], n ∝ logm and δ converges to zero then BH and SD at a fixed FDR
level α ∈ (0, 1) are ABOS. If δ = const then BH and SD are ABOS if α
converges to 0 such that logα = o(logm).

Remark 3.2. Corollary 3.1 states that under some mild restrictions on δ BH
and SD at the FDR level α ∝ n−1/2 are ABOS for the whole range of sparsity
parameters p = m−β with β ∈ (0, 1]. This illustrates that these rules adapt to the
unknown sparsity parameter. Corollary 3.2 says that in case when n ∝ logm and
under the additional requirement that δ converges slowly towards zero, BH and
SD at the fixed FDR level α ∈ (0, 1) are also ABOS. This result substantially
extends the results of [6] to the case where the prior on µi is fixed and not
normal, while the sample size n slowly increases to infinity. This additionally
justifies the use of the fixed FDR level for BH in many applications, like e.g. in
bioinformatics, where n is much smaller thanm. As discussed in [6] the condition
δ → 0 is quite reasonable in this context, since the cost of missing a true positive
is usually large if p is very small. Note that Condition (Op) does not allow to
keep both δ and α fixed at the same time.

Remark 3.3. Our results on the optimal FDR level are closely related to the
well known fact that for fixed p the significance level of the Bayes test is roughly
proportional to n−1/2 (see e.g. [11]). Interestingly, in the context of multiple
testing under moderate sparsity (i.e. when β ∈ (0, 1)) the Bayesian classifier
controls rather FDR than FWER.

3.2. Bonferroni correction

In applied sciences the most popular multiple testing procedure is still the Bon-

ferroni correction. For the scaled test statistics Zi =
√
nX̄i

σ one computes p-
values pi = 2(1 − Φ(|Zi|)). The test decision is based on comparing these p-
values with the corrected significance level α/m, where in case of pi < α/m one
rejects the null hypothesis.
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Equivalently this procedure can be viewed as a fixed threshold rule, where
the corresponding critical value cBon for the test statistic Zi is defined by

1− Φ(cBon) =
α

2m
.

The procedure controls the family wise error rate at level α.
Note that the threshold of the Bonferroni correction is determined by the

choice of the nominal FWER α. So, one can expect that by using an appropriate
choice of α one can obtain an optimal rule. Unfortunately, the threshold of the
optimal Bayes classifier depends on n, δ and the unknown sparsity level p. As
a consequence the optimal FWER α will also depend on these parameters. The
following Theorem 3.3 states that under the conditions on α for which BH is
optimal the Bonferroni correction is ABOS only in the extremely sparse case,
where p is roughly proportional to 1

m .

Theorem 3.3. Suppose Assumptions (A), (B) and the Condition (Op) for α =
αm are satisfied. The Bonferroni procedure at FWER level α is ABOS if and
only if sparsity condition (2.14) holds.

Proof. The proof of Theorem 3.3 is provided in Section H of the Appendix. The
proof relies upon technical results concerning the relationship between BFDR
controlling rules and the Bayes classifier, which are discussed in Appendix Sec-
tion E.

Remark 3.4. Our results show that under Condition (Op) the Bonferroni cor-
rection is ABOS only under extreme sparsity, while BH is ABOS under a much
wider range of sparsity. This is due to the fact that the Bonferroni procedure
has larger Type II error than BH. The Bonferroni-Holm procedure serves as
a popular alternative, which is more powerful than the Bonferroni procedure
while still controlling FWER. The Bonferroni-Holm procedure works like the
SD procedure (3.3), but the ordered p-values are compared with α/(m− i+ 1)
instead of iα/m. Thus the Holm procedure is sandwiched between Bonferroni
and SD, and one might ask if it is ABOS for a wider range of sparsity parameters
than the Bonferroni correction. Unfortunately this is not the case. The gain in
power from the Bonferroni-Holm procedure comes from an implicit estimation
of 1− p, but this does not bring any advantage when p → 0.

The following proposition gives conditions on α under which the Bonferroni
rule is ABOS also for the denser case.

Proposition 3.1. Suppose p ∝ m−β, δ = const and 2β logm
n → C ∈ [0,∞).

Then for any β ∈ (0, 1] the Bonferroni rule at nominal level α is ABOS under
the condition

α ∝ m1−β

√
n

. (3.11)

The proof is given in Appendix H. For the ease of presentation the proposition
is presented with the simple sufficient condition (3.11). However, the condition
indicates that the significance level α of the Bonferroni rule depends on the
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unknown sparsity parameter β. In that sense, contrary to the FDR controlling
procedures, the Bonferroni rule does not adapt to the unknown level of sparsity.

4. Simulations

The purpose of this simulation study is to illustrate the theoretical results of
Section 3. We focus particularly on the implications of Corollary 3.1 and 3.2. For
various scenarios we generated independent test statistics according to the mix-
ture model (2.3). The performance of different multiple testing procedures under
sparsity is compared with the Bayes oracle, where the risk ratio is estimated for
a given loss function based on 2000 simulation runs for each scenario.

The following features are analyzed systematically:

1. Multiple testing rules : We consider the Bonferroni rule and the Benjamini-
Hochberg procedure. Initially we also compared two further procedures,
namely the step-down procedure (3.3) as well as the asymptotically opti-
mal rejection curve from [19]. However, under sparsity the performance of
both procedures is almost indistinguishable from BH, and therefore these
results are not shown. In our simulation study we also included the em-
pirical Bayes multiple testing procedure from Johnstone and Silverman
[26, 27]. As shown in [26] this procedure adapts to the unknown sparsity
and provides an asymptotically minimax thresholding rule for the estima-
tion of unknown means.
The effect of different significance levels for Bonferroni (FDR levels for
BH) was studied. In particular we considered fixed nominal levels α = 0.05
and α = 0.1, as well as α ∝ n−1/2 (where α = 0.1 for n = 5). In the
manuscript we only present results for fixed α = 0.1, and in case of BH
for α ∝ n−1/2.
The empirical Bayes approach of [26] was based on a Laplace prior, with
density

fL(µ) =
1

2τ
exp(−|µ|/τ) , (4.1)

which performed best in the simulations of Johnstone and Silverman. Note
that the Laplace prior is heavy tailed and spiked at zero, which makes it
very well suited for detection of signals under the assumption of sparsity.
This prior is often used in the context of sparse model selection and is
directly related to the L1 penalty applied in Lasso [43]. In accordance
with the presentation in [26] the procedure EB uses the scaling parameter
τ = 2, for which the variance of the Laplace distribution is equal to 8. The
procedure EB2 estimates the scaling parameter τ (see [27] for details).

2. Known and unknown error variance σ2: In all simulations the error vari-
ance term was σ2 = 1. We performed analysis both for known σ (z-tests)
as well as under the assumption that σ is not known (t-tests). To apply
the empirical Bayes approach of [26] in case of unknown σ we transformed
t-test statistics into z-scores, yielding test statistics which are standard
normal under the null hypothesis.
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3. For the sample size n and the number of tests m two prototypic scenarios
are considered.

• Polynomial case: n ∈ {5, 10 . . . , 200}, and m = 0.8 · n2:

m ∈ {20, 80, 180, 320, 500, 720, 980, 1280, . . . , 32000}
• Exponential case: n ∈ {5, 10 . . . , 40}, and m = round (5 · (1.3)n):
m ∈ {19, 69, 256, 950, 3528, 13100, 48639, 180594}

For n ∈ {5, 10} the difference between the polynomial and the exponen-
tial scenario is quite small. But for larger n the number of tests in the
exponential case gets much larger, and leads to the situation referred to
as ‘being on the verge of detectability’. Results for the polynomial case
are presented in Figure 2 and Figure 3, results for the exponential case in
Figure 4 and Figure 5.

4. Simulations were run for two different sparsity levels :

p ∝ m−β for β = 1, and β = 1/4 .

For the case of extreme sparsity β = 1 we used the proportionality constant
8, which yields for n = 5 the sparsity parameter p = 0.4 in the polynomial
case, and p = 0.4211 in the exponential case. For the denser case β = 1/4
we wanted sparsity for n = 5 to be the same as for the case of extreme
sparsity, which is achieved using proportionality constants 0.8459 for the
polynomial case, and 0.8791 for the exponential case.

5. Concerning the loss function mainly the usual 0 - 1 loss is studied, which
corresponds to δ = 1 and results in the Bayes risk being equal to the
misclassification rate. In view of Corollary 3.2 we analyze for the ex-
ponential case also the loss δ = 1/n, which corresponds to a loss ratio
δ ∝ (log(m/5))−1 (with proportionality constant log(1.3)).

6. Distribution of effect sizes under the alternative: Apart from the stan-
dard normal distribution we considered an asymmetric double exponential
(ADE) distribution with density

fADE(µ) =

{

λ1/2 exp(λ1µ) µ ≤ 0
λ2/2 exp(−λ2µ) µ > 0

λ1 > 0, λ2 > 0 . (4.2)

The particular choice of ADE is motivated two-fold. In [35] it was sug-
gested to make use of the asymmetric Laplace distribution to model mi-
croarray data. While [35] models the data directly with ADE it appears to
be reasonable to consider a model where the effect sizes under the alterna-
tive are stemming from ADE. In statistical genetics there is a long history
to model effect sizes using Laplace distributions, and ADE is a natural
asymmetric generalization. On the other hand ADE is simple enough to
allow to compute the thresholds of the Bayes rule (details about this are
given below). Results are presented for the specific choice λ1 = 1.5 and
λ2 = 3.

Remark 4.1. The scenario with normally distributed mean under the alter-
native µ ∼ N (0, τ2) coincides with the scale mixture model discussed in [6].
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The ADE as a generalization of the Laplace distribution gives an example of
a distribution with heavier tails. If we make the specific choice λ1 = c1/τ and
λ2 = c2/τ , then ADE can be viewed as a scaling family with scaling parameter
τ . While in [6] the focus was on normal scaling mixture models and asymptotic
analysis was performed in terms of the parameter τ2/σ2, this article studies the
more general class of distributions characterized by Assumption (B), and the
asymptotic analysis is driven by the sample size n. However, for scaling families
it is easy to take into account both the influence of effect size τ2/σ2 and the
influence of sample size n, by working with the parameter u = nτ2/σ2. The
following simulations are performed with σ = 1, and for the normal mixture
model τ is kept fixed at τ = 1, a value which guarantees that the Bayes oracle
has reasonable power to detect signals within the considered range of n and
m. The presented results are representative for any other choice of n, σ and τ
yielding the same parameter u = nτ2/σ2.

For the normal scaling mixture model one readily computes that threshold
values of the Bayes oracle for X̄i are given by bl = −√

cN and br =
√
cN with

c2N =
1 + u

u
(log(1 + u) + 2 log(δ(1− p)/p) . (4.3)

For ADE threshold values of the Bayes oracle have no closed form expression.
However, for (4.2) the optimal threshold values bl < 0 and br > 0 of X̄i are
quite easily obtained as numerical solutions of

λ1/2 exp(λ
2
1/2n+ λ1x)Φ(−

√
n(x + λ1/n))

+ λ2/2 exp(λ
2
2/2n− λ2x)Φ(

√
n(x− λ2/n))

=

√
n√
2π

exp(−nx2/2)δ(1− p)/p .

Figure 2 illustrates the performance of multiple testing procedures for poly-
nomial growth rates of m with respect to n, in case of known error variance σ2.
In the upper two panels (a) and (b) the mean under the alternative is simulated
from a standard normal distribution µ ∼ N (0, 1), whereas the lower two panels
(c) and (d) relate to the asymmetric double exponential (4.2). Panels of the left
column (a) and (c) show the extremely sparse case β = 1, whereas (b) and (d)
of the right column show the denser case β = 1/4.

The first observation is that the estimates of the risk ratio for the extremely
sparse case in Figure 2 (a) and (c) show much more fluctuation due to simula-
tion error than estimates in panels (b) and (d). This is not surprising because
under extreme sparsity the expected number of true signals does not increase
with m, which makes it difficult to accurately estimate the mixture density.
In accordance with our theoretical results Bonferroni correction is doing pretty
well in case of extreme sparsity, where the risk ratio rapidly converges towards
the optimal value 1. In contrast for the denser case the Bonferroni rule is way
too conservative and its risk ratio is an increasing function of n.

The BH procedure with fixed FDR level α = 0.1 (abbreviated as BH01) is
getting too liberal for large n, and its risk ratio starts growing. However, in
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(a) Alternative N (0, 1), p ∝ m−1 (b) Alternative N (0, 1), p ∝ m−1/4
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(c) Alternative ADE, p ∝ m−1 (d) Alternative ADE, p ∝ m−1/4
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Fig 2. Risk ratio in case of known σ for the polynomial growth rate of m with respect to n
as described in the main text. The loss ratio δ = 1 is kept fixed.

Figure 2 (b) BH01 seems to attain optimal risk for n = 20. What actually
happens here is that FDR of the Bayes oracle is a decreasing function in n, with
FDR ≃ 0.2 for n = 5 and FDR ≃ 0.03 for n = 200. Roughly at n = 20 FDR
of the Bayes oracle is close to the nominal FDR level 0.1 of BH01, resulting
in the minimum of the risk ratio. In Figure 2 (d) the same observation can be
made at n = 50. Much better performance for large n has the BH procedure at
FDR level proportional to n−1/2 (abbreviated as BHn). Both in case of extreme
sparsity as well as for the denser case its risk ratio converges towards 1, which
confirms the theoretical results from Corollary 3.1.

The observed behavior of risk ratios for Bonferroni, BH01 and BHn is qual-
itatively quite similar for normal alternatives (panels (a) and (b)) and ADE
(panels (c) and (d)), though there are obviously big quantitative differences. In
particular in Figure 2 (d) the risk ratio of BHn with decreasing FDR level con-
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(a) Alternative N (0, 1), p ∝ m−1 (b) Alternative N (0, 1), p ∝ m−1/4
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(c) Alternative ADE, p ∝ m−1 (d) Alternative ADE, p ∝ m−1/4
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Fig 3. Risk ratio in case of unknown σ for the polynomial growth rate of m with respect

to n as described in the main text. The loss ratio δ = 1 is kept fixed.

verges rather slowly towards 1. This is mainly because in this scenario the Bayes
oracle is much more liberal than BHn. We observed also in other simulation sce-
narios (not presented here), that in case of very large effect sizes (large variance
of the alternative distribution) BHn is more conservative than the Bayes oracle,
and then only for very large values of m and n the risk ratio gets close to 1.
However, in such an “easy” situation the misclassification rate of BHn will be
rather small, only the Bayes oracle will still perform that much better.

Concerning the empirical Bayes approach our simulation study confirms very
good results reported in [26]. Both EB and EB2 perform quite well under all
scenarios presented in Figure 2. Qualitatively EB performs similarly to BHn.
For the extremely sparse case the risks of these procedures are very similar. In
the denser case EB has a substantially larger risk than BHn, but still seems to
be ABOS. In the denser case (panels (b) and (d)) EB2 performs substantially
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(a) δ = 1, p ∝ m−1 (b) δ = 1, p ∝ m−1/4
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(c) δ = 5/n, p ∝ m−1 (d) δ = 5/n, p ∝ m−1/4
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Fig 4. Risk ratio in case of known σ for the exponential growth rate of m with respect to

n as described in the main text. Distribution of µ under the alternative is in all scenarios

N (0, 1). Asymptotic power of the Bayes rule is 0.47 for β = 1 and 0.72 for β = 1/4.

better than EB as long as m > 300. In particular for ADE (or in general for
alternative distributions with large variance) EB2 is performing extremely well
in the denser case. However, for smaller m EB2 has difficulties to estimate p
correctly, leading to a rather large misclassification rate. Also, in the extremely
sparse case EB2 needs as least m > 1000 tests to be able to estimate both the
mixture rate p as well as the scaling parameter τ simultaneously, and even then
it tends to have larger risk ratio than BHn.

Figure 3 presents the same simulation results for polynomial growth rate as
Figure 2, but now in case of unknown σ. Qualitatively we obtain very similar
results as for known σ, with the most striking difference that for small n the
risk ratio is generally much larger in case of unknown σ. This is obviously a
consequence of the fact that the Bayes oracle has the advantage of knowing σ,
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(a) δ = 1, p ∝ m−1 (b) δ = 1, p ∝ m−1/4
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(c) δ = 5/n, p ∝ m−1 (d) δ = 5/n, p ∝ m−1/4
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Fig 5. Risk ratio in case of unknown σ for the exponential growth rate of m with respect

to n as described in the main text. Distribution of µ under the alternative is in all scenarios

N (0, 1). Asymptotic power of the Bayes rule is 0.47 for β = 1 and 0.72 for β = 1/4.

and for small n it is difficult to estimate σ from the data. The risk ratio of
the Bonferroni procedure converges towards 1 only in case of extreme sparsity
(Figures 3 (a) and (c)), whereas for BHn convergence towards 1 occurs in all
four scenarios.

Figure 4 and Figure 5 refer to simulations at exponential growth rates, which
relates to the situation of ‘being on the verge of detectability’. In case of known σ
Figures 4 (a) and (b) illustrate again the implications of Corollary 3.1, which
states that for fixed δ the BH procedure with α ∝ n−1/2 is ABOS. Just like
in the polynomial case BH01 is for larger n too liberal, and its risk ratio is
increasing with n. In contrast the risk ratio of BHn converges to 1 both in panel
(a) and (b), resembling very much the results of Figure 2. In Figure 4 (c) and
(d) risk ratios are shown at a loss ratio δ = n−1. In that case BH01 with fixed
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FDR level performs better than BHn with decreasing α level. Here the risk ratio
of BH01 actually appears to be decreasing for large n which corresponds with
Corollary 3.2, although convergence towards 1 seems to be rather slow.

Finally in Figure 5 simulation results at the verge of detectability in case of
unknown σ are reported. While in the denser case β = 1/4 (panels (b) and (d))
the qualitative behavior of all risk ratios is fairly similar to the case of known
σ in Figure 4, this seems to be no longer true for extreme sparsity (panels (a)
and (c)). To a certain extent these findings are in accordance with results of
[17], which require logm = o(n1/3) for the accurate uniform approximation of
the distribution of t-statistics by a normal distribution.

5. Discussion

In this paper we extend the asymptotic optimality results on FWER and FDR
controlling rules from [6] to the practically relevant situation, where the distri-
bution of effect sizes under the alternative does not change with the number
of tests, and has an arbitrary positive density over the entire real line. This
allows to describe realistic scenarios, where the distribution of effect sizes is not
symmetric.

Our results are easiest to describe for a sparsity parameter p of the form
p ∝ m−β, with β ∈ (0, 1]. When furthermore the ratio of losses for type I and
type II error fulfills log δ = o(logm), then nontrivial inference is possible only
when the sample size n increases to infinity at least at the rate of logm. We
show that in general if the FDR level α ∝ n−1/2 then BH and the corresponding
step-down procedure are optimal for all sparsity levels β ∈ (0, 1]. For the limiting
case of n ∝ logm the FDR controlling procedures at a fixed level α ∈ (0, 1) are
asymptotically optimal when δ slowly converges to 0. This condition on δ seems
justifiable, since typically the cost of missing the true signal gets larger if the
proportion of true signals decreases.

We also show that for α ∝ n−1/2 the Bonferroni correction and the universal
threshold of [14] are ABOS in the extremely sparse case of p ∝ 1/m. Inter-
estingly, the universal threshold remains ABOS also when δ = const. For the
denser case β < 1 the Bonferroni rule is ABOS when the nominal significance
level depends on the sparsity parameter β roughly like α ∝ m1−βn−1/2. Thus
contrary to the FDR controlling rules at level α ∝ n−1/2 the Bonferroni rule
does not adapt well to the unknown level of sparsity.

Our results on the optimal FWER and FDR level can be seen as an extension
of the well known results that the significance levels of Bayesian tests is roughly
proportional to n−1/2 (see e.g. [11]). They suggest that in the context of Bayesian
multiple testing under sparsity FDR is a better analogue of the type I error than
FWER. Specifically, in section E of the Appendix we observe that under our
sparsity assumptions the Bayesian classifier controls FDR at the level (n(logn+
logm))−1/2. Additionally, our asymptotic results provide some margin for the
FDR level, under which FDR controlling rules are still ABOS.

Our model assumes that X̄i|µi ∼ N(µi, σ
2/n). Asymptotic results can also

be applied directly to the case when the variances of Xi|µi are known, but
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not necessarily equal to each other (assuming that the sequence of variances
is bounded and bounded away from zero). Also, as shown in [17], even when
the distribution of Xi|µi is not normal and variances are estimated separately
for each i, the level of the simultaneous tests based on the t-test statistics√
n(X̄i|µi − µi)/σ̂i is accurate provided logm increases at a strictly slower rate

than n1/3. Based on these results we expect that under similar assumptions
our asymptotic results can be generalized to the case where the distribution of
Xi|µi is not normal and the variances σ2

i are estimated separately for every i.
We consider this as an interesting topic for further research.

Motivated by the genetic applications from the introduction (for example
[16] and [32]) we have focussed essentially on continuous distributions of µi (or
at least on distributions which are continuous in an environment of ±T ). One
referee brought up the topic of discretely distributed µi, which indeed would
need a rather different analysis. Discrete distributions fulfill Condition A1 of
[25], thus when the asymptotic power of the Bayes oracle equals one (that is
when C = 0) the techniques of [25] can be applied to obtain formulas for the
optimal risk analogously to (2.9). From a statistical point of view it is easier
to detect signals when the smallest possible effect size is bounded away from 0.
Accordingly for discrete distributions the optimal risk decays exponentially with
n. It is open to study which effect this has on the conditions under which FDR-
controlling rules are ABOS. For signals at the verge of detectability (that is when
C > 0) we would expect that results for discrete distributions are qualitatively
rather similar to the results presented in this paper. However, there remain
certain technical difficulties to be solved when the distribution is such that it
has no probability mass at ±T .

Another interesting topic for further research is the analysis of the asymptotic
optimality properties of the plug-in version of the Bayes oracle, based on the
empirical bayes estimates (EB) of the mixture distribution. Encouraging theo-
retical results from [26] and [9] make us believe that EB procedures are ABOS
when mp → ∞, i.e. when the expected number of true signals increases with
m. However, our simulation study suggests that EB procedures might be ABOS
even in the extremely sparse case p ∝ 1/m. Also, based on our simulation study
and the results of [5], empirical Bayes or full Bayes multiple testing procedures
perform better than BH for somewhat denser scenarios. To distinguish between
these rules in our asymptotic context one could consider investigating the rate
of convergence of the risk ratio to 1, as it was proposed in [33] in the context of
testing within families parametrized by the location or the scale parameter.

Our theory is based on the assumption that the test statistics X̄1, . . . , X̄m

are independent. However, it can be rather directly applied to the case where
the correlation matrix between the test statistics has a diagonal block structure
(e.g. correlated SNPs, gene pathways), when one tests the significance of the
entire block based on some aggregated test statistic. Then our results hold as
long as the distribution of the aggregated test statistics can be approximated
by a normal (or chi-square) distribution.

If the correlation structure is more involved, then the Bayes classifier for a
given hypothesis will use the information from other test statistics. Depending
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on the relationship betweenm and n such a Bayes classifier can be approximated
by full or empirical Bayes methods, which may estimate the dependence struc-
ture using some parametric assumptions or one of the (sparse) high-dimensional
methods to estimate covariance matrices. We believe that such methods will in
general work much better than BH based on individual p-values. It remains
to verify under which forms of dependence BH is still ABOS, and to find the
conditions under which empirical or full Bayes methods are ABOS. Due to a
more complicated form of the Bayes classifier the extension of our results to the
case of dependent test statistics will require further development of the proof
technique and remains an interesting topic for a further research.
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Appendix A: Asymptotic power of the Bayes classifier

Throughout the appendix we will make use of the notation f = 1−p
p . In this

section we present the proof of Lemma 2.1.

Proof. Let hn(µ) = exp
(

an
µ
σ2 − µ2

2σ2

)

. Then (δf)1/n = ‖hn‖Ln(ν).

Now, assume that the sequence log p
n is unbounded. This implies that the se-

quence (δf)1/n → ∞, and it easily follows that an → −∞. Similarly, (δf)1/n →
∞ implies that bn → ∞.

Now, observe that the type II error of the Bayes oracle is given by t2 =
∫

Ψn(µ) dν(µ) with

Ψn(µ) = Φ

(√
n(bn − µ)

σ

)

− Φ

(√
n(an − µ)

σ

)

.

It is easy to check that if an → −∞ and bn → ∞ then for every µ ∈ R it holds
that Ψn(µ) → 1 and, by the dominated convergence theorem, t2 → 1.

Appendix B: Threshold values of the Bayes oracle, the derivation of
equation (2.6)

In this section we will derive equation (2.6). The first Lemma provides asymp-
totic formulas for the critical points of the Bayes rule for distributions ν satis-
fying Assumption (B). Lemma B.3 refines these results for the case C = 0.
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Lemma B.1. Let Assumptions (A) and (B) hold. Then the critical values con-
verge with limits

an → −T and bn → T .

The proof of Lemma 2.1 relies on the following technical result.

Lemma B.2. Let an → a be any convergent sequence. Define hn(µ) :=

exp
(

an
µ
σ2 − µ2

2σ2

)

and h(µ) := exp
(

a µ
σ2 − µ2

2σ2

)

. Then

lim
n→∞

‖hn‖Ln(ν) = ‖h‖L∞(ν) . (B.1)

Proof. First note that for all n it holds that hn ∈ L∞(ν), and therefore also
hn ∈ Lm(ν), ∀m > 0. It is easy to check that limn ‖hn − h‖L∞(ν) = 0. Thus for

any ǫ > 0 and sufficiently large n we have ‖hn − h‖Ln(ν) ≤ ‖hn − h‖L∞(ν) < ǫ.

Now (B.1) easily follows by the triangle inequality and the fact that
limn→∞ ‖h‖Ln(ν) = ‖h‖L∞(ν).

Now we are ready to prove Lemma B.1.

Proof. Let, as before denote hn(µ) = exp
(

an
µ
σ2 − µ2

2σ2

)

, where an are now

the solutions of (2.4). Then (δf)1/n = ‖hn‖Ln(ν) and due to Assumption (A)

limn(δf)
1/n = eC/2. Note that an has to be bounded, otherwise the sequence

‖hn‖Ln(ν) could not be bounded. Let a be an accumulation point of an. By

Lemma (B.2) for any subsequence aj → a it holds

lim
j

‖hj‖Lj(ν) =

∥

∥

∥

∥

exp

(

a
µ

σ2
− µ2

2σ2

)∥

∥

∥

∥

L∞(ν)

. (B.2)

Let S denote the support of ν. By (B.2) it holds

C/2 = sup
µ∈S

(

a
µ

σ2
− µ2

2σ2

)

≤ sup
µ∈R

(

− (µ− a)2

2σ2
+

a2

2σ2

)

=
a2

2σ2
. (B.3)

Since a ≤ 0 (B.3) implies that a ≤ −T .
On the other hand, using the assumption that −T ∈ S we have

C/2 =
T 2

2σ2
≥ −a

T

σ2
− T 2

2σ2
, (B.4)

which implies that a ≥ −T . Thus (B.3) and (B.4) lead to the conclusion that
a = −T .

The proof that bn → T goes exactly along the same lines.

The following Lemma B.3 specifies the rate at which an and bn converge to
zero in case of C = 0.
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Lemma B.3. Throughout this proof and the rest of the appendix we will make
use of the notation om = om(1).

Let Assumptions (A) and (B) hold. If C = 0 then the critical values of the
Bayes oracle fulfill

√
ne−

na2
n

2σ2 ∼
√
2πσ

fδ
ρ(0−) (B.5)

and
√
ne−

nb2n
2σ2 ∼

√
2πσ

fδ
ρ(0+) . (B.6)

Proof. By Lemma B.1 an converges to 0. Also, by Assumption (B) there exists
ǫ > 0 such that ν(µ) has a density ρ(µ) on the interval (−ǫ, ǫ). It is immediately
clear that

∫

(ǫ,∞)

hn
n(µ) dν(µ) ≤ e−n ǫ2

2σ2 ν(ǫ,∞) . (B.7)

Also, there exists n0 such that for every µ < −ǫ and n > n0 it holds anµ < µ2/4
(because an → 0). Thus for n > n0

∫

(−∞,−ǫ)

hn
n(µ) dν(µ) ≤ e−n ǫ2

4σ2 ν(−∞,−ǫ) . (B.8)

Concerning the integral over the interval (−ǫ, ǫ), by completion of squares
one derives

ǫ
∫

−ǫ

hn
n(µ) ρ(µ)dµ = ρn exp

(

na2
n

2σ2

) ǫ
∫

−ǫ

exp
(

−n (µ−an)
2

2σ2

)

dµ

= ρne
na2

n
2σ2

√
2πσ√
n

[Φ(
√
n(ǫ− an)/σ)− Φ(

√
n(−ǫ− an)/σ)] . (B.9)

Here ρn is a real number, with ρn ∈ [infµ∈(−ǫ,ǫ) ρ(µ), supµ∈(−ǫ,ǫ) ρ(µ)], where
according to Assumption (B) 0 < infµ∈(−ǫ,ǫ) ρ(µ) ≤ supµ∈(−ǫ,ǫ) ρ(µ) < ∞.

Note that Φ(
√
n(ǫ− an)/σ) → 1 as well as Φ(

√
n(−ǫ− an)/σ) → 0 (because

an → 0). Comparing (B.7), (B.8) and (B.9) we observe that the integral over
(−ǫ, ǫ) dominates the two remaining terms and from (2.4) it follows that

1 =

√

2π

n
σ(fδ)−1ρn exp

(

na2n
2σ2

)

(1 + om) .

Thus we may conclude that the sequence

Sn := (fδ)−1n−1/2 exp

(

na2n
2σ2

)

is bounded and therefore for any convergent subsequence it holds that

an ∼ −σ
√

logn+ 2 log(δf)√
n

.
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To get the exact behavior we further split the domain of the integral in (−ǫ,−gn),
(−gn, 0) and (0, ǫ), where gn is a positive sequence such that an = o(gn), or more
specifically

gn → 0 with
logn

ng2n
→ 0,

log(δf)

ng2n
→ 0 . (B.10)

For the first interval we get a bound by evaluating the integrand at −gn, for the
second and third interval we repeat the computations leading to (B.9) with the
corresponding boundaries, and finally obtain

δf =

0
∫

−gn

hn
n(µ)ρ(µ)dµ(1 + om) =

ρ(0−)
√
2πσ√

n
exp

(

na2n
2σ2

)

(1 + om)

which yields (B.5). The proof for bn is exactly the same.

Remark B.1. The proof of Lemma B.3 relies upon choosing a suitable sequence
gn. The choice of the sequence gn strongly depends on the asymptotic behavior
of δf . If for example for sufficiently large n, δf ≤ nα, with α > 0, one might use
gn = log n√

n
, the choice of Johnson and Truax (1973). Another situation occurs if

δf ∼ en
1−γ

with 0 < γ < 1, where gn = n−γ/3 is a suitable choice.

Remark B.2. As shown in the proof of Lemma B.3, the accuracy of the ap-
proximations provided in (B.5) and (B.6) depends on the asymptotic behavior
of δf and on the regularity of ρ in a neighborhood of 0. Assuming for example
that ρ is one-sided Lipschitz (on both sides of 0) and that δf is polynomially
bounded one obtains that the ratio of the right and left-hand sides of (B.5) and
(B.6) can be expressed as 1 + zn with zn = o(n−1/2 logn).

In case of C = 0 equation (2.6) then immediately follows from Lemma B.3
where we use the notation v = nδ2/p2 and remember that f = 1/p (1 + om).
Otherwise if C > 0 Lemma B.1 provides an → −T = −σ

√
C and equation (2.6)

follows from Assumption (A).

Appendix C: Proof of Theorem 2.1

Notice, that the type II error of the Bayes oracle is given by t2 =
∫

Ψn(µ) dν(µ)
with

Ψn(µ) = Φ

(√
n(bn − µ)

σ

)

− Φ

(√
n(an − µ)

σ

)

.

We will now calculate the asymptotic formula for the type II error in case
when C = 0. Consider first the integral over µ ∈ (−∞, 0). Remember that
an → 0, thus for n sufficiently large ν has a density ρ(µ) on (2an, 0) and it holds
that

0
∫

2an

Ψn dν =

0
∫

2an

[

Φ

(√
n(bn − µ)

σ

)

− Φ

(√
n(an − µ)

σ

)]

ρ(µ) dµ .
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Applying the mean value theorem and substitution yields

0
∫

2an

Ψn dν = ρn
σ√
n

−
√

n

σ
an

∫

√
n

σ
an

[

Φ

(√
n(bn − an)

σ
− z

)

− Φ (−z)

]

dz

for some ρn ∈ [infµ∈(2an,0) ρ(µ), supµ∈(2an,0) ρ(µ)]. Using the facts that
∫ x

−xΦ(z)dz = x and −
√
nbn
σ → −∞ we further obtain

0
∫

2an

Ψn dν = ρn
σ√
n









−
√

n

σ
an

∫

√
n

σ
an

[1− Φ(−z)] dz −
−

√
n

σ
an

∫

√
n

σ
an

Φ

(

z +

√
n

σ
(an − bn)

)

dz









= −ρ(0−)an(1 + om) = σρ(0−)

√

log v

n
(1 + om) .

where the last equality holds due to equation (2.6) from the manuscript.
It remains to show that the integral over (−∞, 2an) is of lower order. It holds

that

2an
∫

−∞

Ψn dν ≤
2an
∫

−∞

(

1− Φ(
√
n(an − µ)/σ))

)

dν

≤ 1− Φ(−an
√
n/σ) = O

(

(v log v)−1/2
)

.

Assumption (A) yields fδ log v → ∞, and hence (v log v)−1/2 = o
(

√

log v
n

)

.

Similar computations for the interval (0,∞) lead to

t2 = σ

√

log v

n

(

ρ(0−) + ρ(0+)
)

(1 + om(1)) . (C.1)

In case of 0 < C < ∞ we know from Lemma B.1 that an → −T and
bn → T , where T = σ

√
C > 0. For µ ∈ (−T, T ), Ψn(µ) → 1, while for µ ∈

(−∞, T ) ∪ (T,∞), Ψn(µ) → 0. Then by the dominated convergence theorem,

t2 =

∫ ∞

−∞
Ψn(µ)dν(µ) = ν(−T, T ) (1 + om) , (C.2)

and ν(−T, T ) > 0, since the distribution has a positive density in neighborhoods
of −T and T .

The Bayes risk can be written as

R = mpδAt2(1 + fδt1/t2) .

Thus by (C.1) and (C.2) to complete the proof of Theorem 2.1 it is enough to
show that

fδt1/t2 → 0 . (C.3)
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In case of C = 0, equation (2.6) and the normal tail approximation yield t1 ∝
(v log v)−1/2 . Thus from (C.1) we easily obtain

fδ
t1
t2

∝ fδ
√
n√

v log v
=

1

log v
→ 0 .

In case of C > 0 we write t1 = t1a + t1b , where t1a = Φ(
√
nan/σ) and

t1b = 1− Φ (
√
nbn/σ) . Using the fundamental equality (2.4) for an yields

δft1a ∼ σ

T
√
n

1√
2π

∫

R

exp
(

− n

2σ2
(an − µ)2

)

dν(µ) .

Because an → −T similar considerations as in (B.7) show that the integral
vanishes rapidly for µ /∈ (−T − ǫ,−T + ǫ). Now observe that

1√
2π

∫ −T+ǫ

−T−ǫ

exp
(

− n

2σ2
(an − µ)2

)

ρ(µ) dµ

≤ Mρ
1√
2π

∫

R

exp
(

− n

2σ2
(an − µ)2

)

dµ ,

where Mρ = supµ∈(−T−ǫ,−T+ǫ) ρ(µ) < ∞. Moreover,

1√
2π

∫

R

exp
(

− n

2σ2
(an − µ)2

)

dµ =
σ√
n
.

Thus we finally obtain δft1a = O
(

1
n

)

. Analogous considerations for t1b finish
the proof.

Appendix D: Proof of Theorem 2.2

First consider the case C = 0. To prove sufficiency of (2.12) and (2.13) for ABOS
of a fixed threshold rule note that computing type II error for rules of the form
(2.11) involves similar computations to those leading to (C.1), but using ãn, and
b̃n defined in (2.7) instead of an and bn. Taking into account (2.11) and (2.12)
one thus obtains

0
∫

2ãn

Ψn dν = −ρ(0−)ãn(1 + om) = ρ(0−)σ

√

log v

n
(1 + om) ,

which is asymptotically equivalent to the first contribution of the type II error
of the Bayes Oracle. On the other hand

2ãn
∫

−∞

Ψn dν ≤ 1− Φ(−ãn
√
n/σ) ∼ exp(−za/2)

√

2πv[log(v) + za]
= o

(

√

log v

n

)

,
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where the last equality follows from the first part of Assumption (A) and (2.13).
Similar calculations on the interval [0,∞] yield

∞
∫

0

Ψn dν = ρ(0+)σ

√

log v

n
(1 + om) .

Thus the type II error component of the risk R2 = mpδAt2 satisfies R2 =
Ropt(1 + om).

Now, using (C.1) and the tail approximation for the type I error we obtain

R1/Ropt =
m(1− p)δ0t1

Ropt
= Cσρ

exp(−za/2) + exp(−zb/2)

log v
(1 + om) , (D.1)

where Cσρ = 1√
2πσ(ρ(0−)+ρ(0+))

. Thus under assumption (2.13) R1 = o(Ropt),

which completes the proof of sufficiency for C = 0.
In case of C > 0 due to (2.12) it holds that ãn → −T and b̃n → T , and

hence thresholds specified by (2.11) also have type II error of the form (C.2).
For sufficiency it remains to establish (C.3). To this end note that the type I
error can be written approximately as

t1 ∼ 1√
2π

exp(−za/2) + exp(−zb/2)√
v log v

.

Hence

R1/Ropt = Cν
exp(−za/2) + exp(−zb/2)

log v
(1 + om) , (D.2)

where Cν =
√
C

ν(−T,T ) . Thus, under assumption (2.13) again R1 = o(Ropt), and

the proof of sufficiency is completed.
Concerning necessity, similar arguments as in the proof of Theorem 3.2 of

Bogdan et al. (2011) show that (2.12) is necessary for ABOS. In that case the
computations leading to (D.1) and (D.2) are still valid and imply the necessity
of (2.13).

Appendix E: Bayesian False Discovery Rate vs the Bayes risk

To derive results on classical multiple testing procedures controlling FWER
or FDR we first consider rules controlling the Bayesian False Discovery Rate
(BFDR), a concept which was introduced in [15]:

BFDR = P (H0i is true|H0i was rejected) =
(1− p)t1i

(1 − p)t1i + p (1− t2i)
, (E.1)

where t1i and t2i are the probabilities of the corresponding type I and type II
errors. As discussed in [40], under the mixture model (2.3) the BFDR of a fixed
threshold multiple testing rule is related to FDR according to the formula

FDR = BFDR× P (R > 0) ,

where R is the total number of rejections.
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Based on the formulas for the type I and type II errors of the Bayes classifier
presented in Section C of the Appendix, it is easy to show that under assump-
tions (A) and (B) both BFDR and FDR of the Bayes classifier are proportional
to (n(log n− log p))−1/2. It follows that for sparsity levels of the form p ∝ m−β

both are proportional to (n(logn+logm))−1/2. Now Theorem 2.2 provides some
margin for thresholds which yield asymptotically optimal rules. Below we will
translate this margin of “asymptotically optimal” thresholds into the margin of
“asymptotically optimal” BFDR levels.

Here we will restrict our attention to the BFDR controlling rules based on
symmetric thresholds, such that aBm = −bBm, and use

c2B = c2B(m) :=
n
(

aBm
)2

σ2
(E.2)

to denote the corresponding threshold for the scaled test statistics Zi =
√
nX̄i

σ .
As shown in Lemma E.3, under the mixture model (2.3) BFDR decreases

continuously from 1 − p for cB = 0 to 0 as cB → ∞, implying that each
α ∈ (0, 1 − p] corresponds uniquely to a threshold value cB. To obtain the
threshold value cB with BFDR level α is equivalent to solving

t1(cB)

1− t2(cB)
=

p

1− p

α

1− α
, (E.3)

where
t1(cB) = 2(1− Φ(cB))

and

1− t2(cB) = 2−
∫

R

(

Φ(cB +
√
nµ/σ) + Φ(cB −√

nµ/σ)
)

dν(µ) .

This is the key relation for the proof of the following theorem, which provides
conditions on α for which the BFDR controlling rule is ABOS and gives the
asymptotic approximation of the corresponding threshold cB.

Theorem E.1. Assume that Assumptions (A) and (B) hold. Additionally as-

sume that α → α∞ < 1 and logα
n → 0. As before let v = nδ2

p2 . Then a rule with
BFDR = α is ABOS if and only if

α =
v1/(2(zm−1))

p
with zm → 0 and zm log v + log log v → ∞ . (E.4)

The threshold value cB of a rule with BFDR equal to α is then given by

c2B = −2 log(pα) − log (2(− log(pα)) + 2 log

(√
2 (1 − α∞)√

π C1

)

+ om , (E.5)

where
C1 = 1− ν(−T, T ) .
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Proof. According to (E.3) the threshold value cB with BFDR level α fulfills

α

f(1− α)
=

2(1− Φ(cB))

2−
∫

R

[Φ(cB +
√
nµ/σ) + Φ(cB −√

nµ/σ)]dν(µ)
. (E.6)

Let us define uB
n = cBσ/

√
n. First we want to show that uB

n is bounded. Assume
on the contrary that for some subsequence uB

j → ∞. It holds for any constant
K > 0, that

∫

R

Φ(
√

j(−uB
j − µ)/σ)dν + 1−

∫

R

Φ(
√

j(uB
j − µ)/σ)dν

≥ (ν(−∞,−K) + ν(K,∞))(1 − Φ(
√

j(uB
j −K)/σ)) .

If uB
j → ∞ we can apply the tail approximation for the normal distribution and

obtain from (E.6)

αj

f
≤

(1− αj)(u
B
j −K)

(ν(−∞,−K) + ν(K,∞))uB
j

exp

(

−
j(uB

j K −K2)

2σ2

)

(1 + oj) .

But on the other hand Assumption (A) together with the assumption that

n−1 logα → 0 yields
(αj

f

)1/j → exp(−C/2), which contradicts uB
j → ∞.

If uj := uB
j → u < ∞ then the denominator of (E.6) converges to a constant

Cν,u = 1−ν(−u, u). Because of p → 0 and α → α∞ < 1 equation (E.6) can only
hold if

√
juj → ∞. Thus we can apply again the normal tail approximation to

obtain
αj

f
=

√

2

π

1− αj

cBCν,u
exp(−c2B

2
)(1 + oj) .

Taking logarithms and some simple calculations yield

c2B = 2 log

(

f

α

)

− log

(

2 log

(

f

α

))

+ log

(

2

π

)

+ 2 log

(

1− α∞
Cν,u

)

+ oj .

Multiplying by σ2/n and using again Assumption (A) together with n−1 logα →
0 implies that u = σ

√
C, and thus Cν,u = 1 − ν(−T, T ) which completes the

proof of (E.5).
The critical value has exactly the same form as in the case of normal distri-

butions and the result on ABOS follows exactly the same way as in Bogdan et

al (2011). Define sm := log(fδ
√
n)

log(f/α) − 1, then necessary and sufficient conditions

for optimality are sm → 0 and 2sm log(f/α) − log log(f/α) → −∞. Elemen-
tary computations then yield the reformulated conditions (E.4), where we write
zm = −sm.

Lemmas showing the existence of the exact BFDR controlling rule
We first prove the following result
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Lemma E.1. For any fixed s 6= 0 the function

Q(c) :=
2− Φ(c− s)− Φ(c+ s)

2(1− Φ(c))

satisfies

a) Q(0) = 1,
b) limc→∞ Q(c) = ∞,
c) Q(c) is increasing in c for c ≥ 0.

Proof. Points a) and b) easily follow by elementary algebra. To prove point c)
let us define

g(c) := (1 − Φ(c))φ(c− s)− (1− Φ(c− s))φ(c) .

Then straight forward calculations yield

Q′(c) > 0 ⇔ g(c+ s) > g(c)

Let us consider at first the case of s > 0. In this situation it is enough to show
that g(c) is increasing. We find

g′(c) = (1− Φ(c))φ′(c− s)− (1 − Φ(c− s))φ′(c)

and define h(c) = φ′(c)
1−Φ(c) . Then clearly

g′(c) > 0 ⇔ h(c− s) > h(c).

To show that h(c) is a decreasing function observe that

h′(c) =
1

2π(1− Φ(c))2
e−c2/2

(√
2π(c2 − 1)(1− Φ(c))− ce−c2/2

)

.

Now, the standard bound on the tail of the normal distribution yields

√
2πc2(1 − Φ(c)) < ce−c2/2 ,

which implies that h′(c) < 0.
The proof for s < 0 goes analogously. In that case g(c) has to be decreasing,

which yields h(c) > h(c− s), and again h(c) is a decreasing function.

The following Lemma E.2 easily follows from Lemma E.1.

Lemma E.2. Let ν(·) be any probability measure such that ν(0) < 1. Let us
define

H(c) :=

∫

R
(2− Φ(c−√

nµ/σ)− Φ(c+
√
nµ/σ))dν(µ)

2(1− Φ(c))
. (E.7)

Then it holds that

a) H(0) = 1,
b) limc→∞ H(c) = ∞,
c) H(c) is increasing on [0,∞].
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Lemma E.3. Let ν(·) be any probability measure such that ν(0) < 1. Let

BFDR(c) =
(1− p)t1(c)

(1 − p)t1(c) + p (1 − t2(c))
,

where

t1(c) = 2(1− Φ(c))

and

t2(c) = 1−
∫

R

(Φ(−c−√
nµ/σ) + 1− Φ(c−√

nµ/σ))dν .

Then BFDR(c) is continuously decreasing from 1 − p for c = 0 to 0 for
c → ∞.

Proof. Observe that

BFDR(c) =
1

1 + p
1−pH(c)

,

with H(c) as in (E.7). Thus Lemma E.3 is a direct consequence of Lemma E.2.

Appendix F: Existence of cGW and Proof of 3.1

Corollary F.1. For any p there is a unique positive solution cGW of (3.6) for
each α ∈ (0, 1).

Proof. Note that

2(1− Φ(c))

1− F (c)
=

t1(c)

(1− p)t1(c) + p (1− t2(c))
= BFDR(c)/(1− p) ,

and thus from Lemma E.3 is follows that the expression on the left decreases
from 1 for c = 0 to 0 for c → ∞.

Proof of Theorem 3.1:

Proof. First observe that the threshold cGW (3.6) at the level α coincides with
the threshold of the BFDR controlling rule at the level α′ = α(1− p). The rest
of the proof follows by observing that when p → 0 then α′ satisfies Condition
(Op) if and only if α satisfies Condition (Op) .

Appendix G: Proof of Theorem 3.2

To prove optimality of the type II risk component of SD in the denser case we
first show that with large probability the random threshold of SD is bounded
from above by the asymptotically optimal threshold c̃1n.
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Lemma G.1. Let cSD be the random SD threshold at the level αm and let c̃1 =
c̃1m be the GW threshold (3.6) at the level α1m = αmξm, where ξm = (logm)−s

with s > 1. Suppose that Assumptions (A), (B), Condition (Op), (3.7) and (3.9)
hold with α = αm. Then c̃1 is ABOS. Moreover, for every γu > 0 it holds for
sufficiently large m that

P (cSD ≥ c̃1) ≤ m−γu . (G.1)

Proof. Based on the second condition in (3.9) it is easy to show that α1m sat-
isfies the asymptotic optimality assumptions provided in Theorem E.1. Thus,
Theorem 3.1 immediately yields that c̃1 is ABOS.

To prove the second assertion of the Lemma we first note that by Lemma

E.2 the function H̃(c) := 2(1−Φ(c))
1−F (c) is decreasing. Therefore according to the

definition of c̃1,

{cSD ≥ c̃1} =
{

H̃(cSD) ≤ α1m

}

. (G.2)

On the other hand the definition of cSD actually gives

2(1− Φ(cSD))

1− F
(SD)
m (cSD) + 1/m

= αm

and thus

{cSD ≥ c̃1} =

{

1− F
(SD)
m (cSD) + 1/m

1− F (cSD)
≤ ξm

}

.

Taking another intersection of the right hand side with {cSD ≥ c̃1} we can con-
clude that

P (cSD ≥ c̃1) ≤ P

(

inf
c≥c̃1

1− F
(SD)
m (c) + 1/m

1− F (c)
≤ ξm

)

. (G.3)

Using the standard transformation Ui = F (|Zi|) one obtains

P (cSD ≥ c̃1) ≤ P

(

inf
t∈[z1m,1]

1− Ĝm(t) + 1/m

1− t
≤ ξm

)

where z1m = F (c̃1), and Ĝm(t) is the empirical cdf of U1, . . . , Um. Now, using
the transformation u = 1− t and observing that Vi = 1−Ui also has a uniform
distribution we obtain

P (cSD ≥ c̃1) ≤ P

(

inf
u∈[0,1−z1m]

Ĝm(u) + 1/m

u
≤ ξm

)

This is equivalent to computing the probability that the empirical process Ĝm(u)
intersects the line L = − 1

m + uξm within the interval [ 1
mξm

, 1 − z1m]. For this
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type of problem Proposition 9.1.1 of Shorack and Wellner (Beginning of chapter
9, page 344) can be applied. Define the event

Bi = {Ĝm(u) intersects the line y = (u−a)/(bm) at height i/m but not below}

Then

P (Bi) =

(

m

i

)

a(a+ ib)i−1(1− a− ib)m−i .

In our case a = b = 1
mξm

and thus

P (Bi) =

(

m

i

)

1

mξm

(

1 + i

mξm

)i−1(

1− 1 + i

mξm

)m−i

for i < mξm − 1

and P (Bi) = 0 for i ≥ mξm − 1.
Now, similar to Lemma 10.3.1 of Shorack and Wellner (page 414) we can

apply Stirling’s formula, which for i < mξm − 1 yields

P (Bi) <
m!

(i+ 1)!(m− i)!

(

1 + i

mξm

)i (

1− 1 + i

mξm

)m−i

<
mm+1/2e−m

√
2π exp(1/12m)

(i+ 1)i+3/2e−(i+1)
√
2π(m− i− 1)m−i+1/2e−(m−i)

√
2π

(

1 + i

mξm

)i

×
(

1− 1 + i

mξm

)m−i

<
exp(1/12m+ 1)√

2π

1

(i + 1)3/2
√

1− i/m
ξ−i
m

(

m− (1 + i)/ξm
m− i

)m−i

<
exp(1/12m+ 1)√

2π

1

(i + 1)3/2
√

1− i/m
ξ−i
m exp

(

−i

(

1 + i

iξm
− 1

))

In the last step we adapted the inequality
(

1 − i(λ−1)
n−i

)n−i
< e−i(λ−1) used by

Shorack and Wellner in the proof of Lemma 10.3.1. In summary we find that

P (Bi) < Kξ−i
m exp(−(i+ 1)/ξm) .

for some constant K which can be chosen such that it does not depend on m or
i. As long as 1

ξm
exp(−1/ξm) < 1 we then have

P (cSD ≥ c̃1) ≤ K

∞
∑

i=0

ξ−i
m exp(−(i+ 1)/ξm) = K

exp(−1/ξm)

1− 1
ξm

exp(−1/ξm)
.

Remembering that ξm = (logm)−s with s > 1 finally yields (G.1).

With this Lemma we are ready to prove Theorem 3.2 itself. First note that
BH is more liberal than SD, thus it is enough to control the risk contribution
of Type 1 error for BH, as well as the risk contribution of Type 2 error for SD.
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Under the first condition in (3.9) the proof for Type 1 error of BH follows along
the same lines as the proof of Lemma 5.4 in [6]. Also, under the condition of
extreme sparsity (2.14) according to Theorem 3.3 the Bonferroni procedure is
ABOS. Therefore the optimality of the type II error component of the risk of
SD in the extremely sparse case follows directly from a comparison with the
more conservative Bonferroni correction. There remains to bound the type II
error component of the risk of SD for the denser case (3.8), which overlaps with
the extremely sparse case.

Denote by LA the number of false negatives under the SD rule, and by RA

the corresponding type II error component of the risk. Furthermore let c̃1 be
the GW threshold defined in Lemma G.1. Clearly

E(LA) ≤ E(LA|cSD ≤ c̃1)P (cSD ≤ c̃1) +mP (cSD > c̃1) ,

and also
E(LA|cSD ≤ c̃1)P (cSD ≤ c̃1) ≤ EL1 ,

where L1 is the number of false negatives produced by the rule based on the
threshold c̃1. Since by Lemma G.1 the rule based on c̃1 is asymptotically optimal,
it follows that δAEL1 = Ropt(1+om). On the other hand by Lemma G.1 it holds
that P (cSD > c̃1) ≤ m−γu for any γu > 0 if only m is sufficiently large, and
therefore

RA = δAELA ≤ RB(1 + om) + δAm
1−γu .

Now by using assumptions (3.8) and (3.9), and choosing e. g. γu = γ2/2+ 1, we
conclude that δAm

1−γu = o(Ropt), and the proof is thus complete.

Appendix H: Proofs of Theorems 3.3 and Proposition 3.1

Proof of Theorem 3.3:

Proof. Ifm → ∞ then the threshold for the Bonferroni correction can be written
as

c2Bon = 2 log
(m

α

)

− log
(

2 log
(m

α

))

+ log(2/π) + om . (H.1)

Comparison of this threshold with the asymptotic approximation to an optimal
BFDR control rule (E.5) yields

c2Bon = c2B + 2 logmp+Om(1) .

From (2.14) it follows easily that c2Bon = c2B(1 + om). By assumption, the rule
based on the threshold c2B is optimal, and hence c2Bon satisfies condition (2.12)
of Theorem 2.2. Condition (2.13) is satisfied, since by assumption logmp is
bounded from below and thus ABOS of the Bonferroni correction follows.

Otherwise assume that (2.14) does not hold, which means that there is a
subsequence with log(mp)/ log(n/p2) → D ∈ (0,∞]. But then

c2Bon = c2B + 2D log(n/p2) +Om(1)
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and log(n/p2) 6= o(log v). Specifically remember that v = nδ2/p2, and because
of Assumption (A) δ is bounded from above and log δ = o(log p). Thus it is not
possible that log(n/p2)/ log(δ2) → 0. It follows that condition (2.12) cannot be
fulfilled, and the Bonferroni rule is not ABOS.

Proof of Proposition 3.1

Proof. For fixed δ the Bonferroni threshold (H.1) can be rewritten as

c2Bonf = 2 log(m/α)− log 2 log(m/α) +O(1) = log v + z

with

z = 2 logmp− log(nα2)− log 2 log(m/α) +O(1) .

Under assumption (3.11) it is clear that log 2 log(m/α) = o(v), and thus the
first condition for a fixed threshold rule to be optimal becomes

2(1− β) logm− log(nα2)

logn− 2 log p
→ 0 .

This is trivially fulfilled because (3.11) is equivalent to 2(1−β) logm = log(nα2)+
const. It is easy to check that this choice also fulfills the second condition for
optimality.
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