
Electronic Journal of Statistics

Vol. 6 (2012) 2486–2518
ISSN: 1935-7524
DOI: 10.1214/12-EJS757

A uniform central limit theorem and

efficiency for deconvolution estimators
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Abstract: We estimate linear functionals in the classical deconvolution
problem by kernel estimators. We obtain a uniform central limit theorem
with

√

n–rate on the assumption that the smoothness of the functionals is
larger than the ill–posedness of the problem, which is given by the poly-
nomial decay rate of the characteristic function of the error. The limit
distribution is a generalized Brownian bridge with a covariance structure
that depends on the characteristic function of the error and on the func-
tionals. The proposed estimators are optimal in the sense of semiparametric
efficiency. The class of linear functionals is wide enough to incorporate the
estimation of distribution functions. The proofs are based on smoothed
empirical processes and mapping properties of the deconvolution operator.
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1. Introduction

Our observations are given by n ∈ N independent and identically distributed
random variables

Yj = Xj + εj , j = 1, . . . , n, (1)

where Xj and εj are independent of each other, the distribution of the errors εj
is supposed to be known and the aim is statistical inference on the distribution
of Xj. Let us denote the densities of Xj and εj by fX and fε, respectively. We
consider the case of ordinary smooth errors, which means that the characteristic
function ϕε of the errors εj decays with polynomial rate, determining the ill–
posedness of the inverse problem. The contribution of this article to the well
studied problem of deconvolution is twofold. First, we prove a uniform central
limit theorem for kernel estimators of the distribution function of Xj in the
setting of

√
n convergence rates. More precisely, the theorem does not only

include the estimation of the distribution function, but covers translation classes
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of linear functionals of the density fX whenever the ill–posedness is smaller than
the smoothness of the functionals. Second, we obtain more exact results than the
minimax rates of convergence by showing that the used estimators are optimal
in the sense of semiparametric efficiency.

The classical Donsker theorem plays a central role in statistics. For an in-
dependent, identically distributed sample X1, . . . , Xn from a distribution func-
tion F on the real line, the empirical distribution function is defined by Fn(t) :=
1
n

∑n
j=1 1{Xj6t}. The classical Donsker theorem states that

√
n(Fn − F ) con-

verges in law to G in the space of bounded functions ℓ∞(R), where G is obtained
by the composition of the distribution function F and a standard Brownian
bridge. In the deconvolution model (1) the random variables X1, . . . , Xn are not
observed, but only Y1, . . . , Yn, which contain an additive error. In this model
we consider estimators ϑ̂t of linear functionals t 7→ ϑt :=

∫
ζ(x − t)fX(x) dx,

where the special case ζ := 1(−∞,0] leads to the estimation of the distribution

function F . Our Donsker theorem states that
√
n(ϑ̂t − ϑt)t∈R converges in law

to a centered Gaussian Borel random variable G in ℓ∞(R). This generalization
allows to consider functionals ϑt as long as the smoothness of ζ in an L2–Sobolev
sense compensates the ill–posedness of the problem. The limiting process G in
the uniform central limit theorem is a generalized Brownian bridge, whose co-
variance depends on the functional ζ and through the deconvolution operator
F−1[1/ϕε] also on the distribution of the errors. The used kernel estimators

ϑ̂t are minimax optimal since they converge with a
√
n–rate. So investigating

optimality further leads naturally to the question whether the asymptotic vari-
ance of the estimators is minimal, as in the case of the empirical distribution
function in the classical Donsker theorem. We prove that the estimator ϑ̂• is
efficient in the sense of a Hájek–Le Cam convolution theorem. In particular, the
asymptotic covariance matrices of the finite dimensional distributions achieve
the Cramér–Rao information bound. By uniform convergence and efficiency the
kernel estimator of fX fulfills the ‘plug–in’ property of Bickel and Ritov (2003)
in the deconvolution model (1).

The deconvolution problem has attracted much attention so we mention here
only closely related works and refer the interested reader to the references
therein. The classical works by Fan (1991a,b) contain asymptotic normality
of kernel density estimators as well as minimax convergence rates for estimat-
ing the density and the distribution function. Butucea and Comte (2009) have
treated the data–driven choice of the bandwidth for estimating functionals of
fX but assumed some minimal smoothness and integrability conditions on the
functional ϑt, which exclude, for example, ζ := 1(−∞,0] since it is not integrable.
Dattner, Goldenshluger and Juditsky (2011) have studied minimax–optimal and
adaptive estimation of the distribution function. Asymptotic normality of esti-
mators for the distribution function has been shown for supersmooth errors
by van Es and Uh (2005) and for ordinary smooth errors by Hall and Lahiri
(2008). In contrast we consider the estimation of general linear functionals and
are interested in uniform convergence. Uniform results have been studied for the
density but not for the distribution function by Bissantz et al. (2007) and by
Lounici and Nickl (2011). Nickl and Reiß (2012) have proved a Donsker theorem
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for estimators of the distribution function of a Lévy measure. Their set–up is
related to ours but concerns Lévy measures, while we are in a deconvolution
context. We consider the more general problem of estimating linear function-
als efficiently, which contains estimating the distribution function as a special
case and provides clear insight in the interplay between smoothness of ζ and
the ill–posedness of the problem. Efficiency has been investigated in various
semiparametric models, see Bickel et al. (1998) for an overview. In an abstract
inverse problem van Rooij, Ruymgaart and van Zwet (1999) have derived a
convolution theorem, which applies to the deconvolution set–up. However, their
result only allows a rather restrictive class of linear functionals depending on
the error density. In the related Lévy setting, Nickl and Reiß (2012) have shown
heuristically that their estimator achieves the lower bound of the variance while
a rigorous proof remained open.

In order to show the uniform central limit theorem in the deconvolution
problem, we prove that the empirical process

√
n(Pn−P) is tight in the space

of bounded functions acting on the class

G := {F−1[1/ϕε(−•)] ∗ ζt| t ∈ R}, ζt := ζ(• − t),

where P and Pn = 1
n

∑n
j=1 δYj denote the true and the empirical probability

measure of the observations Yj , respectively. Since G may consist of translates
of an unbounded function, this is in general not a Donsker class. Nevertheless,
Radulović and Wegkamp (2000) have observed that a smoothed empirical pro-
cesses might converge even when the unsmoothed process does not. Giné and
Nickl (2008) have further developed these ideas and have shown uniform cen-
tral limit theorems for kernel density estimators. Nickl and Reiß (2012) used
smoothed empirical processes in the inverse problem of estimating the distribu-
tion function of Lévy measures.

In order to show semiparametric efficiency in the deconvolution problem, the
main problem is to show that the efficient influence function is indeed an element
of the tangent space. If the regularity of ζ is small, the standard methods given
in the monograph of Bickel et al. (1998) do not apply in this ill–posed problem.
Instead, we approximate ζ by a sequence of smooth (ζn) and show the conver-
gence of the information bounds. Interestingly, this reveals a relation between
the intrinsic metric of the limit G and the metric which is induced by the inverse
Fisher information. Additionally to techniques of smoothed empirical processes
and the calculus of information bounds, our proofs rely on the Fourier multiplier
property of the underlying deconvolution operator F−1[1/ϕε], which is related
to pseudo–differential operators as noted in the Lévy process setting by Nickl
and Reiß (2012) and in the deconvolution context by Schmidt–Hieber, Munk
and Dümbgen (2012). Important for our proofs are the mapping properties of
F−1[1/ϕε] on Besov spaces.

This paper is organized as follows: In Section 2 we formulate the Donsker
theorem and discuss its consequences. Efficiency is then considered in Section 3.
All proofs are deferred to Sections 4 and 5. In the Appendix we summarize
definitions and properties of the function spaces used in the paper.
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2. Uniform central limit theorem

2.1. The estimator

According to the observation scheme (1), Yj are distributed with density fY =
fX ∗ fε determining the probability measure P. The characteristic function ϕ
of P can be estimated by its empirical version ϕn(u) = 1

n

∑n
j=1 e

iuYj , u ∈ R.
For ζ to be specified later and recalling ζt = ζ(• − t), our aim is to estimate
functionals of the form

ϑt := 〈ζt, fX〉 =
∫
ζt(x)fX(x) dx. (2)

Defining the Fourier transform by F f(u) :=
∫
eiuxf(x) dx, u ∈ R, the natural

estimator of the functional ϑt is given by

ϑ̂t :=

∫
ζt(x)F−1

[
F Kh

ϕn
ϕε

]
(x) dx, (3)

whereK is a kernel, h > 0 the bandwidth and we have written as usual Kh(x) =
h−1K(x/h). Choosing F K = 1[−κ,κ] for some κ > 0 leads to the estimator
proposed by Butucea and Comte (2009). Throughout, we suppose that

(i) K ∈ L1(R) ∩ L∞(R) is symmetric and band–limited with supp(F K) ⊆
[−1, 1],

(ii) for l = 1, . . . , L
∫
K = 1,

∫
xlK(x) dx = 0,

∫
|xL+1K(x)| dx <∞ and (4)

(iii) K ∈ C1(R) satisfies, denoting 〈x〉 := (1 + x2)1/2,

|K(x)|+ |K ′(x)| . 〈x〉−2. (5)

Throughout, we write Ap . Bp if there exists a constant C > 0 independent
of the parameter p such that Ap 6 CBp. If Ap . Bp and Bp . Ap, we write
Ap ∼ Bp. Examples of such kernels can be obtained by taking F K to be a
symmetric function in C∞(R) which is supported in [−1, 1] and constant to one
in a neighborhood of zero. The resulting kernels are called flat top kernels and
were used in deconvolution problems, for example, by Bissantz et al. (2007).

2.2. Statement of the theorem

Given a function ζ specified later, our aim is to show a Donsker theorem for
the estimator over the class of translations ζt, t ∈ R. In view of the classical
Donsker theorem in a model without additive errors, where no assumptions
on the smoothness of the distribution are needed, we want to assume as less
smoothness of fX as possible still guaranteeing

√
n-rates. For some δ > 0 the

following assumptions on the density fX will be needed:
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Assumption 1.

(i) Let fX be bounded and assume the moment condition
∫
|x|2+δfX(x) dx <

∞.
(ii) Assume fX ∈ Hα(R) that is the density has Sobolev smoothness of order

α > 0.

We refer to the appendix for an exact definition of the Sobolev space Hα(R).
Boundedness of the observation density fY follows immediately from (i) since
‖fY ‖∞ 6 ‖fX‖∞‖fε‖L1 <∞. In addition to the smoothness of fX , the smooth-
ness of ζ will be crucial. We assume for γs, γc > 0

ζ ∈ Zγs,γc :=
{
ζ =ζc + ζs

∣∣∣ζs ∈ Hγs(R) is compactly supported as well

as 〈x〉τ
(
ζc(x)− a(x)

)
∈ Hγc(R) for some τ > 0 and (6)

some a ∈ C∞(R) such that a′ is compactly supported
}

and write for ζ ∈ Zγs,γc with a given decomposition ζ = ζs + ζc

‖ζ‖Zγs,γc := ‖ζs‖Hγs +
∥∥ 1
ix+1ζ

c(x)
∥∥
Hγc

,

which is finite since the term ‖ 1
ix+1ζ

c(x)‖Hγc can be bounded by ‖ a(x)ix+1‖Hγc +

‖ 1
(ix+1)〈x〉τ ‖Cs‖〈x〉τ (ζc(x) − a(x))‖Hγc < ∞ for any s > γc. Let us give two

examples for ζ and corresponding γs, γc.

Example 1. To estimate the distribution function of Xj, one has to consider
translations of the indicator function 1(−∞,0](x), x ∈ R. Let a be a monotone
decreasing C∞(R) function, which is for some M > 0 equal to zero for all
x > M and equal to one for all x 6 −M . We define ζs := 1(−∞,0] − a and
ζc := a. From the bounded variation of ζs follows ζs ∈ B1

1,∞(R) ⊆ Hγs(R)
for any γs < 1/2 by Besov smoothness of bounded variation functions (51)
as well as by the Besov space embeddings (46) and (47). Since a ∈ C∞(R)
and a′ is compactly supported, the condition on ζc is satisfied for any γc > 0.
Hence, 1(−∞,t] ∈ Zγs,γc if γs < 1/2. On the other hand, this cannot hold for
γs > 1/2 since Hγs(R) ⊆ C0(R) by Sobolev’s embedding theorem or by (45),
(46) and (47).

Example 2. In the context of M–estimation (or Z–estimation) the root of the
equation

〈ζ(· − t), fX〉 = 0

is used for inference, e.g., on the location of the distribution of Xj . A popular
example in robust statistics is the Huber estimator where ζ(x) = hK(x) :=
((−K) ∨ x) ∧ K for some K > 0. In that case a similar decomposition as in
Example 1 shows hK ∈ Zγs,γc for any γs < 3/2.

The ill–posedness of the problem is determined by the decay of the charac-
teristic function of the errors. More precisely, we suppose
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Assumption 2. Let the error distribution satisfy

(i)
∫
|x|2+δfε(x) dx <∞ thus ϕε is twice continuously differentiable and

(ii) |(ϕ−1
ε )′(u)| . 〈u〉β−1 for some β > 0, in particular |ϕ−1

ε (u)| . 〈u〉β , u ∈ R.

Throughout, we write ϕ−1
ε = 1/ϕε. The Assumption (ii) on the distribution

of the errors is similar to the classical decay assumption by Fan (1991a) and
it is fulfilled for many ordinary smooth error laws such as gamma or Laplace
distributions as discussed below. Assumption 2(ii) implies that ϕ−1

ε is a Fourier
multiplier on Besov spaces so that

Bsp,q(R) ∋ f 7→ F−1[ϕ−1
ε (−•)F f ] ∈ Bs−βp,q (R)

for p, q ∈ [1,∞], s ∈ R, is a continuous linear map, which is essential in
our proofs, compare Lemma 5. In the same spirit Schmidt–Hieber, Munk and
Dümbgen (2012) discuss the behavior of the deconvolution operator as pseudo–
differential operator. We define

gt := F−1[ϕ−1
ε (−•)] ∗ ζt and G = {gt|t ∈ R}. (7)

Note that in general gt may only exist in a distributional sense, but on Assump-
tion 2 and for ζ ∈ Zγs,γc it can be rigorously interpreted by (see (19))

g0(x) =F−1[ϕ−1
ε (−u)F ζs(u)](x)

+ (1 + ix)F−1[ϕ−1
ε (−u)F [ 1

iy+1ζ
c(y)](u)](x)

+ F−1[(ϕ−1
ε )′(−u)F [ 1

iy+1 ζ
c(y)](u)](x),

which indicates why we have imposed an assumption on (ϕ−1
ε )′ and have defined

‖•‖Zγs,γc as above.
It will turn out that G is P–pregaussian, but not Donsker in general. Denoting

by ⌊α⌋ the largest integer smaller or equal to α and defining convergence in law
on ℓ∞(R) as Dudley (1999, p. 94), we state our main result

Theorem 1. Grant Assumptions 1 and 2 as well as ζ ∈ Zγs,γc with γs >
β, γc > (1/2 ∨ α) + γs and α + 3γs > 2β + 1. Furthermore, let the kernel K
satisfy (4) with L = ⌊α + γs⌋. Let h2α+2γs

n n → 0 and if γs 6 β + 1/2 let in
addition hρnn→ ∞ for some ρ > 4β − 4γs + 2, then

√
n(ϑ̂t − ϑt)t∈R L−→ G in ℓ∞(R)

as n → ∞, where G is a centered Gaussian Borel random variable in ℓ∞(R)
with covariance function given by

Σs,t :=

∫
gs(x)gt(x)P( dx) − ϑsϑt

for gs, gt defined in (7) and s, t ∈ R.

We illustrate the range of this theorem by the following examples.
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Example 3. For estimating the distribution function Assumption 2 needs to be
fulfilled for some β < 1/2 owing to the condition γs > β. This is fulfilled by the
gamma distribution Γ(β, η) with β ∈ (0, 1/2) and η ∈ (0,∞), that is

fε(x) := γβ,η(x) :=
1

Γ(β)ηβ
xβ−1e−x/η1[0,∞)(x), x ∈ R,

and ϕε(u) = (1− iηu)−β , u ∈ R.
For the Huber estimator from Example 2 we required β < 3/2, which holds,

for instance, for the chi–squared distribution with one or two degrees of freedom
or for the exponential distribution.

Example 4. Butucea and Comte (2009) studied the case β > 1 and derived
√
n–

rates for γs > β in our notation. In particular, they considered supersmooth ζ,
that is F ζ decays exponentially. In this case ζ ∈ Hs(R) for any s ∈ N. Requiring
the slightly stronger assumption that 〈x〉τ ζ(x) ∈ Hs(R) for some arbitrary small
τ > 0 and for all s ∈ N we can choose ζc := ζ and ζs := 0. Then β can be taken
arbitrary large such that all gamma distributions, the Laplace distributions and
convolutions of them can be chosen as error distributions.

2.3. Discussion

To have
√
n–rates we suppose γs > β in Theorem 1, which means that the

smoothness of the functionals compensates the ill–posedness of the problem.
This condition is natural in view of the abstract analysis in terms of Hilbert
scales by Goldenshluger and Pereverzev (2003), who obtain the minimax rate
n−(α+γs)/(2α+2β) ∨ n−1/2 in our notation. As a consequence of the condition on
γs and γc we can bound the stochastic error term of the estimator ϑ̂t uniformly
in h ∈ (0, 1). The bias term is of order hα+γs .

For γs > β + 1/2 the class G is a Donsker class. In this case the only condi-
tion on the bandwidth is that the bias tends faster than n−1/2 to zero. In the
interesting but involved case γs ∈ (β, β+1/2], the class G will in general not be
a Donsker class. Estimating the distribution function as in Example 1 belongs
to this case. In order to see that G is in general not a Donsker class, let the error
distribution be given by fε = γβ,η(−•) and ζ = γσ,η with σ ∈ (γs + 1/2, β + 1).
Then gt equals γσ−β,η ∗ δt. For the shape parameter holds σ − β ∈ (1/2, 1)
and thus gt is an L

2(R)–function unbounded at t. The Lebesgue density of P is
bounded by Assumption 1(i). Hence, G consists of all translates of an unbounded
function and thus cannot be Donsker, cf. Theorem 7 by Nickl (2006).

Therefore, for γs ∈ (β, β + 1/2] smoothed empirical processes are necessary,
especially we need to ensure enough smoothing to be able to obtain a uniform
central limit theorem. The bandwidth cannot tend too fast to zero, more pre-
cisely we require hρnn → ∞ as n → ∞ for some ρ with ρ > 4β − 4γs + 2.
In combination with the bias condition h2α+2γs

n n → 0 as n → ∞ we obtain
necessarily α + γs > 2β − 2γs + 1 leading to the assumption in the theo-
rem. Since 2α + 2γs > α + 2β − γs + 1 > 4β − 4γs + 2 we can always choose
hn ∼ n−1/(α+2β−γs+1). In contrast to Fan (1991b); Butucea and Comte (2009);
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Dattner, Goldenshluger and Juditsky (2011) our choice of the bandwidth hn
is not determined by the bias–variance trade–off, but rather by the amount
of smoothing necessary to obtain a uniform central limit theorem. The classi-
cal bandwidth hn ∼ n−1/(2α+2β) is optimal for estimating the density in the
sense that it achieves the minimax rate with respect to the mean integrated
squared error (MISE), compare Fan (1991b) who assumes Hölder smoothness
of fX instead of L2–Sobolev smoothness. For this choice the bias condition
h2α+2γs
n n → 0 is satisfied. If γs 6 β + 1/2 the classical bandwidth satisfies the

additional minimal smoothness condition in the case of estimating the distribu-
tion function with mild conditions on fX . It suffices for example that fX is of
bounded variation. Then α and γs can be chosen large enough in (0, 1/2) such
that 2α+2β > 4β−4γs+2 and the classical bandwidth satisfies the conditions of
the theorem. Whenever the classical bandwidth hn ∼ n−1/(2α+2β) satisfies the
conditions of Theorem 1, then the corresponding density estimator is a ‘plug–in’
estimator in the sense of Bickel and Ritov (2003) meaning that the density is
estimated rate optimal for the MISE, the functionals are estimated efficiently
(see Section 3) and the estimators of the functionals converge uniformly over
t ∈ R.

The smoothness condition on the density fX is then a consequence of the
given choice of hn together with the classical bias estimate for kernel estimators.
As we have seen in Example 1 for estimating the distribution function, we have
ζ = 1(−∞,0] ∈ Zγs,γc with γs < 1/2 arbitrary close to 1/2. In the classical
Donsker theorem which corresponds to the case β → 0 the condition α+ 3γs >
2β + 1 would simplify to α > −1/2. However, we suppose fX to be bounded,
which leads to much clearer proofs, and thus fX ∈ H0(R) is automatically
satisfied. Assumption 1 allows to focus on the interplay between the functional
ζ and the deconvolution operator F−1[ϕ−1

ε ]. Nickl and Reiß (2012) have studied
the case of unbounded densities, which is necessary in the Lévy process set–up,
but considered ζt = 1(−∞,t] only. The class Zγs,γc is defined by L2–Sobolev
conditions so that bounded variation arguments for ζ have to be avoided in the
proofs.

An interesting aspect is the following: If we restrict the uniform convergence
to (ζt)t∈T for some compact set T ⊆ R, it is sufficient to assume 1

ix+1ζ
c ∈

Hγc(R) instead of requiring (1 ∨ |x|τ )(ζc(x) − a(x)) ∈ Hγc(R) for some τ > 0
and a function a ∈ C∞(R) such that a′ is compactly supported as done in Zγs,γc .
In particular, slowly growing ζ would be allowed. The stronger condition in the
definition of Zγs,γc is only needed to ensure polynomial covering numbers of
{gt|t ∈ T } for T ⊆ R unbounded (cf. Theorem 7 below).

As a corollary of Theorem 1 we can weaken Assumption 2(ii). If the charac-
teristic function of the errors ε is given by ϕ̃ε = ϕεψ where ϕε satisfies Assump-
tion 2(ii) and there is a Schwartz distribution ν ∈ S ′(R) such that F ν = ψ−1

and ν ∗ ζ ∈ Zγs,γc for ζ ∈ Zγs,γc , then for t ∈ R
F−1[ϕ̃−1

ε ] ∗ ζ(• − t) = F−1[ϕ−1
ε ] ∗ (ν ∗ ζ)(• − t)

and thus we can proceed as before. For instance, for translated errors fε ∗ δµ
with µ 6= 0, the distribution ν would be given by δ−µ. Thus even if ϕ̃ε does not
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satisfy Assumption 2(ii) the statement of Theorem 1 holds true if we can write
ϕ̃ε(u) = ϕε(u)e

iµu with ϕε satisfying Assumption 2(ii). The assumption by Fan
and Liu (1997) for the asymptotic normality in the case of ordinary smooth
deconvolution are weaker than the assumptions by Fan (1991a) since they allow
exactly for this additional factor eiµu in the assumptions on the characteristic
function of the error.

As for the classical Donsker theorem the Donsker theorem for deconvolu-
tion estimators has many different applications, the most obvious being the
construction of confidence bands. Further Donsker theorems may be obtained
by applying the functional delta method to Hadamard differentiable maps. Let
us illustrate the construction of confidence bands. By the continuous mapping
theorem we infer

sup
t∈R√

n|ϑ̂t − ϑt| L−→ sup
t∈R |G(t)|.

The construction of confidence bands reduces now to knowledge about the dis-
tribution of the supremum of G. Suprema of Gaussian processes are well studied
and information about their distribution can be either obtained from theoret-
ical considerations as in van der Vaart and Wellner (1996, App. A.2) or from
Monte Carlo simulations. Let q1−α be the (1−α)–quantile of supt∈R |G(t)| that
is P(supt∈R |G(t)| 6 q1−α) = 1− α. Then

lim
n→∞

P

(
ϑt ∈ [ϑ̂t − q1−αn

−1/2, ϑ̂t + q1−αn
−1/2] for all t ∈ R) = 1− α

and thus the intervals [ϑ̂t−q1−αn−1/2, ϑ̂t+q1−αn
−1/2] define a confidence band.

As often in the literature we assume the error distribution to be known. In a
more realistic setting where an independent sample of pure noise observations is
observable, Neumann (1997) constructs a density estimator for unknown errors.
In this case the deconvolution operator F−1[ϕ−1

ε ] needs to be estimated leading
to an inverse problem with an error in the operator. A Donsker theorem in
this situation is related to the Lévy process setting of Nickl and Reiß (2012)
since their estimator is based on the deconvolution with the unknown marginal
distribution of the process. Another interesting aspect is the similarity of the
deconvolution problem and the errors–in–variables regression, see for example
Fan and Truong (1993) and the references therein. The corresponding statement
to our result would be a uniform central limit theorem for linear functionals of
the regression function, where similar methods may be applied.

3. Efficiency

Having established the asymptotic normality of our estimator, the natural ques-
tion is whether it is optimal in the sense of the convolution Theorem 5.2.1
by Bickel et al. (1998). Typically, efficiency is investigated for estimators Tn
which are (locally) regular, that is for any parametric submodel η → fX,η
and n1/2|ηn − η| . 1 the law of n1/2(Tn − 〈ζ, fX,η〉) under ηn converges for



UCLT and efficiency for deconvolution 2495

n → ∞ to a distribution independent of (ηn). In Lemma 9 we show that

the estimator ϑ̂t from (3) is asymptotically linear with influence function x 7→∫
F−1[ϕ−1

ε (−•)] ∗ ζ(y)(δx − P)( dy) and thus ϑ̂t is Gaussian regular.
In general, semiparametric lower bounds are constructed as the supremum of

the information bounds over all regular parametric submodels. As it turns out, it
suffices to apply the Cramér–Rao bound to the least favorable one-dimensional
submodel Pg of the form

fY,ξg = fX,ξg ∗ fε with fX,ξg := fX + ξg, for all ξ ∈ (−τ, τ),

with some τ > 0 and a perturbation g satisfying

fX ± τg > 0 and

∫
g = 0. (8)

Note that all laws Pg are absolutely continuous with respect to P assuming
supp(fX) = R. Moreover, the submodels are regular with score function g ∗
fε/fY , since for all ξ ∈ (−τ, τ) \ {0} we have the L2–differentiability

∫ (fY,ξg − fY − ξg ∗ fε
ξfY

)2
fY = 0.

Similarly to van der Vaart (1998, Chap. 25.5), we define the score operator

Sg := (g∗fε)f−1/2
Y and thus the information operator of fX is given by I := S⋆S,

where S⋆ denotes the adjoint of the linear operator S. This yields the Fisher
information in direction g

〈I g, g〉 = 〈Sg, Sg〉 =
∫ (g ∗ fε

fY

)2
fY (9)

and we obtain the information bound

Iζ := sup
g

〈g, ζ〉2
〈Sg, Sg〉 , (10)

where the supremum is taken over all g satisfying the conditions (8). In the
notation of Bickel et al. (1998, Def. 3.3.2), we consider the tangent space Q̇ :=
{(g ∗ fε)/fY |g satisfies (8)}, representing the submodel {Pg}, and the efficient

influence function of the parameter ϑζ : Q̇ → R, h 7→ 〈h, ζ〉 needs to be deter-
mined.

Since we perturb the density additively with the restriction (8), the quotient
|g/fX| needs to be bounded and thus it is natural to assume a lower bound for
the decay behavior of fX . We state with some δ > 0 and M ∈ N
Assumption 3. Let the following be satisfied

(i) fX is bounded and fulfills the moment condition
∫
|x|2+δfX(x) dx <∞,

(ii) fX ∈W 2
1 (R) that is fX has L1-Sobolev regularity two,

(iii) fX(x) & 〈x〉−M for x ∈ R.
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A precise definition of the L1-Sobolev space W 2
1 (R) can be found in the

appendix. Due to the Sobolev embedding W 2
1 (R) ⊆ Hα(R) with α < 3/2 (cf.

(44) and (46)), Assumption 3 implies the Assumption 1 in the previous section.
The conditions on ε need to be strengthened, too.

Assumption 4. We suppose

(i)
∫
|x|2+δfε(x) dx <∞,

(ii) for some β ∈ (0,∞)\Z and M from above let ϕε ∈ C(⌊β⌋∨M)+1(R) satisfy
for all k = 0, . . . , (⌊β⌋ ∨M) + 11{k=0}〈u〉−β−k . |ϕ(k)

ε (u)| . 〈u〉−β−k.

Since M + 1 > 2, easy calculus shows that Assumption 2(ii) on ϕ−1
ε follows

from Assumption 4 on ϕε. We supposed β /∈ Z mainly to simplify our proofs.
Let us first show an information bound for smooth ζ.

Theorem 2. Grant Assumptions 3 and 4 and let ζ ∈ S (R) be a Schwartz
function. For any regular estimator T of ϑ0 = 〈ζ, fX〉 with asymptotic variance
σ2 we obtain

σ2 >

∫ (
F−1[ϕ−1

ε (−•)] ∗ ζ
)2
fY − ϑ20. (11)

In particular, the supremum in (10) is attained at g∗ := g∗(ζ) := I−1 ζ −
〈ζ, fX〉fX , where the inverses of S⋆ and I are given by

(S⋆)−1ζ = (F−1[ϕ−1
ε (−•)] ∗ ζ)

√
fY and

I−1 ζ = S−1(S−1)⋆ζ = F−1[ϕ−1
ε ] ∗

{(
F−1[ϕ−1

ε (−•)] ∗ ζ
)
fY
}
.

Therefore, the score function corresponding to g∗(ζ) which is given by

F−1[ϕ−1
ε (−•)] ∗ ζ −

∫
(F−1[ϕ−1

ε (−•)] ∗ ζ)fY

(compare (37) below) is the efficient influence function and, moreover, equals

the influence function of ϑ̂ζ . This equality shows that the estimator is efficient
for smooth functionals ϑζ . Moreover, we found already the efficient influence
function in the larger tangent set of all regular submodels.

Unfortunately, less smooth ζ might be only in the domain of (S⋆)−1 while
I−1 ζ is not in L2(R) and thus the formal maximizer g∗(ζ) cannot be applied
rigorously as the following example shows.

Example 5. Let εj be gamma distributed with density γβ,1 for β ∈ (1/4, 1/2)
and consider ζ(x) = ex1(−∞,0](x) = γ1,1(−x) which is contained in Zγs,γc for
all γs < 1/2 and γc arbitrary large. We obtain

(S⋆)−1ζ = γ1−β,1(−•)
√
fY and I−1 ζ = F−1

[
(1− iu)β((1 + iu)−1+β ∗ ϕ)

]
.

While first term behaves nicely the Fourier transform of I−1 ζ is of the order
|u|−1+2β > |u|−1/2 for |u| → ∞ and thus I−1 ζ /∈ L2(R).
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Therefore, we choose an approximating sequence ζn → ζ with (ζn)n∈N ⊆
S (R). For n ∈ N let g∗n := g∗(ζn) = I−1 ζn − 〈ζ, fX〉fX be the least favorable
direction in the estimation problem with respect to 〈fX , ζn〉. We obtain for every
n ∈ N

Iζ >
〈g∗n, ζ〉2

〈Sg∗n, Sg∗n〉
=

(
〈g∗n, ζ − ζn〉+ 〈g∗n, ζn〉

)2

〈Sg∗n, Sg∗n〉
.

This inequality suggests two possibilities to understand our strategy for ob-
taining the efficiency bound. First, the sequence (g∗n) approximates the formal
maximizer g∗(ζ) and thus plugging g∗n into the bound (10) might converge to
the supremum. Second, any unbiased estimator of ϑζn = 〈fX , ζn〉 is at the same
time a possibly biased estimator of ϑζ with bias tending to zero. Therefore,
the bound for the smooth problems should converge to the nonsmooth one.
The following lemma provides a sufficient condition for the convergence of the
Cramér–Rao bounds.

Lemma 3. Let ζ and (ζn) satisfy (S⋆)−1ζ ∈ L2(R) and ζn, I
−1 ζn ∈ L2(R) for

all n ∈ N. Then ϑζn → ϑζ and
〈g∗n,ζ〉

2

〈Sg∗n,Sg
∗
n〉

→ 〈(S⋆)−1ζ, (S⋆)−1ζ〉 − 〈ζ, fX〉2 hold

as n→ ∞ if
‖(S⋆)−1(ζn − ζ)‖L2 → 0, as n→ ∞.

Using mapping properties on Besov spaces, we will show that the underlying
Fourier multiplier F−1[ϕ−1

ε ] and thus the inverse adjoint score operator (S⋆)−1

are well-defined on the set Zγs,γc . This allows the extension of Theorem 2 to all
ζ ∈ Zγs,γc with γs > β and γc > β + 1/2.

Since ϑ̂t does not only estimate ϑt pointwise but also as a process in ℓ∞(R),
we want to generalize Theorem 2 in this direction, too. In view of Theorem
25.48 of van der Vaart (1998) the remaining ingredient is the tightness of the
limiting object, which is already a necessary condition for the Donsker theorem.
A regular estimator Tn of (ϑt)t∈R in ℓ∞(R) is efficient if the limiting distribution
of

√
n(Tn−ϑ) is a tight zero mean Gaussian process whose covariance structure

is given by the information bound for the finite dimensional distributions (cf.
the convolution Theorem 5.2.1 of (Bickel et al., 1998)). Interestingly, the class
of efficient influence functions for t ∈ R is not Donsker as discussed above and
thus there exists no efficient estimator which is asymptotically linear in ℓ∞(R)
(cf. Kosorok, 2008, Thm. 18.8).

Theorem 4. Let Assumptions 3 and 4 be satisfied as well as ζ ∈ Zγs,γc with
γs > β and γc > β + 1/2. Then the estimator (ϑ̂t)t∈R defined in (3) is (uni-
formly) efficient.

Additionally, the proof of Theorem 4 reveals the relation between the intrinsic
metric d(s, t)2 = E[(Gs−Gt)

2] of the limitG, which is essential to show tightness,
and the metric dI−1(s, t)2 = 〈(S⋆)−1(ζt − ζs), (S

⋆)−1(ζt − ζs)〉 which is induced
by the inverse Fisher information, namely

dI−1(s, t)2 = d(s, t)2 + 〈ζt − ζs, fX〉2
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(cf. equations (25) and (43) below) such that both metrics are equal up to some

centering term which is another way of interpreting the efficiency of ϑ̂•.

4. Proof of the Donsker theorem

First, we provide an auxiliary lemma, which describes the properties of the
deconvolution operator F−1[ϕ−1

ε ].

Lemma 5. Grant Assumption 2.

(i) For all s ∈ R, p, q ∈ [1,∞] the deconvolution operator F−1[ϕ−1
ε (−•)] is a

Fourier multiplier from Bsp,q(R) to Bs−βp,q (R), that is the linear map

Bsp,q(R) → Bs−βp,q (R), f 7→ F−1[ϕ−1
ε (−•)F f ]

is bounded.
(ii) For any integer m strictly larger then β we have F−1[(1 + iu)−mϕ−1

ε ] ∈
L1(R) and if m > β + 1/2 we also have F−1[(1 + iu)−mϕ−1

ε ] ∈ L2(R).

(iii) Let β+ > β and f, g ∈ Hβ+

(R). Then

∫ (
F−1[ϕ−1

ε ] ∗ f
)
g =

∫ (
F−1[ϕ−1

ε (−•)] ∗ g
)
f. (12)

Using the kernel K, this equality extends to functions g ∈ L2(R)∪L∞(R)
and finite Borel measures µ:

∫ (
F−1[ϕ−1

ε F Kh] ∗ µ
)
g =

∫ (
F−1[ϕ−1

ε (−•)F Kh] ∗ g
)
dµ. (13)

Proof.

(i) Analogously to Nickl and Reiß (2012), we deduce from Corollary 4.11
of Girardi and Weis (2003) that (1 + iu)−βϕ−1

ε (−u) is a Fourier multi-
plier on Bsp,q by Assumption 2(ii). It remains to note that j : Bsp,q(R) →
Bs−βp,q (R), f 7→ F−1[(1 + iu)β F f ] is a linear isomorphism (Triebel, 2010,
Thm. 2.3.8).

(ii) Since the gamma density γ1,1 is of bounded variation, it is contained in
B1

1,∞(R) by (51). Using the isomorphism j from (i), we deduce γm,1 ∈
Bm1,∞(R) and thus by Besov embeddings (47) and (44)

F−1[(1 + iu)−mϕ−1
ε ] ∈ Bm−β

1,∞ (R) ⊆ B0
1,1(R) ⊆ L1(R).

Ifm−β > 1/2, we can apply the embedding Bm−β
1,∞ (R) ⊆ B

m−β−1/2
2,∞ (R) ⊆

L2(R).

(iii) For f ∈ Hβ+

(R), (i) and the Besov embeddings (44), (46) and (47) yield

‖F−1[ϕ−1
ε ] ∗ f‖L2 . ‖F−1[ϕ−1

ε ] ∗ f‖B0
2,1

. ‖f‖Bβ
2,1

. ‖f‖Hβ+ <∞.
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Therefore, it follows by Plancherel’s equality

∫ (
F−1[ϕ−1

ε ] ∗ f
)
(x)g(x) dx =

1

2π

∫
ϕ−1
ε (−u)F f(−u)F g(u) du

=

∫ (
F−1[ϕ−1

ε (−•)] ∗ g
)
(x)f(x) dx.

To prove the second part of the claim for g ∈ L2(R), we note that by
Young’s inequality

‖F−1[ϕ−1
ε F Kh]‖L2 6 ‖F−1[ϕ−1

ε 1[−1/h,1/h]]‖L2‖Kh‖L1 <∞

due to the support of F K and Assumption (5) on the decay of K. Since
µ is a finite measure and g is bounded, Fubini’s theorem yields then

∫
g(x)

(
F−1[ϕ−1

ε F Kh] ∗ µ
)
(x) dx

=

∫ ∫
g(x)F−1[ϕ−1

ε F Kh](x− y)µ( dy) dx

=

∫ (
F−1[ϕ−1

ε (−•)F Kh] ∗ g
)
(y)µ( dy),

where we have used the symmetry of the kernel. In order to apply Fubini’s
theorem for g ∈ L∞(R), too, we have to show that ‖F−1[ϕ−1

ε F Kh]‖L1 is
finite. We replace the indicator function by a function χ ∈ C∞(R) which
equals one on [−1/h, 1/h] and is compactly supported. We estimate

‖F−1[ϕ−1
ε F Kh]‖L1 6 ‖F−1[ϕ−1

ε χ]‖L1‖Kh‖L1 . (14)

Using that ϕ−1
ε χ is twice continuously differentiable and has got compact

support, we obtain

‖(1 + x2)F−1[ϕ−1
ε χ](x)‖∞ 6 ‖F−1[(Id−D2)ϕ−1

ε χ](x)‖∞
6 ‖(Id−D2)ϕ−1

ε χ‖L1 <∞,

where we denote the identity and the differential operator by Id and D,
respectively. This shows that (14) is finite.

4.1. Convergence of the finite dimensional distributions

As usual, we decompose the error into a stochastic error term and a bias term:

ϑ̂t − ϑt = ϑ̂t − E[ϑ̂t] + E[ϑ̂t]− ϑt

=

∫
ζt(x)F−1

[
F Kh

ϕn − ϕ

ϕε

]
(x) dx +

∫
ζt(x)(Kh ∗ fX − fX)(x) dx.
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4.1.1. The bias

The bias term can be estimated by the standard kernel estimator argument.
Let us consider the singular and the continuous part of ζ separately. Applying
Plancherel’s identity and Hölder’s inequality, we obtain

∫
|ζst (x)(Kh ∗ fX(x)− fX(x))| dx

=
1

2π

∫
| F ζst (u)(F K(hu)− 1)F fX(−u)| du

6 ‖〈u〉−(α+γs)(F K(hu)− 1)‖∞
∫
〈u〉α+γs | F ζs(u)F fX(u)| du

6 hα+γs‖u−(α+γs)(F K(u)− 1)‖∞‖ζs‖Hγs ‖fX‖Hα .

The term ‖u−(α+γs)(F K(u) − 1)‖∞ is finite using the a Taylor expansion of
F K around 0 with (F K)(l) = 0 for l = 1, . . . , ⌊α + γs⌋ by the order of the
kernel (4).

For the smooth part of ζt Plancherel’s identity yields
∫

|ζct (x)(Kh ∗ fX − fX)(x)| dx

=
1

2π

∫
| F [ 1

ix+1ζ
c
t (x)](Id+D){(F K(hu)− 1)F fX(−u)}| du

6

∫
| F [ 1

ix+1ζ
c
t (x)](F K(hu)− 1 + hF [ixK](hu))F fX(−u)| du

−
∫

| F [ 1
ix+1ζ

c
t (x)](F K(hu)− 1)F [ixfX ](−u)| du.

The first term can be estimated as before and for the second term we note
that xfX(x) ∈ L2(R) = H0(R) by Assumption 1(i) such that the additional

smoothness of 1
ix+1ζ

c(x) yields the right order. Therefore, we have |E[ϑ̂t]−ϑt| .
hα+γs and thus by the choice of h, the bias term is of order o(n−1/2).

4.1.2. The stochastic error

We notice that ‖ζc − a‖Hγc . ‖〈x〉−τ‖Cs‖〈x〉τ (ζc(x) − a(x))‖Hγc < ∞ for any
s > γc, where we used the pointwise multiplier property (48) as well as the
Besov embeddings (47) and (45). We have ζs ∈ L2 and by (44), (46) and (47)

‖ζc‖∞ 6 ‖a‖∞ + ‖ζc − a‖∞ 6 ‖a‖∞ + ‖ζc − a‖Hγc <∞,

since γc > 1/2. Consequently, we can apply the smoothed adjoint equality (13)
and obtain for the stochastic error term∫

ζt(x)F−1
[
F Kh

ϕn − ϕ

ϕε

]
(x) dx

=

∫
F−1[ϕ−1

ε (−•)F Kh] ∗ ζt(x)(Pn−P)( dx). (15)
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Therefore, it suffices for the convergence of the finite dimensional distributions
to bound the term

sup
h∈(0,1)

∫ ∣∣F−1[ϕ−1
ε (−•)F Kh] ∗ ζ(x)

∣∣2+δ P( dx), (16)

for any function ζ ∈ Zγs,γc . Then the stochastic error term converges in dis-
tribution to a normal random variable by the central limit theorem under the
Lyapunov condition (i.e., Klenke, 2007, Thm. 15.43 together with Lem. 15.41).
Finally, the Cramér-Wold device yields the convergence of the finite dimensional
distributions in Theorem 1.

First, note that the moment conditions in Assumptions 1 and 2 and the
estimate

|x|pfY (x) 6
∫

|x− y + y|pfX(x− y)fε(y) dy . (|y|pfX) ∗ fε + fX ∗ (|y|pfε),

for x ∈ R, p > 1, yield finite (2 + δ)th moments for P since
∫

|x|2+δfY (x) dx . ‖|x|2+δfX‖L1‖fε‖L1 + ‖fX‖L1‖|x|2+δfε‖L1 <∞. (17)

To estimate (16), we rewrite

F−1[ϕ−1
ε (−•)] ∗ ζc(x) = F−1

[
ϕ−1
ε (−u)(Id+D)F [ 1

iy+1ζ
c(y)](u)

]
(x)

= F−1
[
ϕ−1
ε (−u)F [ 1

iy+1ζ
c(y)](u)

]
(x)

+ F−1
[
ϕ−1
ε (−u)

(
F [ 1

iy+1 ζ
c(y)]

)′
(u)
]
(x) (18)

= (1 + ix)F−1[ϕ−1
ε (−u)F [ 1

iy+1ζ
c(y)](u)](x)

+ F−1[(ϕ−1
ε )′(−u)F [ 1

iy+1ζ
c(y)](u)](x),

owing to the product rule for differentiation. Hence,

F−1[ϕ−1
ε (−•)] ∗ ζ(x) =F−1[ϕ−1

ε (−u)F ζs(u)](x)

+ (1 + ix)F−1[ϕ−1
ε (−u)F [ 1

iy+1 ζ
c(y)](u)](x)

+ F−1[(ϕ−1
ε )′(−u)F [ 1

iy+1ζ
c(y)](u)](x). (19)

While F−1[ϕ−1
ε (−•)] ∗ ζ may exist only in distributional sense in general, it

is defined rigorously through the right-hand side of the above display for ζ ∈
Zγs,γc . Considering ζ ∗Kh instead of ζ, we estimate separately all three terms
in the following.

The continuity and linearity of the Fourier multiplier F−1[ϕ−1
ε (−•)], which

was shown in Lemma 5(i), yield for the first term in (19)

‖F−1[ϕ−1
ε (−u)F ζs(u)F Kh(u)]‖Hδ =

∥∥F−1
[
ϕ−1
ε (−•)F [ζs ∗Kh]

]∥∥
Bδ

2,2

. ‖ζs ∗Kh‖Bβ+δ
2,2

. ‖ζs‖Hβ+δ ,

where the last inequality holds by ‖F Kh‖∞ 6 ‖K‖L1. Using the boundedness
of fY and the continuous Sobolev embedding Hδ/4(R) ⊆ L2+δ(R) by (44), (47)



2502 J. Söhl and M. Trabs

and (46), we obtain

‖F−1[ϕ−1
ε (−u)F ζs(u)F Kh(u)]‖L2+δ(P)

. ‖F−1[ϕ−1
ε (−u)F ζs(u)F Kh(u)]‖L2+δ

. ‖F−1[ϕ−1
ε (−u)F ζs(u)F Kh(u)]‖Hδ

. ‖ζs‖Hβ+δ (20)

To estimate the second term in (19), we use the Cauchy–Schwarz inequality and
Assumption 2(ii):

‖F−1[ϕ−1
ε (−u)F [ 1

ix+1ζ
c(x)](u)F Kh(u)]‖∞

6 ‖ϕ−1
ε (−u)F [ 1

ix+1ζ
c]F Kh(u)‖L1

. ‖〈u〉−1/2−β−δϕ−1
ε (−u)‖L2‖〈u〉1/2+β+δ F [ 1

ix+1ζ
c(x)]‖L2

. ‖ 1
ix+1ζ

c(x)‖H1/2+β+δ .

Thus
∫
(1 + x2)(2+δ)/2fY (x) dx <∞ from (17) yields

‖(1 + ix)F−1[ϕ−1
ε (−u)F [ 1

iy+1 ζ
c(y)](u)F Kh(u)](x)‖L2+δ(P)

. ‖ 1
ix+1ζ

c(x)‖H1/2+β+δ . (21)

The last term in the decomposition (19) can be estimated similarly using the
Cauchy–Schwarz inequality and Assumption 2(ii) for (ϕ−1)′

‖F−1[(ϕ−1
ε )′(−u)F [ 1

ix+1ζ
c(x)](u)F Kh(u)]‖L2+δ(P)

. ‖(ϕ−1
ε )′(−u)F [ 1

ix+1 ζ
c(x)](u)‖L1

6 ‖〈u〉1/2−β−δ(ϕ−1
ε )′‖L2‖〈u〉−1/2+β+δ F−1[ 1

ix+1 ζ
c(x)](u)‖L2

. ‖ 1
ix+1ζ

c(x)‖H−1/2+β+δ . (22)

Combining (20), (21) and (22), we obtain

sup
h∈(0,1)

‖F−1[ϕ−1
ε (−•)F Kh] ∗ ζ(x)‖L2+δ(P) . ‖ζ‖Zβ+δ,1/2+β+δ , (23)

which is finite for δ small enough satisfying β+δ 6 γs and 1/2+β+δ 6 γc. Since
F Kh converges pointwise to one and | F−1[ϕ−1

ε (−•)F Kh] ∗ ζ(x)|2 is uniformly
integrable by the bound of the (2 + δ)th moments, the variance converges to

∫ ∣∣F−1[ϕ−1
ε (−•)] ∗ ζ(x)

∣∣2 P( dx).

4.2. Tightness

Motivated by the representation (15) of the stochastic error, we introduce the
empirical process

νn(t) :=
√
n

∫
F−1[ϕ−1

ε (−•)F Kh] ∗ ζt(x)(Pn−P)( dx), t ∈ R . (24)

In order to show tightness of the empirical process, we first show some properties
of the class of translations H := {ζt|t ∈ R} for ζ ∈ Zγs,γc .
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Lemma 6. For ζ ∈ Zγs,γc the following is satisfied:

(i) The decomposition ζt = ζct + ζst satisfies the conditions in the definition of
Zγs,γc with at. We have supt∈R ‖ζt‖Zγs,γc <∞.

(ii) For any η ∈ (0, γs), there exists τ > 0 such that ‖ζt − ζs‖Zγs−η,γc−η .
|t− s|τ holds for all s, t ∈ R with |t− s| 6 1.

Proof.

(i) Since ‖ζst ‖2Hγs =
∫
〈u〉2γs |eituF ζs(u)|2 du = ‖ζs‖2Hγs , both claims hold

for the singular part. Applying the pointwise multiplier property of Besov
spaces (48) as well as the Besov embeddings (47) and (45), we obtain for
some M > γc and a ∈ C∞(R) as in definition (6)

‖〈x〉τ
(
ζct (x)− at(x)

)
‖Hγc . ‖ 〈x〉τ

〈x−t〉τ ‖CM‖〈x− t〉τ
(
ζct (x) − at(x)

)
‖Hγc

= ‖ 〈x〉τ

〈x−t〉τ ‖CM‖〈x〉τ
(
ζc(x)− a(x)

)
‖Hγc ,

which is finite for all t ∈ R since 〈x〉τ 〈x− t〉−τ ∈ CM (R). For the second
claim we estimate similarly

sup
t∈R ‖ 1

ix+1ζ
c
t (x)‖Hγc . sup

t∈R ‖at(x)ix+1 ‖Hγc + ‖ 1
ix+1‖CM sup

t∈R ‖ζct − at‖Hγc

. ‖ 1
ix+1‖Hγc‖a‖CM + ‖ 1

ix+1‖CM ‖ζc − a‖Hγc <∞.

(ii) For the singular part note that

‖ζst − ζss‖Hγs−η

6 ‖〈u〉γs F ζs(u)‖L2‖〈u〉−η(1− ei(t−s)u)‖∞
. ‖〈u〉−η‖L∞(R \(−|t−s|−1/2,|t−s|−1/2))

∨ ‖(1− ei(t−s)u)‖L∞((−|t−s|−1/2,|t−s|−1/2))

. |t− s|η/2 ∨ |t− s|1/2.

For ζc we have
∥∥∥ 1
ix+1 (ζ

c
t (x) − ζcs(x))

∥∥∥
Hγc−η

.
∥∥∥ 1
ix+1ζ

c
t (x) −

(
1

ix+1ζ
c
t (x)

)
∗ δs−t

∥∥∥
Hγc−η

+
∥∥∥ 1
i(x−s+t)+1ζ

c
s(x) − 1

ix+1ζ
c
s(x)

∥∥∥
Hγc−η

.

The first term can be treated analogously to ζs. Using some integerM ∈ N
strictly larger than γc, the second term can be estimated by

∥∥∥ 1
i(x−s+t)+1ζ

c
s (x)− 1

ix+1ζ
c
s (x)

∥∥∥
Hγc−η

. |t− s|
∥∥∥ 1
i(x−s+t)+1

1
ix+1ζ

c
s(x)

∥∥∥
Hγc−η

. |t− s|
∥∥∥ 1
i(x−s+t)+1

∥∥∥
CM

∥∥∥ 1
ix+1ζ

c
s(x)

∥∥∥
Hγc−η

. |t− s|,
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where we used again pointwise multiplier (48), embedding properties of
Besov spaces (47) and (45) as well as (i).

4.2.1. Pregaussian limit process

Let G be the stochastic process from Theorem 1. It induces the intrinsic covari-
ance metric d(s, t) := E[(Gs −Gt)

2]1/2.

Theorem 7. There exists a version of G with uniformly d-continuous sample
paths almost surely and with supt∈R |Gt| <∞ almost surely.

The proof of the theorem shows in addition that R is totally bounded with
respect to d. The boundedness of the sample paths follows from the totally
bounded index set and the uniform continuity. Further we conclude that G
defined in (7) is P–pregaussian by van der Vaart and Wellner (1996, p. 89).
Thus G is a tight Borel random variable in ℓ∞(R) and the law of G is uniquely
defined through the covariance structure and the sample path properties in the
theorem (van der Vaart and Wellner, 1996, Lem. 1.5.3).

Proof. To show that the class is pregaussian, it suffices to verify polynomial
covering numbers. To that end we deduce that

d(s, t) =
(
‖gt − gs‖2L2(P) − 〈ζt − ζs, fX〉2

)1/2
6 ‖gt − gs‖L2(P) (25)

decreases polynomial for |t−s| → 0, for max(s, t) → −∞ and for min(s, t) → ∞.
Using the same estimates which show the moment bound (23) but replacing
F Kh = 1, we obtain

‖F [ϕ−1
ε (−•)] ∗ ζ‖L2(P) . ‖ζ‖Zβ+δ,1/2+β+δ (26)

and thus by choosing δ and η small enough Lemma 6 yields d(s, t) . ‖ζt −
ζs‖Zβ+δ,1/2+β+δ . |t − s|τ . We now turn to the estimation of the tails. We will
only consider the case s, t > N since the case s, t 6 N can be treated in the
same way. Without loss of generality, let s < t.

For the smooth component of ζ we have to show that
∥∥ 1
ix+1 (ζ

c
t − ζcs)(x)

∥∥
Hγc

with t, s > N decays polynomially in N . It is sufficient to prove
∥∥ 1
ix+1 (ζ

c
t −

at)(x)
∥∥
Hγc

and
∥∥ 1
ix+1 (at − as)(x)

∥∥
Hγc

with a ∈ C∞(R) from definition (6)

of Zγs,γc both decay polynomially in N . Let M > γc and ψ ∈ CM (R) with
ψ(x) = 1 for x ∈ R \[− 1

2 ,
1
2 ] and ψ(x) = 0 for x ∈ [− 1

4 ,
1
4 ]. The pointwise

multiplier property (48) yields
∥∥ 1
ix+1 (ζ

c
t − at)(x)

∥∥
Hγc

=
∥∥(ψ(x/N) + (1 − ψ(x/N))

)
1

ix+it+1 (ζ
c − a)(x)

∥∥
Hγc

. ‖ 1
ix+it+1‖CM ‖ψ(x/N)(ζc − a)(x)‖Hγc + ‖ 1−ψ(x/N)

ix+it+1 ‖CM ‖ζc − a‖Hγc

. ‖〈x〉−τψ(x/N)‖CM ‖〈x〉τ (ζc − a)(x)‖Hγc +N−1‖ζc − a‖Hγc

. N−(τ∧1)
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and for N large enough such that supp(a′) ⊆ [−N/2, N/2] we obtain
∥∥ 1
ix+1 (at − as)(x)

∥∥
Hγc

=
∥∥ψ(x/N)

ix+1 (at − as)(x)
∥∥
Hγc

.
∥∥ψ(x/N)

ix+1

∥∥
Hγc

∥∥(at − as)(x)
∥∥
CM

.
∥∥(ix+ 1)−3/4

∥∥
Hγc

∥∥ψ(x/N)(ix+ 1)−1/4
∥∥
CM . N−1/4.

To bound the singular part it suffices to show that
∥∥F−1[ϕ−1

ǫ (−•)] ∗ ζst
∥∥
L2(P)

, t > N,

decays polynomially in N . To this end, we split the integral domain into

∥∥F−1[ϕ−1
ǫ (−•)] ∗ ζst

∥∥2
L2(P)

=

∫ −N/2

−∞

| F−1[ϕ−1
ǫ (−•)F ζs](x)|2fY (x+ t) dx

+

∫ ∞

−N/2

| F−1[ϕ−1
ǫ (−•)F ζs](x)|2fY (x + t) dx.

(27)

To estimate the first term, we use the following auxiliary calculations

ixF−1[ϕ−1
ε (−•)F ζs](x)

= −F−1[(ϕ−1
ε )′(−•)F ζs](x) + F−1[ϕ−1

ε (−•)F [iyζs(y)]](x)

and with an integer M ∈ N strictly larger than γs and a function χ ∈ CM (R)
which is equal to one on supp(ζs) and has compact support

‖yζs(y)‖Hγs = ‖yχ(y)ζs(y)‖Hγs . ‖yχ(y)‖Bγs
∞,2

‖ζs(y)‖Hγs

. ‖yχ(y)‖CM <∞,

where we used the pointwise multiplier property (48) of Besov spaces as well as
the Besov embeddings (47) and (45). Thus ixF−1[ϕ−1

ε (−•)F ζs](x) ∈ L2(R).
Applying this and the boundedness of fY to the first term in (27) yields

∫ −N/2

−∞

| F−1[ϕ−1
ǫ (−•)F ζs](x)|2fY (x+ t) dx

.

∫ −N/2

−∞

| F−1[ϕ−1
ǫ (−•)F ζs](x)|2 dx

6 4N−2

∫ −N/2

−∞

|xF−1[ϕ−1
ǫ (−•)F ζs](x)|2 dx . N−2.

Using Hölders’s inequality and the boundedness of fY , we estimate the second
term in (27) by

‖F−1[ϕ−1
ǫ (−•)F ζs](x)‖2L2+δ

(∫ ∞

−N/2

|fY (x+ t)|(2+δ)/δ dx
)δ/(2+δ)

. ‖F−1[ϕ−1
ǫ (−•)F ζs](x)‖2L2+δ

(∫ ∞

N/2

fY (x) dx

)δ/(2+δ)
.
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While the first factor is finite according to our bound (20), which also holds
when F Kh is omitted, the second one is of order N−δ due to the finite (2+δ)th
moment of P. Therefore, the second term in (27) decays polynomially.

4.2.2. Uniform central limit theorem

We recall the definition of the empirical process νn in (24).

Theorem 8. Grant Assumptions 1 and 2. Let

(νn(t1), . . . , νn(tk))
L−→ (Gt1 , . . . ,Gtk)

for all t1, . . . , tk ∈ R and for all k ∈ N. If either γs 6 β+1/2 and hρnn
1/4 → ∞

as n→ ∞ for some ρ > β − γs + 1/2 or if γs > β + 1/2, then

νn
L−→ G in ℓ∞(R).

Proof. We split the empirical process νn into three parts

νn =
√
n

∫
(T1(x) + T2(x) + T3(x))(Pn−P)( dx),

where T1, T2 and T3 correspond to the three terms in decomposition (19) and
are given by (28), (29) and (30) below. For the first term

T1(x) = F−1[ϕ−1
ε (−u)F ζst (u)F Kh(u)](x) (28)

we distinguish the two cases γs > β + 1/2 and γs 6 β + 1/2. In the first case,
we will show that T1 varies in a fixed Donsker class. In the second case, the
process indexed by T1 is critical, this is where smoothed empirical processes
and the condition on the bandwidth are needed. Tightness of T1 in this case
will be shown in Section 4.2.3. We will further show that the second term T2
and the third term T3 are both varying in fixed Donsker classes for all γs > β.
In particular the three processes indexed by T1, T2 and T3, respectively, are
tight. Applying the equicontinuity characterization of tightness (van der Vaart
and Wellner, 1996, Thm. 1.5.7) with the maximum of the semimetrics yields
that νn is tight. Since we have assumed convergence of the finite dimensional
distribution, the convergence of νn in distribution follows (van der Vaart and
Wellner, 1996, Thm. 1.5.4).

Here we consider only the first case γs > β + 1/2. We recall that ζst is
contained in Hγs(R). By the Fourier multiplier property of the deconvolution
operator in Lemma 5(i) and by suph>0,u | F Kh(u)| 6 ‖K‖L1 <∞ the functions

T1 are contained in a bounded set of H1/2+η(R) for some η > 0 small enough.
We apply (Nickl and Pötscher, 2007, Prop. 1) with p = q = 2 and s = 1/2 + η
and conclude that T1 varies in a universal Donsker class.

The second term is of the form

T2(x) = (1 + ix)F−1[ϕ−1
ε (−u)F [ 1

iy+1 ζ
c
t (y)](u)F Kh(u)](x). (29)
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By Assumption 2(ii) we have ϕ−1
ε (u) . 〈u〉β . For some η > 0 sufficiently small,

the functions 1
iy+1ζ

c
t (y), t ∈ R, are contained in a bounded set of Hβ+η+1/2(R)

by Lemma 6. We obtain that the functions T2(x)/(1 + ix) are contained in a
bounded subset of H1/2+η(R). Corollary 5 by Nickl and Pötscher (2007) yields
with p = q = 2, β = −1, s = 1/2 + η and γ = η that T2 is contained in a fixed
P-Donsker class.

Similarly, we treat the third term

T3(x) = F−1[(ϕ−1
ε )′(−u)F [ 1

iy+1ζ
c
t (y)](u)F Kh(u)](x). (30)

By Assumption 2(ii) we have (ϕ−1
ε )′ . 〈u〉β−1. As above we conclude that the

functions T3 are contained in a bounded set of Hη+3/2(R). Applying Proposi-
tion 1 by Nickl and Pötscher (2007) with p = q = 2 and s = η + 3/2, the term
T3 varies in a universal Donsker class.

4.2.3. The critical term

In this section, we treat the first term T1 in the case γs 6 β + 1/2. We define

qt := F−1[ϕ−1
ε (−u)F ζst (u)]. (31)

For simplicity in point (e) below it will be convenient to work with functions
Kh of bounded support. Thus we fix ξ > 0 and define the truncated kernel

K
(0)
h := Kh1[−ξ,ξ].

By the Assumption (5) on the decay of K we have suph>0 ‖Kh−K
(0)
h ‖BV <

∞. We conclude F(Kh − K
(0)
h )(u) . (1 + |u|)−1 with a constant independent

of h > 0. By Assumption 2(ii) we have |ϕ−1
ε (u)| . (1 + |u|)β. The functions

ζst (u), t ∈ R, are contained in a bounded set of Hγs(R). Consequently, T1 with

Kh−K(0)
h instead of Kh is contained in a bounded set of Hγs−β+1(R). With the

same argument as used for T3, we see that this term is contained in a universal
Donsker class because γs − β + 1 > 1 by assumption. So it remains to consider

T1 with the truncated kernel K
(0)
h .

In order to show tightness of the process indexed by T1 with the truncated

kernel K
(0)
h , we check the assumptions of Theorem 3 by Giné and Nickl (2008)

in the version of Nickl and Reiß (2012, Thm. 12) for the class Q = {qt|t ∈ R}
and for µn( dx) := K

(0)
hn

(x) dx, where qt(x) was defined in (31). By Section 4.2.1
the class G is P-pregaussian. From the proof also follows that Q is P-pregaussian
since this is just the case ζc = 0.

We write
Q′
τ :=

{
r − q

∣∣r, q ∈ Q, ‖r − q‖L2(P) 6 τ
}
.

Let ρ > β − γs + 1/2 > 0 be such that hρnn
1/4 → ∞. We fix some ρ′ ∈

(β − γs + 1/2, ρ∧ 1) and obtain hρ
′

n log(n)−1/2n1/4 → ∞. We need to verify the
following conditions.
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(a) We will show that the functions in Q̃n := {qt ∗ µn|t ∈ R} are bounded by
Mn := Ch−ρ

′

n for some constant C > 0. Since qt is only a translation of q0
it suffices to consider q0. By the definition of Zγs,γc in (6), by Lemma 5(i)
and by the Besov embedding (47) we have

q0 = F−1[ϕ−1
ε (−u)F ζs(u)] ∈ Bγs−β2,2 (R) ⊆ B

1/2−ρ′

2,∞ (R).

By our assumptions on the kernel (5) it follows that K ′ is integrable and
thus that K is of bounded variation. Next, we apply continuous embeddings
for Besov spaces (44) and (46), (49) as well as the estimate for ‖Khn‖Bρ′

1,1

in Giné and Nickl (2008, p. 384), which also applies to truncated kernels,
and obtain

‖q0 ∗K(0)
hn

‖∞ . ‖q0 ∗K(0)
hn

‖B0
∞,1

. ‖q0 ∗K(0)
hn

‖
B

1/2
2,1

. ‖K(0)
hn

‖
Bρ′

1,1

. h−ρ
′

n .

(32)

(b) For r ∈ Q′
τ holds ‖r ∗K(0)

h ‖L2(P) 6 ‖r ∗K(0)
h − r‖L2(P) + τ . Thus it suffices

to show that ‖q ∗K(0)
h − q‖L2(P) → 0 uniformly over q ∈ Q. We estimate

‖qt ∗K(0)
h − qt‖L2(P) . ‖ϕ−1

ǫ (−•)F ζs(F K
(0)
h − 1)‖L2.

ϕ−1
ǫ (−•)F ζs is an L2–function and F K

(0)
h is uniformly bounded and con-

verges to one as h → 0. By dominated convergence the integral converges
to zero.

(c) The estimates in (a) can be used to see that the classes Q̃n have polynomial
L2(Q)–covering numbers, uniformly in all probability measures Q and uni-

formly in n. The function q0∗K(0)
hn

is the convolution of two L2-functions and

thus continuous. The estimate (32) and embedding (50) yield that q0 ∗K(0)
hn

is of finite 2–variation. We argue as in Lemma 1 by Giné and Nickl (2009).

As a function of bounded 2–variation q0 ∗K(0)
hn

can be written as a composi-
tion gn ◦fn of a nondecreasing function fn and a function gn, which satisfies
a Hölder condition |gn(u) − gn(v)| 6 |u − v|1/2, see, for example, Dudley
(1992, p. 1971). More precisely, we can take fn(x) to be the 2–variation of

q0 ∗K(0)
hn

up to x and the envelopes of fn to be multiples of M2
n = C2h−2ρ′

n .
The set Fn of all translates of the nondecreasing function fn has VC–index
2 and thus polynomial L1(Q)–covering numbers (de la Peña and Giné, 1999,
Thm. 5.1.15). Since each ǫ2–covering of translates of fn for L1(Q) induces
an ǫ–covering of translates of gn◦fn for L2(Q), we can estimate the covering
numbers by

N(Q̃n, L
2(Q), ǫ) 6 N(Fn, L

1(Q), ǫ2) . (Mn/ǫ)
4,

with constants independent of n and Q. The conditions for inequality (22)
by Giné and Nickl (2008) are fulfilled, where the envelopes areMn = Ch−ρ

′

n
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and Hn(η) = H(η) = C1 log(η) + C0 with C0, C1 > 0. Consequently

E∗

∥∥∥∥∥∥
1√
n

n∑

j=1

εjf(Xj)

∥∥∥∥∥∥
(Q̃n)′

n−1/4

. max

(√
log(n)

n1/4
,
h−ρ

′

n√
n

log(n)

)
→ 0

as n→ ∞.
(d) We apply Lemma 1 of Giné and Nickl (2008) to show that

∪n>1Q̃n =
⋃

n>1

{
x 7→

∫R qt(x− y)K
(0)
hn

(y) dy

∣∣∣∣ t ∈ R}
is in the L2(P)-closure of ‖K‖L1-times the symmetric convex hull of the
pregaussian class Q. The condition qt(• − y) ∈ L2(P) is satisfied for all
y ∈ R since qt ∈ L2(R) and fY is bounded. qt(x − •) ∈ L1(|µn|) is fulfilled
owing to K

(0)
hn
, qt ∈ L2(R). The third condition that y 7→ ‖qt(•− y)‖L2(P) is

in L1(|µn|) holds likewise since fY is bounded and K
(0)
hn

∈ L1(R).

(e) The L2(P)–distance of two functions in Q̃n can be estimated by

E

[
(qt ∗K(0)

h (X)− qs ∗K(0)
h (X))2

]1/2

=

∥∥∥∥
∫
qt(• − u)K

(0)
h (u)− qs(• − u)K

(0)
h (u) du

∥∥∥∥
L2(P)

6

∫
|K(0)

h (u)|‖qt(• − u)− qs(• − u)‖L2(P) du

6 ‖K(0)
h ‖L1 sup

|u|6ξ

‖qt(• − u)− qs(• − u)‖L2(P)

= ‖K(0)
h ‖L1 sup

|u|6ξ

‖qt+u − qs+u‖L2(P).

As seen in the proof that Q is pregaussian, the covering numbers grow
at most polynomially. We take N large enough such that N > 2ξ. Then
s, t > N implies s + u, t + u > N/2 and s, t < −N implies s + u, t + u <
−N/2. Since this is only a polynomial change in N , the growth of the
covering numbers remains at most polynomial. This leads to the entropy
bound H(Q̃n, L

2(P), η) . log(η−1) for η small enough and independent of
n. We define λn(η) := log(η−1)η2. The bound in the condition is of the order
log(n)−1/2n1/4. As seen before (a) this growth faster than Mn = Ch−ρ

′

n .

5. Proof of the lower bound

First, we show asymptotic linearity of ϑ̂ζ .

Lemma 9. Supposing Assumptions 1 and 2 and ζ ∈ Zγs,γc with γs > β and
γc > (1/2∨α)+γs, the estimator ϑ̂ζ with hn = o(n−1/(2α+2γs)) is asymptotically
linear with influence function x 7→

∫
F−1[ϕ−1

ε (−•)] ∗ ζ(y)(δx − P)( dy) and thus

ϑ̂ζ is Gaussian regular.
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Proof. The analysis of the bias of ϑ̂ in Section 4.1.1 yields

ϑ̂ =ϑ+

∫
F−1[ϕ−1

ε (−•)F Kh] ∗ ζ(y)(Pn−P)( dy) + oP (n
−1/2)

=ϑ+

∫
F−1[ϕ−1

ε (−•)] ∗ ζ(y)(Pn−P)( dy)

+

∫
F−1[ϕ−1

ε (−•)(F Kh − 1)] ∗ ζ(y)(Pn−P)( dy) + oP (n
−1/2).

Since

E

[∣∣∣∣
∫

F−1[ϕ−1
ε (−•)] ∗ ζ( dδx − dP)

∣∣∣∣
2
]
6 4E

[∫
| F−1[ϕ−1

ε (−•)] ∗ ζ|2 dP
]

is finite and E[
∫
F−1[(ϕ−1

ε (−•)] ∗ ζ)( dδx − dP)] = 0 by (23) it suffices to show

∫
F−1[ϕ−1

ε (−•)(F Kh − 1)] ∗ ζ(y)(Pn−P)( dy) = oP (n
−1/2). (33)

For convenience we write ψh := F−1[ϕ−1
ε (−•)(F Kh−1)]∗ζ and let τ > 0. Since

(Yj) are independent and identically distributed, we obtain

P

(∣∣n1/2

∫
ψh(y)(Pn−P)( dy)

∣∣ > τ
)
6 τ−2nE

[∣∣
∫
ψh(y)(Pn−P)( dy)

∣∣2
]

= τ−2nE
[ ∫ ∫

ψh(y)ψh(z)(Pn−P)( dy)(Pn−P)( dz)
]

= τ−2n−1
n∑

j,k=1

E

[ ∫ ∫
ψh(y)ψh(z)(δYj − P)( dy)(δYk

− P)( dz)
]

= τ−1 E

[∣∣
∫
ψh(y)(δYj − P)( dy)

∣∣2
]

6 4τ−1

∫
|ψh(y)|2 P( dy).

By uniform integrability of ψ2
h with respect to P by (23) and pointwise conver-

gence ψh → 0 as h → 0 we conclude
∫
|ψh(y)|2 P( dy) → 0 and thus (33). From

asymptotic linearity follows Gaussian regularity by Proposition 2.2.1 by Bickel
et al. (1998).

Let us now briefly discuss the consequence of Assumption 4 in terms of Fourier
multipliers. Standard calculus yields |(ϕ−1

ε )(k)(u)| . 〈u〉β−k for k = 0, . . . , (⌊β⌋∨
M)+1. With the same arguments as in the proof of Lemma 5(i) we deduce that

(1 + iu)β+kϕ(k)
ε (u) and (1 + iu)−β+k(ϕ−1

ε )(k)(u) (34)

are Fourier multipliers on Bsp,q(R) for all s ∈ R, p, q ∈ [1,∞] and k = 0, . . .
⌊β⌋ ∨M .
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5.1. Information bound for smooth functionals

In this subsection we prove Theorem 2.
Step 1: To determine the solution of the maximization problem (10), we define

h := Sg = (g ∗ fε)f−1/2
Y with score operator S such that the Fisher information

(9) satisfies 〈I g, g〉 = ‖h‖2L2. Therefore, we obtain g = S−1h = F−1[ϕ−1
ε ] ∗

(
√
fY h). Owing to the adjoint equation (12),

〈g, ζ〉 =
∫ (

F−1[ϕ−1
ε (−•)] ∗ ζ

)√
fY h = 〈h, (S−1)⋆ζ〉

holds. Ignoring all restrictions on g, the supremum is thus attained at

h∗ := (S−1)⋆ζ = (F−1[ϕ−1
ε (−•)] ∗ ζ)

√
fY . (35)

Let us define β̄ := ⌊β + 1/2⌋+ 1 and r := F−1[(1 + iu)−β̄ϕ−1
ε (u)]. Because of

Lemma 5(ii) we obtain r ∈ L1(R) ∩ L2(R) and F−1[ϕ−1
ε (u)] = r ∗ (Id−D)β̄ .

Therefore, the condition
∫
g = 0, Fubini’s theorem and the fundamental theorem

of calculus, provided (
√
fY h)

(k) ∈ L1(R), k = 0, . . . β̄, imply

0 =

∫
F−1[ϕ−1

ε ] ∗ (
√
fY h) =

∫
r ∗
(√

fY h+

β̄∑

k=1

(
β̄

k

)
(−1)k(

√
fY h)

(k)
)

=

∫
r
( ∫ √

fY h+

β̄∑

k=1

(
β̄

k

)
(−1)k

∫
(
√
fY h)

(k)
)
.

For each k = 1, . . . , β̄ the integrability of (
√
fY h)

(l), l = k − 1, k, yields then∫
(
√
fY h)

(k) = limx→∞(
√
fY h)

(k−1)(x)− (
√
fY h)

(k−1)(−x) = 0 and thus

0 =

∫
F−1[ϕ−1

ε ] ∗ (
√
fY h) =

∫ √
fY h, (36)

since
∫
r = F r(0) = 1. Hence, we should project the solution h∗ onto the

L2-orthogonal space span{√fY }⊥:

h∗∗ := h∗ − 〈h∗,
√
fY 〉

‖√fY ‖2L2

√
fY

=
(
F−1[ϕ−1

ε (−•)] ∗ ζ −
∫
(F−1[ϕ−1

ε (−•)] ∗ ζ)fY
)√

fY

=
(
F−1[ϕ−1

ε (−•)] ∗ ζ −
∫
ζfX

)√
fY , (37)

where we used
∫
(F−1[ϕ−1

ε (−•)] ∗ ζ)fY =
∫
ζfX by (12). This leads to the

candidate for the maximization of (10) given by

g∗ = S−1h∗∗ = S−1(S−1)⋆ζ − 〈ζ, fX〉S−1
√
fY = I−1 ζ − 〈ζ, fX〉fX

= F−1[ϕ−1
ε ] ∗

{(
F−1[ϕ−1

ε (−•)] ∗ ζ
)
fY

}
−
(∫

ζfX

)
fX
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and (12) yields 〈g∗, ζ〉 = 〈I g∗, g∗〉 and the bound

Iζ =
〈g∗, ζ〉2
〈I g∗, g∗〉 =

∫ (
F−1[ϕ−1

ε (−•)] ∗ ζ
)2
fY −

(∫
ζfX

)2
. (38)

Inequality (11) holds then by the local version of the Hájek–Le Cam convolution
theorem (Bickel et al., 1998, Thm. 2.3.1). It remains to check the conditions in
(8), (

√
fY h

∗∗)(k) ∈ L1(R) for k = 0, . . . β̄ and that the three-fold application
of the adjoint equality is allowed. The latter will follow from

√
fY h

∗∗, fY ∈
Hβ+

(R) for some β+ > β.
Step 2: We prove now the integrability of

√
fY h

∗∗ =
(
F−1[ϕ−1

ε (−•)] ∗ ζ −∫
ζfX

)
fY and its derivatives up to order β̄ which makes the calculation (36)

rigorous.
For convenience we denote

κ := F−1[ϕ−1
ε (−•)] ∗ ζ = r ∗




β̄∑

k=0

(
β̄

k

)
(−1)kζ(k)


 .

Owing to Young’s inequality together with r ∈ L1(R)∩L2(R) and ζ(k) ∈ L2(R)
for any k > 0, we obtain κ ∈ Cs(R) ∩Hs(R) for any s > 0. It suffices to show

f
(k)
Y ∈ L1(R) for k = 0, . . . , β̄. Note that by (34)

‖(Id+D)kfε‖L1 . ‖F−1[(1− iu)kϕε]‖B0
1,1

. ‖F−1[(1− iu)k−β ]‖B0
1,1

is finite for β > k since then F−1[(1 − iu)k−β ] = γβ−k,1 ∈ Bβ−k1,∞ (R) ⊆ B0
1,1(R)

by the proof of Lemma 5(ii). Recalling that β /∈ Z, we conclude iteratively

f
(k)
ε ∈ L1(R) for k = 0, . . . , ⌊β⌋. Therefore,

‖f (β̄)
Y ‖L1 6 ‖f (β̄−⌊β⌋)

X ‖L1‖f (⌊β⌋)
ε ‖L1 <∞

by Assumption 3 and similarly for derivatives of lower order.
Moreover, we conclude for β̄− ∈ (β + 1/2, β̄) that

fY ∈ Bβ̄
−

1,1 (R) ⊆ B
β̄−−1/2
2,1 (R) ⊆ Hβ+

(R)

for some β+ > β by the embeddings (46) and (46). Since also κfY ∈ Hβ+

(R),
using κ ∈ Cs(R) for s > β, we can apply the adjoint equality (12) in Step 1.
Step 3: We will show now ‖g∗/fX‖∞ < ∞ which justifies fX ± τg∗ > 0 for
some choice of τ > 0 small enough.

By Step 1 g∗ = F−1[ϕ−1
ε ] ∗ (κfY ) − 〈ζ, fX〉fX . For the second term As-

sumption 3 implies ‖〈ζ, fX〉fX/fX‖∞ 6 ‖ζ‖L2‖fX‖∞‖fX‖L1 < ∞. Hence, we
only need to show F−1[ϕ−1

ε ] ∗ (κfY ) . fX . Using the Besov embedding (45),
the Fourier multiplier property of (34) and the pointwise multiplier property of
Besov spaces (48), we obtain for some β+ ∈ (β, ⌊β⌋+ 1)

‖F−1[ϕ−1
ε ] ∗ (κfY )‖∞ . ‖κfY ‖Bβ

∞,1
. ‖κ‖Bβ

∞,1
‖fY ‖Bβ

∞,1
. ‖κ‖Cs‖fY ‖Cβ+ .
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for any s > β. In Step 2 we have seen that κ ∈ Cs(R). Moreover,

‖fY ‖Cβ+ =

⌊β⌋∑

k=0

‖f (k)
Y ‖∞ + sup

x 6=y

∣∣∣f
(⌊β⌋)
Y (x) − f

(⌊β⌋)
Y (y)

(x− y)β+−⌊β⌋

∣∣∣

6

⌊β⌋∑

k=0

‖fX‖∞‖f (k)
ε ‖L1 + sup

x 6=y

∫ |fX(x− z)− fX(y − z)|
|x− y|β+−⌊β⌋

f (⌊β⌋)
ε (z) dz

6 ‖fX‖∞
⌊β⌋∑

k=0

‖f (k)
ε ‖L1 + ‖fX‖Cβ+−⌊β⌋‖f (⌊β⌋)

ε ‖L1 <∞, (39)

using the Besov embedding fX ∈ W 2
1 (R) ⊆ B

β+−⌊β⌋+1
1,1 ⊆ Cβ

+−⌊β⌋. Hence,
g∗ ∈ L∞(R). Since fX is a continuous, strictly positive function, we conclude
that the quotient g∗/fX is bounded on every compact subset of R. Therefore, it
suffices to estimate the tails. For |x| large enough Assumption 3 implies, using
again (34),

| F−1[ϕ−1
ε ] ∗ (κfY )(x)|
fX(x)

.
∣∣xM

(
F−1[ϕ−1

ε ] ∗ (κfY )
)
(x)
∣∣

6

M∑

k=0

(
M
k

)∣∣∣F−1
[
(ϕ−1
ε )(k) F [yM−kκfY ]

]
(x)
∣∣∣

.

M∑

k=0

‖yM−kκfY ‖Bβ+−k
∞,1

.

Note that the above calculation shows that ϕ−1
ε is a Fourier multiplier on the

weighted Besov space with weight function 〈x〉M (cf. Edmunds and Triebel,
1996, Def. 4.2.1/2 and Thm. 5.4.2). Each term in the above sum can be estimated
by

‖yM−kκ‖Cs‖fY ‖Cβ+

=
∥∥∥
M−k∑

l=0

(
M−k
l

)
(−1)l F−1

[
(ϕ−1
ε )(l)(−u)F [(ix)M−k−lζ]

]∥∥∥
Cs

‖fY ‖Cβ+ ,

where with abuse of notation β+ < ⌊β⌋+1 is slightly larger in the last line and

s > β+. By (39) we have fY ∈ Cβ
+

(R). Now, (ix)M−k−lζ ∈ S (R) is again a
Schwartz function and thus it suffices to show F−1[(ϕ−1

ε )(k)(−u)F χ] ∈ Cs(R)
for s > β, χ ∈ S (R) and k = 0, . . . ,M . For k = 0 this is already done in Step
2. We proceed analogously: for any integer s > 0 we have

‖F−1
[
(ϕ−1
ε )(k)(−u)F [χ]

](s)‖∞

=
∥∥∥
(
F−1

[
(1 + iu)(−β̄+k)∧0(ϕ−1

ε )(k)(−u)
]
∗
(
(Id−D)(β̄−k)∨0χ

))(s)∥∥∥
∞

6
∥∥(1 + iu)(−β̄+k)∧0(ϕ−1

ε )(k)(−u)
∥∥
L2

∥∥Ds(Id−D)(β̄−k)∨0χ
∥∥
L2

.
∥∥〈u〉((−β̄+k)∧0)+β−k

∥∥
L2

∥∥Ds(Id−D)(β̄−k)∨0χ
∥∥
L2 .
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Owing to β̄ > β + 1/2, the first factor is finite since

((−β̄ + k) ∧ 0) + β − k 6

{
β − β̄ < −1/2, for β̄ > k,

β̄ − 1/2− k < −1/2, for β̄ < k

and the second factor is the L2-norm of a Schwartz function and thus finite,
too.

5.2. Approximation lemma

To prove convergence of the information bounds it suffices to show that

〈g∗n, ζ〉 → 〈(S⋆)−1ζ, (S⋆)−1ζ〉 − 〈ζ, fX〉2 and (40)

〈Sg∗n, Sg∗n〉 = 〈g∗n, ζn〉 → 〈(S⋆)−1ζ, (S⋆)−1ζ〉 − 〈ζ, fX〉2 (41)

where we used the equality 〈g∗n, ζn〉 = 〈I g∗n, g∗n〉 = 〈Sg∗n, Sg∗n〉, which holds
naturally for the maximizer of the information bound Iζn . For (40) we note

〈g∗n, ζ〉 = 〈I−1 ζn, ζ〉 − 〈ζn, fX〉〈ζ, fX〉 = 〈(S⋆)−1ζn, (S
⋆)−1ζ〉 − 〈ζn, fX〉〈ζ, fX〉

where the Cauchy–Schwarz inequality yields

|〈fX , ζn − ζ〉| = |〈(S⋆)−1(ζn − ζ),
√
fY 〉| ≤ ‖(S⋆)−1(ζn − ζ)‖L2 → 0 (42)

and

|〈(S⋆)−1(ζn − ζ), (S⋆)−1ζ〉| = |〈(S⋆)−1(ζn − ζ), (S⋆)−1ζ〉|
6 ‖(S⋆)−1(ζn − ζ)‖L2‖(S⋆)−1ζ‖L2 → 0

as n → ∞. Analogously follows (41), where we use that the assumption of
the lemma implies 〈(S⋆)−1ζn, (S

⋆)−1ζn〉 → 〈(S⋆)−1ζ, (S⋆)−1ζ〉 as n → ∞. The
second part of the claim ϑζn → ϑζ has already been shown in the estimate (42).

5.3. Information bound for non-regular functionals

To prove the efficiency of ϑ̂t for t ∈ R in Theorem 4, it is suffices by Lemma 3
and (35) to show

〈(S⋆)−1(ζn − ζ), (S⋆)−1(ζn − ζ)〉1/2 = ‖F [ϕ−1
ε (−•)] ∗ (ζn − ζ)‖L2(P) → 0 (43)

as n→ ∞. Using the moment bound (23) replacing F Kh by 1, we obtain

‖F [ϕ−1
ε (−•)] ∗ (ζn − ζ)‖L2(P) . ‖ζn − ζ‖Zβ+δ,1/2+β+δ .

By assumption we have Zβ+δ,1/2+β+δ ⊆ Zγs,γc for δ small enough. Because
the space of Schwartz-functions is dense in every Sobolev space Hs(R), s > 0,
S (R) is also dense in Zγs,γc and thus the information bound (11) holds for
all ζ ∈ Zγs,γc . Finally, applying Theorem 25.48 by van der Vaart (1998) and
Theorem 7 from above completes the proof of Theorem 4.
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Appendix: Function spaces

Let us define the Lp-Sobolev space for p ∈ (0,∞) and m ∈ N
Wm
p (R) :=

{
f ∈ Lp(R)

∣∣∣
m∑

k=0

‖f (k)
X ‖Lp <∞

}

In particular,W 0
p (R) = Lp(R). Due to the Hilbert space structure, the case p =

2 is crucial. It can be described equivalently with the notation 〈u〉 = (1+u2)1/2

by, α > 0,

Hα(R) :=
{
f ∈ L2(R)

∣∣∣‖f‖2Hα :=

∫
〈u〉2α| F f(u)|2 du <∞

}
,

which we call Sobolev space, too. Obviously,Wm
2 (R) = Hm(R). Also frequently

used are the Hölder spaces. Denoting the space of all bounded, continuous func-
tions with values in R as C(R) we define, α > 0,

Cα(R) :=
{
f ∈ C(R)

∣∣∣‖f‖Cα :=

⌊α⌋∑

k=0

‖f (l)‖∞+sup
x 6=y

|f (⌊α⌋)(x) − f (⌊α⌋)(y)|
|x− y|α−⌊α⌋

<∞
}

where ⌊α⌋ denotes the largest integer smaller or equal to α. A unifying ap-
proach which contains all function spaces defined so far, is given by Besov spaces
(Triebel, 2010, Sect. 2.3.1) which we will discuss in the sequel. Let S (R) be the
Schwartz space of all rapidly decreasing infinitely differentiable functions with
values in C and S ′(R) its dual space, that is the space of all tempered distri-
butions. Let 0 < ψ ∈ S (R) with suppψ ⊆ {x|1/2 6 |x| 6 2} and ψ(x) > 0
if {x|1/2 < |x| < 2}. Then define ϕj(x) := ψ(2−jx)(

∑∞
k=−∞ ψ(2−kx))−1, j =

1, 2, . . . , and ϕ0(x) := 1 − ∑∞
j=1 ϕj(x) such that the sequence {ϕj}∞j=0 is a

smooth resolution of unity. In particular, F−1[ϕj F f ] is an entire function for
all f ∈ S ′(R). For s ∈ R and p, q ∈ (0,∞] the Besov spaces are defined by

Bsp,q :=
{
f ∈ S

′(R)
∣∣∣‖f‖Bs

p,q
:=
( ∞∑

j=0

2sjq‖F−1[ϕj F f ]‖qLp

)1/q
<∞

}
.

We omit the dependence of ‖•‖Bs
p,q

on ψ since any function with the above
properties defines an equivalent norm. Setting the Besov spaces in relation to
the more elementary function spaces, we first note that the Schwartz functions
S (R) are dense in every Besov space Bsp,q with p, q <∞ and Hα(R) = Bα2,2(R)
as well as Cα(R) = Bα∞,∞(R), where the latter holds only if α is not an integer
(Triebel, 2010, Thms. 2.3.3 and 2.5.7). Frequently used are the following con-
tinuous embeddings, which can be found in (Triebel, 2010, Sect. 2.5.7, Thms.
2.3.2(1), 2.7.1): For p > 1,m ∈ Z,
Bmp,1(R) ⊆Wm

p (R) ⊆ Bmp,∞(R) and B0
∞,1(R) ⊆ L∞(R) ⊆ B0

∞,∞(R) (44)
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and for s > 0

Bs∞,1(R) ⊆ Cs(R) ⊆ Bs∞,∞(R). (45)

Furthermore, for 0 < p0 6 p1 6 ∞, q > 0 and −∞ < s1 6 s0 <∞

Bs0p0,q(R) ⊆ Bs1p1,q(R) if s0 −
1

p0
> s1 −

1

p1
(46)

and for 0 < p, q0, q1 6 ∞ and −∞ < s1 < s0 <∞

Bs0p,q0(R) ⊆ Bs1p,q1(R). (47)

Another important relation is the pointwise multiplier property of Besov spaces
(Triebel, 2010, (24) on p. 143) that is

‖fg‖Bs
p,q

. ‖f‖Bs
∞,q

‖g‖Bs
p,q

(48)

for s > 0, 1 6 p 6 ∞ and 0 < q 6 ∞.
The Besov norm of a convolution can be bounded by Lemma 7 (i) by Qui

(1981). Let 1 6 p, q, r, s 6 ∞, −∞ < α, β < ∞, 0 6 1/u = 1/p+ 1/r − 1 6 1,
0 6 1/v = 1/q + 1/s 6 1. For f ∈ Bαp,q(R) and g ∈ Bβr,s(R)

‖f ∗ g‖Bα+β
u,v

. ‖f‖Bα
p,q

‖g‖Bβ
r,s
. (49)

Using for any function f : R → R and h ∈ R the difference operators
∆1
hf(x) := f(x + h) − f(x) and (∆l

hf)(x) := ∆1
h(∆

l−1
h f)(x), l ∈ N, the Besov

can be equivalently described by

‖f‖Bs
pq

∼ ‖f‖Lp + ‖f‖Ḃs
pq

with ‖f‖Ḃs
pq

:=
( ∫

|h|−sq−1‖∆M
h f‖qLp dh

)1/q

for s > 0, p, q > 1 and any integerM > s (Triebel, 2010, Thm. 2.5.12). The space
of all f ∈ S ′(R) for which ‖f‖Ḃs

pq
is finite is called homogeneous Besov space

Ḃspq(R) (Triebel, 2010, Def. 5.1.3/2, Thm. 2.2.3/2) and thus Bspq = Lp(R) ∩
Ḃspq(R) for s > 0, p, q > 1. Of interest is the relation of homogeneous Besov
spaces to functions of bounded p-variation. Let BVp(R) denote the space of
measurable functions f : R→ R such that there is a function g which coincides
with f almost everywhere and satisfies

sup
{ n∑

i=1

|g(xi)− g(xi−1)|p
∣∣∣−∞ < x1 < · · · < xn <∞, n ∈ N} <∞

and we define BVp(R) as the quotient set BVp(R) modulo equality almost ev-
erywhere. Then,

Ḃ
1/p
p1 (R) ⊆ BVp(R) ⊆ Ḃ1/p

p,∞(R), for p > 1 (50)

by (Bourdaud, Lanza de Cristoforis and Sickel, 2006, Thm. 5). For p = 1 holds
by (Giné and Nickl, 2008, Lem. 8)

BV1(R) ∩ L1(R) ⊆ B1
1,∞(R). (51)



UCLT and efficiency for deconvolution 2517

References

Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be
“plugged-in”. Ann. Statist. 31 1033–1053. MR2001641

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998).
Efficient and Adaptive Estimation for Semiparametric Models. Springer, New
York. MR1623559
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