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1. Introduction

Given i.i.d. observations D := ((x1,91),. .., (Zn,yn)) of input/output observa-
tions drawn from an unknown distribution P on X XY, where Y C R, the goal of
non-parametric regression is to find a function fp : X — R that captures impor-
tant characteristics of the conditional distribution P(Y|z), z € X. For example,
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in non-parametric least squares regression, an fp is sought that approximates
the conditional mean E(Y|z), while in quantile regression the goal is to find an
estimate fp of the quantiles of P(Y|z), 2 € X. Non-parametric least squares
regression is one of the classical non-parametric problems, which has been exten-
sively studied for decades. We refer to the book [16], which presents many results
in this direction. In contrast, the non-parametric quantile regression problem
has attracted less attention, probably because for more advanced estimation
procedures, or learning algorithms, the problem is often less tractable, both
mathematically and algorithmically. Nonetheless, also for this problem impor-
tant contributions have been made, which, besides other questions regarding
quantile regression, are summarized in the recent book [19].

A typical way to assess the quality of a found estimator fp in these regression
problems is the distance of fp to the target function. To be more precise, if f*
denotes the conditional function of interest, that is, either the conditional mean
or a conditional quantile, and P is the marginal distribution of P on X, then,
for some p € (0, 00), the norm

”fD_f*HIZ,p(pX)a (1)

is often used to describe how well fp approximates f*. Here we note, that taking
the p-th power of the norm is, of course, not dictated by mathematics but more
by historically grown habits for the least squares loss. Recall that, for least
squares regression, one usually considers p = 2 due to the very nature of the
least squares loss, while for quantile regression various values for p have actually
been considered. In both cases, we say the learning algorithm that produces the
estimates fp is consistent, if the norm in (1) converges to 0 in probability for
n — oo. Likewise, learning rates describe the corresponding convergence rates,
either in probability or in expectation.

One of the learning algorithms that have recently attracted many theoretical
investigations are support vector machines (SVMs), or more precisely, kernel-
based regularized empirical risk minimizers. Reasons for this grown interest
include their state-of-the-art empirical performance in applications, their rela-
tively simple implementation and application, and last-but-not-least, their flexi-
bility. To describe this flexibility, which is key for considering the two regression
scenarios simultaneously, let us briefly recall that SVMs solve an optimization
problem of the form

€ in A f]|% +R , 2
fpA arg min Il +Rep(f) (2)

where H is a reproducing kernel Hilbert space (RKHS) with reproducing kernel
k, see e.g. [2, 4, 30], A > 0 is a user-specified regularization parameter, L :
Y xR — [0,00) is a loss function, and Rz p(f) denotes the empirical error or
risk of a function f: X — R, that is

Rep (f) =

SN

S L f @)
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It is well-known that the optimization problem above has a unique solution
whenever the loss L is convex in its second argument. In addition, under mild
assumptions on the richness of H and the way the regularization parameter \ is
chosen, the corresponding SVM is L-risk consistent. We refer to [30] for detailed
descriptions of these and other results. Now, the above mentioned flexibility of
SVMs is made possible by their two main ingredients, namely the RKHS H and
the loss function L. To be more precise, the loss function can be used to model
the learning target, see [30, Chapter 3], while the RKHS can be used to adapt to
the nature of the input domain X. For example, when using the standard least
squares loss in the optimization problem (2), the SVM estimates the conditional
mean, and for the so-called pinball loss, see Section 4 for a definition, the SVM
estimates conditional quantiles. On the other hand, RKHSs can be defined on
arbitrary input domains X, so that, besides standard R%valued data, various
other types of data can be dealt with. Moreover, due to the so-called kernel-trick
[24], the choice of H has little to no algorithmic consequences for solving the
SVM optimization problem. The latter is not true for the choice of L, where each
different L demands a different optimization algorithm. However, for standard
loss functions including the least-squares loss and the pinball loss, these opti-
mization problems, which reduce to convex quadratic optimization problems,
have been well-understood. For solvers, we exemplarily refer to [9, 18] and [35],
respectively.

One of the main topics in recent theoretical investigations on SVMs have been
learning rates. For example, the articles [10, 11, 27, 5, 22, 32] and the references
therein establish rates for SVMs using the least squares loss, while SVMs using
the pinball loss are investigated in [29, 31]. We discuss the findings of these arti-
cles and compare them to our results in more detail at the end of Sections 3 and
4 after we have presented our main results. Here, we only note that besides a
very few articles, namely [5, 22, 32], the obtained learning rates are typically not
optimal in a minmax sense. In addition, these three papers only consider some
specific cases. For example, [5] only considers the case, when the target function,
in this case the conditional mean, is contained in the used RKHS H. On the
other hand, H is assumed to be generic in this article, that is, no specific family
of kernels is considered. The latter generality is also adopted in [22, 32], where
the authors establish optimal rates in the more realistic case in which H does
not contain the target function. Unfortunately, however, these articles require
additional assumptions on the interplay between H and the marginal distribu-
tion Py. Namely, [22] assumes that the eigenfunctions of the integral operator
associated to the kernel k of H are (almost) uniformly bounded. This assump-
tion, however, cannot be easily guaranteed, neither in practice nor in theory.
This issue is partially addressed in [32], where the eigenfunction assumption is
replaced by a weaker assumption in terms of inclusions of certain interpolation
spaces of H and Lo(P x). While in practice, these inclusions can not be checked
either, there are, at least, certain combinations of H and Lo(Px) in which they
are satisfied. For example, if X C R? is a bounded domain satisfying some
standard regularity assumptions and H is a Sobolev space W3"(X) of sufficient
smoothness m, that is m > d/2, then [32] shows that the inclusion assumptions
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made in this article are satisfied and that the resulting learning rates for SVMs
are minmax optimal. While this result is interesting from a theoretical point
of view, in practice Sobolev spaces of large order m are rarely used for SVMs,
probably because of computational issues.

The discussion so far may already indicate the fact that most articles, in-
cluding the three establishing optimal rates, only consider the case, where H is
fized during the training process. This scenario, however, is rather unrealistic,
since in most applications, H is chosen in a data-dependent way. For example,
for input domains X C RY, the standard way of using SVMs is to equip them
with Gaussian RBF kernels k- defined by

_ 2
ky (z,2") = exp (—M) , z, 2’ € X,
Y

and to determine the free width parameter v > 0 in a data-dependent way, e.g.,
by cross-validation. Despite the dominance of this approach, however, only a
very few articles analyze the learning behaviour of SVMs with Gaussian kernels.
To be more concrete, the currently best learning rates have been established in
[33, 40]. Here we note that in both articles the authors actually consider binary
classification, although a closer look reveals that at least the results of [40] can
also be applied to least squares regression. Indeed, if the conditional mean is
assumed to be contained in the Sobolev space W5 (X) for some s > 0, then [40]
establishes rates of the form

s
n~ s¥f2d¥2 |

Unfortunately, these rates are far from the known minmax rates n~zta of this
setting, and up to now, it has been unknown, whether SVMs with Gaussian
kernels can actually achieve these minmax rates, as their good empirical perfor-
mance may suggest, or whether they can only learn with sub-optimal rates like
classical kernel rules with Gaussian kernels do. The first goal of this paper is
to answer this question. More precisely, we show that SVMs with least squares
loss and Gaussian kernels can learn with rate

n~zrate (3)

for all £ > 0. In other words, we establish learning rates that are arbitrarily
close to the minmax rates. Moreover, we show that these rates can be achieved
by a simple but completely data-driven procedure that splits the data set D
into a training and a validation set. Our second goal is to show that these
rates as well as the adaptivity to the unknown smoothness s is preserved when
considering quantile regression, instead. More precisely, we show under mild
additional assumptions on the conditional distributions that the conditional
quantile functions f* are approximated by SVM decision functions in the Lo-
norm (1) with rate (3). Moreover, it turns out that splitting D into a training
and validation set again leads to a learning procedure that is fully adaptive to
the unknown smoothness s.
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In the remainder of this section we introduce some assumptions and notations
used throughout the paper. Except a passage in Section 3, where we discuss the
case of unbounded noise, we mainly consider the case of bounded regression.
Thus, we begin with the probability measure P on R x Y where Y := [~ M, M]
for some M > 0. We further assume that X := suppPx C ng and that
the marginal distribution Px on X is absolutely continuous with respect to
the Lebesgue measure p on X. In addition, the corresponding density of Px
is assumed to be contained in L,(X) for some ¢ € [1,00], where L,(v) is the
Lebesgue spaces of order g w.r.t. the measure v and for the Lebesgue measure
pon X C RY we define L,(X) := L,(u).

Throughout the paper we further assume that the boundary of X has zero
Lebesgue measure. Note that if this assumption is satisfied, the distribution on
X can be identified with the distribution on the interior and the closure of X,
since it has a Lebesgue density on X. Hence, we will not distinguish between
these distributions in terms of notation. Similarly, we often view the distribution
on X as a probability measure defined on R rather than on X.

Since we consider both least squares regression and quantile regression, it is
helpful to consider some concepts in a generic way. To this end, we say that
a function L : Y X R — [0,00) is a loss function, if it is measurable. In the
following, L will be either the least squares loss or the pinball loss introduced
in Section 4. Moreover, for a measurable f : X — R, the L-risk is defined by

Rup (f) = / L(y. f (x))dP (x.1)

XXY

and the Bayes L-risk is the smallest possible L-risk, that is
Rip:=inf{Rrp(f) | f: X — R measurable} .

Since P lives on X x [—M, M], both the conditional mean and the conditional
quantiles are [—M, M]-valued on X. It therefore suffices to consider estimators
of these quantities that are [—M, M]-valued on X. To make this precise, we
denote the clipped value of some t € R by ?, that is

-M ift<-M
t=1t if t € [—~M, M|
M ift>M.

It is easy to check that the risks of both the least squares loss and the pinball
loss satisfy

RL,P(]?) <Rrp(f) .

for all f: X — R. In other words, clipping the decision functions at =M does
not increase the L-risk, and hence we will always consider clipped versions of
the SVM decision functions. Finally, since we do not consider SVMs with a fixed
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kernel, a notation that is slightly more detailed than (2) is helpful. Namely, if
H, is the RKHS of the Gaussian RBF kernel k., then we write

Jore = arg yoin A fl, +Rep (f) (4)

where again, L is one of the above loss functions. Note that projection (4) has
already been used in the literature, see e.g. [8, 33, 39].

The rest of this paper is organized as follows: The next section presents some
upper bounds on the approximation error of SVMs using Gaussian kernels.
These bounds are then used to derive new oracle inequalities for the least squares
loss and for the pinball loss in Sections 3 and 4, respectively. In these sections
we also present and discuss the learning rates that result from these oracle
inequalities. In particular, it turns out that the rates are (essentially) minmax
optimal if the target function is contained in some Sobolev or Besov spaces.
Section 5 finally presents, besides some technical lemmata, the proofs of our
results.

2. Estimates on the approximation error

The main goal of this work is to derive new oracle inequalities and learning rates
for SVMs with Gaussian kernels using the least squares loss (cf. Section 3) and
the pinball loss (cf. Section 4), respectively. To this end, we need to describe the
infinite sample behaviour for fized regularization parameter A\ and kernel width
v, i.e. we need to find an upper bound for the approzimation error function
A, :[0,00) = [0,00) defined by

Ay(A) = inf MIfIIz, +Rep(f) = Rip, (5)

where the infimum is actually attained by a unique element fp » ., € H,, see [30,
Lemma 5.1 and Theorem 5.2]. In this section we thus estimate the approximation
error of some function contained in the RKHS H,.

Let us begin by introducing some function spaces that are later assumed to
contain the target function. To this end, we first present some notations. We
denote the closed unit ball of a Banach space E by Bg. In particular, for the
d-dimensional Euclidean space ¢4, we write Bya. For s € R, [s] is the greatest
integer smaller or equal s and [s] is the smallest integer greater or equal s.

Let us now introduce a first type of subspaces of L, (), namely Sobolev spaces
(cf. [1, Section 3] and [38, Sections 2 and 3]). To this end, let 9*) be the a-th
weak derivative for a multi-index a = (a1,...,aq) € Ng with |a| = Zle Q.
Then, for an integer m > 0, 1 < p < 0o, and a measure v, the Sobolev space of
order m w.r.t. v is defined by

p

W (v) = {f € Ly(v): 0Wf € L,(v) exists for all @ € Nd with |a] < m} ,
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i.e. it is the space of all functions in L,(v), whose weak derivatives up to order
m exist and are contained in L,(v). The Sobolev space is equipped with the
Sobolev norm

P

P
1 lwpey = | D o]

P la|<m Lp(v)
(cf. [1, page 60]). Moreover, we write W2 (v) = Ly(v) and, for the Lebesgue
measure 1 on X C R?, we define W™ (X) := W™ ().

In order to bound the excess risk in (5), it turns out that we need a finer
scale of smoothness given by the Besov space scale. To recall these function
spaces, we first have to introduce another device to measure the smoothness of
functions, namely the modulus of smoothness (see e.g. [12, p. 44], [13, p. 398],
and [3, p. 360]).

Definition 2.1. Let X C R? be a subset with non-empty interior, » be an
arbitrary measure on X, and f : X — R be a function with f € L, (v) for some
€ (0,00]. For r € N, the r-th modulus of smoothness of f is defined by

wr,Lp(y) (f7 t) = Sup ||A2 (f7 : )”Lp(v) ’ t>0 )
Al <t
where ||-||, denotes the Euclidean norm and the r-th difference A} (f, -) is
defined by

T r Tﬁj . .
Ay (fx) = Ej:o (]) (=1)" 7 f(x+jh) ?f € Xpp
0 ifx ¢ X, n

for h = (h1,...,hq) € [0,00)¢ and X, :={xr € X : 2 +sh € X fa. s €[0,r]}.

To illustrate the idea of the modulus of smoothness, let us consider the case
d =1 and r = 1. Then, we obtain

n gy = LEFRI T 100, gy

if the derivative f’ of f exists in z. Consequently, h~'A} (f, z) equals the secant’s
slope and is bounded, if f is differentiable at x. Analogously, h="Aj (f,z) is
bounded, if, for example, second order derivatives exist.

It is well-known, see e.g. [17, Equation (2.1)], that the modulus of smoothness
with respect to L, (Rd) satisfies

N
Wr L, (R) (f7 t) < (1 + ;) Wr L, (R) (fu 8) ) (6)

forall f € L, (Rd) and all s > 0. As already mentioned, the modulus of smooth-
ness can be used to define the scale of Besov spaces (see e.g. [1, Section 7] and
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[38, Sections 2 and 3]), which besides Sobolev spaces will later be assumed
to contain the target function and thus indicate the smoothness of the latter.
Namely, for 1 < p,q < 0o, @ > 0, 7 := |a] + 1, and an arbitrary measure v, the
Besov space By, (v) is

By, ()= {1 € Ly () : |flgy ) < o0} -

where, for 1 < ¢ < 0o, the seminorm |- | . (v) 18 defined by
p,q

1
® g dt\ @
|f|Bng(y) = (A (t W, L, (1) (f, t)) - ,

and, for ¢ = oo, it is defined by
|f|Bg¢1m(y) = §1>]_1(f)) (t wrﬁLp(,,) (f7 t)) .

In both cases, the norm of By () can be defined by ”f”Bg’q(u) = fllp, ) +
|J“|ng(y)7 see e.g. [12, pp. 54/55] and [13, p. 398]. In addition, for ¢ = oo, we
often write Lip® (a, L, (v)) := By o, (v) and call Lip* (@, L, (v)) the generalized
Lipschitz space of order «. Finally, if v is the Lebesgue measure on X, we write
By, (X):= By, (v).

It is well-known, see e.g. [15, p. 25 and p. 44], that the Sobolev spaces W' (R%)
fall into the scale of Besov spaces, namely

Wi (RY) < By, (RY) ™)

for « € N, p € (1,00), and max{p,2} < ¢ < oo. Moreover, for p = ¢ = 2 we
actually have equality, that is Wg'(R?) = Bg,(R%) with equivalent norms.

As alluded at the beginning of this section, our main goal is to derive new
oracle inequalities for SVMs and for this purpose we need to estimate the ap-
proximation error (5). In order to cope with this task, we already introduced all
necessary concepts in the previous part of this section. It remains to show how
they can be applied. Now, to bound (5), it suffices to find a function fy € H, such
that both the regularization term A HfQHi,7 and the excess risk Rpr, p(fo) =R} p
are small. To construct this function fy, we define, for » € N and v > 0, the
function K : R — R by

K= () 0 4 (%) Ki (&) ®)

j=1
where K, (z) := exp (= ?||z||3) for all z € R?. Let us now assume that there
exists a function f7 p : R? — R such that J1.p s a Bayes decision function, i.e.

Rrp(fip) =Rip, and such that f} € La(R?) N Loo(R?). Then we define fy
by convolving K with this Bayes decision function, that is

folx) := K % fzﬁp(:v) = g K(x— t)fzyp(t) dt , reR?. 9)
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Now, to show that fy is indeed a suitable function to bound (5), we first need
to ensure that fy is contained in H,. In addition, we need to derive bounds for
both, the H,-norm and the excess risk of fo. Theorem 2.2 concentrates on the
latter with the help of the modulus of smoothness, while Theorem 2.3 estimates
the regularization term.

Theorem 2.2. Let us fixz some q € [1,00). Furthermore, assume that Px is a
distribution on R? that has a Lebesque density g € L,(R?) for some p € [1, 00].
Let f : R? — R be such that f € L, (Rd) N Lo (Rd). Then, for r € N, v > 0,
and s > 1 withlz%—i—%, we have

1K % f = 1% oy < Crallglliy e @0, gy (£.7/2)

where Cy. 4 is a constant only depending on v and q.

The next result will be used to bound the regularization term and to prove
that the convolution of a function from Ly(R%) with K is contained in the RKHS
H.,. In addition, it provides a very useful supremum bound.

Theorem 2.3. Let f € Ly (Rd), H, be the RKHS of the Gaussian RBF kernel
k. over X C R? with v > 0 and K : R? — R be defined by (8) for a fived r € N.
Then we have K * f € H, with

[SI%

1K = fllg, < (0v/m) 2 (27 = DI fllLoqmay -

Moreover, if f € Lo (Rd), we have
K+ f @I <@ DIl @ z€X.

To illustrate the theorems above, let us now consider fy defined by (9), where
fip: R? — R is a Bayes decision function contained in Lo(R%) N Lo, (R%). For
the sake of simplicity, we fix ¢ = 2 and p, s > 1 with 1—17—|—% =1, i.e. the Lebesgue
density g of Px has to be contained in L,(X). Then is turns out that together
the two theorems yield

min A 111, + Rep(f) = Rip

< M follzr, + Rep(fo) = Rip

= MK * fz,PH%(7 +Rpp(K * fz,P) - Rip

<AOVE) UL = D (7wl ey + I * S = S pllE e

< A(v\/?)’d(T"—1)2||fZ,PHi2(Rd)+c Cra2llgllz,®ay WZ,L2S(Rd)(fz,Pa7/2) , (10)

where the crucial intermediate estimate

RL,P(K * fz,P) - RZ,P < || K * fz,P - fz,P||2L2(PX)
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will be discussed in Sections 3 and 4, respectively. Now, to further bound (10),
we have to estimate the modulus of smoothness. To this end, recall that for
fip€ Bg‘syoo(Rd), or fip € W5t (RY) by (7), we have

Wr, Log (R) (pr,)Scsta, t>0,

where r := |a] + 1 and ¢; > 0 is a constant. Using this inequality the upper
bound of the approximation error only depends on the kernel width ~, the
regularization parameter )\, the smoothness parameter « of the target function
and some positive constants, i.e.

win Al +Rep(f) = Rip < ead™ +en (11)
g Y

At first sight, it seems surprising that starting from (10) the parameters s and
p do not appear in (11) any more, but it has to be pointed out that they affect
the constant co > 0. Moreover, note that Theorem 2.3 also implies the estimate

[follo = 1K * fE pllo < 2" = DIfL el

which will be important when applying concentration inequalities to prove the
new oracle inequalities of Sections 3 and 4.

Remark 2.4. To bound the approximation error in (5), we assumed that there
exists a Bayes decision function [} p : R? — R such that Iip € Ly(RY) N
Loo(R?). This assumption could be significantly weakened if functions f : X —
R could be extended to functions f : R — R such that f inherits the smooth-
ness properties of f described by some Sobolev or Besov space. Fortunately,
Stein’s Extension Theorem (cf. [28, p. 181]) guarantees the existence of such an
extension operator with the desired features, whenever X C R? is a bounded
Lipschitz domain. To be more precise, in this case there exists a linear operator
¢ mapping functions f : X — R to functions €f : R? — R such that

i) €fix = f,
i) € continuously maps W/ (X) into W (R?) for all p € [1,00] and all
integers m > 0, and
iii) € continuously maps Bg, (X) into BS, (R?) for all p € (1,00), ¢ € (0, o]
and all o > 0.

For more details we refer to [28, p. 181], [1, p. 83], and [37, pp. 65/66].

Now, in addition to the general assumptions made in Section 1, let X C R? be
a bounded domain such that the extension operator € exists and f7 p: X = R
be a Bayes decision function such that f; p € Loo(X). Using Stein’s extension
operator we then obtain a function €f; p : : R? — R with €fip €L o(R%) for
all 1 < g < co. With this and with the choice [ := €[] p, Theorems 2.2 and
2.3 can be applied and thus estimation (10) of the appr0x1mat10n error holds
for €f7 p. In [14] these considerations are carried out precisely.
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3. Learning rates for least squares SVMs

In this section, we consider the non-parametric least squares regression problem
based on the least squares loss L : Y x R — [0, 00) defined by L (y,t) = (y — t)>.
It is well known that, for this loss, the function f7 p : R? — R defined by
fip(@) =Ep(Yz), v € R?, is the only function for which the Bayes risk is
attained. Furthermore, some simple and well-known transformations show

Rip (f)=Rip=f = fielt e, - (12)

In other words, the motivating estimate (10) is satisfied for ¢ = 1.
In the following, we present our main results of this section including the
essentially optimal rates for LS-SVMs using Gaussian kernels.

Theorem 3.1. Let Y := [-M,M] for M > 0, and P be a distribution on
R? x Y such that X := suppPx C Bya is a bounded domain with u(0X) = 0.
Furthermore, let Px have a Lebesque density g € Lq(Rd) for some q¢ > 1.
Moreover, let f] p : R? — R be a Bayes decision function such that Iip €
Ly(R?) N Loo(RY) as well as f}p € BS, (R?) for a > 1 and s > 1 with
%—l—% = 1. Then, for alle >0 and p € (0,1), there exists a constant C' > 0 such
that for alln >1, p > 1, v € (0,1], and A > 0, the SVM using the RKHS H,
and the least squares loss L satisfies
—(1=p)(1+e)d p)

n * - a,
M foanllz, + Rep(foaq) - Rip SC(M ey t—wn s

with probability P™ not less than 1 —e™".

For the proof of Theorem 2.2 it is essential that Px is absolutely contin-
uous w.r.t. the Lebesgue measure. Apart from that the remaining arguments
used to prove Theorem 3.1 and its consequences below apply to all marginal
distributions P x.

Note that Theorem 3.1 in particular holds for Bayes decision functions f7 p :
R? — R with f} p € Ly(R?) N Loo(R?) and f} » € Wi (RY) fora € Nand s > 1
by (7).

With the help of Theorem 3.1 we can immediately derive learning rates for
the learning method (4).

Corollary 3.2. Let p > 1 be fized. Under the assumptions of Theorem 3.1 and
with
Ap =cin ! ,
o= e
we have, for allmn >1 and £ > 0,
Rip(foaun) = Rip < Cpn”miate (13)

with probability P™ not less than 1 — e~". Here, ¢y > 0 and ca > 0 are user-
specified constants and C > 0 is a constant independent of n and p.
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Note that the choice of A\, in the Corollary above is actually independent of
the unknown smoothness parameter a. Moreover, the kernel width depends on
« in the same way, it does in classical kernel methods for density estimation
and regression.

Consequently, to achieve rate (13), we need to know «. Since in practice we
usually do not know this value nor its existence, we now show that a standard
training/validation approach, see e.g. [30, Chapters 6.5, 7.4, 8.2], achieves the
same rates adaptively, i.e. without knowing a. To this end, let A := (A,) and
I' := (T';)) be sequences of finite subsets A,,,I',, C (0,1]. For a data set D :=
((x1,91) 5.+ (Tn,Yn)), we define

D, = ((xlayl) PRI) (‘vaym))
Dy = ((Tm41:Ym+1) »- - (TnsYn))

where m := L%J + 1 and n > 4. We will use D; as a training set by computing
the SVM decision functions

founs i=arg min A Sl +Rep, (), (A7) € AnxTa (1)
vy
and use D3 to determine (\,7) by choosing a (Ap,,vp,) € A, x I'), such that

RL,Dz (th)\Dg;VDg) = (A ’y)Iél/i\nXF RL7D2 (fD1;>\7'Y) : (15)

In the following, we call this training/validation approach TV-SVM. For suitably
chosen candidate sets A,, and I';, that only depend on n and d, the next theorem
establishes the rates (13) for TV-SVMs.

Theorem 3.3. Under the assumptions of Theorem 3.1 we fix sequences A :=
(Ap) and T := (T'y) of finite subsets Ap, Ty, C (0,1] such that A, is an €,-
net of (0,1] and T, is a d,-net of (0,1] with €, < n~t, §, < niﬁld, 1eA,,
and 1 € T,. Furthermore, assume that the cardinalities |A,| and |T'y| grow
polynomially in n. Then, for all € > 0 and p > 1, the TV-SVM producing the
decision functions fp, xp, ., Satisfies

P (Rep(forroym,) — Rip < Cpn #H ) 2 1—e77 (16)

where C' > 0 is a constant independent of n and p.

Strictly speaking, it suffices to consider \,, = cn~! and a §,-net T, of (0,1] in
the theorem above, since we have already seen in Corollary 3.2 that the optimal
An is of this form for f} € Bg, . (R?). However, since we do not know, whether
this is also true under other distributional assumptions, we decided to formulate
the training/validation approach over both A and v as a safety measure.

Remark 3.4. The learning rates obtained so far in particular hold, if Px has
a Lebesgue density that is bounded away from 0 and oco. It is well-known that
in this case the minmax rate for a > d/2 and target functions f; p € W5 (X)
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is n~2a%d. Modulo &, our rate is therefore asymptotically optimal in a minmax
sense. In addition, recall that for the latter distributions P x the entropy numbers
(cf. Definition 5.1) of the embedding id : BS' (X)) — La(Px) behave like i~ 4,
see e.g. [15, p. 151]. Therefore and since Bg' (X)) is continuously embedded into
the space £+ (X) of all bounded functions on X, we obtain by [36, Theorem 2.2]
that n~ 757 is the optimal learning rate in a minmax sense for a > d (cf.
[32, Theorem 13]). In other words, for a > d, the learning rates (13) and (16)
obtained for f} p € BS (R%) are again asymptotically optimal modulo &.

Remark 3.5. Recall the extension operator € and the assumptions made in
Remark 2.4. Then the results of Theorem 3.1, Corollary 3.2, and Theorem 3.3
also hold, if f; p : X — R is a Bayes decision function with f7 p € Loo(X)
and f7 p € B (X) for some o > 1 and s > 1. Indeed, these assumptions
on f; p are sufficient, since f} p € Loo(X) implies €f} 1 € Ly(R?) N Lo (RY).
Analogously, f} p € B, ., (X) implies €[} , € By, .. (R?), and hence, Theorem
3.1, Corollary 3.2, and Theorem 3.3 can be applied for €f; ,. Note that we
can also assume f; p € Wii(X), o € N, since this yields €f} p € Wg,(R?) C
B, (R%) by (7). In both cases, the resulting rates obviously coincide with (13),
and in addition, it is not hard to see, that these rates are, again, optimal in a
minmax sense. Again, we refer to [14] for a detailed version of the results of this
section using the extension operator €.

So far we only considered the case of bounded regression but in practice un-
bounded noise is relevant as well. In the following, we briefly examine a regres-
sion problem with exponentially decaying Y-tails. That is, for £ := y — f} p(2)
we assume that there are constants ¢ > 1 and [ > 0 such that 1

P({(z,y) e X xY :|e|<cpl})>1—e" (17)

for all p > 1. In other words, the probability of having large noise is very small.
Additionally, we assume that the Bayes decision function f} p is Px-almost
surely bounded on X. The next theorem establishes learning rates for least
squares SVMs in the spirit of Corollary 3.2 under these new assumptions.

Theorem 3.6. Let Y C R and P be a distribution on R x Y such that X :=
suppPx C Bya is a bounded domain with p(0X) = 0. Furthermore, let Px
have a Lebesque density g € Lo(RY) for ¢ > 1. Assume that f} p(x) € [—1,1]
for Px-almost all x € X and that f p € Lo(RY) as well as Ifip € Bg, (R?)
for some a > 1 and s > 1 defined by %—F% = 1. Finally, assume that (17) holds.
We define

—1
)\n =cn ’

1
Vn = C2n 2otd |
where ¢; > 0 and co > 0 are user-specified constants independent of n. Now,

for some fized p > 1 and n > 3, we define p := p+Inn and M, = 2¢cp'. Let
us consider the SVM that uses A\, and -y, and that clips its decision function
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oA, e at My, after training. Then, for all & > 0, there exists a constant C' > 0
independent of n and p such that for all p > 1 we have

n ~ — 2o
Moawanlir, + Rep(fornm) = Rip < Cpp*ten~zdate (18)

with probability P™ not less than 1 — (e =7 + e~ 7).

Note that the tail assumption (17) does not change the learning rates achieved
in Corollary 3.2. Moreover, the learning rate (18) is essentially optimal for f Lp€
B, o(RY) and f} p € W3, (R?), respectively. Finally, these rates can again be
achieved by the TV-SVM approach considered in Theorem 3.3, if we assume an
upper bound on the unknown parameter [. The following two examples illustrate
that such an assumption may not be to unrealistic.

Example 3.7. Let us consider the case of Gaussian noise, i.e. € ~ N (0,1). The
choice m = ﬁp% yields

P({(z,y)eXxY:|a|§m})_1—\/%/mooe%dt

where we used

oo oo oo
_£2 _m?  =m)? _m? _£2 T _m?
/ e 2dt§/ e 2e 2z dt=e 2/ e"Tdt =4 /-e 7 .
m m 0 2

Hence, assumption (17) is satisfied for [ = % and ¢ = /2. Obviously, a similar

result holds for the general case ¢ ~ N(0,07).
Example 3.8. Assume that the distribution of the noise € has the density

1
h(t) = §e—|t‘ : teR.

Then we have
P
P({(z,y) e X XY : |e| < p}) :/ etdt=1—e"",
0

i.e. assumption (17) holds for [ =1 and ¢ = 1.

Finally, it seems fair to say that for distributions that have fatter Y-tails than
those considered by assumption (17) the simple clipping approach of Theorem
3.6 will lead to slower rates.

Let us now compare our results with previously obtained learning rates for
SVMs. To begin recall that there have already been made several investigations
on learning rates for SVMs using the least squares loss, see e.g. [5, 10, 11, 27, 22]
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and the references therein. In particular, optimal rates have been established in
[5], if f [ p € H, and the eigenvalue behavior of the integral operator associated
to H is known. Moreover, for f7 p ¢ H, the articles [22] and [32] establish

learning rates of the form n~#/(f+P) where 3 is a parameter describing the
approximation properties of H and p is a parameter describing the eigenvalue
decay. In both cases, however, additional assumptions on the interplay between
H and Ly(Px) are required, and [22] actually considers a different exponent
in the regularization term of (4). On the other hand, [32] shows that the rate
n~B/(B+P) is often asymptotically optimal in a minmax sense. In particular, the
latter is the case for H = W3™(X), f; p € W5'(X), and o € (d/2,m], that is,
when using a Sobolev space as underlying RKHS H, then all target functions
contained in a Sobolev space of lower smoothness o > d/2 can be learned with

the asymptotically optimal rate n~7a%a. Here we note that the condition o >
d/2 ensures by Sobolev’s embedding theorem that W3'(X) consists of bounded
functions, and hence Y = [—M, M] does not impose an additional assumption
on ff p. If a € (0,d/2], then the results of [32] still yield the above mentioned
rates, but we no longer know whether they are optimal in a minmax sense, since
Y = [-M, M] does impose an additional assumption. In addition, note that for
Sobolev spaces this result, modulo an extra log factor, has already been proved
by [16, Section 3.2]. Besides, similar results to those of [32] have been recently
achieved in [34] for the case of multiple kernel learning. Note that one of the
reasons for these learning rates is the fact that the approximation error decays
polynomially fast if (and only if) the regression function f} p is contained in
some interpolation space [La(X), W3™(X)]g,00, m € Zy, B € (0,1), see [26] for
more details.

These results suggest that by using a fixed C'*°-kernel such as the Gaussian
RBF kernel, one could actually learn the entire scale of Sobolev spaces with
the above mentioned rates. Unfortunately, however, there are good reasons to
believe that this is not the case. Indeed, [26] shows that for many analytic
kernels the approximation error function Ay (\) defined by (5) can only have
polynomial decay for A — 0 if f} p is analytic, too. In particular, for Gaussian
kernels with fived width v and f; p & C*°, the approximation error has only
logarithmic decay, see [26, Proposition 1.1.]. Since it seems rather unlikely that
these poor approximation properties can be balanced by superior bounds on the
estimation error, the above-mentioned results indicate that Gaussian kernels
with fized width may have a poor performance. This conjecture is justified
by many empirical experience gained throughout the last decade. Beginning
with [33], research has thus focused on the learning performance of SVMs with
varying widths. In this direction the result that is probably the closest to ours is
[40]. Although these authors actually consider binary classification using convex
loss functions including the least squares loss, it is relatively straightforward to
translate their findings to our least squares regression scenario. The resulting
learning rate is n~ 372472 again under the assumption fip € W5(X) for some
a > 0. Clearly, this is significantly worse than our rates.

In [41] multi-kernel regularization schemes are treated, where X is isometri-
cally embedded into a t-dimensional, connected and compact C°°-submanifold
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of R4, In [41, Section 5] it is pointed out that the regularization scheme with
one fixed Gaussian kernel has weak approximation ability since the regular-
ization error only decays polynomially if the regression function is analytic.
Hence, the multi-kernel regularization scheme using Gaussian kernels with flex-
ible variances is advantageous for many applications. In addition, it turns out
that the resulting learning rate for this multi-kernel regularization scheme does
not depend on the dimension d, but on the intrinsic dimension ¢ of the data.
Namely, the authors establish the rate n~ st modulo a logarithmic factor,
where o € (0,1] and f p € Lip (). Note that this rate is better than ours

only if ¢t < d78140‘, that is, e.g. for a = 1, if d > 8¢ 4 14. Other results on
multi-kernel regularization schemes applied to Gaussian kernels with varying
widths can be found in [23, 41, 42, 43]. For example, [43] treats the multi-kernel

least squares regularized regression problem and, for f7 p € W3 (X), establishes

learning rates of the form n~ 2@+ modulo a logarithmic factor for o < 2 and

bounded X as well as rates of the form n~ % 0% whenever fip € W5 (X)
for some o € (d/2,d/2 + 2), respectively, where again £ > 0 can be chosen to
be arbitrarily close to 0.

Again all these rates are far from being optimal, so that it seems fair to
conclude that our results represent a significant advance. Furthermore, we can
conclude that, in terms of asymptotical minmax rates, multi-kernel approaches
applied to Gaussian RBFs cannot provide any significant improvement over a
simple training/validation approach for determining the kernel width and the
regularization parameter, since the latter already leads to rates that are optimal
modulo an arbitrarily small £ in the exponent.

4. Learning rates for SVMs for quantile regression

In the previous section we used the approximation results of Section 2 to derive
essentially optimal learning rates for least squares SVMs. In this section we
focus on quantile regression with the goal to derive learning rates for SVMs
that are comparable with the rates achieved for least squares SVMs. Recall that
the goal of quantile regression is to estimate the conditional T-quantile, i.e. the
set valued function

Tp(z) ={teR:P(Y <tlr) >7and P(Y > t|z) >1—17},

where 7 € (0,1) is a fixed constant. Throughout this section, we assume Y :=
[—1,1] and that F)’p consists of singletons, i.e. there exists an fp : X — [-1,1],
such that F'p(x) = {f;p(z)} for Py-almost all z € X. In the following, f’p
is called the conditional 7-quantile function. To estimate the latter one can use

the so-called 7-pinball loss L, : Y x R — [0, c0) represented by

o) = {—(1 — ), ifr<0

Tr, ifr>0,
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where 7 := y — t and L,(y,t) = 1 (r). Recall that the conditional 7-quantile
function is, modulo P x-zero sets, the only function that minimizes the L, -risk,
that is R*L.,.,P = RL,,P(f:-FP)-

P

To derive meaningful learning rates for SVMs for quantile regression, we need
to compare the excess L,-risk of some estimator fp to the distance

Ifo—frplle.ex) -

For that purpose, we have to introduce some characteristics of the distribution P.
For the sake of simplicity, we use @ as template for the conditional distribution
P(-|x). Hence, let Q be a distribution on R with support supp @ C [—1, 1] and
T-quantile

F(Q) = {t € R: Q((—o0,8]) = 7 and Q([t,00)) = 1 — 7}

Recall that F*(Q) is a bounded and closed interval, i.e. FX(Q) = [tX:., t5 )

min’ “max

with ¢5;, = min F7(Q) and t;,,, = max F(Q). Since we assumed that I’
consists of singletons, we also assume that F*(Q) consists of singletons for the

sake of uniformity, i.e. t%, = t5.. =: t* and FX(Q) = {t*}. We start with a

min max

definition describing the concentration of () around the 7-quantile ¢*.

Definition 4.1. A distribution @ with supp@ C [—1,1] is said to have a 7-
quantile t* of lower type ¢ € (1,00), if there exist constants ag € (0,2] and
bg > 0 such that

Q((t* — s5,t%)) > bos?™!
Q((t",1" +5)) > bos”™!

for all s € [0, ag]. Moreover, @ has a T-quantile of type ¢ = 1, if Q({t*}) > 0. In
this case we define ag := 2 and bg = min{r — Q((—o0,t*)), Q((—o0,t*]) — 7},
where we note that this implies bg > 0. For ¢ > 1, we finally write kg := anqQ_l.

Definition 4.1 has already been introduced in [31, Section 2|, where more
details including examples that go beyond the ones we discuss below can be
found.

Since we are interested in distributions P on X x R and not only in distribu-
tions @ on R, we extend Definition 4.1 to such P.

Definition 4.2. Let p € (0,00], ¢ € [1,00), and P be a distribution on X x R
with suppP(-|z) C [—1,1] for Py-almost all z € X. Then P is said to have a
T-quantile of lower p-average type ¢, if P(-|z) has a 7-quantile of lower type ¢ for
P x-almost all 2 € X, and the function x : X — [0, 00] defined, for P x-almost
all z € X, by

K(CL') = Iip(.|m) 5

where kp(.|) = bp(.‘w)aqu ) is defined in Definition 4.1, satisfies k= € L,(Px).
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Definition 4.1 describes the concentration around ¢* by lower bounds. Analo-
gously, the next definition measures the concentration of ) around t* by upper
bounds.

Definition 4.3. A distribution @ on [—1,1] is said to have a T-quantile t* of
upper type ¢q € [1,00), if there exists a constant bg > 0 such that

Q(t" = 5,1)) < bos*!
Q(t", 4" +5)) < bgs?™"

for all s € [0,2].

By setting ¢ = 1 and bgp = 1, we see that () always has a 7-quantile of
upper type g. On the other hand, for ¢ > 1 Definition 4.3 divides the set of all
distributions on [—1, 1] into various classes.

Finally, based on Definition 4.3 we define quantiles of upper p-average type
q analogously to the quantiles of lower p-average type g.

Definition 4.4. Let p € (1,00}, ¢ € [1,00), and P be a distribution on X x
[—1,1]. Then P is said to have a 7-quantile of upper p-average type g, if P(-|z)
has a T-quantile of upper type ¢ for Px-almost all x € X, and the function
¢+ X — [0, 00] defined, for Px-almost all 2 € X, by ¢(z) := bp(.|s), satisfies
p € Lp(Px).

Let us now present some examples to illustrate the notion of quantiles of
upper and lower p-average type q.

Example 4.5. Let v be a distribution on [—1,1] having a bounded Lebesgue
density h, i.e. h(y) < b for some b € (0, 00) and Lebesgue-almost all y € [—1, 1].
Then a simple integration yields that v has a 7-quantile of upper type ¢ = 2 for
all 7 € (0,1). Here, we set b, :=b.

In addition, we assume that P is a distribution on X x [—~1,1] with X C R¢
and such that P x is absolutely continuous with respect to the Lebesgue measure
. Furthermore, assume that the corresponding conditional densities h( -, x) :=

j:?;‘lzl)] are uniformly bounded, that is, h(y,z) < b for Lebesgue-almost all
€ [—1,1]. Then, for p = oo, P has a 7-quantile of upper p-average type g = 2
with p(x) :=b.

If we further assume that, for Px-almost all © € X, the density h(-,z) of
P(-|z) is bounded away from 0, i.e. h(y,z) > b for some 0 < b < b for Lebesgue-
almost all y € [—1, 1], then, for p = oo, P also has a T-quantile of lower p-average
type ¢ = 2 with x(z) := 2b.

Example 4.6. Let d;» be the Dirac measure at t* € (0,1), v be a distribution
on [—1,1] with v({¢*}) = 0 and Q := av + (1 — a)d;~ for some « € [0,1). By
[31, Example 2.4] we know that, for 7 € (aw((—o0,t*)), av((—o0,t*)) +1 — a),
{t*} is a 7-quantile of lower type ¢ = 1 with kg := min{r — av((—o0,t*)),
av((—o00,t*)) +1—a —7}.

Now assume that P is a distribution on X x [—1, 1] such that each conditional
distribution P( - |z) is of the above form @, where t* may depend on 2 but v and
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« do not. Then, for p = oo, P has a 7-quantile of lower p-average type ¢ = 1.
Moreover, for p = oo, P also has a 7-quantile of upper p-average type ¢ = 1.

Using the property of the distribution P having quantiles of lower /upper p-
average type ¢, we return to our initial goal of comparing the excess L,-risk of
some estimator fp to the distance || fp — f/ pllL, ). To this end, we first recall
from [31, Theorem 2.7] the following so-called self-calibration inequality

* B N 1
1f = frploes) 27900 677 oy (Re, p(f) = RE, p)7 (19)
which holds for p € (0,00], ¢ € [1,0), v := %, and all f: X — [—1,1], when-

ever P is a distribution that has a 7-quantile of lower p-average type ¢. Initially,
our statistical analysis will provide oracle inequalities for the excess L, -risk,
and hence self-calibration inequalities provide a natural mean to translate such
oracle inequalities into bounds on the distance || fp — f7 pllL,py)- Interestingly,
however, if we want to use the approximation results from Section 2, we also
need inverse self-calibration inequalities. In this respect, we first note that the
Lipschitz continuity of L, immediately yields

Ri,p(f)=Ri, p <If = Fplliey (20)

for all f: X — [—1,1]. For our purposes, this estimate can be substantially
improved by the next theorem for distributions having quantiles of upper p-
average type q.

Theorem 4.7. Let P be a distribution on X x [—1,1] that has a T-quantile of
upper p-average type q with p € (1,00] and q € [1,00). In addition, assume that,
for all x € X, we have P({f} p(z)}|x) = 0. Then we have

Re, p(f) =RL, p <a orc mlle,e0llf = Fpll, (21)

forall f: X — [-1,1], where u := 2.

To see that (21) is indeed an improvement of (20) we consider fo := K * f’p
with K as in (8) and f/p : R? — R such that it is a Bayes decision function
with f7p € Lay(RY) N Loo (RY). Assuming fip € B{ (RY) or ip € B (R
with u as in Theorem 4.7, we obtain by Theorem 2.2 and by the definition of
Besov spaces

Rer,p(fo) = Ri.p <Ilfo— fipllL.px) < 1wy n ey (fip,7/2) < eay®
from (20), while (21) yields

aq
Re, p(fo)=Ri, p<csllfo— fIpll7, @y Sca (WﬁLu(Rd) (f:,p,7/2)) <571,

for suitable positive constants ¢1,...,c5. Since v € (0, 1], it is obvious that the
second estimate is tighter than the first one whenever ¢ > 1. Taking advantage
of Theorem 4.7 and the improved estimate of the excess L,-risk, we achieve
a new oracle inequality for SVMs for quantile regression similar to the one of
Theorem 3.1 for LS-SVMs.
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Theorem 4.8. LetY := [—1,1], and P be a distribution on R¢x Y that has a 7-
quantile of upper p-average type q for some p € (1,00] and g € [1,00). Assume
that X = suppPx C ng is a domain and that Px has a Lebesque density
g € L,(RY) for somew > 1. Foru := -HL, suppose that f} p € L,(RHNLo (RY)
ifuell,2) and fip € La(R?) N Loo(RY) if u > 2. In addition, we assume that

+p € Bg, o(RY) for some o > 1 and s > 1 defined by  + L = 1. Finally,
suppose that there exist constants ¥ € [0,1] and V > 2277 such that the variance
bound

—~ ~ 9
Ep(Lrof—L;o f:,P)2 <V (EP(LT of—L;o f:y)) (22)

is satisfied for all f : R — R. Then, for all ¢ > 0 and s € (0,1), there exists a
constant C' > 0 such that for alln > 1, p > 1, v € (0,1], and X\ > 0, the SVM
using the RKHS H., and the pinball loss L, satisfies

2 N *
Moanllzy, + Re.p(fory) —Ri, p

1
—(1—<)(1+e)d\ 2=s—9+v< L
SC(A7d+7qa+<7T> +(§)2 19—|—£>

with probability P™ not less than 1 —e™".

To prove Theorem 4.8 we have to use the approximation result of Theorem
2.2. Similarly to Theorem 3.1 and its corollaries, it is for this reason essential in
Theorem 4.8 that Px is absolutely continuous w.r.t. the Lebesgue measure and
that the associated density is contained in L, (X). The remaining arguments
used to prove Theorem 4.8 and its consequences, on the contrary, hold for all
marginal distributions P x. Our next goal is to illustrate these consequences. We
begin with a general form of the learning rates that result from Theorem 4.8.

Corollary 4.9. Let p > 1 be fized, and & > 0. Under the assumptions of
Theorem 4.8 and with

_ ga+d
Ap = cin @@=0+d |

Yo = Con” T
we have, for allm > 1,
—~ . g
Ri,p(for.m) = RL, p < Cpn” woowate (23)

with probability P™ not less than 1 — e™?. Here, ¢y > 0 and co > 0 are user-
specified constants and C > 0 is a constant independent of n and p.

To achieve the learning rate (23), \,, and 7, have to be set as in Corollary
4.9. To this end, we again have to know a and 1J, which is usually not the case
in practice. Nevertheless, we derive the same learning rates without knowing
neither @ nor ¥ by the standard training/validation approach of Section 3.
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Theorem 4.10. Under the assumptions of Theorem 4.8 we fix sequences A :=
(Ay) and T := (T),) of finite subsets A, Ty, C (0, 1] such that A, is an €,-net
of (0,1] and T, is an 6,-net of (0,1] with ¢, < n~', §, < n_ﬁ, 1 e A,
and 1 € T,. Furthermore, assume that the cardinalities |A,| and |T'y| grow
polynomially in n. Then, for oll & > 0 and p > 1, the TV-SVM using L,
satisfies

~ _ g —
P” (RLT,P(fDl)\DQKYDg) _ ETVP < Cpn qa(2—19)+d+5) >1—e P

with a constant C > 0 independent of n and p

To apply Theorems 4.8 and 4.10, we need the variance bound (22) for the
7-pinball loss. But unfortunately, unlike for the least squares loss, (22) generally
does not hold for some ¢ > 0. However, if P has a lower quantile type, then the
following result taken from [31, Theorem 2.8] establishes non-trivial variance
bounds.

Theorem 4.11. Let P be a distribution that has a T-quantile of lower p-average

type q for some p € (0,00] and q € [1,00). Then, for ¥ := min{%, #}, V.=
22_19q19|\m_1|\12p(PX), and all f : X = R, we have

—~ ~ 9
Ep(Lrof— Lo fip)? <V (Br(Lr0f = Lro fip)) -

Let us now combine this variance bound with the previous results such that
learning rates can be achieved with simplified assumptions. For the sake of
simplicity, we restrict our considerations to distributions P that have both a
T-quantile of lower and upper p-average type ¢. Let us begin with the probably
most interesting example (p, ¢) = (00, 2), cf. Example 4.5.

Corollary 4.12. Let Y := [~1,1], and P be a distribution on R x Y that
has a T-quantile of lower and upper p-average type q for ¢ = 2 and p = oo.
Assume that X = suppPx C ng is a domain and that Px has a Lebesgue

density g € L, (RY) for some w > 1. Suppose that fip € Lo(R?) N Lo (R?Y) and
fip € Bg‘syoo(Rd) for some o > 1 and s > 1 defined by X + L = 1. Then we
obtain for the SVM considered in Corollary 4.9 that, for all £ >0 and p > 1,

p" (RLT,P(fD,M) ~Ri.p< Cpn*%ﬁ) >1—e”
and
n _ _2a _
P (Ifons = Frpldyey) < Clpn =57 > 10

with constants C > 0 and C' = 4||x™ | 1_(p5)C independent of n and p.
Moreover, the same learning rates can be obtained for the TV-SVM considered
in Theorem 4.10.
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In particular, by (7) Corollary 4.12 also holds for a conditional 7-quantile
function f : R? — R such that f7p|x : X = [=1,1], f7p € La(R?) N Loo (R?)
and ffp € Ws (R?) for o € Nand s > 1.

Note that the convergence rates above equal the rates we achieved for the
least squares SVMs in Section 3 (cf. Remark 3.4).

Let us now again quickly discuss the influence of the assumed upper quantile
type. To this end, assume that we are not using a possibly non-trivial upper
quantile type. Then, as discussed in front of Theorem 4.8, we can only use the
estimate

Ri,p(fo) =R, p < lfo— fipllLips) < (24)

in the corresponding proof, where fo := K « f’p. Assuming that P has a 7-
quantile of lower p-average type ¢ with p =oco and ¢ = 2,i.e. v =2 and ¢ = 1,
then (24) and (19) yield

||fD,/\,v - f:,P||%2(PX) < Cn~wratt

for all £ > 0. Clearly, this rate is significantly worse than that of Corollary 4.12.

For this reason and for the sake of completeness, we consider distributions
P having a 7-quantile of upper p-average type ¢ with p = oo and ¢ # 2 in the
following corollary, where we omit the obvious proof.

Corollary 4.13. Let P be a distribution having a 7-quantile of lower and upper
p-average type q with p = oo and q € [1,2) U (2,00). Under the assumptions of
Theorem 4.8 and of Theorem 4.11 we obtain

1, ifqg<2,
V=1, :
7 ifqg>2.

Then, for the SVM considered in Corollary 4.9 as well as for the TV-SVM
considered in Theorem 4.10, we obtain, for all € >0 and p > 1,

n * q < CpniqgidJrE ’ ’qu<2 )
”fD,)\,'V - fr,P”Lq(PX) > OpniﬁJ& , ifq ~9.
with probability P™ not less than 1 —e™ ", where C > 0 is a constant independent
of n and p.

Remark 4.14. Again, recall the extension operator & and the assumptions
made in Remark 2.4. Let X' C Byg be a domain such that we have such an exten-
sion operator €, and let f’p : X — [~1,1] be the conditional 7-quantile function
such that fXp € By (X) for some o > 1, s > 1, and u = P4 Then apply-
ing €f*p we achieve the results of Theorem 4.8, Corollary 4.9, Theorem 4.10,
Corollary 4.12, and Corollary 4.13 for the modified assumptions analogously to

Remark 3.5. Moreover, the same holds for f*p € W (X), o € N, instead of
fip € Bl oo(X) since ffp € W (X) implies €f7p € W (RY) C By, . (RY)

us,00 us,00

by (7).
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Like learning rates for least squares regression, learning rates for quantile
regression have already been obtained in the literature, although it seems fair to
say that the latter regression problem has attracted less attention. Let us begin
the discussion of such rates with the case of SVMs. Probably the first result in
this direction is [35], where a learning rate of n~2 for the excess risk is shown
under some assumptions including that f p is contained in the RKHS used by
the SVM. In addition, algorithmic aspects of SVMs for quantile regression are
discussed. An approach similar to ours is used in [21] to estimate the distance
of the SVM estimator to f* . There, the authors show for example, that if f*,
is contained in some known H., and the following calibration inequality 1

1f = Frplliaes < ey/Rep(F) = RE_p (25)

is satisfied, then modulo some logarithmic factor, the rate n=/3 can be achieved
for ||fp.x,~ — fipllL,(py)- Unfortunately, assuming that f;p is contained in
the used RKHS is rather restrictive as discussed in the previous section. In
addition, it is well-known that establishing rates under such an assumption is
rather simple compared to the general case. Nonetheless, it seems interesting
that their rates can be essentially recovered by combining Theorem 4.8 with
Theorem 4.11 and (19) for p = 1, ¢ = 2, and a = oo, since in this case (19)
reduces to (25). Moreover, for the example discussed after [21, Corollary 1] our
general results actually achieve a rate of the form n~2/3+¢_ whereas the authors
only obtain a rate of the form n~'/3. Furthermore, [31] achieves our rate n~ 7«14
if H=W$(X) for some a > g, P has a 7-quantile of lower p-average type ¢
with p = oo and ¢ = 2, and, again, f7p € H.

The Sobolev setting is also treated in [25], where the author considers a
penalized estimate with hypothesis space Wj*[a, b]. In particular, he obtains the
same learning rate as we do for d = 1. In [20] a partially linear quantile regression
model is considered, where the parametric component learns with rate ne.

Finally, [19, Chapter 7] presents learning rates for a polynomial model and
locally polynomial quantile regression estimators. Here, the rate n~7eH Inn is
achieved, where « describes the order of smoothness. In fact, the author refers to
[7], where a similar rate is also achieved for arbitrary L,-norms with 1 < p < oo.

5. Proofs
5.1. Proofs of Section 2

In Section 2 we presented two theorems that estimate parts of the approximation
error. Let us begin with the proofs of these theorems. To this end, we need the
convention 00 := 1.

Proof of Theorem 2.2. First of all, we show f € Ly(Px). Because of the as-
sumption f € Lq (R?) N Lo (R?), we have f € L, (R?) and thus f € L, (X)
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for every u € [¢,00] and ¢ € [1, 00]. In addition,

sy =( [ @17 P @)3’: ([1r@r s <x>)és|f|Lw<X><oo

holds, i.e. f € Ly(Px) for all g € [1,00). It remains to show

1K % F = £ oy < Crallgllymn @, ga (F7/2) -

To this end, we use the translation invariance of the Lebesgue measure and
K, (u) = K, (—u) (u € R?) to obtain, for z € X,

kestr= [ S 0) 05 ()

1

jd

2
2

S5 G L (5o

2
2

s

LG

With this we can derive, for ¢ > 1,
1K f = flIT, py)

K+ f (z) = f (2)|" dPx (x)

q
T

L1
J LG s
fl

Jel e

P

“”((;

2
v

Next, Hélder’s inequality and [, (=5 )d/2K

1K * f = flIT, ey

()-rrris <x+jh> - f(xa

)2 K (h) A (f,) dh

dPX (:E)

()

(1) f(x+jh)) dh — f (z)

q

dh| dPx (z)

q

[ _1)2r T (g . "
_O(j)< 1)+ g ( +]h)) ah| dPy (@)

q

(h) dh =1 yield, for ¢ > 1,

5
Vi vz
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g—1

< (( [ (&) >dh>T< (&) kamisior dhj)qux(x)
-] (n) K, () |2, (£.2)|" dhdPx (x)
< ) )15 (1, )2, g

d
2 2
< [ (25) K Wty o (el an. (26)

Moreover, for ¢ = 1, we have

K F = s = [ [ G0 () 820085 () an] aPx 0

<[ () Kam [ 18n0olary @

</ <i) K 5y (B) oy (F )

yem

Consequently, (26) holds for all ¢ > 1. Furthermore, we have

q
e (£ = sw [ (27 (10 Py (2)
Hh||2<t R4
q
= sw [ [25.(9)["g(w)du (@
Inll,<t JRE
= sup [ (27 (£.0) (900} 'du (o)
Inll, <t JRE
1|19
= su ANV (f, ) ga
i B AR P
1 q
< su AV a
_|h||2p9(” b |9 LqpaRd))

= ||g||Lp(]Rd) WZLQS(W) (f:1)
2t
<ol ey (1 2) " oo ()

for t > 0, where we used (6). Together with (26) this implies

1K f = fIIT, ey
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d
2 2 2”th q Y
S/Rd (_727T> K35 (W gl gy <1+ S s (7 5) ah

d
_ . g 2 \* 2]Ally "
“tolu,nsta,oo(r3) [, (557) w0 (14 25k) o)

K

MW

Because (v%r )
mate

= (-) is the density of a probability measure on R?, the esti-
2

r r [rq] i
2|h||2) ! ( 2|h||2>r g < > <2 >
1+ —= <|(14+ ——= — ||k
( 5 5 E 7H Il

and Holder’s inequality yield

d
2 2, \ "
/ <—f) K (h) <1+ I |2) dh
v vz y

[rq]

<Z< ><)/II |2< )%K%(h)dh

EE (L () same) o

Since, for s > 0 and an integer i > 0, the function s — s’ is convex, we have for
every integer i > 0 the transformation

% %

d 1 d 1 d
30 IR D3r R IR SPTE ol
j=1 j=1 7j=1 Jj=1

Note that d'z is just the embedding constant of (4. to (4. This embedding
constant leads to

/ Inl (2 )g K, (k) db
|h|| < 27r) < 2|h|2> dh

d
2 ) 2
i—1 21 l
<d (%) Z/Rdhj Hexp(——2> d(hy,... ha)
j=1 =1
d q d—1 P
_ 2 \? v\ 2 , 2h
_oi—1 21 J
=d (Tﬂ> > (T) /th exp <——2 dh;
j=1
2 % oo ) 2 2
= dl_l (T) 2d/ t21 exXp (——2) dt
i 0 v
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1
2 \? [> 212
= 2dl< > / 2 exp <——2> dt . (29)
7 a 0 v

2

With the substitution ¢t = (% )z, the functional equation I'(t + 1) = tI'(¢) of

u
the Gamma function I', and I (%) = /7 we have

/Ooot%exp (—i—f) dt = %\/li (%)i/ooou(”z‘) Lexp (—u) du
SN
5 (3) T ()03
e

Together, (29) and (30) lead to

d P

, 2 \? Y\ T 1

B2 (=) Ko (h)dh<d |-~ -
Lo () <nmasa(5) 1 (-3)

and with (28) we obtain

/(ﬁﬂ)g K (h) <1+2|h”2> dh

Mﬂ

<Z j—%)

= > %n@——)

[V

where the empty product is defined to equal one. Finally, (27) implies

gl
1K % £ = 12, o) < Cralgllz ) @, ey (£:3)

1

for Crg = SIG (70) 24 T2y (G- 3)*. =
Proof of Lemma 2.3. We define, for all j € Nand =z € X,

vom () ()

S
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y [30, Proposition 4.46] we obtain
g;* [ € Hjy (X) C Hy (X)

for all 7 € N. Due to the properties of the convolution, we finally obtain

~ (r _j 4 -
et 5 0) o
j=1
Moreover, for the estimation of the norm we have
d
(2 \? 2|13
—1)t -2
(J) ) <j2727f) eXp( 7 )
d _d
<ZJ2<) Grvm) 2 1 f 1l ga
_d o
= (W) 2 @ =D IIfll, e -

where we used [30, Proposition 4.46] in the first two steps. Finally, for all z € X
and f € Ly (Rd), Holder’s inequality implies

4
2

(9; * f) € Hy (X) .

d
[ fllpy, < 212

Hijy

|K * f ()] < sup |K * f (2)]
zeX

<sup | [K(2—t)f(t)dt
zeX JRA

2 % 2”5[,'—t||
||f|Lm<Rd>Z(») 2/ (Ww) eXp( W) "

=2 =D flp. e -

IN

5.2. Proofs related to the least squares SVMs

To be able to prove the new oracle inequality of Theorem 3.1 we need to control
the capacity of H, in terms of entropy numbers. For the sake of completeness,
we start by recalling entropy numbers (cf. [6] or [30, Definition A.5.26] for more
information).

Definition 5.1. Let S : E — F be a bounded, linear operator between the
normed spaces E and F' and ¢ > 1 be an integer. Then the i-th (dyadic) entropy
number of S is defined by

27L71
e; (S):=inf ¢ e>0:3ty,...,tai-1 € SBE such that SBg C U (t; +eBr)

Jj=1

where the convention inf () := oo is used.
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Immediately, [30, Theorem 7.34] and [30, Corollary 7.31] yield the following
lemma regarding the capacity of H,, where Dx is the empirical distribution
associated to the data set Dx := (:101, ceXy) € XM

Lemma 5.2. Let Px be a distribution on X C By, ky be the Gaussian RBF
kernel over X with width v € (0,1] and H., be the associated RKHS. Then, for
alle >0 and 0 < p < 1, there exists a constant c. , > 0 such that

(A—p)(A+e)d 1

EDXNPn e; (id : H,— Ly (Dx)) < ¢ T

foralli>1 andn > 1.

With the help of the above lemma we are now able to deduce an oracle
inequality for the least squares loss by specializing [30, Theorem 7.23], which
will later be used to prove Theorem 3.1.

Theorem 5.3. Let X C Bya, Y := [-M, M] C R be a closed subset with M >0
and P be a distribution on X x Y. Furthermore, let L : Y x R — [0,00) be the
least squares loss, k., be the Gaussian RBF kernel over X with width v € (0, 1]
and H., be the associated RKHS. Fiz an fo € H, and a constant By > 4M?
such that | L o fo| ., < Bo. Then, for all fitedp > 1, A >0, >0 andp € (0,1),
the SVM using H., and L satisfies

Mfoaqlz, +Ree(foas) = Rip
~(=p)(I+e)d N (3456 M2 +15B,) (1+1n3)p

APny n

<INl follf +Ro.p(fo) R p) +Cep

with probability P not less than 1—e~", where C. ;, is a constant only depending
one,p and M.

Proof. First of all, note that, for all t € R and y € [—M, M], the least squares
loss satisfies L(y,t) < L (y, ) i.e. it can be clipped at M > 0 (see [32, Section
1]). Furthermore, the least squares loss is locally Lipschitz continuous with the
local Lipschitz constant |L|, ; = 2(a+ M) for a > 0 in the sense of [30, Defi-
nition 2.18]. See [30, Example 7.3] to verify that the least squares loss satisfies
the supremum bound

L(y.t)=(y—1t)* <4M?
and the variance bound
Ep(Lo f—Lofip)? <16M?Ep(Lo f— Lo fip)

forally €Y, t € [-M,M] and f € H, with constants B := 4M?  V := 16M?
and ¢ := 1. Consequently, the assertion follows from [30, Theorem 7.23] and
Lemma 5.2 with C., = C(max{ccp,4M?})*, c., as in Lemma 5.2 and a
constant C' > 1 which corresponds to the constant K of [30, Theorem 7.23].
Finally, a variable transformation adjusts P™ not to be less than 1 —e™”. [
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Now, we can prove the oracle inequality introduced in Theorem 3.1 on the
basis of Theorem 5.3.

Proof of Theorem 3.1. First of all, we want to apply Theorem 5.3 for fy :=
K * [T p, where f} p is a Bayes decision function w.r.t. L and P and

T a 2
T 1—5 1 ( 2 )2 2 ||lzl;
K (z) = ) (=1 —= | == &p| ——S5
) ; (J>( ) 3t \Pr 7%y
for all z € R%. The assumption Iip € Lo (Rd) and Theorem 2.3 immediately
yield

fo=Kxflp€H,.

Furthermore, because of f p € Loo (R?) and Theorem 2.3, the estimate

(K frp (@) <@ =D Ifiplees

holds for all x € X. This implies, for all (z,y) € X x Y,

L(y, K * f7 p (2)) = (y = K * ff p ())?
=y® = 2y(K * f7 p (2)) + (K * f p (2))?
< M?42M (2" = 1) || ff pllpowe) + (27 — 1)° ||fZ,P||2Lm(Rd)
< 4" max{M, | pllLo. ey }?

and

Lo follw=sup |L(y, fo(x))]
(z,y)EX XY

= sup |L(yaK*fz,P ($))|
(z,y)EX XY

< 4" max{M, | f] pllr..wa)}* = Bo .
Furthermore, (12) and Theorem 2.2 yield

Rep (fo) =Rip=Rrp(K*fip)—Rip

* * 2
= ||K * fL,P - fL,PHLg(Px)

«
<Cra ||g||Lq(]Rd) w?«,LzS(Rd) (fL,Pa 5)

<Cra ||g||Lq(Rd) Ay

where we used

«
Wr, Lys (RY) (fL,p, —) <ecy®
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fory >0, a>1,r=|al +1, and a constant ¢ > 0 in the last step, which in
turn immediately results from the assumption f; p € Bg‘sm(Rd). By Theorem
2.3 we know

_4d
I follzr, = 15 * fLplle, < (vW/m) 2 (27 = D) IfL pllaray -

Therefore, Theorem 5.3 and the above choice of fy yield, for all fixed p > 1,
A>0,e>0,and p € (0,1), that the SVM using H,, and L satisfies

) -
Mfoanla, +Rep (fD,m) - RLp

—d T * «
<9 (A (A @ = 1 Wi el ) + Crz 9], ey )
A= (1=p)(1+e)d N (3456 M2 + 15-4" max{M, || f} pllz_e)}?) (1 +1n3)p

APn n

—(1-p)(te)d
<OM 90,2 4 O 2P

+Cep

2
APny n (32)

with probability P™ not less than 1 — e~ and with constants C. , as in The-
—d) g

orem 5.3, Cr := Cr2lgll,, mays Cr i= 92" = 1)* 75| f} pl|?, ), and Cs =

(In(3) 4+ 1) (3456 M2 + 15 - 4" max{ M, || f} pll 1. rt)}?)- O

Remark 5.4. Counsider the case M > 1 in the proof of Theorem 3.1. Then we
have

Co < MP(n(3) + 1) (3456 415 -4 max{L, 7 o1z 1)
as well as
CEyZD = (max{cs,pa 4M2})2p : HlaX{?)f(, 2B}

by Theorem 5.3 and [30, Theorem 7.23], where c. , is independent of M, B =
AM?, and

K =max{e,|L, V=, eo| L3 | BY P} = max{de, M, 4147, M} = el
with Lipschitz constant |L|ys; = 4M and V = 16M2. Since
C..p = (max{c. p, 4M?})?P - max{3¢M? 8M?}
< (max{ce p,4})* max{3¢, 8y M>T4P
we can rewrite (32) such that

Mfoanllz, +Rep (fD,m) ~RLp

—(1-p)(1+e)d
< cnter (s gt g LUV 2
APn n

where the positive constant C' is independent of M, A, v, p, and n.
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With the help of the oracle inequality achieved in Theorem 3.1 the learning
rate stated in Corollary 3.2 can be shown in a few steps.

Proof of Corollary 3.2. In a first step, Theorem 3.1 can be applied which yields

9 ~

Aol +Ree (fD,An,wn) - Rip

—(1—p)(1+e)d
_ o Cap

< Ol)\n’}/n d +9 OTCQ”)/%Q + OgﬁpnT + T

< Cp (M 4720 4 (7P Toy =1 1)
for all ¢ > 0 and p € (0,1) with probability P™ not less than 1 — e~ and a
constant C' := max {Cl, 9C,.c?, Cep, CQ}. In a next step the sequences

Ap = cin !
and

1
F)/’n, — CQTL 2a+d

with arbitrary constants ¢; > 0 and ¢y > 0 yield

—d 2 —(1—p)(14e)d\—p. —1 __2a 4 2apte(l-p)d —_2a
/\nfyn +'Yna+'7n( p)(1+e) /\npn < e3n” Za+d 2atd < cgn” 2a+d 3

where ¢3 > 0 is a constant and & > M;iiw. With this, we finally obtain

~ —~ _ _2a _
An HfD,Am’yn”?{% + RL,P (f[)ﬁ)wu%) — RZ,P <Cp (an TataTé +n 1)

< Cpn-miate

with the constant C := C (c3 + 1). O

Next, we want to prove Theorem 3.3. To this end, we need the following
technical lemma.

Lemma 5.5. We fiz finite subsets A,,, T, C (0,1] such that A, is an e,-net of
(0,1] and T, is an §p-net of (0,1] with 0 < €, < n~ ', §, > 0,1 € A,, and
1eTl,. Then, for alle >0,p € (0,1),d >0, >0 and all n > 1, we have

inf (M*d + 7% + n*lA*%*l*p)(l*E)d) <c (n*z’c%+§ + 52“)
(\y)EAXT - m)

where € > 0 depends on € and p, and ¢ > 0 is a constant independent of n, A,
€n, I', and 9,,.

Proof. Without loss of generality, we may assume that A,, and I',, are of the form
Ap={\,. .., A} and Ty, = {m,...,%} with \,, =1 and v, = 1 as well as
Aic1 < Ajandyj_; <«jforalli =2,...,mand j = 2,...,[. Furthermore, we fix
a minimizer (\*,~7*) of the function (\,7) — Ay~ % 4~2* 4 n~IA"Py~(1-pP)(1+e)d
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_ 2a+4d
defined on [0,1]2. [30, Lemma A.1.6.] shows that \* = ¢yn~ 2@ Zaprdpra-—pred
with a constant ¢; > 0. This implies ¢, < é)\*. With A\g :=0 and vy := 0 it is
easy to see that

Ai = Aim1 < 2¢, and Vi = Vi-1 < 20, (33)

hold for all ¢ = 1,...,m and j = 1,...,[. Furthermore, there exist indices
ie{l,...,m}and j € {l,...,l} such that \;_1 < X* < \; and vj_1 <* < ;.
Together with (33) this yields A* < A; < A* + 2¢,, and 7* < ; < 4" 4 26,.
Using this result and [30, Lemma A.1.6.], we obtain

inf (/\ —d 20 —1\-p 7(17p)(1+s)d)
vpeaxp VT EYT AR AT

< )\i,yj—d + 7]2& + nfl)\i—lﬂ,}/j_(l_?)(l‘i‘a)d
<7260 () (37 267 Tt ()P () TP

2 _ - —(1—
(L )X () 7+ (77 +20,) 407t (1) 7 () TP
1

IN

IN

2 (M () () T () P ()P )

=¢p, min ()\v_d + %% 4 n_l)\_pw_(l_p)(lﬁ)d) + cp62e
A, v€[0,1]

2a
Co cyn ZaFZaptdp+(-p)(AFe)d 0257210‘

IN

IN

2a
2
+ +dp+ +e)d
C(n 2a+2ap+dp+(1—p)(1+¢) +5 )

c (n_%ﬁ + 62“)

IN

with constants ¢ca > 0, ¢3 > 0 and ¢ := max {ca c3, c2} independent of n, A, €,,

I, and §,,. O
Proof of Theorem 3.3. Let m be defined by m := L%J +1,ie. m > 5. Then
Theorem 3.1 yields with probability P™ not less than 1 — |A,, x T'y|e™?
—(1=p)(1+e)d
n * 1 —d 2 Y 14
Rrp(foiaqy) —Rip < 5 ()\7 + + T om + E)
—(1-p)(1+e)d
T B At A — 34
_cl(v HY A e (34)

for all (\,v) € A,, x T';, simultaneously. Here, ¢; > 0 is a constant independent
of n, p, A, and ~. Furthermore, [30, Theorem 7.2], n —m > § —1 > %, and

47
pn = p+In(1+ A, x T',]) yield

RL,P(fDlJ\Dg YDy ) - R*L,P

inf fi ~R; 1202
<6 <(,\,7)ler/lxnxrn Rep(foing) RL’P) i n—m
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. n _ * Qp_n
<6 (<A,7>ériixrn Rrp(foiay) L,P) + 2048 M ~ (35)

with probability P”~™ not less than 1 — e~?. With (34), (35), and Lemma 5.5
we can conclude

ReLp(fD1Apy0,) — Rip
i fi P
<0 f o ® - R} 20481222
((/\ﬂg}\nxrn L’P(th)W) L,P) + -

7<1p><1+s>d) p

< 6cy < inf (z\'yd + 72> 4 n + ﬁ) + 2048M2%"

(A7)EAXT,
< 6ey (o (n72 54 4 52) + £ 4 20480028
< (6cie+ 6e1p + 2048M7py,) n-mFate 4 6c1c02
< (12¢1¢ 4 6¢1p + 2048M2p,,) 0~ zata €
with probability P™ not less than 1— (1 + |A,, x T';,|) e=#. With a variable trans-
formation P™ can be adjusted such that it is not less than 1 —e™". O

For the least squares loss it finally remains to prove learning rates in the case
of unbounded noise.

Proof of Theorem 3.6. By (17), we obtain

n

_max ) < cpl}> >1-3 P (el > o)

S LN i—1

>1— e—(p—lnn) )

p" ({De (X x V)"

Thus, we have

.....

i.e. with probability P not less than 1 — e™? we have |y;| < M, for all
i € {1,...,n}. Therefore, the usual LS-SVM with belatedly clipped decision
function at M,, is with probability P™ not less than 1 — e~ clipped regularized
empirical risk minimization (CR-ERM) in the sense of [30, Definition 7.18]. Since
in the proof of [30, Theorem 7.20] the CR-ERM property is used exactly once,
namely at the very beginning of the proof, while the rest of the proof only con-
siders clipped decision functions independently of whether they are CR-ERMs
or not, the oracle inequality of [30, Theorem 7.20] holds for Y := [—M,,, M,,]
modulo a set of probability P™ not less than 1 — e~?. Analogously to Theorem
3.1 we then obtain that

A~ (1=p)(A+e)d p)

Mol +Rep(fors) ~Rip < CME (- g2y T Dy 2
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holds with probability P™ not less than 1 — e™” — e¢™?, where p > 1, € > 0, and
p € (0,1). Here we used Remark 5.4 to determine how the arising constants
depend on M,,. Together with Corollary 3.2 and (a + b)¢ < (2ab)¢ for a,b > 1
and ¢ > 0 this yields

) -
Mfoaqly, +Rep(foay) —Rip

< C’prLJF‘lpn* 22111 +€

2a

N 2+4p
=Cp (26 (/3—|-lnn)l) n~Fasa té

< Cp200+D (6 52(142p),, — 5355 +¢ (In n)zz(1+2p)
< Cpp?te pmmtate

for 5,5, ¢ >0, and n > 3 with probability P™ not less than 1 —e™? —e™?. [

5.3. Proofs related to SVMs for quantile regression

Let @ be a distribution on R with supp @ C [—1,1] and, for 7 € (0,1), L. be
the 7-pinball loss. We define the inner L -risk by

Cr.o(t) == /Y Lo (y.1) dQ(y). LeR,

and the minimal inner L.-risk by Cj_ , = infier Cr,,o(t). With this definition
we first present an estimate of the inner L, -risk in the following lemma and
afterwards we can prove Theorem 4.7 that estimates the excess risk.

Lemma 5.6. Let Q be a distribution on R with supp @ C [—1,1] that has a
T-quantile of upper type ¢ > 1. For T € (0,1), let F} o consist of singletons, i.e.
there exists an t* € R with FY 5 = {t*}. Furthermore, let Q({t*}) = 0. Then

. b R
CLrq®) = Ci g < 2l = 4"
holds for all t € R.

Proof. [31, Proposition 4.1] yields

t t
b
Cr,o(t" +1) = Ci, q —/0 Q((t*,t* +5))ds S/O bosi~tds < thq

and

t t
b
Croot"—t)—Ci o= / Q((t* —s,t%))ds < / bositds < ?th (36)
0 0
for all ¢ > 0. With this, we have, for ¢ > t*,
CLot) = Ch @ =CLoQt' +(t =) = Cf g < Z2(t =1")7 = Z2|t = ¢"]".

The case t < t* follows analogously with (36). O
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Proof of Theorem 4.7. With Lemma 5.6 and the choice @ := P(-|z) for all
x € X, we obtain

Re.p(f) =R, p

/ / -, F(2)) dP(yle)dPx (z / / (@, frp(@)) dP(y|z)dPx (2)

= [ e (@) = Ci o oy dPx()
< [ L 50) — fzplo) aPx ()
X

=q 1HbP |ac)||L (Px) ||f f*P”q

u PX
for every f: X — [—1,1]. O

Proof of Theorem 4.8. By [30, Section 9.3 and Lemma 2.23] we know that, for
all 7 € (0,1), the 7-pinball loss L, is Lipschitz continuous and can be clipped
at M =1 for Y := [—1, 1]. Furthermore, for all 7 € (0,1), the supremum bound
is satisfied for the 7-pinball loss, since

L;(y,t) =max{r,1 —7}ly—t|<2=B

holds for all y € Y and all t € [—1,1]. By Lemma 5.2 we know that, for all e > 0
and 0 < ¢ < 1, there exists a constant c. . > 0 such that

EDXNP”)‘(ei (ld : I’IV — Lo (Dx)) < C€)§’77 12

foralli>1and n > 1.

Since we assume that there exist constants ¥ € [0,1] and V > B2~V = 22-7
such that the variance bound (22) is satisfied for all f : R? — R, we can apply
[30, Theorem 7.23]. To this end, we choose fy := K * f’p, where K : R - R

is defined by (8). Theorem 2.3 and the assumption f’p € Lo (R9) then imply
fo € H, and

_d *
[ follzz, < (vw/m) "2 (2" = DI 7 pllLacra) -
Next, the assumption f7p € Lo (R?) together with Theorem 2.3 yields

(K frp(@)] < (2" = DS pllre@y (37)

for all x € X. Furthermore, for all (z,y) € X x Y, the latter implies

LT(yuK*f;,P(‘T)) <ly— K*f:P(x”

<1+ @ =Dl eleesy
<2,
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where a := max{1, ||f7 pl[z_ e} With this, we obtain

[Lro folloo = sup |L:(y, K f{p(2))| <2"a=: By,
(z,y)eX XY

where By = 2"a > 2 = B. In addition, we have to estimate the excess risk
Rr.p(fo) = Ry, p- To this end, we apply Theorem 4.7 and Theorem 2.2 and
derive

Re,p(fo) =R p < a oo o llL,ex)lfo = £l
= ¢ b o)l ) 1 * i = frpllT, ey

gl

— u «
< a7 ey (Crallglumo@hs, @ (Fies3))
< g o o)l 2y o) Coullgl gy ™™

where we used [} € Bg, ., (R?). Finally, [30, Theorem 7.23] yields that, for all

us,00

fixed p > 0 and A > 0, the SVM using H, and L, satisfies

A ||fD,>\,'y||i{7 +Rr. P (fD,m) —Ri.p
<IN follF, + Re,p(fo) = Ri, p)

1
25 n—(1=5)(1+e)d 2=c=9+9¢ 7oV P 158
o (BT () s

Asn n

102l P x) Criullglly, oy’
v
q

<9 A2 — 1)2(7ﬁ>7d||f:,P|‘%g(Rd) +

1

1
25 y—(1=6)(1+e)d \ 2=<=0+0¢ 7oV =9 15.27
+ (M— +3 (_p> 4 o-cap
ASn n n

1
~(1=<¢)(1+e)d\ T=<-oFv% L
SC()\FY_d_F’an_F (7T) + (g)z ! +§>

with probability P™ not less than 1 — e™” and a constant C' > 0 depending

on ||f:,P||L2(]Rd)7 Hf;,PHLao(Rd)v r, d, q, p, ||bP(~\I)HLp(PX)7 Hg”Lw(Rd)v g, ¢, U,
and V

With the help of the just proven oracle inequality we now derive the learning
rates of Corollary 4.9.

Proof of Corollary 4.9. Theorem 4.8 yields

) -
Al foxvn e, +Rep (fD,An,vn) ~RLp

1
_(1_§)(1+5)d 2—c—09+9¢ 1
_ In pP\2=?
<c| Ay, e (—)
S A +< A5 ) A

SRS
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where ¢ > 0 is a constant. In addition, the sequences

_ gqa+td
Ap = cgn ae@=9)+d

and
_ 1
Yn = C2n qa(2—9)+d

with arbitrary constants ¢; > 0 and ¢y > 0 yield

Y m9a+d =—oTes
MY P+ | e
i " Asn

_ qo + qadpted(l—p)
chn qa(2=9)+d " (qa(2=9)+d)(2—p—9+Ip)

__ax
< csn a—oFa € ,

where c¢3 > 0 is a constant and & > (qa(2z?91;-7—;)€(d2(i;f)19+19p)' With this, we finally

obtain

Xl wnlliy,, + Rep (Fornnn ) = Rip

1
<c <03n_qa(2qaﬁ)+d+£+ (B) PR n B)
n n

a9~
S Opn qoc(2719)+d<"»5

with probability P™ not less than 1 — e~ ” and with the constant C' := ¢(c3 + 2).
O

To prove Theorem 4.10 we need the following lemma.

Lemma 5.7. We fix finite subsets A, T, C (0,1] such that A, is an e,-net of
(0,1] and T, is an 6p-net of (0,1] with 0 < €, < n~t, §, > 0, 1 € A, and
1e€T,. Then, for alle >0, ¢ € (0,1), ¥ € [0,1], ¢ € [1,00), d >0, a > 0, and
all n > 1, we have

1

inf A —d qo (qu -1 7(17§)(1+s)d) 2-s—9+7¢

(AMEAXT ( vorym Ay
<c (n—ﬁ+£ + 5ga)

with € > 0 depending on € and s, and a constant ¢ > 0 independent of n, A, €,

I, and 6,.

Proof. Let (A*,~v*) be the minimizer of the function

1
2—¢—9+9¢

(A7) = Ay 91+ (A—gn—ly—ﬂ—g)(lﬁ)d)
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defined on [0,1]2. [30, Lemma A.1.6.] shows that

_ qa+d
2\ = cim e@—s—9+9)+qastdst (1<) (A+e)d

with a constant ¢; > 0. This implies €, < %)\*. Now the proof follows analo-
gously to the proof of Lemma 5.5. O

Proof of Theorem 4.10. Let m be defined by m := L%J +1,i.e. m > 5. There-
fore, Theorem 4.8 yields with probability P™ not less than 1 — [A,, x '] e™”

RL-,—,P(th)\v’Y) - 27—713

1
—(1=¢)(14¢e)d\ 2=<—0+7< -
C p—
S—l )\,.Y—d_F,.an_F 77 +(£)20+£
2 ASm m m

1
—(1=¢)(1+e)d\ T—<—oFv< =
<e (}q‘d + 42+ (77> + (B) Tt %) (38)

ASn n

for all (A\,~) € A,, xT';, simultaneously. Here, ¢; > 0 is a constant. Furthermore,
[30, Theorem 7.2], n —m > & —1 > %, and p,, := p+In(1 + [A, x T',|) yield

R, p(fDiApyp,) — R, p

<6 ( inf RLT)p(fADl))\’,Y) — RET,P> +4 (n

(A)EA, XT,

1
~ 32Vp,\ 27
6 inf R —Rj 4 39
< ((M)g}\nxpn T 10 P LT,P> + ( - ) (39)
with probability P”~™ not less than 1 — e~?. With (38), (39), and Lemma 5.7
we can conclude

RLT)P(fD17)‘D2 YDy ) - RET,P
1

32Vpn) =7

inf f ~ R 4
< 6 (()‘)’Y)él}\n Xrn RL‘”P(thAy’Y) RLT7P> + <

J ,Y—(l—c)(l-i-a)d ——Tos
<6 inf AyT ae _
- Cl (>‘77)é1}\n Xrn FY + FY + < )\Cn )

S 32V, \ 77
b () (202
n n n

1 =
< 601 (C (n_mﬁ'f +6Za> 4 (B) 2= + B) +4 (32‘/—/%) ’
n

n n

< (6120 + p77 + p) +4(32Vp,) =7 ) TR

with probability P™ not less than 1— (1 + |A,, x T',,|) e=#. With a variable trans-
formation P™ can be adjusted such that it is not less than 1 — e™7. Il



40

Proof of Theorem 4.11. If ¥ := min{2

M. Eberts and 1. Steinwart

2,551}, we know by [31, Theorem 2.8]

that, for all f: X — [-1,1], there exists an fp : X — [~1,1] with f’p(z) €

Fr P( x) for Px-almost all x € X such that the variance bound (22) is satisfied
with V' = 22771 |1Y (p.)- Since FTp consists of singletons, the variance
bound is fulfilled for all f: X — [~1,1] with f’p. O

Proof of Corollary 4.12. For ¢ = 2 and p = co, Theorem 4.11 and Corollary 4.9
immediately yield 9 =1, V = 4|\/§‘1|\Lw(px), and, for every £ > 0,

P" (Re.p(forn) = Ry, p < Con HHH) > 1 - 70

with a constant C' > 0. Finally, the self calibration inequality (19) yields

1ore = Fiplaer) < 415 e (Re. p(forn) = R, p)

S C/pn_%-i_g

for all € > 0 and C’ := 4||’<0_1||Loo(Px)C' H
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