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1. Introduction

In this paper we study the asymptotic behavior of the marginal posterior for
the error standard deviation in a nonparametric, fixed design regression model
with Gaussian errors. We suppose we have observations Y1, . . . , Yn satisfying

Yi = f0(xi) + σ0Zi, i = 1, . . . , n,
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where x1, . . . , xn are known elements of a general design space X , the variables
Z1, . . . , Zn are independent, standard normal and both the regression function
f0 : X → R and the error standard deviation σ0 > 0 are unknown. We can
then make Bayesian inference about the parameters f and σ by endowing them
with independent priors Πf and Πσ, respectively, and considering the resulting
posterior distribution Π(· |Y1, . . . , Yn). We study the asymptotic behavior of the
marginal posterior distribution B 7→ Π(σ ∈ B |Y1, . . . , Yn) of the parameter σ
for n→ ∞.

Although in most cases the main interest is in estimating the regression func-
tion f , making accurate inference about the error variance σ can also be impor-
tant. In regression analysis it is common to report an estimate of σ to quantify
the magnitude of the measurement errors in the data or to assess model fit. It
is quite natural to attempt to estimate σ in an efficient way. In the frequentist
literature this problem has been studied for a long time and in increasing gen-
erality. See for instance the recent paper Brown and Levine (2007) for historical
comments and rather extensive references. The efficient estimation of the error
standard deviation or variance in nonparametric regression has so far received
little attention in the Bayesian literature however. The existing theorems focus
on contraction rates for the posterior distribution of the regression function f
and at best give only crude rates for the posterior distribution of σ. Theorems
about the asymptotic shape of the posterior of σ have not been obtained so far.

The general rate of contraction result for fixed design regression obtained in
Ghosal and Van der Vaart (2007) gives conditions under which the posterior for
the regression function f contracts around the true f0 at a certain rate εn as
n → ∞, under the assumption that σ0 is known. As has been observed several
times in the literature (see e.g. Van der Vaart and Van Zanten (2008a), Van der
Vaart and Van Zanten (2009), De Jonge and Van Zanten (2010)) this result can
be extended to the case that σ0 is unknown, see also the appendix to this paper.
In that case one also obtains a rate for the marginal posterior of σ. Specifically,
the (extended version of) existing general results give conditions under which,
for a given sequence εn → 0, it holds that

Π
(

(f, σ) :
1

n

n
∑

i=1

(f − f0)
2(xi) + |σ − σ0|2 ≥M2ε2n |Y1, . . . , Yn

)

P0→ 0 (1.1)

as n → ∞, for every sufficiently large M > 0. Here the convergence is in
probability under the true model.

A result like (1.1) implies in particular that the marginal posterior for σ is
asymptotically concentrated on an interval with length of the order εn around
the true value σ0. Since εn is also a bound for the rate of contraction of the
marginal posterior for f however, it is a “nonparametric rate” that will be slower
than the parametric rate n−1/2 if the space of regression functions that are
considered is infinite-dimensional. The rate bound εn for the one-dimensional
parameter σ is therefore typically very crude and it is natural to ask whether in
fact the actual rate of contraction for the marginal posterior for σ can be faster
than the rate for the regression function f .
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In the extreme case that the regression function f is completely known
and σ is the only unknown parameter in the problem, the classical Bernstein
von–Mises (BvM) theorem asserts that under minimal regularity conditions,
the posterior distribution of σ contracts around the true value σ0 at the rate
n−1/2. Moreover, it says that the posterior law of

√
n(σ − σ0) behaves asymp-

totically like a normal distribution N(∆n, I
−1
σ0

), with ∆n a sequence of ran-
dom variables with an asymptotic N(0, I−1

σ0
)-distribution under P0 and Iσ0 the

Fisher information for σ0. The precise statement is recalled in the next sec-
tion. The BvM result implies in particular that the posterior for σ correctly
quantifies the uncertainty about the parameter. Specifically, if credible bounds
ln < un are determined such that for a fixed level α ∈ (0, 1) it holds that
Π(σ ∈ (ln, un) |Y1, . . . , Yn) ≥ 1 − α, then the BvM theorem implies that the
credible interval (ln, un) also has frequentist coverage probability 1− α asymp-
totically, i.e. lim infn→∞ P0(σ0 ∈ (ln, un)) ≥ 1−α. Moreover, the length un− ln
of the credible interval asymptotically coincides with the length of an optimal
confidence interval. We refer to the discussion in Section 1.5 of Castillo (2012a)
for more details.

In this paper we investigate if and how this changes if the regression function
f is unknown. In this case we know that (1.1) holds for instance if f0 ∈ F and
σ0 ∈ [a, b], say, and we place independent priors Πf and Πσ on F and [a, b],
respectively, Πσ having a positive, continuous Lebesgue density and Πf such
that for positive numbers ε̃n, ε̄n ≤ εn and constants c1, c2 > 0 it holds that for
every c3 > 1, there exist measurable subsets Fn ⊂ F and a constant c4 > 0
such that

Πf (f : ‖f − f0‖n ≤ ε̃n) ≥ c1e
−c2nε̃

2
n , (1.2)

Πf (F\Fn) ≤ e−c3nε̃
2
n , (1.3)

logN(ε̄n,Fn, ‖ · ‖n) ≤ c4nε̄
2
n. (1.4)

Here ‖g‖2n = n−1
∑

g2(xi) and for a metric space (A, d) and ε > 0, N(ε, A, d)
is the minimal number of balls of d-radius ε needed to cover A. (See Theorem
A.1 in the appendix for this result.) We prove below (see Theorem 2.2) that if
in addition nε4n → 0 and

∫ aεn

0

√

logN(δ,Fn, ‖ · ‖n) dδ → 0 for all a > 0, (1.5)

then the BvM assertion holds for the marginal posterior distribution of σ. In
particular, the marginal posterior distribution of σ then has the same, optimal
asymptotic behavior as in the case that f is known.

In the literature various papers can be found that deal with the verification of
conditions (1.2)–(1.4) for specific families of priors on f . See for instance Ghosal
and Van der Vaart (2007), Van der Vaart and Van Zanten (2008a), Van der
Vaart and Van Zanten (2009), De Jonge and Van Zanten (2010), De Jonge
and Van Zanten (2012), Tokdar (2011), Bhattacharya, Pati and Dunson (2012).
These results can however not be applied directly to verify also the additional
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condition (1.5). The reason is that in the cited papers, the constructed sieves
Fn that verify (1.3) and (1.4), are typically too large for condition (1.5) to hold.
Therefore, verifying the conditions of our general BvM theorem for a specific
prior usually involves the careful construction of alternative sieves. The new,
smaller sieves should be such that the remaining mass condition (1.3) is still
fulfilled and in addition the entropy logN(δ,Fn, ‖ · ‖n) can be controlled for
arbitrarily small δ, so that (1.5) can be verified.

In this paper we carry out this task for Gaussian process priors and for a
spline-based prior on the regression function. In the case of Gaussian process
priors, it is known that conditions (1.2)–(1.4) can be replaced by single condi-
tion on the so-called concentration function of the prior, cf. Van der Vaart and
Van Zanten (2008a). Roughly speaking we prove in Theorem 3.1 below that if
in addition to this condition the rate εn is fast enough and the sample paths
of the Gaussian prior have regularity larger than d/2, for d the dimension of
the covariate space, then the BvM statement holds. We give details for two spe-
cific popular families of Gaussian priors: multiply integrated Brownian motions
and the class of Matérn processes. In both cases we find that BvM holds if the
prior is rough enough relative to the degree of smoothness of the true regression
function f0. In some generality it is known that if we want optimal contrac-
tion rates for f using a Gaussian prior, then the regularities of the truth and
the prior should be equal (see Van der Vaart and Van Zanten (2008a), Castillo
(2008)). In the examples we work out we find that for BvM for σ to hold it is not
necessary that the smoothnesses are matched exactly however. Some degree of
oversmoothing is allowed and an arbitrary degree of undersmoothing, cf. Section
3.2. In particular, the rate of contraction of the marginal posterior for f may be
sub-optimal, while still having an optimal asymptotic behavior of the posterior
for σ. This is in line with the findings of Castillo (2012a) in the context of the
white noise model.

The second type of concrete priors we study are spline-based priors studied
before in De Jonge and Van Zanten (2012). More precisely, we consider a hierar-
chical prior on functions on [0, 1]d, defined structurally as a spline of fixed order,
with randomly placed, regularly spaced knots and random B-spline coefficients
(details in Section 4). In De Jonge and Van Zanten (2012) it was shown that
when properly constructed, such a prior yields adaptive, nearly rate-optimal
estimation of a smooth regression function f . We investigate this prior in this
paper because we are interested in the question whether or not we can have
adaptive estimation of f and BvM for σ at the same time. In Theorem 4.1 we
show, by constructing appropriate sieves, that this is indeed possible. For the
spline prior we prove that if the true f0 is a d-variate function with (Hölder-)
regularity β, then BvM for σ holds if β > d. So in that case we have a single
procedure that yields both efficient estimation of the error standard deviation
and adaptive, nearly rate-optimal estimation of f across a range of regularities.
The specific priors that we analyze are Gaussian or conditionally Gaussian. This
is technically convenient, since it allows us to use tools from Gaussian process
theory. However we stress that our general BvM theorems are valid outside the
Gaussian realm as well.
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Our general result can be viewed as a semiparametric Bernstein-von Mises
theorem. In general, semiparametric BvM theorems deal with the asymptotic
behavior of posterior distributions of finite-dimensional parameters in the pres-
ence of an infinite-dimensional “nuisance” parameter. Theorems of this type
have recently been established by several authors, see for instance Shen (2002),
De Blasi and Hjort (2009), Castillo (2012a), Bickel and Kleijn (2012), Rivoirard
and Rousseau (2012). Our problem in fact fits into the general framework of
Castillo (2012a) (up to minor adaptations) and we will use his results to derive
our BvM theorem for the error standard deviation.

The remainder of the paper is organized as follows. After recalling the para-
metric BvM theorem in Section 2.1 we present our general semiparametric re-
sults for the error standard deviation in Section 2.2. In Section 3 we consider
the special case that the prior on f is Gaussian. We formulate a general theo-
rem and verify the conditions for the two particular examples mentioned above.
Section 4 treats the hierarchical spline-based priors. We prove that they yield
simultaneous adaptation for f and BvM for σ. The proof of our general the-
orem is given in Section 5. In the appendix, which we added for the sake of
completeness, we state and prove a theorem giving sufficient conditions for the
contraction rate result (1.1). This result is essentially known, but a proof has
never been published.

2. General result

2.1. Prelude: Parametric Bernstein–von Mises

The main result of this paper is a semiparametric Bernstein–von Mises (BvM)
theorem for the error standard variance in a fixed design regression model. As
a prelude we first consider the parametric case in which we observe variables
Y1, . . . , Yn satisfying

Yi = f0(xi) + σZi, i = 1, . . . , n,

for known covariates xi ∈ X and standard normal random variables Zi. We
now assume that the regression function f0 is known, so that the error standard
deviation σ > 0 is the only unknown parameter. We denote its true value by σ0.
Observe that in this case we simply have a sample of size n from the N(0, σ2)-
distribution, given by Xi = Yi − f0(xi), i = 1, . . . , n.

The BvM theorem in a smooth, parametric i.i.d. model like this one is classi-
cal. As an illustration and to connect to the semiparametric case studied ahead
we briefly explain it. Let pσ be the marginal density of Xi, ℓσ(x) = log pσ(x),
ℓ̇σ(x) = ∂ℓσ(x)/∂σ and ℓ̈σ(x) = ∂ℓ̇σ(x)/∂σ. Then a Taylor expansion gives

ℓσ(x) − ℓσ0(x) ≈ (σ − σ0)ℓ̇σ0(x) +
1

2
(σ − σ0)

2ℓ̈σ0(x).

By the law of large numbers the average −n−1
∑n

i=1 ℓ̈σ0(Xi) converges almost

surely to the Fisher information Iσ0 = −E0ℓ̈σ0(X1) = Var0ℓ̇σ0(X1). It follows
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that for the full log-likelihood we have the LAN approximation

log

n
∏

i=1

pσ
pσ0

(Xi) ≈ −1

2
Iσ0

(

n(σ − σ0)
2 − 2

√
n(σ − σ0)∆n

)

,

where

∆n = I−1
σ0

1√
n

n
∑

i=1

ℓ̇σ0(Xi).

By the central limit theorem, we have the weak convergence ∆n ⇒ N(0, I−1
σ0

)
as n→ ∞.

If we now put a prior on (0,∞) with a Lebesgue density π which is positive
and continuous at σ0, then for the corresponding posterior we have, for a Borel
subset B ⊂ R,

Π(
√
n(σ − σ0) ∈ B |Y1, . . . , Yn) =

∫

√
n(σ−σ0)∈B

∏n
i=1

pσ

pσ0
(Xi)π(σ) dσ

∫

R+

∏n
i=1

pσ

pσ0
(Xi)π(σ) dσ

.

By the LAN approximation, the integrands are approximately equal to a con-
stant times

π(σ) exp
(

− 1

2
Iσ0 (

√
n(σ − σ0)−∆n)

2
)

.

Making a change of variable
√
n(σ−σ0) = h we then see that the posterior prob-

ability that
√
n(σ − σ0) falls in the set B approximately equals N(∆n, I

−1
σ0

)(B)
for large n.

This somewhat loose argumentation can be made precise and it can be shown
that in probability, the total variation distance between the posterior distribu-
tion of

√
n(σ−σ0) and the N(∆n, I

−1
σ0

)-distribution vanishes as n→ ∞, cf. e.g.
Van der Vaart (1998). It is easily verified that in this case

∆n =
σ0
2
√
n

n
∑

i=1

(Z2
i − 1), Iσ0 =

2

σ2
0

. (2.1)

In the next section we state the semiparametric version of this result for the
case that the regression function f is in fact unknown. It turns out that there
is no loss of information (in the semiparametric sense) for the error standard
deviation and that under relatively mild conditions on the prior for the nonpara-
metric part f , the asymptotic behavior of the marginal posterior for

√
n(σ−σ0)

is the same as if f were known.

2.2. Semiparametric Bernstein–von Mises

Now suppose that we have observations Y1, . . . , Yn from the regression model

Yi = f(xi) + σZi, i = 1, . . . , n, (2.2)
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with fixed and known design points x1, . . . , xn in the set X , an unknown regres-
sion function f : X → R, an unknown constant σ > 0, and with Z1, . . . , Zn

independent standard Gaussian random variables. We assume that the true
parameter (σ0, f0) belongs to the set (0,∞) × F , for F a measurable space of
functions on X . The corresponding true distribution of the data is denoted by P0.

The log-likelihood is given by

ℓn(σ, f ;Y1, . . . , Yn) = −n
2
log 2πσ2 − 1

2σ2

n
∑

i=1

(Yi − f(xi))
2.

We assume that for every n, the map (σ, f, y) 7→ ℓn(σ, f ; y1, . . . , yn) is a mea-
surable map on (0,∞) × F × Rn. Note that this is the case for instance if X
is a topological space and F is a measurable subset of the space of C(X ) of
continuous functions on X , endowed with its Borel sigma-field.

To make Bayesian inference about f and σ we endow the pair (σ, f) with a
product prior distribution of the form Π = Πσ×Πf . Here Πσ is a distribution on
(0,∞) with a positive and continuous Lebesgue density and Πf is a distribution
on F . In view of the measurability assumptions the corresponding posterior
distribution is well defined and given by Bayes’ formula. ForA and B measurable
subsets of (0,∞) and F , respectively, the posterior measure of the set A×B is
denoted by Π(A×B |Y1, . . . , Yn) or Π(σ ∈ A, f ∈ B |Y1, . . . , Yn).

The following theorem deals with the marginal posterior distribution of the
parameter σ. It gives conditions under which we have, as in the case that f is
known, that the posterior distribution of

√
n(σ − σ0) asymptotically behaves

as an N(∆n, I
−1
σ0

)-distribution, where ∆n and Iσ0 are as in (2.1). Note that we
still have the weak convergence ∆n ⇒ N(0, I−1

σ0
) under P0, by the central limit

theorem.
The existing general contraction rate theorems for fixed design regression

give conditions under which the posterior contracts around the true parameter
(σ0, f0). More precisely, for a sequence of positive numbers εn such that nε2n →
∞ they give conditions under which there exist measurable subsets Fn ⊂ F
such that

Π((σ, f) ∈ (0,∞)×Fn : |σ − σ0|+ ‖f − f0‖n ≤ εn |Y1, . . . , Yn) P0→ 1 (2.3)

as n→ ∞, where, as before, the norm ‖ · ‖n is the L2-norm associated with the
empirical measure on the design points, i.e. ‖g‖2n = n−1

∑

g2(xi). (Since a full
proof of this exact statement appears never to have been given in the literature,
we provide it in the appendix of the paper for the sake of completeness. See
Theorem A.1.) The case that σ0 is known is covered by these general results
as well. Following Castillo (2012a), we denote the posterior distribution for f
in the model that σ0 is known by Πσ=σ0 (· |Y1, . . . , Yn). In this notation, the
general theory gives conditions under which

Πσ=σ0 (f ∈ Fn : ‖f − f0‖n ≤ εn |Y1, . . . , Yn) P0→ 1 (2.4)

as n→ ∞ (see e.g. Ghosal and Van der Vaart (2007)).
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The rate εn should be viewed as the contraction rate that is achieved for the
nonparametric part of the statistical problem. The following theorem states that
if this rate is fast enough, namely nε4n → 0, then under the additional entropy
condition (1.5), we have the BvM result for the error standard deviation σ. The
proof of the theorem is given in Section 5.

Theorem 2.1. Consider positive numbers εn such that nε2n → ∞ and nε4n → 0.
If there exist measurable subsets Fn ⊂ F such that (2.3), (2.4) and (1.5) hold,
then with ∆n and Iσ0 given by (2.1) we have

sup
B

∣

∣

∣

∣

Π(
√
n(σ − σ0) ∈ B, f ∈ F|Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣

∣

∣

∣

P0→ 0

as n→ ∞, where the supremum is taken over all measurable subsets B ⊂ R.

Existing general theorems give sufficient conditions on the prior Πf for (2.3)
and (2.4) to hold. Full proofs are only given in the literature for the case that
σ is known (see Ghosal and Van der Vaart (2007)), which only takes care of
(2.4). It has been noted however that these results can be adapted to deal with
the case that σ0 belongs to a known compact interval [a, b] and Πσ is a prior
concentrated on [a, b]. For completeness, we give a precise result in Theorem
A.1 in the appendix. Admittedly, the assumption that the standard deviation
belongs to a compact interval is restrictive. Extending the general rate result
given in the appendix to alleviate this restriction is therefore desirable, but is
not completely straightforward.We note that our general theorem, Theorem 2.1,
does not require σ to be in a compact set. Hence, a generalization of Theorem
A.1 will immediately yield a generalization of the following theorem as well.

Theorem 2.2. Suppose that σ ∈ [a, b] and Πσ is concentrated on [a, b]. Consider
positive numbers ε̃n, ε̄n ≤ εn such that n(ε̃n∧ε̄n)2 & logn and nε4n → 0. Suppose
that for constants c1, c2 > 0 we have that for every c3 > 1, there exist measurable
subsets Fn ⊂ F and a constant c4 > 0 such that conditions (1.2)–(1.5) are
fulfilled. Then with ∆n and Iσ0 given by (2.1) we have

sup
B

∣

∣

∣

∣

Π(
√
n(σ − σ0) ∈ B, f ∈ F|Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣

∣

∣

∣

P0→ 0

as n→ ∞, where the supremum is taken over all measurable subsets B ⊂ R.

Proof. Combining Theorems A.1 and 2.1 yields the result.

In the next two sections we verify the conditions of Theorem 2.2 for two classes
of priors Πf : Gaussian process priors and hierarchical spline-based priors.

3. Gaussian process priors

3.1. General Gaussian priors

We now specialize to the case that X = [0, 1]d for some d ∈ N. As prior Πf on the
regression function f we employ the law of a Gaussian random elementW in the
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space C([0, 1]d) of continuous functions on [0, 1]d. We denote the reproducing
kernel Hilbert space (RKHS) of W by H. For f0 ∈ C([0, 1]d) the true regression
function, the associated concentration function is denoted by ϕf0 , that is to say

ϕf0 (ε) = inf
h∈H:‖h−f0‖∞<ε

‖h‖2
H
− logP(‖W‖∞ < ε), ε > 0. (3.1)

(See the papers Van der Vaart and Van Zanten (2008a) and Van der Vaart and
Van Zanten (2008b) and the references therein for these fundamental concepts.)
As in Theorem 2.2, the error standard deviation is assumed to belong to [a, b]
and Πσ is concentrated on that interval. The general theory for Gaussian process
priors then says that if εn → 0 is such that nε2n → ∞ and

ϕf0(εn) ≤ nε2n, (3.2)

then the marginal posteriors for f and σ contract at the rate εn around their
true values, cf. Theorem 3.3 of Van der Vaart and Van Zanten (2008a).

The theorem below essentially states that if in addition to (3.2) we have
nε4n → 0 and W has degree of regularity α > d/2, then BvM holds true. Specif-
ically, we shall assume that W takes values in the Hölder space Cγ [0, 1]d for all
γ < α. (Recall that a function belongs to this space if for γ the largest integer
strictly smaller than γ, it has continuous partial derivatives up to the order γ
and the derivatives of order γ are Hölder continuous of the order γ − γ.) We

typically have that if a Gaussian process on [0, 1]d is α-regular in this sense,
then its RKHS unit ball H1 is contained in a Sobolev-type ball of regularity
α+ d/2 (see for instance the concrete examples in the next subsection). If this
is the case, then for every γ ∈ [0, α) the space H1 typically satisfies an entropy
bound of the form (see, e.g., Edmunds and Triebel (1996))

logN(ε,H1, ‖ · ‖Cγ ) ≤ Kγε
− 2d

d+2(α−γ) (3.3)

for some Kγ > 0. Here ‖ · ‖Cγ denotes the usual Hölder norm on Cγ [0, 1]d (see
e.g. Van der Vaart and Wellner (1996) for its precise definition).

Theorem 3.1. Suppose that for α > d/2 the process W takes values in
Cγ([0, 1]d) for every γ < α and its RKHS unit ball H1 satisfies the entropy
bound (3.3) for every γ ∈ [0, α).1 If (3.2) holds for numbers εn → 0 such that
nε4n → 0, then with ∆n and Iσ0 given by (2.1) we have

sup
B

∣

∣

∣

∣

Π(
√
n(σ − σ0) ∈ B, f ∈ F|Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣

∣

∣

∣

P0→ 0

and n→ ∞, where the supremum is taken over all measurable subsets B ⊂ R.

Proof. We first remark that if (3.2) holds for the sequence εn then it also holds
for larger sequences, in particular for ε′n = εn∨n− α

d+2α . Since α > d/2, this new

1The proof shows that in fact it is sufficient if there exist α > γ > d/2 such that W takes
values in Cγ([0, 1]d), and (3.3) holds for that α and γ and for α and γ = 0.
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sequence satisfies n(ε′n)
4 → 0 as well. Therefore, we can assume without loss of

generality that εn ≥ n− α
d+2α in the remainder of the proof.

We apply Theorem 2.2. It is well known that (3.2) implies that condition (1.2)
is fulfilled with ε̃n = εn (see Van der Vaart and Van Zanten (2008b), Lemma 5.3).
To prove that there exists sieves Fn such that (1.3)–(1.5) are satisfied we exploit
the fact that by assumption we can view W as a Gaussian random element in
the Banach space (Cγ [0, 1]d, ‖ · ‖Cγ ) for γ < α. Since C[0, 1]d is the completion
of Cγ [0, 1]d with respect to the ‖·‖∞-norm and ‖·‖∞ ≤ ‖·‖Cγ , we have that the
RKHS of W viewed as a Cγ [0, 1]d-valued Gaussian random element coincides
with the RKHS H of W viewed as continuous Gaussian process. This follows
from Lemma 8.1 in Van der Vaart and Van Zanten (2008b).

Since α > d/2 by assumption, there exists a γ such that α > γ > d/2. Now

set δn = n− α−γ
d+2α and Fn = M

√
nεnH1 + δnC

γ
1 , where M is a constant to be

determined below and Cγ
1 is the unit ball in Cγ [0, 1]d. We claim that if M is

chosen large enough, then conditions (1.3)–(1.5) hold true.
By the relation between the entropy of the RKHS unit ball and small ball

probabilities established by Li and Linde (1999), assumption (3.3) implies that
P(‖W‖Cγ < δ) ≥ exp(−Dδ−d/(α−γ)) for some D > 0. It follows that

− logP(‖W‖Cγ < δn) . δ
− d

α−γ
n = n

d
d+2α ≤ nε2n.

Hence, by the Borell-Sudakov inequality (see Van der Vaart and Van Zanten
(2008b)) and the fact that for the standard normal distribution function Φ we
have Φ−1(y) ≥ −

√

(5/2) log(1/y) for small y, we have that condition (1.3) is
fulfilled with ε̃n = εn, provided M is chosen large enough.

For the entropy conditions we note that by assumption (3.3) (applied with
γ = 0 this time) and known entropy bounds for Hölder balls (see for instance
Van der Vaart and Wellner (1996)), we have

log(2ε,Fn, ‖ · ‖∞) ≤ logN(ε,M
√
nεnH1, ‖ · ‖∞) + logN(ε, δnC

γ
1 , ‖ · ‖∞)

.
(

√
nεn
ε

)
2d

d+2α

+
(δn
ε

)
d
γ

.

The right-hand side with εn substituted for ε is bounded by a constant times
nd/(d+2α)+(δn/εn)

d/γ . Both terms in this sum are bounded by nε2n by the lower
bound assumption on εn and the definition of δn. Hence, condition (1.4) holds.
The inequality in the last display also shows that for a > 0,

∫ aεn

0

√

log(ε,Fn, ‖ · ‖∞) dε . n
d

2d+4α εn + δ
d
2γ
n ε

2γ−d
2γ

n .

Since α ≥ d/2 and nε4n → 0, the first term on the right converges to 0. Since
γ > d/2, the second term vanishes as well. This covers condition (1.5).

3.2. Specific Gaussian priors

In this subsection we verify the conditions of Theorem 3.1 for two particular
examples of Gaussian process priors on f. In the first example we investigate a
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Matérn prior on a multivariate regression function. In the second example we
consider the case d = 1 and choose a Riemann-Liouville type prior.

3.2.1. Matérn prior

The Matérn process (Wt : t ∈ [0, 1]d) with parameter α > 0 is the zero-mean,
stationary Gaussian process with covariance function

EW (x)W (y) =

∫

Rd

eiλ
T (x−y) µ(dλ),

where the spectral measure µ is given by

µ(λ) =
dλ

(1 + ‖λ‖2)α+d/2
.

A special case is the Ornstein-Uhlenbeck process, which is the case d = 1,
α = 1/2. The Matérn process is a popular prior in Bayesian nonparametrics,
see for instance Rasmussen and Williams (2006) and the references therein.

It is not difficult to see that there exists a version of the Matérn process with
parameter α > 0 that takes its values in Cγ([0, 1]d) for any γ < α, see Van der
Vaart and Van Zanten (2011). The RKHS unit ball of the Matérn process is
included in a Sobolev ball of regularity α+d/2, cf. Section 4.3 of Van der Vaart
and Van Zanten (2011). For γ < α, the metric entropy relative to the Cγ-norm
of such a Sobolev ball satisfies (3.3) (see Theorem 3.3.2 on p. 105 in Edmunds
and Triebel (1996)).

Now suppose that for β > 0, the true regression function is β-regular both in
Hölder and Sobolev sense, i.e. f0 ∈ Cβ([0, 1]d) ∩Hβ([0, 1]d). The Hölder space
was defined above and the Sobolev space Hβ([0, 1]d) consists of all functions
f on [0, 1]d that can be extended to a function f on all of Rd with Fourier

transform f̂ satisfying

∫

|f̂(λ)|2(1 + ‖λ‖2)β dλ <∞.

It is shown in Section IV of Van der Vaart and Van Zanten (2011) that for such
f0 the inequality (3.2) holds for εn proportional to n−(α∧β)/(d+2α).

It is easily verified that in this situation the conditions of Theorem 3.1 are
satisfied if the regularity α of the prior and the regularity β of the true regression
function satisfy the conditions

α

d
>

1

2
,

β

d
>

α

2d
+

1

4
,

(3.4)

and hence the BvM statement for the marginal posterior distribution of σ holds
under these conditions.
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Fig 1. The shaded area describes the values for the smoothness β of the true regression

function f0 and the regularity α of the Gaussian prior for which we have shown the BvM

result holds.

The collection of α’s and β’s satisfying (3.4) is sketched in Figure 1. The
figure makes clear that for the BvM result to hold, it is not necessary to estimate
the regression function f0 at an optimal rate. In particular, it is not necessary
that the smoothness α of the prior matches the smoothness β of the unknown
regression function exactly. An arbitrary amount of undersmoothing (β > α) is
allowed and also some degree of oversmoothing (β < α).

We note that it is not ruled out that the area for which BvM holds is actually
larger than what we found. Using our general theorems it does not seem possible
however to shed more light on this issue. Possibly more insight can be obtained
by a more detailed analysis, tailored to the particular statistical problem and
prior, in the spirit of Castillo (2012b).

3.2.2. Riemann-Liouville prior

In this subsection we consider the case d = 1, i.e. the true regression function
is an unknown element f0 ∈ C[0, 1].

For α > 0 andW a standard Brownian motion, the Riemann-Liouville process
with parameter α is defined by

Rα
t =

∫ t

0

(t− s)α−1/2 dWs.

It can be interpreted as the (α−1/2)-fold iterated integral of Brownian motion.
The use of such priors is well established and goes back at least to Wahba (1978).

The process Rα and its higher derivatives (if they exist) vanish at zero. In
order to enlarge the class of functions that are well approximated by the process
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we modify it slightly, following Van der Vaart and Van Zanten (2008a). Let α
be the biggest integer strictly smaller than α, and let Z1, . . . , Zα+1 be indepen-
dent standard normal random variables, independent of the Riemann-Liouville
process Rα. Define the Riemann-Liouville-type process X as follows:

Xt =

α+1
∑

k=0

Zkt
k +Rα

t .

The process (Xt : t ∈ [0, 1]) is zero-mean Gaussian and can be seen as a random
element in C[0, 1].

Since Brownian motion has “regularity” 1/2 the Riemann-Liouville process
with parameter α is expected to be “regular” of order α in an appropriate sense.
Indeed it can be shown that the process Rα, and hence also the process X , has
a version that take values in Cγ [0, 1] for all γ < α, cf. Lifshits and Simon (2005).
The RKHS unit ball of X is a Sobolev-type ball of regularity α + 1/2, cf. e.g.
Van der Vaart and Van Zanten (2008a), and hence satisfies (3.3) with d = 1.
Alternatively, the entropy bound (3.3) follows from the bound on the small ball
probability of the Riemann-Liouville process with respect to the Cγ-norm given
by Lifshits and Simon (2005) in combination with the result of Li and Linde
(1999).

Upper bounds for the left hand side of (3.2) in this case are given in
Van der Vaart and Van Zanten (2008a) and Castillo (2012a). If f0 is in Cβ [0, 1]
for some β ≥ α, then the left hand side of (3.2) is bounded from above

by a multiple of ε
−1/α
n . For β < α, the upper bound in Castillo (2012a) is

ε
−(2α−2β+1)/β
n log(1/εn). It follows that condition (3.2) is satisfied for εn a mul-
tiple of (logn/n)β/(1+2α) if β < α and for εn a multiple of n−α/(1+2α) if β ≥ α.
These conditions are almost the same as in the Matérn prior case. The log fac-
tor does not affect the pairs (α, β) for which the inequalities are true. We thus
obtain that for the Riemann-Liouville prior as well, the BvM statement of The-
orem 3.1 holds if the regularity β of the truth and the regularity α of the prior
as related as in (3.4), for d = 1. Again, Figure 1 visualizes the set of α’s and β’s.

4. Hierarchical spline-based priors

We consider again the case X = [0, 1]d in this section and investigate a spline
prior on f . Such priors were considered for nonparametric regression for instance
by Huang (2004) and De Jonge and Van Zanten (2012), where it was shown that
when properly constructed, they can yield adaptive, rate-optimal procedures for
estimating the regression function. Here we show that it is possible to simulta-
neously have BvM for the error standard deviation.

We fix an order q ≥ 2 and for m ∈ N, consider the space Sm of polynomial
splines of order q with simple knots at the points 1/m, 2/m, . . . , (m− 1)/m. A
function s : [0, 1] → R belongs to Sm if there exist polynomials p1, . . . , pm of
degree at most q−1 such that s(x) = pj(x) for x ∈ [(j−1)/m, jm) and s is q−2
times continuously differentiable. The space Sm has dimension Jm = q+m− 1,
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cf. Theorem 4.4 of Schumaker (1981). A convenient basis of the space is given
by the so-called B-splines. The exact definition of these functions (see Theorem
4.9 of Schumaker (1981)) is not of importance to us here. Important properties
of B-splines are that they are nonnegative and supported on relative small parts
of the domain and that the sum of all B-splines at any given location equals
one. More precisely, they form a partition of unity: if we denote the B-splines
by Bm

1 , . . . , B
m
Jm

, then
∑Jm

j=1 B
m
j (x) = 1 for all x ∈ [0, 1]. As a consequence, the

supremum norm ‖s‖∞ of a function s ∈ Sm of the form s =
∑

cjB
m
j is bounded

by the supremum norm of its B-spline coefficients ‖c‖∞ = max |cj |.
Functions of several variables can be dealt with using tensor product splines.

For d ≥ 2 we define the tensor product space Sm = Sm⊗· · ·⊗Sm (d times), with
Sm the space of univariate splines defined above. The space Sm has dimension
Jd
m and a basis is given by the tensor-product B-splines

Bm
j (x1, . . . , xd) = Bm

j1 (x1) · · ·B
m
jd(xd), 1 ≤ ji ≤ Jm.

Slightly abusing notation these multivariate B-splines are denoted by
Bm

1 , . . . , B
m
Jd
m
. It is easy to see that we again have the partition of unity property

and hence also for d ≥ 2 it holds that the supremum norm of a function in Sm

is bounded by the supremum norm of its B-spline coefficients.

We define the prior Πf on f as the law of the random spline process W
defined by

W (x) =

Jd
M

∑

j=1

ξjB
M
j (x), x ∈ [0, 1]d,

where ξ1, ξ2, . . . are independent, standard normal random variables and Md

is a geometric variable, independent of the ξj ’s. Theorem 4.2 of De Jonge and
Van Zanten (2012) asserts that if f0 ∈ Cβ([0, 1]d) for some β ≤ q, then corre-
sponding posterior distribution satisfies (1.1) for εn equal to n−β/(d+2β), up to a
logarithmic factor. In particular, with this prior we achieve nearly rate-optimal,
adaptive estimation of the regression function for regularities up to the order of
the splines that are used. We can now prove that if the regularity of the regres-
sion function is larger than the dimension of the design space, we simultaneously
have BvM for σ.

Theorem 4.1. Suppose that f0 ∈ Cβ([0, 1]d) for some β ∈ (d, q]. Then with
∆n and Iσ0 given by (2.1) we have

sup
B

∣

∣

∣

∣

Π(
√
n(σ − σ0) ∈ B, f ∈ F|Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣

∣

∣

∣

P0→ 0

and n→ ∞, where the supremum is taken over all measurable subsets B ⊂ R.

Proof. It was proved in De Jonge and Van Zanten (2012) (see Theorem 4.2 in
that paper) that if f0 ∈ Cβ([0, 1]d) for β ≤ q, then for sequences ε̃n and ε̄n that
are both up to a logarithmic factor equal to n−β/(d+2β), it holds that for every
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C > 1 there exists a constant D > 0 and sets Un ⊂ C[0, 1] such that

P(‖W − f0‖∞ ≤ 2ε̃n) ≥ exp(−nε̃2n),
P(W 6∈ Un) ≤ exp(−Cnε̃2n),

logN(2ε̄n, Un, ‖ · ‖∞) ≤ Dnε̄2n.

So we see that conditions (1.2)–(1.4) of Theorem 2.2 are satisfied. The sets
Un are certain unions of enlarged RKHS balls corresponding to the Gaussian
process that is obtained by conditioning the process W on the gridsize variable
M . Inspection of the proof of Theorem 4.2 of De Jonge and Van Zanten (2012)
however shows that condition (1.5) does not hold for the Un.

Fix C > 1. To construct new, slightly smaller sieves we take constants K,L >
0, determined further below, and define

Vn =
⋃

m≤(Knε̃2n)
1/d

V m
n , V m

n =
{

∑

j≤Jd
m

cjB
m
j : max |cj | ≤ L

√
nε̃n

}

.

Then we set Fn = Un ∩ Vn. We claim that conditions (1.3)–(1.5) are satisfied
for these sets.

We have Π(Fc
n) ≤ P(W 6∈ Un)+P(W 6∈ Vn). The first probability is bounded

by exp(−Cnε̃2n) and by construction we have

P(W 6∈ Vn) ≤ P(M > (Knε̃2n)
1/d) +

∑

m≤(Knε̃2n)
1/d

P

(

max
j≤Jd

m

|Zj| > L
√
nε̃n

)

.

Hence, since the variable Md is geometric and P(maxj≤Jd
m
|Zj | > L

√
nε̃n) .

md exp(−L2nε̃2n/2),

P(W 6∈ Vn) . e−cKnε̃2n + (Knε̃2n)
1+1/de−

1
2Lnε̃2n

for some c > 0. For K,L large enough this is bounded by exp(−Cnε̃2n) as well,
and it follows that condition (1.3) is fulfilled.

It is clear that the sieves Fn satisfy condition (1.4), since the are contained
in the Un. Next, observe that for δ > 0,

N(δ, Vn, ‖ · ‖∞) ≤
∑

m≤(Knε̃2n)
1/d

N(δ, Vm
n , ‖ · ‖∞).

Since the supremum norm of a spline in Sm is bounded by the supremum norm
of its B-spline coefficients,

N(δ, Vm
n , ‖ · ‖∞) ≤ (N(δ, [−L

√
nε̃n, L

√
nε̃n], | · |))J

d
m ≤

(2L
√
nε̃n
δ

)Jd
m

.

It follows that for every a, ε > 0,

∫ aε

0

√

logN(δ, Vn, ‖ · ‖∞) dδ . aε logn+ nε̃2n

∫ aε

0

√

log
(2L

√
nε̃n
δ

)

dδ.
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It is easily checked that the integral on the right is bounded by a constant times
aε log(2L

√
nε̃n/(aε)). All together we find that for εn = ε̃n ∨ ε̄n,

∫ aεn

0

√

logN(δ, Vn, ‖ · ‖∞) dδ . ε3nn logn.

Since εn . n−β/(d+2β) logp n for some p > 0, the right-hand side converges to 0 if
β > d. This covers condition (1.5) and also shows that nε4n → 0, as required.

We remark that the condition β > d is used for technical reasons in the proof,
to control the last entropy integral appearing in the proof. This does not rule
out the possibility that the statement of the theorem is true for a larger range
of β’s.

5. Proof of the general theorem

In this section we give the proof of Theorem 2.1.
It is convenient to describe the model by the parameter (θ, f) with θ = 1/σ2.

For this parametrization the log-likelihood is given by

ℓn(θ, f) =
n

2
log

θ

2π
− θ

2

n
∑

i=1

(Yi − f(xi))
2.

The first step in the proof is finding an appropriate expansion for the log-
likelihood ratio Λn(θ, f) = ℓn(θ, f) − ℓn(θ0, f0). We define an inner product
〈·, ·〉L on pairs (θ, f) of inverse variances and regression functions by

〈(θ, f), (ψ, g)〉L =
θψ

2θ20
+
θ0
n

n
∑

i=1

f(xi)g(xi).

The corresponding norm is denoted by ‖ · ‖L, so

‖θ, f‖2L =
θ2

2θ20
+ θ0‖f‖2n.

Note that although it is not made explicit in the notation, the inner product
and the norm depend on the sample size n (and on the true parameter θ0).

Straightforward algebra yields the following lemma.

Lemma 5.1. We have

Λn(θ, f) = −n
2
‖θ − θ0, f − f0‖2L +

√
nWn(θ − θ0, f − f0) +Rn(θ, f),

where

Wn(θ, f) = − θ

2θ0
√
n

n
∑

i=1

(Z2
i − 1) +

√

θ0
n

n
∑

i=1

f(xi)Zi
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and

Rn(θ, f) =
n

2

(

log θ − log θ0 −
θ − θ0
θ0

+
(θ − θ0)

2

2θ20

)

− 1

2
n(θ − θ0)‖f − f0‖2n +

θ − θ0√
θ0

n
∑

i=1

(f(xi)− f0(xi))Zi.

We are now in the situation that we can apply Theorem 1 of Castillo (2012a).
Strictly speaking this theorem does not allow the dependence of the inner prod-
uct 〈·, ·〉L on n that we have, but inspection of Castillo’s proof shows that
this causes no problems. Since our LAN-norm has the property that the norm
θ 7→ ‖θ, 0‖L on R is independent of n, only minor adaptations of that proof are
necessary. We note that our change of variables θ = 1/σ2 helps to establish a
direct connection with the setup of Castillo (2012a), since the map Wn defined
in Lemma 5.1 is linear in θ.

Castillo’s theorem asserts that if there exists positive numbers δn → 0 such
that nδ2n → ∞ and measurable subsets Fn ⊂ F such that

Π((θ, f) ∈ (0,∞)×Fn : ‖θ − θ0, f − f0‖L ≤ δn |Y1, . . . , Yn) P0→ 1, (5.1)

Πθ=θ0(f ∈ Fn : ‖0, f − f0‖L ≤ δn/
√
2 |Y1, . . . , Yn) P0→ 1, (5.2)

sup
(θ,f)∈(0,∞)×Fn :

‖θ−θ0,f−f0‖L≤δn

|Rn(θ, f)−Rn(θ0, f)|
1 + n(θ − θ0)2

P0→ 0, (5.3)

then

sup
B

∣

∣

∣

∣

Π(
√
n(θ − θ0) ∈ B, f ∈ F|Y1, . . . , Yn)−N

(Wn(1, 0)

‖1, 0‖2L
,

1

‖1, 0‖2L

)

(B)

∣

∣

∣

∣

P0→ 0.

(5.4)
The next step is to show that conditions (5.1)–(5.3) hold for δn equal to a
constant times εn under the assumptions of Theorem 2.1.

Since
√
x+ y ≤ √

x +
√
y for x, y ≥ 0, we have ‖θ − θ0, f − f0‖L ≤ C(|θ −

θ0| + ‖f‖n), for a constant C > 0 only depending on θ0. It follows that under
assumptions (2.3) and (2.4), conditions (5.1) and (5.2) hold for δn a multiple
of εn.

Next we consider (5.3). Define Vn = {(θ, f) ∈ (0,∞)×Fn : ‖θ−θ0, f−f0‖L ≤
δn}. We consider the three terms in the definition of Rn in the statement of
Lemma 5.1 separately. For θ0 ∈ Vn it holds that |θ − θ0| is bounded by a
multiple of δn. By Taylor’s formula, the first term in the definition of Rn is
nO(|θ−θ0|3) for θ close to θ0, and hence the first term is bounded by a multiple
of (1 + n(θ − θ0)

2)δn on Vn. For the second term, note that x 7→ x/(1 + nx2) is
maximal at x = n−1/2, and equal to n−1/2/2 at that point. It follows that

sup
(θ,f)∈Vn

n|θ − θ0|‖f − f0‖2n
1 + n(θ − θ0)2

≤ 1

2

√
n sup

(θ,f)∈Vn

‖f − f0‖2n ≤
√
nδ2n
2θ0

.
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Similarly, the supremum over Vn of third term divided by 1 + n(θ − θ0)
2 is

bounded by
1

2
√
θ0

sup
f∈Fn√

θ0‖f−f0‖n≤δn

|Gnf −Gnf0|,

where Gn is the Gaussian random map defined by

Gnf =
1√
n

n
∑

i=1

f(xi)Zi.

The norm ‖ ·‖n is precisely the natural semi-norm associated with the Gaussian
process Gn, in the sense that E0(Gnf −Gng)

2 = ‖f − g‖2n. Therefore, the well-
known maximal inequality for sub-Gaussian processes, cf. e.g. Van der Vaart
and Wellner (1996), Corollary 2.2.8, implies that

E0 sup
f∈Fn√

θ0‖f−f0‖n≤δn

|Gnf −Gnf0| ≤ K

∫ δn/
√
θ0

0

√

logN(δ,Fn, ‖ · ‖n) dδ

for some constant K > 0. All together we conclude that the left-hand side of
(5.3) is

OP0

(

δn +
√
nδ2n +

∫ δn/
√
θ0

0

√

logN(δ,Fn, ‖ · ‖n) dδ
)

for n → ∞. For δn a multiple of εn this is oP0(1) under the assumptions of the
theorem, hence (5.3) holds as well.

We have now established that (5.4) holds under the conditions of Theorem
2.1. Next, observe that ‖1, 0‖2L = 1/(2θ20) and

Wn(1, 0)

‖1, 0‖2L
= − θ0√

n

n
∑

i=1

(Z2
i − 1) ⇒ N(0, 2θ20)

under P0, by the central limit theorem. The statement of the theorem then fol-
lows by an application of the lemma below, which gives a total variation version
of the delta method, tailored to our situation. We apply the lemma with Xn

a random variable which has the posterior distribution of θ as law, x0 = θ0,
µn = Wn(1, 0)/‖1, 0‖2L, σ2 = 1/‖1, 0‖2L = 2θ20 and f(x) = 1/

√
x. The lemma

deals with the total variation distance between deterministic distributions. We
can use it in our stochastic setting since Wn(1, 0)/‖1, 0‖2L converges in distribu-
tion and hence is uniformly tight.

We denote the total variation distance between two probability measure µ
and ν by dTV (µ, ν) and the law, or distribution of a random variable X by
L(X).

Lemma 5.2. Let Xn be a sequence of random variables such that

dTV (L(
√
n(Xn − x0)), N(µn, σ

2)) → 0, (5.5)
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for x0 ∈ R, σ2 > 0 and µn a bounded sequence. Let f : R → R be a function
that is twice continuously differentiable on a neighborhood of x0 and f ′(x0) 6= 0.
Then

dTV (L(
√
n(f(Xn)− f(x0))), N(f ′(x0)µn, (σf

′(x0))
2)) → 0.

Proof. We suppose for definiteness that f ′(x0) > 0. It follows from the assump-
tions on f that there exist neighborhoods U and V of x0 and f(x0) such that
f is an invertible (in this case increasing) bijection between U and V . The dis-
tribution N(x0 + µn/

√
n, σ2/n concentrates around x0 as n → ∞. Hence, by

(5.5), so does L(Xn) and hence the law L(f(Xn)) concentrates around f(x0).
Therefore, we only need to prove that

sup
B⊂V

|P(f(Xn) ∈ B)−N(f(x0) + µnf
′(x0)/

√
n, (f ′(x0))

2σ2/n)(B)| → 0,

or, equivalently,

sup
A⊂U

|P(Xn ∈ A)−N(f(x0) + µnf
′(x0)/

√
n, (f ′(x0))

2σ2/n)(f(A))| → 0.

Using (5.5), a change of variables and some straightforward algebra we then see
that it suffices to show that
∫

U

∣

∣

∣

1

τn
ϕ
(f ′(x0)(x− x0)− δn)

τn

)

f ′(x0)−
1

τn
ϕ
(f(x)− f(x0)− δn)

τn

)

f ′(x)
∣

∣

∣
dx→ 0,

where ϕ denotes the standard normal density, δn = µnf
′(x0)/

√
n and τn =

σf ′(x0)/
√
n.

Consider the shrinking sets Un = {x ∈ U : |x − x0| ≤ Knτn} for a sequence
Kn → ∞ such that K3

nτn → 0. For x ∈ U c
n it holds that |f(x)− f(x0)| ≥ cKnτn

for some c > 0 and hence
∫

Uc
n

1

τn
ϕ
(f(x)− f(x0)− δn)

τn

)

f ′(x) dx ≤
∫

|z|>cKn

ϕ(z − µn/σ) dz → 0.

Similarly,
∫

Uc
n

1

τn
ϕ
(f ′(x0)(x − x0)− δn)

τn

)

dx→ 0.

Since ϕ is Lipschitz and f is twice continuously differentiable we have

1

τn

∫

Un

∣

∣

∣
ϕ
(f ′(x0)(x − x0)− δn)

τn

)

− ϕ
(f(x) − f(x0)− δn)

τn

)
∣

∣

∣
dx . K3

nτn → 0.

Finally, observe that by definition of Un,

1

τn

∫

Un

ϕ
(f(x) − f(x0)− δn

τn

)

|f ′(x) − f ′(x0)| dx

. Kn

∫

Un

ϕ
(f(x)− f(x0)− δn

τn

)

dx . K2
nτn → 0.

The proof is completed by combining the convergence statements derived in this
paragraph.
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Appendix A: General contraction rate theorem for fixed design

regression

A.1. Statement of the result

We consider the setting described in the first paragraph of Section 2.2. We now
put a general prior Πn on the pair (f, σ), not necessarily a product. Assume
that for 0 < a < b < ∞, σ0 ∈ [a, b] and Πn is concentrated on [a, b] × F . Let
Πn(· |Y1, . . . , Yn) be the corresponding posterior.

Theorem A.1. Suppose we have sequences of positive numbers ε̃n, ε̄n → 0 such
that n(ε̃n ∧ ε̄n)2 → ∞. If for constants c1, c2, c3 > 0 and sets Fn ⊂ F we have

Πn

(
∥

∥

∥

f − f0
σ0

∥

∥

∥

n
≤ ε̃n,

∣

∣

∣

σ2
0

σ2
− 1

∣

∣

∣
≤ ε̃n

)

≥ c1e
−c2nε̃

2
n ,

Πn(f ∈ Fc
n, σ ∈ [a, b]) = o

(

e−(c2+7)nε̃2n

)

,

logN(ε̄n,Fn, ‖ · ‖n) ≤ c3nε̄
2
n,

then for εn = ε̃n ∨ ε̄n and every sufficiently large M > 0,

Πn

(

(f, σ) ∈ Fn × [a, b] :
∥

∥

∥

f − f0
σ0

∥

∥

∥

n
+
∣

∣

∣

σ2

σ2
0

− 1
∣

∣

∣
≤Mεn |Y1, . . . , Yn

)

P0→ 1.

as n→ ∞.

A.2. Proof of the theorem

We abbreviate Y = (Y1, . . . , Yn), f = (f(x1), . . . , f(xn)), so that the likelihood
is given by

pf,σ = pf,σ(Y ) = (2πσ2)−n/2e−
1

2σ2 ‖Y −f‖2

,

and hence

log
pf,σ
pf0,σ0

= −n
2
log

σ2

σ2
0

− 1

2

( 1

σ2
‖Y − f‖2 − 1

σ2
0

‖Y − f0‖2
)

. (A.1)

Observe that for M > 0, Fn ⊂ F and εn → 0, we have

1−Πn

(

(f, σ) ∈ Fn × [a, b] : ‖f − f0‖n + |σ − σ0| ≤ 2Mεn |Y
)

≤ Πn(f ∈ Fn, ‖f − f0‖n > Mεn |Y )

+ Πn(f ∈ Fn, |σ − σ0| > Mεn, ‖f − f0‖n ≤Mεn |Y )

+ Πn(f ∈ F\Fn |Y ) =: I + II + III.

(A.2)
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We will show that these three terms vanish in P0-probability as n → ∞ for M
large enough.

In the following subsection we first lower bound the denominator in the ex-
pression for the posterior.

A.2.1. Lower bound for the denominator

For B ⊂ F × [a, b], we can write

Π(B |Y1, . . . , Yn) =
∫∫

B
pf,σ

pf0,σ0
Π(df, dσ)

∫∫ pf,σ

pf0,σ0
Π(df, dσ)

. (A.3)

The following lemma deals with the denominator. In the proof, and also at
other places below, we use the fact that for a standard Gaussian variable ξ and
a, b ∈ R, b > −1, we have

Eeaξ−
1
2 bξ

2

=
1√
1 + b

e
a2

2(1+b) . (A.4)

Lemma A.2. For ε ∈ (0, 1/2),

P0

(

∫ ∫

pf,σ
pf0,σ0

dΠ ≥ e−7nε2Π
(∥

∥

∥

f − f0
σ0

∥

∥

∥

n
≤ ε,

∣

∣

∣

σ2
0

σ2
− 1

∣

∣

∣
≤ ε

))

≥ 1− e−
3
4nε

2

.

Proof. let Π̃ a probability distribution on F × [a, b] obtained by restricting Π
to the set {(f, σ) : ‖f − f0‖n ≤ σ0ε, |σ2

0/σ
2 − 1| ≤ ε} and renormalizing. The

arithmetic-geometric mean inequality (or Jensen’s inequality) implies that
∫ ∫

pf,σ
pf0,σ0

dΠ̃ ≥ exp
(

∫ ∫

log
pf,σ
pf0,σ0

dΠ̃
)

.

It follows that for x > 0,

P0

(

∫ ∫

pf,σ
pf0,σ0

dΠ̃ ≤ e−x
)

≤ P0

(

−
∫ ∫

log
pf,σ
pf0,σ0

dΠ̃ > x
)

.

We have (see (A.1)), with h = (f − f0)/σ0 and Z = (Z1, . . . , Zn),

− log
pf,σ
pf0,σ0

=
n

2
log

σ2

σ2
0

+
1

2

((σ2
0

σ2
− 1

)

‖Z‖2 + 2
σ2
0

σ2
〈Z, h〉+ σ2

0

σ2
‖h‖2

)

.

Hence, the last probability is bounded by P(〈Z, v〉− (1/2)w‖Z‖2 > y), for v the
vector with coordinates

vi =

∫ ∫

σ2
0

σ2

(f(xi)− f0(xi)

σ0

)

dΠ̃

and

w =

∫ ∫

(

1− σ2
0

σ2

)

dΠ̃,
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y = x− n

∫ ∫

(1

2
log

σ2

σ2
0

+
σ2
0

σ2

∥

∥

∥

f − f0
σ0

∥

∥

∥

2

n

)

dΠ̃.

Note that it follows from the definition of Π̃ that |w| ≤ ε ≤ 1/2, hence
1+w ≥ 1/2, and ‖v‖2 ≤ (1+ ε)2nε2 ≤ 4nε2. Therefore, by Markov’s inequality,
the probability is further bounded by

e−y
∏

EeviZi− 1
2
wZ2

i = e−ye
‖v‖2

2(1+w) (1 + w)−n/2 ≤ e4nε
2

e−y(1 + w)−n/2.

Elementary manipulations show that e−y(1 + w)−n/2 equals

exp
(

− x− n

2

(

∫ ∫

(

log
σ2
0

σ2
−
(σ2

0

σ2
− 1

))

dΠ̃ +
(

log(1 + w)− w
))

+ n

∫ ∫

(σ2
0

σ2

∥

∥

∥

f − f0
σ0

∥

∥

∥

2

n

)

dΠ̃
)

Since 0 ≥ log(1 + x) − x ≥ −x2 for |x| ≤ 1/2, this is bounded by exp(−x +
(9/4)nε2). It follows that

P0

(

∫ ∫

pf,σ
pf0,σ0

dΠ̃ ≤ e−x
)

≤ e−x+(25/4)nε2 .

The proof is completed by taking x = 7nε2 and recalling the definition of Π̃.

The lemma implies that under the prior mass assumption of the theorem, it
holds that

∫ ∫

pf,σ
pf0,σ0

dΠn ≥ c1e
−(c2+7)nε̃2n

on an event An such that P0(An) → 1.
We now proceed to prove that the terms on the right of (A.2) vanish.

A.2.2. Term I

In view of the preceding section it suffices to show that E0Πn(f ∈ Fn, ‖(f −
f0)/σ0‖n > Mεn |Y )1An → 0. For arbitrary tests ϕn the expectation is bounded
by

E0ϕn +
1

c 1
e(c2+7)nε2n

∫ ∫

f∈Fn,‖(f−f0)/σ0‖n>Mεn

Ef,σ(1− ϕn) dΠn.

The following lemma asserts we can construct tests for which both terms con-
verge to 0.

Lemma A.3. There exist tests ϕn such that E0ϕn → 0 and

e(c2+7)nε2n

∫ ∫

f∈Fn,‖(f−f0)/σ0‖n>Mεn

Ef,σ(1− ϕn) dΠn → 0

as n→ ∞.
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Proof. For f1 ∈ F , let ϕf1 be the likelihood ratio test for testing the null (f0, σ0)
against the alternative (f1, σ0), i.e. ϕ

f1 = 1‖Y−f1‖<‖Y−f0‖. Then by the Gaus-
sian tail bound,

E0ϕ
f1 = P0(2 〈Y − f0, f1 − f0〉 > ‖f1 − f0‖2) ≤ e

− 1
8n
∥

∥

f1−f0
σ0

∥

∥

2

n .

On the other hand, straightforward computations show that for all σ > 0 and
f such that ‖f − f1‖n ≤ ‖f − f0‖n,

Ef,σ(1− ϕf1) ≤ e

− 1
8n

σ2
0

σ2

(
∥

∥
f−f0
σ0

∥

∥

2

n
−
∥

∥
f−f1
σ0

∥

∥

2

n

)2

∥

∥
f1−f0

σ0

∥

∥

2

n .

Now define the set B = {(f, σ) ∈ Fn : ‖(f − f0)/σ0‖n ≥ Mεn} and write
B =

⋃

i≥M Si, where Si = {f ∈ Fn : iεn ≤ ‖(f − f0)/σ0‖n < (i + 1)εn}. For
i ≥ M , the entropy condition and the fact that εn ≥ ε̄n imply that Si can be
covered with, say,Ni ≤ ec4nεn ‖·/σ0‖n-balls of radius εn. Let Si be the collection
of the Ni center points of the balls. Let τi : Si → Ci be a map which maps a point
in Si to a closest point in Ci. Note that by construction ‖(f − τi(f))/σ0‖n ≤ εn
for every f ∈ Si. Define the sequence of tests ϕn = supi≥M supf∈Ci

ϕf .
We have

E0ϕn ≤
∑

i≥M

∑

f∈Ci

E0ϕ
f ≤

∑

i≥M

e−( i2

8 −c4)nε
2
n .

For M large enough this vanishes as n → ∞. We also have, for f ∈ Si and
σ > 0,

Ef,σ(1− ϕn) ≤ Ef,σ(1− ϕτi(f)) ≤ e−
1
8n

σ2
0

σ2 (i−1)2ε2n .

For M > 0 large enough we have E0ϕn → 0. Also,

e(c2+7)nε2n

∫ ∫

f∈Fn,‖(f−f0)/σ0‖n>Mεn

Ef,σ(1− ϕn) dΠn

= e(c2+7)nε2n
∑

i≥M

sup
f∈Si,σ≤b

Ef,σ(1− ϕn)

≤ e(c2+7)nε2n
∑

i≥M−1

e−
σ2
0

b2
i2nε2n

If M is large enough this vanishes as well if n→ ∞.

A.2.3. Term II

For σ1 > 0, σ1 6= σ0, let ϕ
σ1
n be the likelihood ratio test for testing the null

(f0, σ0) against the alternative (f0, σ1), i.e.

ϕσ1
n = 1

− 1
2

(

σ2
0

σ2
1
−1

)∥

∥

Y −f0
σ0

∥

∥

2
>−n

2 log
σ2
0

σ2
1

.
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Lemma A.4. Suppose that σ0, σ1, σ ∈ [a, b]. There exists constants κ1, κ2 > 0,
depending only on a and b, such that

E0ϕ
σ1
n ≤ e−κ1n(σ

2
0/σ

2
1−1)2

and for f such that ‖f − f0‖n ≤ ε ≤ 1,

Ef,σ(1− ϕσ1
n ) ≤ e

−n
2 (1− σ2

σ2
0

)(
σ2
0

σ2
1

−1)+κ2n(
σ2
0

σ2
1

−1)2+n(
σ2
0

σ2
1

−1)ε2

.

Proof. For λ ∈ (0, 1) we have, by Markov’s inequality and (A.4),

E0ϕ
σ1 ≤ e

λn
2 log

σ2
0

σ2
1

(

1 + λ
(σ2

0

σ2
1

− 1
)

)−n/2

.

Now take λ = 1/2. Then using the fact that for every compact set K ⊂ (0,∞)
there exists a constant c > 0 such that (1/2) logx− log((1+x)/2) ≤ −c(x− 1)2

for all x ∈ K, we find that there is a constant κ1 > 0 such that the first
inequality holds.

Next we note that for Z = (Y −f)/σ and h = (f−f0)/σ0, Markov’s inequality
and (A.4) imply that

Ef,σ(1− ϕσ1)

=P

( σ

σ0

(σ2
0

σ2
1

− 1
)

〈Z, h〉+ 1

2

σ2

σ2
0

(σ2
0

σ2
1

− 1
)

‖Z‖2 > n

2
log

σ2
0

σ2
1

− 1

2

(σ2
0

σ2
1

− 1
)

‖h‖2
))

≤ e−ye
‖v‖2

2(1+w) (1 + w)−n/2,

where

vi =
σ

σ0

(σ2
0

σ2
1

− 1
)

h(xi), w = −σ
2

σ2
0

(σ2
0

σ2
1

− 1
)

,

y =
n

2
log

σ2
0

σ2
1

− 1

2

(σ2
0

σ2
1

− 1
)

‖h‖2.

The terms without h in the exponent sum up to

−n
2

(

log
σ2
0

σ2
1

+ log
(

1− σ2

σ2
0

(σ2
0

σ2
1

− 1
)))

= −n
2

(

log(1 + δn) + log
(

1− σ2

σ2
0

δn

))

,

where δn = σ2
0/σ

2
1 − 1. For δn → 0, Taylor’s formula gives

log(1 + δn) + log
(

1− σ2

σ2
0

δn

)

=
(

1− σ2

σ2
0

)

δn − 1

2

(

1 +
σ4

σ4
0

)

δ2n + o(δ2n).

If δn is small enough we have 1 + w ≥ 1/2 for large n. To complete the proof,
also use that ‖v‖2 ≤ nδ2n(b

2/a2)ε2.
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We can use the tests exhibited in the lemma to show that term II in (A.2)
converges to 0 in P0-probability as n→ ∞. First we consider

Πn

(σ2

σ2
0

− 1 ≤ −Mεn,
∥

∥

∥

f − f0
σ0

∥

∥

∥

n
≤Mεn |Y

)

.

For any σ1 ∈ [a, b] the E0-expectation of this quantity is bounded by

E0ϕ
σ1
n +

1

c1
e(c2+7))nε2n sup

σ2

σ2
0

−1≤−Mεn

‖(f−f0)/σ0‖n≤Mεn

Ef,σ(1− ϕσ1
n ) + P0(A

c
n)

Now take σ1 such that σ2
0/σ

2
1 − 1 = εn. Then by the lemma, the first

term converges to 0 and the supremum in the second one is bounded by
exp(−nε2n(M/2 − κ2 − εnM

2)). Hence, the expression in the display converges
to 0 for all large enough M > 0. The posterior probability

Πn

(σ2

σ2
0

− 1 ≥Mεn,
∥

∥

∥

f − f0
σ0

∥

∥

∥

n
≤Mεn |Y

)

can be handled similarly, by taking σ1 such that σ2
0/σ

2
1 − 1 = −εn.

A.2.4. Term III

We have
E0Πn(f ∈ Fc

n |Y ) ≤ E0Πn(f ∈ Fc
n |Y )1An + P0(A

c
n)

The second term converges to 0. By (A.3), Lemma A.2 and the prior mass

assumption, the first term is bounded by e7nε̃
2
nΠn(f ∈ Fc

n). By the second
assumption of the theorem this converges to 0 as well.
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