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Abstract: In this paper, motivated by an important problem in evolu-
tionary biology, we develop two sieve type estimators for distributions that
are mixtures of a finite number of discrete atoms and continuous distri-
butions under the framework of measurement error models. While there is
a large literature on deconvolution problems, only two articles have pre-
viously addressed the problem taken up in our article, and they use rela-
tively standard Fourier deconvolution. As a result the estimators suggested
in those two articles are degraded seriously by boundary effects and nega-
tivity. A major contribution of our article is correct handling of boundary
effects; our method is asymptotically unbiased at the boundaries, and also
is guaranteed to be nonnegative. We use roughness penalization to improve
the smoothness of the resulting estimator and reduce the estimation vari-
ance. We illustrate the performance of the proposed estimators via our real
driving application in evolutionary biology and two simulation studies. Fur-
thermore, we establish asymptotic properties of the proposed estimators.
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1. Introduction

The research described in this paper is motivated primarily by an important ap-
plication in evolutionary biology, where biologists are interested in estimating
the distribution of virus mutation effects (Burch et al., 2007; Lee et al., 2010).
Biological prior information suggests that there are two kinds of mutations: no
or silent mutations which have no effects on virus fitness; and deleterious muta-
tions whose effects are continuous and positive in reducing virus fitness. Hence,
the target distribution of the mutation effect is a mixture of a pointmass at zero
and a positively-supported continuous distribution, which has a non-smooth
left boundary at the origin, i.e. the density is discontinuous at the left bound-
ary of the support. The observations are also contaminated with measurement
errors. For more details on the biological experiment and the relevant data, see
Section 2.

To the best of our knowledge, this is the first paper considering the afore-
mentioned two special features: (1) discrete and continuous mixtures, and (2)
non-smooth boundaries. There are only two recent works (van Es et al., 2008;
Lee et al., 2010) which consider mixtures of one discrete atom and one continu-
ous component in the context of measurement error models. (The two estimators
are essentially the same, whose convergence rates were recently derived by Gu-
gushvili et al. (2011).) However, they do not consider boundaries, hence the
proposed estimators give poor performance near non-smooth boundaries. More-
over, since they use conventional Fourier deconvolution methods, their estima-
tors of nonnegative densities suffer from negativity. On the other hand, while
the deconvolution problem with known boundaries has been studied by Pen-
sky (2002), Hall and Qiu (2005), Meister (2007), and Zhang and Karunamuni
(2009), these authors consider only continuous target distributions. An inter-
esting direction for future work is to extend these methods, for example the
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boundary kernels of Zhang and Karunamuni (2009), to the problem of estimat-
ing discrete/continuous mixture distributions which is the focus of this paper.

In the context of purely continuous distributions, existing deconvolution meth-
ods mainly fall into two groups. The first group contains Fourier-based methods
that use Fourier and Inverse Fourier transformations along with nonparametric
smoothing. For detailed description of various methods and their asymptotic
properties, see van Es et al. (2008), Lee et al. (2010) and references therein.
The second group consists of non-Fourier based deconvolution methods. Many
such methods first employ basis functions such as B-splines or wavelets to ex-
pand the target density (or distribution) function, and then estimate the basis
coefficients using various approaches. For example, see Johnstone et al. (2004),
Staudenmayer et al. (2008) and references therein. In addition, several other al-
ternatives for deconvolution have been proposed, such as NPMLE, SIMEX, and
TAYLEX, which are well reviewed in, for example, Carroll et al. (2006), Wagner
and Stadtmüller (2008), and Wang et al. (2009). Staudenmayer et al. (2008) re-
cently proposed a B-spline Bayesian deconvolution approach, considering only
continuous target variables.

The statistical deconvolution setting starts with some observations of a vari-
able Y , which is the sum of two variables: one is the unobservable variable whose
distribution we are interested in estimating, say X , and the other is an error
variable, Z. In particular, to estimate the target distribution of X , only the
error contaminated observations Y = X + Z are available. Density estimation
of X in this case, called the deconvolution problem, has been studied widely.
Nevertheless, as discussed above, most earlier work restricts X to be continuous.
In this paper, we consider practically important cases with two special features:

(1) the target distribution of X is a mixture of a finite number of discrete
atoms and a continuous distribution;

(2) the continuous mixture component has non-smooth boundaries.

This combination of discrete and continuous mixtures and non-smooth bound-
ary makes this problem challenging. To solve the problem, we employ three
main ideas: discretization, maximum likelihood and penalization. First, we ap-
proximate the distribution of X using discretization, which gives a sieve of the
distribution family. The mixture structure, and any information known about
the distribution such as its atoms and boundaries, are reflected in the construc-
tion of the sieve. Then, we estimate the distribution using maximum likelihood
within each sieve. The measurement error problem is naturally addressed via
computation of the likelihood function. In addition, when smoothness of the tar-
get distribution is assumed, we improve the proposed basic sieve estimator using
a roughness penalty function, which results in our penalized sieve estimator.

Sieve type estimators have been proposed for deconvolution problems by
Cordy and Thomas (1997), whose technique can be extended to our sieve esti-
mator (Section 3.2) when degenerate distributions are used to approximate the
continuous mixture component. However, our approach has several advantages:
(i) we introduce penalization to improve the estimation performance for smooth
target functions; (ii) our ready-to-be-distributed optimization implementation
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is more direct and efficient, and (iii) theoretical properties of our estimators are
accessible. In the simple error-free case, Ruppert et al. (2007) proposed a sieve
type density estimator for certain special distributions with known boundaries.

Although this work is motivated by the evolutionary biology application, it is
also applicable to other areas. For example, another potential application is the
nonparametric empirical Bayes approach to estimation of a high dimensional
vector of normal means (Brown and Greenshtein, 2009; Greenshtein and Park,
2009; Raykar and Zhao, 2011). For this application, the distribution of interest
is the prior distribution used for the empirical Bayes approach. For sparse sce-
narios when some of the normal means are assumed to be exactly zero, the prior
distribution would be a mixture of an atom at zero and another continuous com-
ponent; for the non-sparse scenarios, the prior would be just a continuous com-
ponent. With or without the sparsity assumption, our methods can be used to
estimate the prior distribution nonparametrically and enable posterior inference.

The remainder of the paper is organized as follows. Section 2 describes our
motivating virus application and the virus lineage data provided by Burch et al.
(2007). In Section 3, we explicitly state our problem of interest and the model,
and then propose a standard sieve estimator and a penalized sieve estimator,
along with some estimation algorithms, including procedures for data-driven
parameter selection. Section 4 illustrates the performance of the estimators via
two simulation studies. We analyze the virus lineage data in Section 5. Section 6
studies asymptotic properties of the proposed estimators. The online supple-
ment (Lee et al., 2013) contains technical details of the optimization algorithm
for our estimators and the proofs for the theorems.

2. Description of the virus lineage data

Evolutionary biologists performed experiments on 10 virus lineages to propagate
the accumulation of mutations over time (Burch and Chao, 2004; Burch et al.,
2007). During the experiments, the viruses were plated onto a lawn of some
standard host, and formed plaques as they evolved. The final scientific goal was
to estimate the distribution of mutation effects on virus fitness, denoted as S.

Unfortunately, virus fitness is not directly measurable in the experiments.
Burch and Chao (2004) experimentally determined that S is related with the
mutation effect on plaque size X through the following equation

X = 22.73 log(1 + S). (2.1)

Hence, to estimate the distribution of mutation effect on fitness, one normally
first estimates the distribution of mutation effect on plaque size, and then trans-
forms the resulting distribution to the distribution of fitness through inverting
the above relationship.

Due to the biological reasons given above, for each lineage, the plaque sizes
were measured at 40 different time points sequentially. Define Y as the reduction
between two consecutive plaque size measurements. The reduction Y can be
considered as the sum of two components: one is the real mutation effect on
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plaque sizes, i.e. X , and the other is a measurement error Z which comes from
the technical difficulty in measuring plaque sizes. Experimental details suggest
that it is reasonable to assume Z to be normally distributed.

The virus lineage data have three important intrinsic features that need to
be taken into account:

(1) a mixture structure of the mutation effect distribution;
(2) the known boundary information;
(3) the existence of measurement errors.

As will be seen in Section 3, our estimators are developed to incorporate all three
features. Among previous analyses of the data, Burch et al. (2007) considered
only the mixture structure, and Lee et al. (2010) did not properly incorporate
the boundary information. Below we elaborate on these three features.

According to Burch et al. (2007), the virus considered in the experiments
is fairly advanced in evolution, and the correspondingly biological model gives
only two mutation possibilities during a given time interval:

• no mutation or a silent mutation occurs;
• a deleterious mutation occurs.

A silent mutation is defined as a mutation that has no effect on virus fitness or
plaque size, hence the theoretical mutation effect of this first case is 0. As for the
second case, a deleterious mutation reduces virus fitness or the plaques sizes, so
its effect is positive in terms of the plaque size reduction. In addition, it is usually
assumed that the effect of the deleterious mutation is continuous. As a result, the
distribution of mutation effects on plaque size should be modeled as a mixture
of a pointmass at 0 and a continuous distribution supported on the positive
half-line. Moreover, the observations Y are contaminated with measurement
errors that are usually not negligible. This makes it necessary to consider the
measurement error model on top of the mixture structure.

As discussed above, the observations Y are either mutation effects contam-
inated with measurement errors, if deleterious mutations occurred during the
measured time points; or purely measurement errors, if no mutations or only
silent mutations occurred. Hence our interest is to estimate (i) the relative fre-
quency of the deleterious mutations, and (ii) the distribution or density of the
continuous deleterious mutation effects, which is supported only on the positive
real line.

3. Model and methodology

In this section, we first describe the model that we are interested in, and then
develop two sieve estimation procedures in Sections 3.2 and 3.3. Parameter
selection methods are discussed in Section 3.4.

3.1. Model

Suppose we observe independent and identically distributed data Y1, . . . , Yn

generated from
Y = X + Z, (3.1)
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where X and Z are independent, Z has a known density fZ , and we wish to
estimate the distribution of X . We assume that, for an integer ν ≥ 0,

FX(x) = P(X ≤ x) = π1 I(a1 ≤ x) + · · ·+ πν I(aν ≤ x) + πν+1 P(Xc ≤ x),
(3.2)

where the nonnegative quantities π1, . . . , πν+1 add up to 1, and the random
variable Xc has a continuous distribution. Without loss of generality, we assume
that al < al+1 for any l.

The case studied in the literature corresponds to ν = 0, where X is con-
tinuous, or, in effect, X = Xc. It will be assumed that the number of discrete
atoms ν and the atoms a1, . . . , aν , although not their masses π1, . . . , πν , are
known, which is true for our virus lineage application. We estimate π1, . . . , πν+1

and the distribution of Xc. By reflecting the data-generating mechanism in this
way, we give our method an opportunity to respond correctly to the model that
produced the data; alternative approaches, e.g. van Es et al. (2008) and Lee
et al. (2010), generally restrict Xc to have a continuous density and produce
estimators that do not respond well to boundary jumps and take negative values
beyond the boundaries.

Indeed, the sieve techniques developed below do not suffer from these difficul-
ties. Even in cases where there is no atom and the density of Xc is continuous on
the real line, our methodology is still attractive, because it produces distribution
and density estimators which are bona fide distribution and density functions,
respectively. This is of substantial value in many practical problems. In particu-
lar, if one of our aims in estimating the distribution of X is to enable bootstrap
simulation from the estimated distribution, then it is essential that the estima-
tor is a proper distribution function. Another advantage of our method is the
reduction of computational cost: the computation time is much shorter than
that of the standard Fourier deconvolution estimators of van Es et al. (2008)
and Lee et al. (2010); in addition, the specially tailored optimization procedure
is more efficient than the built-in optimizers in standard statistical packages
such as MATLAB and R.

The practical evolutionary biology problem summarized in the Introduction
and discussed in detail in Section 2, which motivated our work, involved ν =
1 and a1 = 0, and required Xc to be distributed on the positive real line.
Biological considerations indicated that the density of Xc would likely have a
jump discontinuity at the origin, but otherwise be continuous on (0,∞).

3.2. A standard sieve estimator

In this subsection, we develop a basic sieve estimation procedure. Our proposed
method is of the sieve type (Grenander, 1981); we first consider a sieve, which
is a sequence of classes of specific distributions, and restrict the problem to
estimation in the sieve. Then the sieve is extended to the entire distribution
space as the sample size increases, and hence we obtain a solution to the original
estimation problem.
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We establish a lattice on the support of Xc, taking it to be the sequence of
equally spaced points {xj : 1 ≤ j ≤ r} where xj+1 − xj = h > 0 plays a role
similar to that of a bandwidth, or of a binwidth in histogram estimation. For
example, when Xc is nonnegative, we can take xj = (j−0.5)h. The distribution
of Xc in (3.2) is then approximated by the distribution of a discrete random

variable X̃c with potential atoms at each of the points xj :

P(X̃c = xj) = θj for j = 1, . . . , r. (3.3)

Here, each θj is nonnegative, and
∑

j θj = 1, i.e. θ = (θ1, . . . , θr)
T denotes an

r-dimensional parameter vector for a univariate discrete distribution.
To estimate the parameter θ, we proceed as follows. Suppose that the mea-

surement error Z has a known density function fZ , and let fY be the density
of Y . In view of (3.1) and (3.3), our approximation to fY is given by

fY (y|π, θ) =

ν∑

l=1

πlfZ(y − al) + πν+1

r∑

j=1

θjfZ(y − xj), (3.4)

where π = (π1, . . . , πν+1)
T . We use maximum likelihood to estimate the parame-

ters π and θ. Theoretical properties of the estimation procedure are investigated
in Section 6.

According to (3.4), the log-likelihood function of (π, θ) can be written as

ℓ(π, θ) =

n∑

i=1

log

[ ν∑

l=1

πl fZ(Yi − al) + πν+1

r∑

j=1

θj fZ(Yi − xj)

]
. (3.5)

The standard sieve (SS) estimator for (π, θ) is then defined as the maximizer of
the above log-likelihood function, i.e.,

(π̂SS , θ̂SS) = argmax
π, θ



ℓ(π, θ) : πl ≥ 0, θj ≥ 0,

ν+1∑

l=1

πl = 1, and

r∑

j=1

θj = 1



 .

The parameters can be estimated using an EM algorithm, where the dis-
cretized version of X is considered as a missing variable. However, each maxi-
mization step still involves a nontrivial constrained optimization. We first tried
to use standard built-in optimizers in Matlab and R, but none led to stable re-
sults. We then developed our own optimizer by carefully combining the Karush-
Kuhn-Tucker condition in optimization (Bertsekas, 2005) with Newton’s itera-
tion algorithm. Details of our optimization algorithm can be found in the online
supplement (Lee et al., 2013).

Once we obtain the estimator (π̂SS , θ̂SS), we take π̂
SS to be our estimator

of π. To estimate the density of Xc, we construct a continuous function on
(x1− 0.5h, xr +0.5h) by interpolating the (xj , θ̂j), using linear interpolation as
follows. Notice that

θj = P (X̃c = xj) = P (xj − 0.5h ≤ X̃c < xj + 0.5h)

≈ P (xj − 0.5h ≤ Xc < xj + 0.5h) ≈ hfc(xj).
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These approximations motivate defining

f̃SS
c (x) =

θ̂j−1

h
+

θ̂j − θ̂j−1

h(xj − xj−1)
(x − xj−1) for x ∈ [xj−1, xj) (3.6)

for any 1 ≤ j ≤ r + 1, and 0 otherwise. We set x0 = x1 − 0.5h, xr+1 =

xr + 0.5h, θ̂0 = θ̂1 and θ̂r+1 = θ̂r. It can easily be shown that f̃SS
c is a proper

continuous density function. The corresponding distribution estimator F̃SS
c is

obtained from f̃SS
c by integration. Higher order interpolations can similarly be

defined if required.

3.3. A penalized sieve estimator

The standard sieve estimation described above in Section 3.2 involves discretiz-
ing the distribution of the continuous component Xc. As a result of this dis-
cretization, the resulting density estimator f̂SS

c can be rather rough for finite
samples. To overcome this problem, in this section we introduce a roughness
penalty on θ.

More specifically, we consider the following penalized log-likelihood function,

ℓλ(π, θ) = ℓ(π, θ)− λP (θ), (3.7)

where ℓ(π, θ) is the log-likelihood in (3.5), P (·) is a roughness penalty on θ, and
λ is a penalty parameter that balances the effects of the log-likelihood and the
penalty term. We then propose the penalized sieve (PS) estimator for (π, θ) as
the maximizer of the above penalized log-likelihood (3.7), i.e.,

(π̂PS , θ̂PS) = argmax
π, θ



ℓλ(π, θ) : πl ≥ 0, θj ≥ 0,

ν+1∑

l=1

πl = 1, and

r∑

j=1

θj = 1



 .

The roughness penalty P (·) in (3.7) can be any function that decreases as θ
gets smoother. In this paper, we choose the sum of squared first order differences,
i.e. P (θ) =

∑r
j=2(θj − θj−1)

2. This function achieves the minimum value of 0
when all the θjs are the same.

Furthermore, we can combine the above two sieve estimation procedures.
The following hybrid approach results in a discrete distribution estimator π̂

with small bias, and also produces a smoother density estimator. To implement
the hybrid method, first estimate π by the standard sieve estimator π̂SS . After
that, apply the penalized sieve estimator to obtain a smoother estimator of

the density fc. Specifically, define θ̂
PS

to be the maximizer of the following
penalized conditional log-likelihood function,

θ̂
PS

= argmax
θ

{
ℓ(θ|π̂SS)− λP (θ) : θj ≥ 0 and

∑
θj = 1

}
.

After obtaining θ̂
PS , we can use linear interpolation in the manner as discussed

in Section 3.2.
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3.4. Parameter selection

The sieve estimators involve two tuning parameters: the number of bins used
to approximate the continuous density, r, and the penalty parameter for the
penalized sieve estimator, λ. In this subsection we discuss the issue of parameter
selection, and propose selecting the two parameters in a sequential manner:
first choose an “optimal” r to derive our SS estimator, and then choose an
“optimal” λ for the fixed r in the PS estimation. The sequential selection avoids
simultaneous choice of the two parameters, which will involve a computationally
more demanding two-dimensional grid search.

3.4.1. Selection of r

The number of bins, r, for our sieve methods plays a role similar to (the in-
verse of) the bandwidth in kernel estimation. More bins, i.e. smaller binwidth
or bandwidth, reduce the bias of the estimator, but increase its variance. To
derive a data-driven selection procedure for this parameter, we make use of the
connection between our sieve approach and finite mixture modeling (McLachlan
and Peel, 2000). After the discretization of Xc, our estimation problem can be
regarded as a finite mixture proportion estimation problem with known compo-
nents.

For any fixed r, the approximated density of Y given in (3.4) is a mixture
density with known components fZ(·−ml) where ml ∈ {a1, . . . , aν , x1, . . . , xr}.
Moreover, there exists a simple one-to-one correspondence between the param-
eters (π, θ) and the vector of mixture proportions. Hence, the estimation of
(π, θ) is equivalent to estimating the mixture proportion vector. For example,
when the error variable Z has a normal distribution with mean 0 and standard
deviation σ, the sieve approximation of Y can be represented as a finite normal
mixture with ν+r components with means a1, . . . , aν , x1, . . . , xr and a common
standard deviation σ.

This connection suggests that we can choose r, the number of discrete atoms
used to approximate Xc, using similar techniques for selecting the number of
mixture components. For more details, see McLachlan and Peel (2000). In the
numerical studies reported in Sections 4 and 5, we consider the Akaike Infor-
mation Criterion (AIC, Akaike (1974)). In particular, when deriving the SS
estimator we define the selection criterion as

AIC(r) = −2 ℓ(π̂SS , θ̂SS) + 2 (ν + r − 1),

where ℓ(π̂SS , θ̂SS) is the maximized log-likelihood in (3.5), evaluated at the

corresponding standard sieve estimator (π̂SS , θ̂SS); and ν + r − 1 is the corre-
sponding number of free parameters.

3.4.2. Selection of λ

On the other hand, the penalty parameter λ plays the role of a smoothing param-
eter for our penalized sieve method. When λ = 0, the penalty term disappears,
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and θ̂
PS reduces to the standard sieve estimator θ̂SS . As discussed earlier, the

resulting density estimator may not be smooth in this case. On the other hand,
as λ increases to infinity, the penalty term dominates the log-likelihood. As a
result, the estimator is flat in the limit when the sum of squared first order
differences is used as the penalty function.

The selection of the penalty parameter is a challenging problem. One reason
is that the density fc is an unknown target. To ease the difficulty, we consider
the following simulation-based approach:

(a) start with a certain family of parametric models for the density;
(b) use the method of moments to estimate the model parameters, and consider

the estimated model as the “true” target;
(c) simulate data from the estimated model, and add the known level of mea-

surement error;
(d) apply our penalized sieve estimator to the simulated noisy data to derive

the density estimator for a grid of the tuning parameter λ;
(e) select λ to minimize the mean integrated squared error (MISE) of the den-

sity estimate, relative to the “true” target;
(f) use the “optimal” λ found above to construct our penalized sieve estimator

computed from the data at hand.

4. Simulation studies

In this section, we perform simulation studies to investigate the performance
of the proposed standard sieve (SS) and penalized sieve (PS) estimators, and
compare them with the direct deconvolution (DC) estimator of van Es et al.
(2008) and Lee et al. (2010). In Section 4.1 we consider distributions that are
compactly supported, and in Section 4.2 we treat distributions supported on
the positive real lines.

4.1. Simulation Study I

This first simulation study investigates how the estimators perform for compactly-
supported distributions. In particular, we consider the following simulation
model for X in (3.1):

Model Beta : X ∼





Beta(1, 5) with probability 0.25,

Beta(6, 6) with probability 0.25,

0 with probability 0.5.

(4.1)

In Model (4.1), Beta(1, 5) stands for a beta distribution with shape parameters
1 and 5; the other beta distribution in (4.1) can be interpreted similarly. The
continuous component Xc has compact support [0, 1] under the model, and its
density is plotted in Figure 1. The measurement error Z is then generated from a
normal distribution with mean 0 and standard deviation σ = 0.05. One hundred
random samples of size 350 are simulated as in (3.1).
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Fig 1. Simulation Study I. Density plot of the continuous component in Model (4.1).

Table 1

Simulation Studies: Comparison of the pointmass and density estimation

pointmass π density fc
Bias2 Var MSE Bias2 Var MISE

Simulation I Model (4.1)
DC .0030 .0042 .0072 .1909 .0882 .2791
SS .0001 .0019 .0020 .0168 .1267 .1435
PS .0001 .0019 .0020 .0182 .0504 .0686

Simulation II

Model (4.2)
DC .0020 .0033 .0233 .0305 .0024 .0329
SS .0031 .0012 .0043 .0039 .0016 .0055

PS .0031 .0012 .0043 .0044 .0012 .0055

Model (4.3)
DC .0001 .0016 .0018 .0645 .0049 .0694
SS .0000 .0005 .0005 .0053 .0103 .0156

PS .0000 .0005 .0005 .0053 .0103 .0156

We then apply the DC estimator, the SS estimator and the PS estimator to
the simulated datasets to estimate both the pointmass π(= 0.5) and the contin-
uous density fc. The hybrid method described in Section 3.3 is used to derive the
PS estimator: First we estimate the pointmass by the standard sieve method,
and then we estimate θ by the maximizer of the penalized log-likelihood.

In the top part of Table 1 we summarize the estimation results in terms
of squared bias, variance and mean squared error (MSE). (For the continuous
density, we calculate the integrated measures over the support.) The estimators
that minimize MSE are highlighted in boldface. We use the procedure suggested
by Lee et al. (2010) to select the tuning parameter for the DC estimator, and
the procedures described in Section 3.4 to select the turning parameters r and
λ for the sieve estimators. When selecting λ, we use a single beta distribution
to generate the initial density target, although the true target is a mixture of
two beta distributions. Our experience suggests that our parameter selection
procedure is rather robust to the choice of the parametric target, as long as the
parametric family covers a range of flexible shapes.
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As one can see, our sieve estimators have much smaller bias and MSE than
the DC estimators of van Es et al. (2008) and Lee et al. (2010), for both the
pointmass and the continuous density. Based on plots not shown here, the DC
estimator has serious bias near the boundaries, and puts positive probability
mass beyond the compact support. When estimating the continuous density,
due to the boundary effect, the DC estimator also has large bias around the
second mode near 0.5. Compared with the SS estimator, the PS estimator further
reduces the estimation variance and leads to a smaller MSE than SS, which
shows the benefit of the penalization.

4.2. Simulation Study II

The second simulation study investigates the effect of the pointmass and the per-
formance of the estimators for distributions that are supported on the positive-
half line. To make the simulation scientifically more relevant, this simulation
scheme reflects the biological context of the virus lineage application described
in Section 2. As discussed there, the mutation effect on virus fitness (S) cannot
be directly measured in experiments. Instead, evolutionary biologists measure
it through the mutation effect on plaque size (X), which is defined as the virus
plaque size reduction between two consecutive measurement times. It has been
established experimentally that X and S are related according to (2.1).

In our simulation study, we consider two models for S that are mixtures of a
pointmass at 0 and an exponential distribution with different mixing probabil-
ities. More specifically, the two models are

Model Exp1 : S ∼ Exp(0.12) (4.2)

Model Exp2 : S ∼

{
Exp(0.12) with probability 0.1,

0 with probability 0.9.
(4.3)

In the above two models, Exp(0.12) denotes an exponential distribution with
mean 0.12. We then define X according to (2.1). To generate the measurement
error perturbed observations Y = X +Z, we simulate the measurement error Z
from a normal distribution with mean 0 and standard deviation σ = 0.48. This
value of σ is chosen based on the analysis of the real virus lineage data of Burch
et al. (2007). We then simulate 100 random samples of size n = 350 following
the above simulation scheme. The exponential distribution is chosen because it
is the most common model for virus mutation effect.

The continuous component of X has a density fc that is supported only on
the positive real line, and has a jump discontinuity at 0. Once the distribution
of X is estimated, the distribution estimate of S can be easily obtained from
(2.1) via a simple change of variables, if there is interest as is the case in the
real application of Section 5.

The estimation results of the DC/SS/PS estimators are reported in Panel
(b) of Table 1. The estimators that minimize the MSE are again highlighted in
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boldface. When selecting λ, we assume an exponential distribution to generate
the initial density target.

Our results suggest that, regardless of the presence of the pointmass (π = 0
vs. π = 0.9), our sieve estimators work better than the DC estimator, and
have significantly smaller MSE for both π and fc. In the case of the continuous
density fc, the bias of the sieve estimators is much smaller than DC, which can
not appropriately incorporate the discontinuity at the origin. In plots not shown
here, the boundary problem of the DC estimator is apparent near x = 0, where
it is seriously biased, and it puts positive probability mass on the negative half-
line. Moreover, the continuous density estimator takes negative values, which
contradicts the basic nonnegative property of probability density functions.

The two sieve estimators perform similarly in the current setup, and penal-
ization has little effect, which is different from the previous case described in
Section 4.1. We think the reason is that the true density fc in the current setup
is simpler and smoother, and the standard sieve estimates are already suffi-
ciently smooth. As the pointmass increases from π = 0 to π = 0.9, the amount
of information available for estimating the continuous density decreases, which
explains why all three estimators perform worse when estimating fc, but better
for estimating the pointmass.

5. Application to the virus lineage data

5.1. Estimation results

We now apply our estimators to the virus lineage data described in Section 2,
and compare the results with the commonly assumed parametric exponential fit,
and the results of Burch et al. (2007) and Lee et al. (2010). For the pointmass π1

corresponding to the proportion of no (or silent) mutations, our standard sieve
(SS) estimator in Section 3.2 gives π̂SS

1 = 0.9204 while the direct deconvolution
estimate of Lee et al. (2010) gives 0.9363. Note that Burch et al. (2007) gives
0.9027 based on the virus genotype sequencing data.

As an illustration, Figure 2(a) plots the various estimators of the deleteri-
ous mutation effect density. One can clearly see the boundary problem of the
direct deconvolution estimator (the grey dash-dotted curve), which puts posi-
tive density on the negative real line although the mutation effect distribution
is supported only on the positive real line. On the other hand, our sieve esti-
mators have positive support. In addition, the penalized sieve (PS) estimator
described in Section 3.3 (the black solid curve) is smoother than the standard
sieve estimator (the grey solid curve). The sum of squared first order differences
is used as the penalty function in deriving the penalized sieve estimator.

Using the parameter selection procedure discussed in Section 3.4, we choose
the number of bins needed for our sieve estimators to be r = 4, and the penalty
parameter λ for the PS estimator to be 10 (Panel (b) of Figure 2). The mean
parameter of the exponential fit (the black dash-dotted curve) is estimated using
the method of moments. The tuning parameter M for the direct deconvolution
estimator is selected using a procedure suggested by Lee et al. (2010).
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Fig 2. The motivating virus lineage application. Panel (a) shows various density estimators
of the deleterious mutation effects. Panel (b) shows the selection for the penalty parameter λ.

5.2. Validation of the exponential assumption

One more statistical issue we want to address is the validation of the exponential
assumption of the mutation effect distribution. Exponential distributions have
been traditionally used to fit the mutation effects, but no serious work has been
done to validate this parametric assumption. Figure 2 shows that the overall
trends of our sieve estimators are similar to that of an exponential distribution.
To formally check the validity of the exponential assumption, we propose using
a graphical tool, the density-envelope plot. (The usage of the density-envelope
plot is much more general than just for checking exponential distributions.)

Figure 3 provides the density-envelope for the sieve estimator with different
penalty parameters. (Note that λ = 0 corresponds to the standard sieve esti-
mator.) To obtain the envelope, we first fit an exponential distribution to our
data, then generate 100 random samples from the mixture of a pointmass at
0 with probability 0.9204, and the fitted exponential distribution with proba-
bility 0.0796. The simulated samples are of the same size as our original data.
We then obtain the penalized sieve density estimator for each sample, using
the corresponding penalty parameter λ. Finally these 100 estimators are over-
layed to form the envelope, which represents the natural variation of the sieve
estimator. In addition to the envelope, the black dash-dotted curve shows the
exponential density that generates the simulation samples, the black solid curve
is the penalized sieve estimator obtained from the data, and the dark grey solid
curve is the average of the 100 light grey curves, respectively.

As can be seen from Figure 3, the sieve estimator obtained from the data
lies nicely within the density envelope for every panel, and it almost overlaps
with the average estimator. This implies that the difference between the sieve
estimator and the fitted exponential density can be explained as being due to
natural variation. Equivalently, we can state that an exponential distribution is
a reasonable model for deleterious mutation effects.
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(d) λ = 150

Fig 3. Validation of the exponential assumption: the density-envelope plots for various values
of the roughness penalty parameter λ. The light grey curves form the envelope to show the
natural estimation variation, the black dash-dotted curve shows the exponential density which
generates the simulation samples, the black solid curve is the penalized sieve density estimator
obtained from the data, and the dark grey solid curve is the average of the 100 grey curves.

Comparing the various panels, we can study the effect of the penalty param-
eter λ in the sieve estimation. As λ increases, the estimator gets smoother, so a
larger λ is preferred when the target density is known to be smooth; at the same
time, the estimation bias increases. In particular, the standard sieve estimator
in Figure 3(a) is almost unbiased, but the estimation variance is large, as shown
by the density envelope; on the other hand, Figure 3(d) shows the penalized
sieve estimator with λ = 150, which is clearly over-smoothed: the bias of the
estimator is quite large, but the estimation variance is very small. This way of
studying the estimation result over multiple penalty parameters is similar to the
scale-space approach for smoothing parameter selection proposed by Chaudhuri
and Marron (2000).

6. Consistency of the proposed estimators

In this section we establish the consistency of our sieve estimators in Theorems 1
and 2. Technical details of the proofs are provided in the online supplement (Lee



338 M. Lee et al.

et al., 2013). Our aim is to show that, with either approach, a consistent estima-
tor of the distribution can be obtained under the minimal assumption that the
binwidth h is of larger order than n−1. That is, under some regularity conditions,
F̂X(x) converges to FX(x) with probability 1, where

F̂X(x) = π̂1I(a1 ≤ x) + · · ·+ π̂νI(aν ≤ x) + π̂ν+1

r∑

j=1

θ̂jI(xj ≤ x), (6.1)

and FX is the true distribution of X as defined in (3.2). If continuity of fc is
assumed, then it can be proved that the interpolated estimator in (3.6) is a
consistent estimator of fc.

In order to make our results simple to frame, we assume that the distribution
of Xc has a bounded density fc supported in a compact interval [a, b]; the values
of a and b need not be known, unless they are atoms of FX . We construct the
distribution estimator in a potentially larger interval [a∗, b∗], where −∞ < a∗ ≤
a < b ≤ b∗ < ∞. Let c = min{a1, a

∗} and let d = max{aν , b
∗}. Define

g(y) = g(y|c, d) = sup
c≤u1,u2≤d

fZ(y − u1)

fZ(y − u2)
, (6.2)

and write F for the set of all distributions which have a mixture structure with
atoms at a1, . . . , aν and a continuous distribution supported in [a, b].

We also assume that for some x0 ∈ [c, d], and a constant B > 0 not depending
on s,

for all integers s ≥ 1, E| log g(Y )|s + E| log fZ(Y − x0)|
s ≤ s!Bs , (6.3)

inf
F∈F

Var

[
log

{∫
fZ(Y − x) dF (x)

}]
> 0 . (6.4)

Property (6.3) can be verified by direct calculation for a large class of densities
fZ . For example, the normal and Laplace distributions are both particular cases
of the set of Subbotin distributions SDγ(µ, σ

2), with probability density

f(x|γ, µ, σ) =
Cγ

σ
exp

(
−

|x− µ|γ

γσγ

)
,

where γ, σ > 0, −∞ < µ < ∞ and C−1
γ = 2Γ(1/γ) γ(1/γ)−1. See Donoho

and Jin (2004) for discussion of this class. Property (6.3) holds for these and
many other distributions, for example distributions for which fZ has regularly
varying tails, as in the case of Student’s t-distribution. Property (6.4) can be
established by contradiction, noting that if it fails then there is an F ∈ F for
which the variance equals zero, and that this is not possible for the classes of
error distributions just mentioned.

Next, taking fX(x) =
∑ν

l=1 πlδal
(x) + πν+1fc(x) to be the generalized den-

sity of X , as defined in Cuevas and Walter (1992), we impose the following
conditions:
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(R1) fc is supported in the interval [a, b] and bounded above by a constant
C > 0;

(R2) we construct the histogram approximation θ = (θ1, . . . , θr)
T to fc in the

interval [a∗, b∗], where −∞ < a∗ ≤ a < b ≤ b∗ < ∞, in which case
rh ≤ b∗ − a∗;

(R3) the error density fZ satisfies the conditions (6.3) and (6.4);
(R4) we restrict each θj by insisting that θj ≤ C1h, where C1 ≥ C, the latter

constant is as in (R1), and C1 is arbitrarily large;
(R5) r = o(n) and r → ∞;
(R6) the distribution of X is uniquely identifiable from its convolution with

the distribution of Z.

Assumptions (R1)–(R3) merely formalize constraints discussed earlier; (R4)
requires that our construction of the estimator reflects the boundedness assump-
tion, but permits our prior impression of the bound to be arbitrarily large; (R5)
is the key assumption, and, since it requires only r = o(n), or equivalently that
the binwidth h be of larger order than n−1, it is the weakest possible condition
of this type; and (R6) is a necessary condition, and holds if (for example) the
characteristic function of Z vanishes only on a set of measure zero. When Xc

has a smooth density fc, the constraint (R4) is not necessary in practice, since
estimators of the masses θj are only very rarely much larger than the probabil-
ities associated with the corresponding histogram blocks. Note that we do not
assume continuity of fc.

We first state the consistency results for the standard sieve estimator in the
following Theorem 1.

Theorem 1. Suppose that (R1)–(R6) hold. Then, with probability 1, the dis-

tribution estimator given in (6.1), where π̂ = π̂
SS and θ̂ = θ̂

SS are obtained by
the standard sieve estimation, converges to the true distribution of X.

The next theorem establishes the parallel consistency result for the penalized
sieve distribution estimator. For that, we need some extra conditions on the
roughness penalty function and the penalty parameter.

Theorem 2. In addition to (R1)–(R6), suppose that the roughness penalty P (·)
is asymptotically bounded. If the penalty parameter λ increases slower than n,
i.e. λ = o(n) as n → ∞, then F̂X(x) given by the penalized sieve estimation
converges to the true distribution of X with probability 1.

Proofs of the theorems can be found in the online supplement (Lee et al.,
2013). Similar arguments can be given in cases where fc is not assumed to be
compactly supported, but they require a much longer discussion and proof, and
additional regularity conditions. These include assumptions about the rate at
which fc decreases to zero in the left- and right-hand tails, the distances to the
far left- and right-hand bins, the total number of bins r, and sometimes also
the binwidth h, unless we deliberately link h to r through the other conditions.
None of these conditions is particularly onerous or unrealistic, but together they
make the theory less transparent and less elegant, and of course the technical
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arguments become more elaborate. By way of contrast, of all these assumptions
only the condition on r is needed in the compactly supported case; it is given
in (R5).
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