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1. Introduction

Sensitivity analysis (SA) aims to identify the variables that most contribute
to the variability into a non linear regression model. Global SA is a stochatic
approach whose objective is to determine a global criterion based on the density
of the joint probability distribution function of the output and the inputs of the
regression model. The most usual quantification is the variance-based method,
widely studied in SA literature. Hoeffding decomposition [13] (see also Owen
[30]) states that the variance of the output can be uniquely decomposed into
summands of increasing dimensions under orthogonality constraints. Following
this approach, Sobol [35] introduces variability measures, the so called Sobol
sensitivity indices. These indices quantify the contribution of each input on the
system.

Different methods have been exploited to estimate Sobol indices. The Monte
Carlo algorithm was proposed by Sobol [36], and has been later improved by
the Quasi Monte Carlo technique, performed by Owen [31]. FAST methods are
also widely used to estimate Sobol indices. Introduced earlier by Cukier et al. [3]
[4], they are well known to reduce the computational cost of multidimensional
integrals thanks to Fourier transformations. Later, Tarantola et al. [38] adapted
the Random Balance Designs (RBD) to FAST method for SA (see also recent
advances on the subject by Tissot et al. [40]).

However, these indices are constructed on the hypothesis that the input vari-
ables are independent, which seems unrealistic for many real life phenomena.
In the literature, only a few methods and estimation procedures have been pro-
posed to handle models with dependent inputs. Several authors have proposed
sampling techniques to compute marginal contribution of inputs to the out-
come variance (see the introduction in Mara and references therein [27]). As
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underlined in Mara et al. [27], if inputs are not independent, the amount of
the response variance due to a given factor may be influenced by its depen-
dence to other inputs. Therefore, classical Sobol indices and FAST approaches
for dependent variables are difficult to interpret (see, for example, Da Veiga’s
illustration [5] p.133). Xu and Gertner [42] proposed to decompose the partial
variance of an input into a correlated part and an uncorrelated one. Such an ap-
proach allows to exhibit inputs that have an impact on the output only through
their strong correlation with other incomes. However, they only investigated
linear models with linear dependences.

Later, Li et al. [24] extended this approach to more general models, using the
concept of High Dimensional Model Representation (HDMR [23]). HDMR is
based on a hierarchy of component functions of increasing dimensions (trunca-
tion of Sobol decomposition in the case of independent variables). The compo-
nent functions are then approximated by expansions in terms of some suitable
basis functions (e.g., polynomials, splines, ...). This meta-modeling approach
allows the splitting of the response variance into a correlative contribution and
a structural one of a set of inputs. Mara et al. [27] proposed to decorrelate the
inputs with the Gram-Schmidt procedure, and then to perform the ANOVA-
HDMR of Li et al. [24] on these new inputs. The obtained indices can be inter-
preted as fully, partially correlated and independent contributions of the inputs
to the output. Nevertheless, this method does not provide a unique orthogonal
set of inputs as it depends on the order of the inputs in the original set. Thus,
a large number of sets has to be generated for the interpretation of resulting
indices. As a different approach, Borgonovo et al. [1, 2] initiated the construc-
tion of a new generalized moment free sensitivity index. Based on geometrical
consideration, these indices measure the shift area between the outcome density
and this same density conditionally to a parameter. Thanks to the properties of
these new indices, a methodology is given to obtain them analytically through
test cases. Recently, Kucherenko et al. [19] proposed to use first order and to-
tal sensitivity indices based on the classical decomposition of total variance.
These new indices are estimated by crude Monte Carlo method on conditional
expectation through several numerical examples.

Notice that none of these works has given an exact and unambiguous defi-
nition of the functional ANOVA for correlated inputs as the one provided by
Hoeffding-Sobol decomposition when inputs are independent. Consequently, the
exact form of the model has neither been exploited to provide a general variance-
based sensitivity measures in the dependent frame.

In a pionnering work, Hooker [14], inspired by Stone [37], shed new lights on
hierarchically orthogonal function decomposition.

We revisit here the work of Hooker and Stone. We obtain hierarchical func-
tional decomposition under a general assumption on the inputs distribution.
Furthermore, we also show the uniqueness of the decomposition leading to the
definition of new sensitivity indices. Under suitable conditions on the joint dis-
tribution function of the input variables, we give a hierarchically orthogonal
functional decomposition (HOFD) of the model. The summands of this decom-
position are functions depending only on a subset of input variables and are
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hierarchically uncorrelated. This means that two of these components are or-
thogonal whenever all the variables involved in one of the summands also appear
in the other. This decomposition leads to the construction of generalized sen-
sitivity indices well tailored to perform global SA when the input variables are
dependent. In the case of independent inputs, this decomposition is nothing
more than the Hoeffding one. Furthermore, our generalized sensitivity indices
are in this case the classical Sobol ones.

Recently, Li et al. [22] proposed a numerical method to compute the decom-
position components given by Hooker. Using a constrainted minimization of the
squared error, the variational counterpart of the decomposition also given in [14],
they estimate the decomposition with an extended basis by using a continuous
descent technique.

Here, we propose an estimation method performed by solving linear system
involving suitable projection operators. We will focus on the particular case
where the inputs are independent pairs of dependent variables (IPDV). Firstly,
in the simplest case of a single pair of dependent variables, the HOFD may
be obtained by solving a functional linear system of equations (see Procedure
1). In the more general IPDV case, the HOFD is then obtained in two steps
(see Procedure 2). The first step is a classical Hoeffding-Sobol decomposition of
the output on the input pairs, as developped in Jacques et al. [16]. The second
step is the HOFDs of all the pairs. In practical situations, the non parametric
regression function of the model is generally not exactly known. In this case,
one can only have at hand some realizations of the model and have to estimate,
with this information, the HOFD. Here, we study this statistical problem in the
IPDV case. We build estimators of the generalized sensitivity indices and study
numerically their properties. One of the main conclusion is that the generalized
indices have a total normalized sum. This is not true for classical Sobol indices
in the frame of dependent variables.

The paper is organized as follows. In Section 2, we give and discuss general
results on the HOFD. The main result is Theorem 1. We show here that a HOFD
is available under a boundedness type assumption (C.2) on the density of the
joint distribution function of the inputs. Further, we introduce the generalized
indices. In Section 3, we give examples of multivariate distributions to which
Theorem 1 applies. We also state a sufficient condition for (C.2) and necessary
and sufficient conditions in the IDPV case. Section 4 is devoted to the estimation
procedures of the components of the HOFD and of the new sensitivity indices.
Section 5 presents numerical applications. Through three toy functions, we es-
timate generalized indices and compare their performances with the analytical
values. In the first two examples, we compare the sensitivity indices estimations
to the true values to show the relevance of our new indices. The last example is a
more realistic model. To prevent an industrial site from inundation, the overflow
of a river is modelized by a set of eight inputs, in which some pairs are linearly
correlated. The goal of this last application is to detect the most influential vari-
ables taking into account the dependence of the variables in the physical model.
In Section 6, we give conclusions and discuss future work. Technical proofs and
further details are postponed to the Appendix.
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2. Generalized Hoeffding decomposition-application to SA

To begin with, let introduce some notation. We briefly recall the usual functional
ANOVA decomposition, and Sobol indices. We then state a generalization of this
decomposition, allowing to deal with correlated inputs.

2.1. Notation and first assumptions

We denote by ⊂ the strict inclusion, that is A ⊂ B ⇒ A ∩ B 6= B, whereas we
use ⊆ when equality is possible.

Let (Ω,A, P ) be a probability space and let Y be the output of a deterministic
model η. Suppose that η is a measurable function of a random vector X =
(X1, . . . , Xp) ∈ R

p, p ≥ 1 and let PX be the pushforward measure of P by X,

Y :
(Ω,A, P ) → (Rp,B(Rp), PX) → (R,B(R))

ω 7→ X(ω) 7→ η(X(ω))

Let ν be a σ–finite measure on (Rp,B(Rp)). Assume that PX << ν and let
pX be the density of PX with respect to ν, that is pX = dPX

dν .
Also, assume that η ∈ L2

R(R
p,B(Rp), PX). The associated inner product of

this Hilbert space is:

〈h1, h2〉 =
∫

h1(x)h2(x)pXdν(x) = E(h1(X)h2(X))

Here E(·) denotes the expectation. The corresponding norm will be classi-
cally denoted by ‖ · ‖. Further, V (·) = E[(· − E(·))2] denotes the variance, and
Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] the covariance.
Let Pp := {1, . . . , p} and S be the collection of all subsets of Pp. Define S− :=
S \ Pp as the collection of all subsets of Pp except Pp itself. The cardinality of
a set u is denoted by #(u) or |u| according to the context.

Further, let Xu := (Xl)l∈u, u ∈ S \ {∅}. We introduce the subspaces of
L2
R(R

p,B(Rp), PX) (Hu)u∈S , (H
0
u)u∈S and H0. Hu is the set of all measurable

and square integrable functions depending only on Xu.H∅ is the set of constants
and is identical to H0

∅ . H
0
u, u ∈ S \ ∅, and H0 are defined as follows:

H0
u =

{
hu(Xu) ∈ Hu, 〈hu, hv〉 = 0, ∀ v ⊂ u, ∀ hv ∈ H0

v

}

H0 =

{
h(X) =

∑

u∈S

hu(Xu), hu ∈ H0
u

}

At this stage, we do not make assumptions on the support of X.

2.2. Sobol sensitivity indices

In this section, we recall the classical Hoeffding-Sobol decomposition, and the
Sobol sensitivity indices if the inputs are independent, that is when PX = PX1 ⊗
· · · ⊗ PXp

.
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The usual presentation is done whenX ∼ U([0, 1]p) [35], but the Hoeffding de-
composition remains true in the more general case of independent variables [41].

Let x = (x1, . . . , xp) ∈ R
p. The decomposition consists in writting η(x) =

η(x1, . . . , xp) as the sum of increasing dimension functions:

η(x) = η0 +

p∑

i=1

ηi(xi) +
∑

1≤i<j≤p

ηi,j(xi, xj) + · · ·+ η1,...,p(x)

=
∑

u⊆{1···p}

ηu(xu) (1)

The expansion (1) exists and is unique under the assumption
∫

ηu(xu)dPXi
= 0 ∀ i ∈ u, ∀ u ⊆ {1 · · ·p}

Equation (1) tells us that the model function Y = η(X) can be expanded
in a functional ANOVA. The independence of the inputs and the orthogonality
properties ensure the global variance decomposition of the output as V (Y ) =∑

u∈S\∅ V (ηu(Xu)). Moreover, by integration,

η0 = E(Y ), ηu = E(Y |Xu)−
∑

v⊂u

ηv, |u| ≥ 1 (2)

Hence, the contribution of a group of variablesXu in the model can be quantified
in the fluctuations of Y . The Sobol indices are defined by:

Su =
V (ηu)

V (Y )
=

V [E(Y |Xu)]−
∑

v⊂u(−1)|u|−|v|V [E(Y |Xv)]

V (Y )
, u ⊆ Pp (3)

Furthermore, Sobol indices are summed to 1.
However, the main assumption is that the input parameters are independent.

This is unrealistic in many cases. The use of the previous expressions is not
excluded in case of inputs’ dependence, but could lead to an unobvious or a
wrong interpretation. Moreover, used methods to estimate them may mislead
final results because most of these methods are built on the assumption of
independence. For these reasons, the objective of the upcoming work is to show
that the construction of sensitivity indices under dependence condition can be
done into a mathematical frame.

In the next section, we propose a generalization of the Hoeffding decomposi-
tion under suitable conditions on the joint distribution function of the inputs.
This decomposition consists of summands of increasing dimension, like in Ho-
effding one. But this time, the components are hierarchically orthogonal instead
of being mutually orthogonal. The hierarchical orthogonality will be mathemati-
cally defined further, and the obtained decomposition will be denoted by HOFD,
as mentioned in the introduction. Thus, the global variance of the output could
be decomposed as a sum of covariance terms depending on the summands of the
HOFD. It leads to the construction of generalized sensitivity indices summed to
1 to perform well tailored SA in case of dependence.
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2.3. Generalized decomposition for dependent inputs

We no more assume that PX is a product measure. Nevertheless, we assume:

PX << ν

where
ν(dx) = ν1(dx1)⊗ · · · ⊗ νp(dxp)

(C.1)

Our main assumption is:

∃ 0 < M ≤ 1, ∀ u ⊆ Pp, pX ≥ M · pXu
pXuc ν-a.e. (C.2)

where uc denotes the complement set of u in Pp. pXu
and pXuc are respectively

the marginal densities of Xu and Xuc .

A sufficient condition for (C.2) will be given later in Proposition 2. It will give
a better understanding of (C.2). However, (C.2) may pave the way for another
type of dependence. Indeed, for p = 2 and M = 1, it implies the positive
quadrant dependence given by Lehmann [21]. Furthermore, the reinterpretation
with copulas, given in Proposition 3, shows that (C.2), despite its unobvious
form, holds for a wide class of copulas.

The section is organized as follows: a preliminary lemma gives the main result
to show that H0 is a complete space. This is a reminder of Lemma 3.1 studied in
[37]. It ensures the existence and the uniqueness of the projection of η onto H0,
as given in Theorem 3.1 of [37]. The generalized decomposition of η is finally
obtained by adding a residual orthogonal to every summand, as suggested in [14].

To begin with, let us state some definitions. In the usual ANOVA context,
a model is said to be hierarchical if for every term involving some inputs, all
lower-order terms involving a subset of these inputs also appear in the model.
Correspondingly, a hierarchical collection T of subsets of Pp is defined as follows:

Definition 1. A collection T ⊂ S is hierarchical if for u ∈ T and v a subset of
u, one has v ∈ T .

Using this definition, let state the following result:

Lemma 1. Let T ⊂ S be hierarchical. Suppose that (C.1) and (C.2) hold. Set
δ = 1−

√
1−M ∈]0, 1]. Then, for any hu ∈ H0

u, u ∈ T , we have:

E[(
∑

u∈T

hu(X))2] ≥ δ#(T )−1
∑

u∈T

E[h2
u(X)] (4)

Lemma 1 is one of the key tool to show the hierarchical decomposition given
in Theorem 1. To be self-contained, we give the proofs of Lemma 1 and Theorem
1 in the Appendix.
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Theorem 1. Let η be any function in L2
R(R

p,B(Rp), PX). Then, under (C.1)
and (C.2), there exist functions η0, η1, . . . , ηPp

∈ H∅ ×H0
1 × · · ·H0

Pp
such that

the following equality holds:

η(X1, . . . , Xp) = η0 +
∑

i

ηi(Xi) +
∑

i,j

ηij(Xi, Xj) + · · ·+ ηPp
(X1, . . . , Xp)

=
∑

u∈S

ηu(Xu) (5)

Moreover, this decomposition is unique.

Notice that in the case where the input variablesX1, . . . , Xp are independent,
δ = 1 and Inequality (4) of Lemma 1 becomes an equality. Indeed, in this case,
this equality is directly obtained by orthogonality of the summands, and the
HOFD turns out to be the classical Sobol decomposition.

2.4. Generalized sensitivity indices

As stated in Theorem 1, under (C.1) and (C.2), the output Y of the model can
be uniquely decomposed as a sum of hierarchically orthogonal terms. Thus, the
global variance has a simplified decomposition into a sum of covariance terms.
From this fact, we can define generalized sensitivity indices.

Definition 2. The sensitivity index Su of order |u| measuring the contribution
of Xu into the model is given by:

Su =
V (ηu(Xu)) +

∑
u∩v 6=u,v Cov(ηu(Xu), ηv(Xv))

V (Y )
(6)

More specifically, the first order sensitivity index Si is given by:

Si =

V (ηi(Xi)) +
∑

v 6=∅
i6∈v

Cov(ηi(Xi), ηv(Xv))

V (Y )
(7)

An obvious consequence is given in Proposition 1 (see proof in the Appendix):

Proposition 1. Under (C.1) and (C.2), the sensitivity indices Su defined pre-
viously sums to 1, i.e. ∑

u∈S\{∅}

Su = 1 (8)

Discussion

First, we note that these indices are very similar to the ones proposed in Li
et al. [24]. Nevertheless, their approach is different as they are mainly interested
with the estimation of these quantities. For this purpose, they first approximate
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the model output by component functions. Further, they deduce a decomposi-
tion of the global variance. Here, indices originate from the HOFD of any regular
function, but the assumptions (C.1) and (C.2) are required. Although the prob-
lem takes another route here, it should be noted that there exist other several
methods to evaluate the importance of variables. Among them, the PLS [11], the
Lasso regression [39], or, more generally, the LARS method [9] are performed
for shrinkage and variable selection. More closely related, the COSSO regres-
sion [25] is a Lasso on SS-ANOVA [12] components to select a sparse number of
effects. In [20], the prediction quality of linear models after parameters selection
by sensitivity analysis is compared to Lasso regression. It highlights the complex
relationship between sensitivity analysis and the prediction mean squared error.

In terms of interpretation, we notice that the covariance terms included in
these indices allow to take into account the input dependence. Thus, they allow
to measure the influence of a variable on the model, especially when a part of its
variability is embedded into the one of other dependent terms. The form of the
sensitivity indices allows for distinguishing the full contribution of a variable and
its contribution into another correlated income. Also, if inputs are independent,
the summands ηu are mutually orthogonal, so Cov(ηu, ηv) = 0, u 6= v, and we
recover the well known Sobol indices. Hence, these new sensitivity indices can
be seen as a generalization of Sobol indices.

3. Examples of distribution function

This section is devoted to examples of distribution function satisfying (C.1) and
(C.2). The first hypothesis only implies that the reference measure is a product
measure, whereas the second is trickier to obtain.

In the first part, we give a sufficient condition to get (C.2) for any number p
of input variables. The second part deals with the case p = 2, for which we give
equivalences of (C.2) in terms of copulas.

3.1. Boundedness of the inputs density function

The difficulty of Condition (C.2) is that the inequality has to be true for any
splitting of the set (X1, . . . , Xp) into two disjoint blocks. We give a sufficient
condition for (C.2) to hold in Proposition 2. This proposition is basically the
condition given by Stone in the case of the Lebesgue measure on a compact
rectangle. The proof can be found in [37] page 132.

Proposition 2. Assume that there exist M1,M2 > 0 with

M1 ≤ pX ≤ M2 (C.3)

Then, Condition (C.2) holds.
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Let give now an example where (C.3) is satisfied.

Example 1. Let ν be the multidimensional gaussian distribution Np(m,Σ)
with

m =



m1

...
mp


 , Σ =



σ2
1 · · · 0

. . .

0 · · · σ2
p




Assume that PX is the Gaussian mixture α · Np(m,Σ) + (1 − α) · Np(µ,Ω),
α ∈]0, 1[ with

µ =



µ1

...
µp


 , Ω =




ϕ2
1 ρ12 · · · ρ1p

· · ·
ρ1p · · · · · · ϕ2

p





Then, (C.3) holds iff the matrix (Ω−1 − Σ−1) is positive definite.

In the next section, we will see that (C.2) has a copula version when p =
2. Thus, we establish two equivalent conditions to (C.2). We will give some
examples of distribution satisfying one of these conditions.

3.2. Examples of distribution of two inputs

Here, we consider the simpler case p = 2. Also, until Section 4, we will assume
that ν is absolutely continuous with respect to Lebesgue measure. The structure
of dependence of X1 and X2 can be modelized by copulas. Copulas [29] give a
relationship between a joint distribution and its marginals. Sklar’s theorem [34]
ensures that for any distribution function F (x1, x2) with marginal distributions
F1(x1) and F2(x2), F has the copula representation,

F (x1, x2) = C(F1(x1), F2(x2))

where the measurable function C is unique whenever F1 and F2 are absolutely
continuous.

The next corollary gives in the absolutely continuous case the relationship
between a joint density and its marginal:

Corollary 1. In terms of copulas, the joint density of X is given by:

pX(x1, x2) = c(F1(x1), F2(x2))pX1(x1)pX2(x2) (9)

Furthermore,

c(u, v) =
∂2C

∂u∂v
(u, v), (u, v) ∈ [0, 1]2 (10)

Now, Condition (C.2) may be rephrased in terms of copulas:

Proposition 3. For a two-dimensional model, the three following conditions
are equivalent:
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1. ∃ 0 < M < 1, pX ≥ M · pX1pX2 ν-a.e. (C.4)

2. ∃ 0 < M < 1, c(u, v) ≥ M, ∀ (u, v) ∈ [0, 1]2 (C.5)

3. ∃ 0 < M < 1, C(u, v) = Muv + (1−M)C̃(u, v), for some copula C̃

(C.6)

The proof of Proposition 3 is postponed to the Appendix. Hence, the gen-
eralized Hoeffding decomposition holds for a wide class of examples. The Mor-
genstern [28] and the Frank copulas belong to this class.

Example 2.

• The Morgenstern copulas satisfies (C.6) with

Cθ(u, v) = uv[1 + θ(1 − u)(1− v)], θ ∈]− 1, 1[

• The Frank copula is a Archimedian copula, and satisfies (C.5). It is char-
acterized by the generator:

ϕ(x) = log

(
e−θx − 1

e−θ − 1

)
, θ ∈ R \ {0}

and
C(u, v) = ϕ−1[ϕ(u) + ϕ(v)], u, v ∈ [0, 1] (11)

Here, c(u, v) ≥ −θ(e−θ − 1)e−2θ if θ > 0, c(u, v) ≥ −θ(e−θ − 1) elsewhere.

Other examples of copulas from the Archimedian class also satisfy (C.4)-(C.6)
by an intermediate proposition. Details are given in Appendix. Leaving the class
of copulas, we now directly work with the joint density function. Proposition 4
gives a general form of distribution for our framework:

Proposition 4. If pX has the form

pX(x1, x2) = α · fX1(x1)fX2(x2) + (1− α) · gX(x1, x2), α ∈]0, 1[ (12)

where fX1 , fX2 are univariate density functions, and gX is any density function
(with respect to ν) with marginals fX1 and fX2 , then pX satisfies (C.5).

The proof is straightforward.
The remaining part of the paper is devoted to the estimation of the HOFD

components. In the next section, we will assume that the set of inputs is an
independent pairs of dependent variables (abbreviated in IPDV).

The simplest case of a single pair of dependent variables is first discussed.
Then, the more general IPDV case is studied. In all cases, first and second
order indices are defined to measure the contribution of each pair of dependent
variables and each of its components in the model. Indices of order greater than
one involving variables from different pairs will not be studied here.
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4. Estimation

Here, we investigate a different approach from [22]. The method relies on the
property of hierarchical orthogonality (H0

u ⊥ H0
v , ∀ v ⊂ u), and on projection

operator onto H0
u, denoted by PH0

u
, for u ∈ S. The idea is to project the output

onto H0
u, ∀ u, to get the HOFD components (ηu)u as a solution of a functional

linear system. It then consists in solving the system numerically. This section
is first devoted to the HOFD terms computation with this method in two di-
mensional models. At last, we extend the procedure to the more general IPDV
case.

4.1. Models of p = 2 input variables

This part is devoted to the simple case of bidimensional models Y = η(X1, X2).
Assuming that Conditions (C.1) and (C.2) both hold, we proceed as follows:

Procedure 1

1. HOFD of the output:

Y = η0 + η1(X1) + η2(X2) + η12(X1, X2) (13)

2. Projection of Y = η(X) on H0
u, ∀ u ⊆ {1, 2}. As H0

u ⊥ H0
v , ∀ v ⊂ u, we

obtain: 


Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id







η0
η1
η2
η12


 =




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 (14)

3. Computation of the right-hand side vector of (14):




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 =




E(η)
E(η|X1)− E(η)
E(η|X2)− E(η)

η − E(η|X1)− E(η|X2) + E(η)


 (15)

In this frame, we have:

Proposition 5. Let η be any function of L2
R(R

p,B(Rp), PX). Then, under
(C.1) and (C.2), the linear system

(S)




Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id







h0

h1

h2

h12


 =




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 (16)

admits in h = (h0, . . . , h12) ∈ H∅ × · · · × H0
12 the unique solution h∗ =

(η0, η1, η2, η12).
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4. Reduction of the system (14). As the constant term corresponds to the
mean value of η, and the last term η12 can be deduced from the others, the
dimension of the system (16) can even be reduced to:

(
Id PH0

1

PH0
2

Id

)(
η1
η2

)
=

(
E(η|X1)− E(η)
E(η|X2)− E(η)

)
(17)

For the next step, we will denote by A2∆ = B the system (17), where A2 is
the left-hand side matrix of projection operators of (17), ∆ = t

(
η1 η2

)
,

and B is the right-hand side vector of (17).
5. Estimation procedure: Suppose that we get a sample of n observations

(Yl,Xl)l=1,...,n.

• The numerical resolution of (17) is achieved by an iterative Gauss
Seidel algorithm [18] which consists first in decomposing A2 as a sum
of lower triangular (L2) and strictly upper triangular (U2) matrices.

Further, the technique uses an iterative scheme to compute ∆. At
step k + 1, we have:

∆(k+1) :=

(
∆

(k+1)
1

∆
(k+1)
2

)
= L−1

2 (B − U2 ·∆(k)) (18)

Using expression of A2, we get:

∆(k+1) =

(
E(Y −∆

(k)
2 |X1)− E(Y −∆

(k)
2 )

E(Y −∆
(k+1)
1 |X2)− E(Y −∆

(k+1)
1 )

)
(19)

The iterative scheme (19) requires to estimate conditional expecta-
tions. As studied in Da Veiga et al [6], we propose to estimate these
quantities by local polynomial regression at each point of observation
(Yl,Xl). Then, we use the leave-one-out technique to set the learning
sample and the test sample. Moreover, as the local polynomial method
can be summed up to a generalized least squares (see Fan and Gij-
bels [10]), the Sherman-Morrison formula [33] is applied to reduce
the computational time.

We stop the procedure when ‖∆(k+1) −∆(k)‖ ≤ ε, for a small posi-
tive ε.

Once (η1, η2) have been estimated, we deduce an estimation of η12 by
substraction.

• We use empirical variance and covariance estimation to estimate sen-
sitivity indices S1, S2 and S12.

6. Convergence of the algorithm: now, we hope that the Gauss Seidel algo-
rithm converges to the true solution. Looking back at (14), we see that we
only have to consider PH0

1
(respectively PH0

2
) restricted to H0

2 (respectively

to H0
1 ).
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Under this restriction, let us define the associated norm operator as:

‖PH0
i
‖2 := sup

E(U2)=1

U∈H0
j

E[PH0
i
(U)2], i, j = 1, 2, j 6= i

As explained in [7], Gauss Seidel algorithm converges to the true solution
∆ if A2 is striclty diagonally dominant, which is implied by:

‖PH0
i
‖ < ‖Id‖ = 1, i = 1, 2 (20)

As PH0
i
(U) = E(U |Xi) − E(U) by (15), the Jensen inequality [17] is ap-

plied. Take U ∈ H0
1 :

‖PH0
2
‖ = supE(U2)=1

U∈H0
1

E[(E(U |X2)− E(U))2]

≤ supE(U2)=1

U∈H0
1

E[E(U2|X2)] = 1 as U ∈ H0
1

The same holds for ‖PH0
2
‖. Thus ‖PH0

2
‖ < 1 holds if U (function of Xj)

is not Xi-measurable. Hence, the condition of convergence holds if X1 is
not a measurable function of X2.

4.2. Generalized IPDV models

Assume that the number of inputs is even, so p = 2k, k ≥ 2. We note each group

of dependent variables as X(i) := (X
(i)
1 , X

(i)
2 ), i = 1, . . . , k. By rearrangement,

we may assume that:

X = (X1, X2︸ ︷︷ ︸
X(1)

, . . . , X2k−1, X2k︸ ︷︷ ︸
X(k)

)

If p is odd, one of the pairs is reduced to a single input. SA for IPDV models
has already been treated in [16]. Indeed, they proposed therein to estimate usual
sensitivity indices on groups of variables via a Monte Carlo method. Thus, they
have interpreted the influence of every group of variables on the global variance.
Here, we will go further by trying to measure the influence of each variable on
the output, but also the effets of the independent pairs.

To begin with, as a slight generalization of [35] and used in [16], let apply
the Sobol decomposition on independent groups of dependent variables,

η(X) = η0 + η1(X
(1)) + · · ·+ ηk(X

(k)) +

k∑

|u|=2

ηu(X
(u))

where for u = {u1, . . . , ut} and t = |u|, we set X(u) = (X(u1), . . . ,X(ut)). Fur-
thermore, 〈ηu, ηv〉 = 0, ∀ u 6= v.
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Under the assumptions discussed in the previous section, we can apply the
HOFD on each component ηi, that is,

ηi(X
(i)) = ηi(X

(i)
1 , X

(i)
2 ) = ϕi0 + ϕi,1(X

(i)
1 ) + ϕi,2(X

(i)
2 ) + ϕi,12(X

(i))

with 〈ϕi,u, ϕi,v〉 = 0, ∀ v ⊂ u ⊆ {1, 2}. In this way, let define some new gener-
alized indices for IPDV models:

Definition 3. For i = 1, . . . , k, the sensitivity index measuring the respective

contribution of X
(i)
j (j = 1, 2) and (X

(i)
1 , X

(i)
2 ) on the output is:

Si,j =
V (ϕi,j) + Cov(ϕi,j , ϕi,k)

V (Y )
, k = 2 if j = 1 Si,12 =

V (ϕi,12)

V (Y )
(21)

The estimation procedure of these indices is quite similar to Procedure 1:

Procedure 2

1. Estimation of (ηi)i=1,...,k: as reminded in Part 2.2 with Equations (2),
ηi = E(Y |X(i)) − E(Y ). We use the non parametric estimation reminded
in step 5 of Procedure 1 to get η̂i.

2. For i = 1, . . . , k, we apply step 2 to step 5 of Procedure 1, considering η̂i
as the new output.

If p is odd, the procedure is the same except that the influence of the inde-
pendent variable is measured by a Sobol index, as it is independent from all the
others. The next part is devoted to numerical examples.

5. Numerical examples

In this section, we study three examples with dependent input variables. For
the first two illustrations, we consider IPDV models and a Gaussian mixture
distribution on the input variables. The covariance matrices of the mixture
satisfy conditions of Example 1.

We give estimations of our new indices, and compare these estimations to the
true values, computed from expressions (6). We also compute dispersions of the
estimators.

In [6], Da Veiga et al. proposed to estimate the classical Sobol indices as
defined in (3) by nonparametric tools. Indeed, the local polynomial regression
were used to estimate conditional moments E(Y |Xu), u ⊆ Pp. This method,
used further, will be called Da Veiga procedure (DVP). Results given by DVP
are compared with our method. We show that the usual sensitivity indices are
not appropriate in the dependence frame, even if a relevant estimation method
is used.

The last example is devoted to a more realistic case. The study case concerns
the river flood inundation of an industrial site. In this example, input variables
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have different distributions, and some pairs are linearly correlated. We repre-
sent dispersions of the estimation of our new indices, and give some physical
interpretations.

5.1. Two-dimensional IPDV model

Let consider the model
Y = expX1 +X1 +X2

Here, ν and PX are of the form given by Example 1, with m = µ = 0.
Thus, the analytical decomposition of Y is

η0 = E(expX1), η1 = expX1 +X1 − E(expX1), η2 = X2

For the application, we implement Procedure 1 in Matlab software. We pro-
ceed to L = 50 simulations and n = 1000 observations. Parameters were fixed
at σ1 = σ2 = 1, ϕ2

1 = ϕ2
2 = 0.5, ρ12 = 0.4 and α = 0.2.

In Table 1, we give the estimation of our indices and their standard deviation
(indicated by ±·) on L simulations. In comparison, we give the analytical value
of each index. We also give estimators of the classical Sobol indices with DVP.

Notice that we obtain a quite good estimation of S1 with our estimation
procedure. Ŝ2 is lightly lower than expected, and, consequently, the estimation
error of the interaction term η12 is bigger than 0. In comparison, the DVP badly
scales S2, even if for both methods, the inputs hierarchy is the same.

In our method, it would be relevant to separate the variance part to the
covariance one in the first order indices. Indeed, in this way, we would be able
to get the part of variability explained by Xi alone in Si, and its contribution
hidden in the dependence with Xj . We note Sv

i the variance contribution alone,
and Sc

i the covariance contribution, that is

Si =
V (Xi)

V (Y )︸ ︷︷ ︸
Sv
i

+
Cov(Xi, Xj)

V (Y )︸ ︷︷ ︸
Sc
i

, i = 1, 2, j 6= i

The new indices estimations given in Table 1 are decomposed in Table 2.
For each index, the covariate X1 explains 65% (in estimation, 61% in reality)

of the part of the total variability. However, the contribution embedded in the

Table 1

Estimation of the new and DVP indices with ρ12 = 0.4

S1 S2 S12

∑
u
Su

New
indices

Estimation 0.7449± 0.0159 0.2187 ± 0.0151 0.0455 ± 0.0123 1

Analytical 0.7497 0.2503 0 1

DVP
indices Estimation 0.7774 0.1792 0.043 1.00
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Table 2

Estimation of Sv

i
and Sc

i
with ρ12 = 0.4

Sv

i
Sc

i
Si

Estimated
X1 0.6531 0.0918 0.7449

X2 0.1049 0.1138 0.2187

Analytical
X1 0.6122 0.1375 0.7497

X2 0.1129 0.1375 0.2504

correlation is not negligible as it represents between 9% and 11% (13.75% an-
alytically)of the total variance. Considering the shape of the model, it is quite
natural to get a higher contribution of X1. Also, as their dependence is quite
important, with a covariance term equals to 0.4, we are not surprised by the
relatively high value of Sc

1 (resp. Sc
2).

5.2. Linear four-dimensional model

The test model is
Y = 5X1 + 4X2 + 3X3 + 2X4

Let consider the case of two blocks X(1) = (X1, X3) and X(2) = (X2, X4) of
correlated variables. X(i), i = 1, 2 follows the Gaussian mixture. The analytical
sensitivity indices are given by (21). For L = 50 simulations and n = 1000

observations, we took ϕ
2(1)
1 = ϕ

2(1)
2 = 0.5, ϕ

2(2)
1 = 0.7, ϕ

2(2)
2 = 0.3, ρ

(1)
13 = 0.4,

ρ
(2)
24 = 0.37, α1 = α2 = 0.2 and Σ(1) = Σ(2) = I2.
Figure 1 displays the dispersion of indices of first order for all variables and

second order for grouped variables. The true values and the estimators of clas-
sical Sobol indices with DVP are also represented.

On Figure 1, we see that X1 has the biggest contribution, whereas the influ-
ence of X4 is very low. It reflects well the model if we look at the coefficients of
Xi, i = 1, . . . , 4. Notice that the interaction terms are well estimated, as they
are closed to 0. For each case, the dispersion on 50 simulations is very low.

Furthermore, the DVP estimators are once again very high compared with
the true indices values.

5.3. River flood inundation

Several SA methods have been studied on the simplified model of river flood
inundation. A brief description of the model is given here, but more details can
be found in [15, 8]. The study case concerns an industrial site located near a
river, and protected from it by a dyke. The goal is to study the water level
with respect to the dyke height to prevent from inundation. The model has the
following form

S = Zv + h︸ ︷︷ ︸
Zc

−Hd − Cb, h =


 Q

BKs

√
Zm−Zv

L




0.6
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Fig 1. Boxplots representation of new indices-Comparison with analytical and DVP indices

Table 3

Description of inputs-output of the river flood model

Variables Meaning Distribution

h maximal annual water level -

Q maximal annual flow rate Gumbel G(1013, 558) truncated to [500; 3000]

Ks Strickler coefficient Normal N(30, 8) truncated to [15,+∞[

Zv river downstream level Triangular T (49, 50, 51)

Zm river upstream level Triangular T (54, 55, 56)

Hd dyke height Uniform U([7, 9])

Cb bank level Triangular T (55, 55.5, 56)

L length of the river stretch Triangular T (4990, 5000, 5010)

B river width Triangular T (295, 300, 305)

This model is a crude simplification of the 1-D Saint Venant equations, when
uniform and constant flow rate is assumed. The model output S is the maximal
overflow that depends on eight random variables. Hd is a design parameter.
The randomness of other inputs is due to their spatio-temporal variability, or
some inaccuracies of their estimation. Table 3 gives the meaning of each input
variable, and how they are distributed. The river flow is represented in Figure 2.

Here, we suppose that (Q,Ks) is a correlated pair, with correlation coeffi-
cient ρ = 0.5. This correlation is admitted in real case, as we consider that the
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Fig 2. The river flood model
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Fig 3. Boxplots of new indices for the river flood model

friction coefficient increases with the flow rate. Also, (Zv, Zm) and (L,B) are
assumed to be dependent with the same Pearson coefficient ρ = 0.3, because
data are supposed to be simultaneously collected by the same measuring device.
Correlated variables are simulated according to the algorithm given in [32]. A
theoretical background can be found in [29]. We made n = 1000 model evalua-
tions repeated L = 50 times. The dispersion of estimated indices is represented
in Figure 3.

The most influential parameters are the flow rate Q, the downstream level
Zv, and the dyke height Hd. Q and Hd’s strong contribution makes sense here,
as they represent the most important parameters to limit river flood.
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6. Conclusions and perspectives

This paper gives a rigorous frame for general Hoeffding-Sobol decomposition
in the case of dependent input variables. In the statistical procedure, we only
consider the restricted case of IPDV models. Thus, for more general models,
the mathematical properties of the statistical estimation of this decomposition
remains a challenging open problem.

Appendix A: Generalized Hoeffding decomposition

A.1. Generalized decomposition for dependent inputs

The upcoming proof follows the guideline of the proof of Lemma 3.1 in Stone [37].

Proof of Lemma 1.
By induction on the cardinal of T , let show that

H(n) : ∀ T |#(T ) = n, E[(
∑

u∈T

hu(X))2] ≥ δ#(T )−1
∑

u∈T

E[h2
u(X)]

• H(1) is obviously true, as T is reduced to a singleton
• Let n ∈ N

∗. Suppose that H(n′) is true for all 1 ≤ n′ ≤ n. Let T such that
#(T ) = n+ 1. We want to prove H(n+ 1).
Choose a maximal set r of T , i.e. r is not a proper subset of any set u in
T . We show first that

E[(
∑

u∈T

hu(X))2] ≥ M · E(h2
r(X)) (22)

– If #(r) = p, by definition ofH0
r , we get E[(

∑
u∈T hu(X))2] ≥ E(h2

r(X)) ≥
ME(h2

r(X)) as M ≤ 1.

– If 1 ≤ #(r) ≤ p − 1, set X = (X1, X2), where X1 = (Xl)l/∈r and
X2 = (Xl)l∈r. By Condition (C.2), it follows that

pX ≥ M · pX1pX2

As a consequence,

E[(
∑

u∈T

hu(X))2] =

∫

X1

∫

X2

[hr(x2) +
∑

u6=r

hu(x1, x2)]
2pXν(dx1, dx2)

≥ M

∫

X1

∫

X2

[hr(x2)

+
∑

u6=r

hu(x1, x2)]
2pX1pX2ν1(dx1)ν2(dx2)

≥ M

∫

X1

E[(hr(X2) +
∑

u6=r

hu(x1, X2))
2]pX1ν1(dx1)

when Xi denotes the support of Xi, i = 1, 2. By maximality of r and
by definition of H0

r ,
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∗ If u ⊂ r, hu only depends on X2 and by orthogonality,

E(hu(X2)hr(X2)) = 0

∗ If u 6⊂ r, hu depends on X1 fixed at x1, and Xu
2 = (Xl)l∈r∩u, so

hu(x1, ·) ∈ H0
r∩u, with r ∩ u ⊂ r, it comes then

E(hu(x1, X2)hr(X2)) = 0

Thus,

E[(
∑

u∈T

hu(X))2] ≥ M

∫

X1

E(h2
r(X2))pX1ν1(dx1)

= M · E(h2
r(X))

So (22) holds for any size of any maximal sets of T .

By using (22) with h̃r = hr and h̃u = −βhu, ∀ u 6= r, we get

E[(hr(X)− β
∑

u6=r

hu(X))2] ≥ ME(h2
r(X)) (23)

Taking β =
E[hr(X)

∑
u6=r hu(X)]

E[(
∑

u6=r hu(X))2]
, it follows that:

E[(hr(X)− β
∑

u6=r

hu(X))2] ≥ ME(h2
r(X))

that is E[h2
r(X)]−

[E(hr(X)
∑

u6=r hu(X))]2

E[(
∑

u6=r hu(X))2]
≥ ME(h2

r(X))

Hence,

[E(hr(X)
∑

u6=r

hu(X))]2 ≤ (1−M) · E(h2
r(X)) · E[(

∑

u6=r

hu(X))2] (24)

This implies

E[(
∑

u

hu(X))2] ≥ (1−
√
1−M)

[
E(h2

r(X)) + E[(
∑

u6=r

hu(X))2]

]
(25)

Set x = hr(X) and y =
∑

u6=r hs(X).(25) is rephrased as

‖x+ y‖2 ≥ (1−
√
1−M){‖x‖2 + ‖y‖2} (26)

Further, (24) is 〈x, y〉 ≥ −
√
1−M‖x‖ · ‖y‖. Thus,

‖x‖2 + ‖y‖2 ≥ 2〈x, y〉
≥ − 2√

1−M
〈x, y〉

So ‖x+ y‖2 ≥ (1 −
√
1−M){‖x‖2 + ‖y‖2}.
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As H(n) is supposed to be true and (25) holds, it follows that:

E[(
∑

u

hu(X))2] ≥ δ

[
E(h2

r(X)) + δn−1
∑

u6=r

E(h2
u(X))

]

≥ δn
∑

u

E(h2
u(X)) as δ ∈ ]0, 1]

= δ#(T )−1
∑

u

E(h2
u(X))

Hence, H(n+ 1) holds.

We can deduce that H(n) is true for any collection T of Pp.

Proof of Theorem 1.
Let define the vector space K0 = {∑u∈S− hu(Xu), hu ∈ H0

u, ∀ u ∈ S−}.

In the first step, we will prove that K0 is a complete space to prove the
existence and uniqueness of the projection of η in K0, thanks to the projection
theorem [26].

Secondly, we will show that η is exactly equal to the decomposition into H0,
and finally, we will see that each term of the summand is unique.

• We show that H0
u is closed into Hu (as Hu is a Hilbert space).

Let (hn,u)n be a convergent sequence of H0
u with hn,u → hu. As (hn,u)n ∈

H0
u ⊂ Hu complete, hu ∈ Hu. Let v ⊂ u, and hv ∈ H0

v :

〈hu − hn,u, hv〉 = 〈hu, hv〉 −〈hn,u, hv〉
↓ q

0 0 as H0
u ⊥ H0

v

Thus, 〈hu, hv〉 = 0, so that hu ∈ H0
u. H

0
u is then a complete space.

Let (hn)n be a Cauchy sequence in K0 and we show that each component
is of Cauchy and that hn → h ∈ K0.
As hn ∈ K0, hn =

∑
u∈S− hn,u, hn,u ∈ H0

u. It follows that:

‖hn − hm‖2 = ‖
∑

u

(hn,u − hm,u)‖2

≥ δ#(S−)−1
∑

u∈S−

‖hn,u − hm,u‖2 by Inequality (4)

As (hn)n is a Cauchy sequence, by the above inequality, (hn,u)n is also
Cauchy. As hn,u → hu ∈ H0

u, we deduce that hn −→
n→∞

∑
u∈S− hu =

h∈K0.
Thus, K0 is complete. By the projection theorem, we can deduce there
exists a unique element into K0 such that:

‖η −
∑

u∈S−

ηu‖2 ≤ ‖η − h‖2 ∀ h ∈ K0
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• Decomposition of η: following Hooker [14], we introduce the residual term
as

ηPp
(X1, . . . , Xp) = η(X1, . . . , Xp)−

∑

u∈S−

ηu(Xu)

By projection, 〈η −∑v∈S− ηv, hu〉 = 0 ∀ u ∈ S−, ∀ hu ∈ H0
u. Hence,

η(X) =
∑

u∈S ηu(Xu), ηu ∈ H0
u, ∀ u ∈ S, and this decomposition is well

defined.
• Terms of the summand are unique: assume that η =

∑
u∈S ηu =

∑
u∈S η̃u,

η̃u ∈ H0
u.

By Lemma 1, it follows that

∑
u∈S(ηu−η̃u)=0

‖∑u∈S(ηu−η̃u)‖2≥δ#(S)−1
∑

u∈S ‖ηu−η̃u‖2

}
⇒ ‖ηu−η̃u‖2 = 0 ∀ u∈S

A.2. Generalized sensitivity indices

Proof of Proposition 1.

Under (C.1) and (C.2), Theorem 1 states the existence and the uniqueness
decomposition of η(X) =

∑
u∈S ηu(Xu),, with H0

u ⊥ H0
v , ∀ v ⊂ u.

Therefore, E(η(X)) = E(
∑

u∈S ηu(Xu)) = η0, and

V (Y ) = V (η(X)) = E(η2(X))− η20
=

∑

u6=∅

E(η2u(Xu)) +
∑

u6=v

E(ηu(Xu)ηv(Xv))

=
∑

u6=∅

V (ηu(Xu)) +
∑

u6=∅
u6=Pp

∑

v 6=∅
u*v,v*u

E(ηu(Xu), ηv(Xv))

=
∑

u6=∅


V (ηu(Xu)) +

∑

v
u∩v 6=u,v

Cov(ηu(Xu), ηv(Xv))




Thus, (6) holds, and equalities (7) and (8) follow naturally.

Appendix B: Examples of distribution function

B.1. Boundedness of the inputs density function

Proof of Example 1.

• ν is a product of measure as dν
dνL

=
∏p

i=1 νi(xi), with νi ∼ N(mi, σ
2
i ).
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• pX is given by

pX(x) =
dPX

dν
(x) =

dPX

dνL
× dνL

dν
(x)

= α+ (1− α)

∣∣∣∣
Σ

Ω

∣∣∣∣
1|2

exp−1

2
t(x−m)(Ω−1 − Σ−1)(x−m) (27)

First, we have pX(x) ≥ α > 0. Further, the sufficient and necessary condi-
tion to have pX ≤ M2 < ∞ is to get (Ω−1−Σ−1) positive definite. Indeed,
if (Ω−1 − Σ−1) admits a negative eigenvalue, pX can not be bounded.
Thus, 0 < α ≤ pX ≤ M2 iff (Ω−1 − Σ−1) is positive definite.

B.2. Examples of distribution of two inputs

Proof of Proposition 3.
Condition (C.5) is immediate with Equation 9. Let prove that (C.5) is equiv-

alent to (C.6).

If (C.6) holds, then c(u, v) ≥ M . Conversely, we assume that 0 < M < 1,
and

C̃(u, v) =
C(u, v)−Muv

1−M

It is enough to show it is a copula: Obviously, C̃(0, u) = C(u, 0) = 0, C̃(1, u) =
C̃(u, 1) = u ∀ u ∈ [0, 1]. By second order derivation, it comes that c̃(u, v) =
c(u,v)−M

1−M , so c̃(u, v) ≥ 0 by hypothesis (C.5).

Let consider the class of Archimedian copulas,

C(u, v) = ϕ−1[ϕ(u) + ϕ(v)], u, v ∈ [0, 1] (28)

where the generator ϕ is a non negative two times differentiable function defined
on [0, 1] with ϕ(1) = 0, ϕ′(u) < 0 and ϕ′′(u) > 0, ∀ u ∈ [0, 1].

A sufficient condition for (C.5) is given in Proposition 6:

Proposition 6. If there exist M1, M2 > 0 such that:

− ϕ′(u) ≥ M1 ∀ u ∈ [0, 1] (29)

d

du
(
1

2

1

ϕ′(u)2
) ≥ M2, ∀ u ∈ [0, 1] (30)

Then, Condition (C.5) holds.

The proof is straightforward. Now, we will see two illustrative Archimedian
copulas satisfying Proposition 6.
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Example 3. Let α < 0, θ > 0 and β with β < −αe−θ. Set

ϕ2(x) = −α

θ
e−θx + βx+ (

α

θ
e−θ − β), x ∈ [0, 1] (31)

Example 4. Let C < 0 and set

ϕ3(x) = x lnx+ (C − 1)x+ (1− C), x ∈ [0, 1] (32)

Appendix C: Estimation

C.1. Model of p = 2 input variables

Proof of Proposition 5.

• We first show first that (S) admits an unique solution. Under (C.1) and
(C.2), by Theorem 1, the decomposition of η(X) is unique and

η(X1, X2) = η0 + η1(X1) + η2(X2) + η12(X1, X2)

with





η0 ∈ H∅

ηi ∈ H0
i ⊥ H∅, i = 1, 2

η12 ∈ H0
12 ⊥ H0

i , i = 1, 2, H0
12 ⊥ H∅

Thus, 


Id 0 0 0
0 Id PH0

1
0

0 PH0
2

Id 0

0 0 0 Id







η0
η1
η2
η12


 =




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 (33)

So (η0, η1, η2, η12) is solution of (S). Now, assume there exists an another
solution of the system, say (η̃0, . . . , η̃Pp

) ∈ H∅ × · · · ×H0
Pp

, then






η0 − η̃0 = 0
η1 − η̃1 + PH0

1
(η2 − η̃2) = 0

PH0
2
(η1 − η̃1) + η2 − η̃2 = 0

η12 − η̃12 = 0

⇒






η0 = η̃0
PH0

1
(η1 − η̃1 + η2 − η̃2) = 0

PH0
2
(η1 − η̃1 + η2 − η̃2) = 0

η12 = η̃12

⇒






η0 = η̃0
η1 − η̃1 + η2 − η̃2 ∈ H0⊥

1 ∩H0⊥
2

η12 = η̃12

As η1 − η̃1 ∈ H0
1 and η2 − η̃2 ∈ H0

2 , it follows that
{

〈η1 − η̃1, η1 − η̃1 + η2 − η̃2〉 = 0
〈η2 − η̃2, η1 − η̃1 + η2 − η̃2〉 = 0

⇒
{

‖η1 − η̃1‖2 + 〈η1 − η̃1, η2 − η̃2〉 = 0
‖η2 − η̃2‖2 + 〈η1 − η̃1, η2 − η̃2〉 = 0

⇒ ‖η1 − η̃1 + η2 − η̃2‖2 = 0

⇒ η1 − η̃1 + η2 − η̃2 = 0
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As 0 can be uniquely decomposed into H0 as a sum of zero, then, η1− η̃1 =
η2 − η̃2 = 0.

• Let now compute




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


.

First of all, it is obvious that the constant term η0 = E(η) and that
η12 is obtained by subtracting η with all other terms of the right of the
decomposition.
Now, let us use the projector’s property of embedded spaces. Indeed, as
H0

i ⊂ Hi, ∀ i = 1, 2, it comes

PH0
i
(η) = PH0

i
(PHi

(η)) = PH0
i
[E(η|Xi)︸ ︷︷ ︸

ϕ(Xi)

]

ϕ is a function ofXi, so it can be decomposed into the following expression:

ϕ(Xi) = ϕ0 + ϕi(Xi), ϕ0 ∈ H∅, ϕi ∈ H0
i

with ϕ0 = E(ϕ) = E(η). Hence, one can easily deduce PH0
i
(η), i = 1, 2, as

the term ϕi = E(η|Xi)− E(η)
We obtain




PH∅
(η)

PH0
1
(η)

PH0
2
(η)

PH0
12
(η)


 =




E(η)
E(η|X1)− E(η)
E(η|X2)− E(η)

η − E(η|X1)− E(η|X2) + E(η)


 (34)

Acknowledgement

The authors would like to warmly thank the anonymous referees and the asso-
ciate editor for their insightful comments that have allowed to merely improve
the article. The authors would also like to thank Bertrand Iooss for his help in
providing the river flood model.

This work has been supported by French National Research Agency (ANR)
through COSINUS program (project COSTA-BRAVA number ANR-09-COSI-
015).

References

[1] Borgonovo, E. (2007). A new uncertainty importance measure. Reliabil-
ity Engineering and System Safety 92 771-784.

[2] Borgonovo, E., Castaings, W. and Tarantola, S. (2011). Moment
Independent Importance Measures: New Results and Analytical Test Cases.
Risk Analysis 31 404-428.



2446 G. Chastaing et al.

[3] Cukier, R. I., Schaibly, J. H. and Shuler, K. E. (1975). Study of the
sensitivity of coupled reaction systems to uncertainties in rate coefficients.
III. Analysis of the approximations. Journal of Chemical physics 63 431-
440.

[4] Cukier, R. I., Levine, H. B. and Shuler, K. E. (1978). Nonlinear sen-
sitivity analysis of multiparameter model systems. The Journal of Compu-
tational Physics 26 1-42. MR0465355

[5] Da Veiga, S. (2007). Analyse d’incertitudes et de sensibilité Application
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