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1. Introduction

Throughout this paper the general multivariate random effects model of the
form

Y = XB + e (1.1)
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will be considered. The Y is an n × q matrix of observations, X is an n × p

known matrix of rank p, B is a p× q matrix of stochastic regression coefficients
and e is an n × q error matrix, where E (Be ) = (KΘ

0 ) and Cov (vec (Be )) =
σ2Σ ⊗ V . Σ(n+p)×(n+p) ≥ 0, Vq×q ≥ 0 (V 6≡ 0) and Kp×r are known matrices.
In order to avoid identifiability problems, it assumes that the rank of K is r.
Nevertheless Θ ∈ Rr×q and σ2 > 0 are unknown parameters. Furthermore,
we rewrite Σ as a block matrix

(
Σ11 Σ12

Σ21 Σ22

)
, where Σ11 and Σ22 are p and n

nonnegative square matrices, respectively. Hence model (1.1) contains that B is
non-stochastic or that some row vectors of B are stochastic and others are non-
stochastic. Therefore, model (1.1) has extensive backgrounds and applications.
It assumes here that Σ12 is zero matrix, which means that stochastic regression
coefficient B is uncorrelated with random error e.

According to Zellner’s idea of balanced loss ([29]) and the unified theory of
least squares ([21]), the generalized balanced loss function ([2]) is proposed by

L(D,B) = w(Y −XD)′T−(Y −XD) + (1− w)(D −B)′S(D −B), (1.2)

where w is a known scalar lying between 0 and 1. The choice of w reflects the
relative weight which the experimenter wants to assign to goodness of fit of
model and precision of estimation. The choice of w essentially depends on the
experimenter and objective of the experiment. The experimenter may decide
the value of w to be assigned on the basis of his experience with similar type
of studies in the past, long association with the experiment or some prior infor-
mation about the experiment. The extreme cases w = 0 and w = 1 refer solely
to precision of an estimate and goodness of fit, respectively. S > 0 is a known
matrix and T = Σ22 +XUX ′ with U ≥ 0 such that rk(T ) = rk(X : V ) where
T− and rk(T ) denote g−inverse and rank of T , respectively. D = D(Y ) is an
estimator of B. We often select U = I when Σ22 is singular. For simplicity of
exposition, we will consider this case in this paper. In the other cases of U , we
can still get the similar results via the same method as one of the article.

Balanced loss function takes error of estimation and goodness of fit into
account. Hence, compared to classical loss functions, it is a more comprehensive
and reasonable standard measuring the estimates. It has been received much
attention in the literature under different setups. For more details, the readers
are referred to [1, 5, 6, 8, 9, 11, 12, 18, 19, 20], among many others. The risk
function of estimator D(Y ) of stochastic regression coefficients B is defined by

R(D; Θ, σ2) := EL(D,B).

The optimality of an estimator, such as domination, admissibility and so
forth, is evaluated by its risk in the range spaces of the risk function. When
q = 1 ( i.e. the univariate linear model), the risk function in model (1.1) is a
scalar, so comparison of the risk size is carried out naturally according to the
scalar size. In this case, when Σ11 = 0 and Σ22 > 0 (i.e. the nonsingular fixed
effects linear model), [28] considered the admissibility of linear estimators of
regression coefficients. [10] developed above results under Σ11 = 0 and Σ22 ≥ 0
(i.e. the singular fixed effects linear model). [3] developed further the results
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with respect to Σ11 ≥ 0 and Σ22 ≥ 0 (i.e. singular random effects linear model).
When q ≥ 2, the risk function is a nonnegative definite matrix. There are many
different comparison standards to the risk size. For Σ11 = 0 and Σ22 = I (i.e. the
nonsingular multivariate linear model with fixed effects), [4] discussed admissi-
bility of linear estimators of regression coefficients under the matrix balanced
loss function with respect to six different comparison standards.

For more comparison standards under other loss functions, the readers are
referred to [14, 15, 16, 23, 24] and references cited therein. [25] gave a unified
comparison criterion, namely Φ optimality (or general optimality). The defini-
tion of Φ optimality function is presented as follows.

Definition 1.1. Let W be the set {W : Wq×q ≥ 0}, a function Φ : W →
[0,+∞), satisfies the following conditions:

(1) Φ(W ) = 0 if and only if W = 0;
(2) If W1 ≤ W2, then Φ(W1) ≤ Φ(W2);
(3) Φ(cW ) = cϕ(W )Φ(W ), where c is a nonnegative scalar and ϕ(W ) is a

positive real function defined on W ;

(4) Φ(W ) is continuous on q(q+1)
2 variables.

Remark 1.1. It is easy to verify that Φ function includes Φ1(M) = tr(M) and
Φ∞(M) = λ1(M). The significance of subscripts can be seen in [13].

Then we give the following definition of Φ admissibility under the generalized
balanced loss function (1.2).

Definition 1.2. Let D1(Y ) and D2(Y ) be two estimators of B, then D1(Y ) is
said to be Φ better than D2(Y ) if

Φ[R(D1(Y ); Θ, σ2)] ≤ Φ[R(D2(Y ); Θ, σ2)]

holds for every (Θ, σ2) ∈ Rr×q × R+ with strict inequality holding for at least
some point. If there does not exist estimators which are Φ better than D1(Y )
in a class of some estimators L, then D1(Y ) will be said to be Φ admissible in

L, which is denoted by D1(Y )
L
∼
Φ
B.

Similar to the definition of optimum designs in [13], the following definition
is given.

Definition 1.3. D1(Y ) is said to be G admissible in L, which is denoted by

D1(Y )
L
∼
G
B, if and only if there does not exist D2(Y ) ∈ L such that

R(D2(Y ); Θ, σ2) ≤ R(D1(Y ); Θ, σ2)

for every (Θ, σ2) ∈ Rr×q ×R+ with R(D2(Y ); Θ, σ2)−R(D1(Y ); Θ, σ2) 6= 0 for
at least some point.

Since the definition of Φ admissibility was given, there has been a lot of work
about that. For more details, see [2, 25, 26, 27], among many others. In the
present paper, a study of the problem of Φ admissibility for linear estimators on
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stochastic regression coefficients matrix B in model (1.1) under the generalized
balanced loss function (1.2) is given in a general situation, and sufficient and
necessary conditions that linear estimators are Φ admissible in LH and LI are
obtained respectively, where LH = {LY : L ∈ Rp×n} and LI = {LY + Γ : L ∈
Rp×n and Γ ∈ Rp×q}, which is an extension of [2, 3, 10, 28].

The remainder of the paper is organized as follows. In Section 2, we give
our main results, some corollaries and remarks. Section 3 contains some lemmas
playing important roles in the paper. Section 4 shows proofs of main results.
Some examples are included in Section 5. Concluding remarks are given in Sec-
tion 6.

2. Main results

Theorem 2.1. Under model (1.1) and loss function (1.2), LY
LH
∼
Φ

B if and

only if
(a) LΣ22 = LX(X ′T−X)−1X ′T−Σ22,

(b) {L∗X−(1−w)P−1SΣ11[KK ′+(X ′T−X)−1+Σ11−I]+}(I−N)[(X ′T−X)−1+
Σ11 − I] = 0,
(c) L∗XN [(X ′T−X)−1 + Σ11 − I]N ′X ′L∗′ ≤ (1 − w){L∗XN [(X ′T−X)−1 +
Σ11 − I]N ′SP−1 + P−1SΣ11N

′(LX − I)′}
and
(d) µ[(LX − I)K] = µ[(LX − I)N(X ′T−X − I)]
hold simultaneously, where N = K{K ′[(X ′T−X)−1 +KK ′ +Σ11 − I]+K}−K ′

[(X ′T−X)−1+ KK ′ + Σ11 − I]+, P = wX ′T−X + (1 − w)S and L∗ = L −
wP−1X ′T−. µ[(LX − I)K] denotes the range space of matrix (LX − I)K.

Remark 2.1. From Theorem 2.1, we know that the result is independent of V
of model (1.1). Hence, we can assume V is either known or unknown matrix.

Remark 2.2. It is easy to verify that B̂ = (X ′T−X)−1X ′T−Y satisfies the
conditions of Theorem 2.1. This shows that the best linear unbiased estimator
(or predictor) B̂ of B is admissible in LH.

Let (e) be rk[(LX − I)K] = rk[(LX − I)N(X ′T−X − I)], then we can get
the equivalent expression of Theorem 2.1, which is presented as follows.

Theorem 2.2. Under model (1.1) and loss function (1.2), LY
LH
∼
Φ

B if and

only if (a), (b), (c) and (e) hold simultaneously.

If K = I, the simple result of Theorem 2.1 can be obtained.

Corollary 2.1. Under model (1.1) withK = I and loss function (1.2), LY
LH
∼
Φ

B

if and only if (a), (d′) rk(LX − I) = rk[(LX − I)(X ′T−X − I)] and
(c′) L∗X [(X ′T−X)−1 + Σ11 − I]X ′L∗′ ≤ (1 − w){L∗X [(X ′T−X)−1 + Σ11 −
I]SP−1 + P−1SΣ11(LX − I)′} hold simultaneously.

When Σ11 = 0, (1.1) is a general multivariate linear model with fixed effects.
For K = I, the following result can be gotten, which is the main result of [2].
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Corollary 2.2. Under model (1.1) with above assumption and loss function

(1.2), LY
LH
∼
Φ

B if and only if (a), (d′) and

(c′′) L∗X [(X ′T−X)−1 − I]X ′L∗′ ≤ (1 − w)L∗X [(X ′T−X)−1 − I]SP−1 hold
simultaneously.

When Σ22 > 0 and Σ11 6≡ 0, (1.1) is called nonsingular multivariate random
effects model. This model is more produced in practical problems than singular
multivariate random effects model (1.1) appearing in the theoretical studies. For
the nonsingular model, the generalized balanced loss function (1.2) turns into
the following

L0(D,B) = w(Y −XD)′Σ−1
22 (Y −XD) + (1− w)(D −B)′S(D −B). (2.1)

The corresponding result can be obtained by matrix calculations according to
Theorem 2.1, which is given as follows.

Corollary 2.3. Under the nonsingular model and loss function (2.1), LY
LH
∼
Φ

B

if and only if
(a′′′) LΣ22 = LX(X ′Σ−1

22 X)−1X ′,

(b′′′) {L∗X − (1−w)P−1SΣ11[KK ′ + (X ′Σ−1
22 X)−1 +Σ11 − I]+}(I −N)[Σ11 −

I + (X ′Σ−1
22 X)−1] = 0,

(c′′′) L∗XN [(X ′Σ−1
22 X)−1+Σ11− I]N ′X ′L∗′ ≤ (1−w){L∗XN [(X ′Σ−1

22 X)−1+
Σ11 − I]N ′SP−1 + P−1SΣ11N

′(LX − I)′}
and
(d′′′) µ[(LX − I)K] = µ[(LX − I)N(X ′Σ−1

22 X − I)],
hold simultaneously, where N = K{K ′[KK ′+(X ′Σ−1

22 X)−1+Σ11 − I]+K}−K ′

[KK ′ + (X ′Σ−1
22 X)−1 +Σ11 − I]+.

From Lemma 3.5, it gets the sufficient and necessary conditions for a linear
estimator of B being G admissible.

Corollary 2.4. Under model (1.1) and loss function (1.2), LY
LH
∼
G

B if and

only if (a), (b), (c) and (d) in Theorem 2.1 hold simultaneously.

The following corollary depicts the relationships between Φ admissibility and
G admissibility.

Corollary 2.5. LY
LH
∼
Φ

B is equivalent to LY
LH
∼
G

B from Theorem 2.1 and

Corollary 2.4.

When q = 1, model (1.1) is a general Gauss-Markov random effects model,
where the risk is a scalar. Hence, Φ admissibility is a classical admissibility
when Φ mapping is an identity mapping. The further result is given as follows
according to Theorem 2.1, which is the main result of [3].

Corollary 2.6. Under model (1.1) and loss function (1.2) where q = 1, LY
LH
∼
Φ

B

if and only if (a), (b), (c) and (d) in Theorem 2.1 hold simultaneously.
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Corollary 2.7. Under the conditions of Corollary 2.6, if it further assumes
that K = I,Σ11 = 0,Σ22 ≥ 0 and K = I,Σ11 = 0,Σ22 > 0 respectively, it can
get the main results of [10] and [28] from Theorem 2.1, which we omit here.

Theorem 2.3. Under model (1.1) and loss function (1.2), LY +Γ
LI
∼
Φ

B if and

only if LY
LH
∼
Φ

B and Γ ∈ µ[(LX − I)K].

Remark 2.3. It is easy to get all results of this paper are independent of the
selection of T−. Hence, we often select Moore-Penrose inverse T+.

Remark 2.4. In the loss function (1.2), we can select appropriate S according
to practical problems or theoretical studies. On the other hand, in order to avoid
uncertainty of results because of arbitrary S, we can select a fixed S, such as
S = X ′T−X or S = I.

3. Some important preliminaries

In order to prove our main results, some lemmas are given firstly.

Lemma 3.1. ([19]) Consider the multivariate random effects linear model

Z = HΞ+ ǫ, E

(
Ξ
ǫ

)
=

(
Qθ

0

)
, Cov

(
vec

(
Ξ
ǫ

))
= σ2Λ ⊗∆,

where H ∈ Rn×p, Q ∈ Rn×m, Λ =
(
Λ11 0
0 Λ22

)
≥ 0 and ∆q×q ≥ 0 (∆ 6≡ 0) are

known matrices, while θ ∈ Rm×q and σ2 > 0 are unknown parameters. Write

L∗ = {AZ : A ∈ Rk×n}. If JΞ is estimable, then AZ
L

∗

∼
G

JΞ under the quadratic

loss function L(AZ, JΞ) = (AZ − JΞ)′(AZ − JΞ) if and only if
(i) AΩ = AHQ(Q′H ′G+HQ)−Q′H ′G+Ω+ JΛ11H

′G+[I −HQ(Q′H ′G+HQ)−

Q′H ′G+]Ω,
(ii) AHQCQ′H ′A′ ≤ (AH−J)Q(Q′H ′G+HQ)−Q′H ′G+HΛ11J

′+JQCQ′H ′A′,

(iii) µ[(AH − J)Q] = µ(W ),
hold simultaneously, where C = (Q′H ′G+HQ)−Q′H ′G+ΩG+HQ(Q′H ′G+HQ)−,
Ω = HΛ11H

′+Λ22, G = Ω+HQQ′H ′ and W = (AH−J)Q[(Q′H ′G+HQ)−Q′H ′

G+HΛ11J
′ − CQ′H ′A′] + (AH − J)QCQ′(AH − J)′.

Lemma 3.2. Let L0 = {DX ′T−Y : D ∈ Rp×p}, then L0 is a complete class of
LH.

Proof. It easily gets LPXY ∈ L0 from LY ∈ LH, where PX = X(X ′T−X)−1X ′T−.
Note that

Cov

(
vec

(
B

Y

))
= Cov

((
I 0
X I

)(
B

e

))

= σ2

(
Σ11 Σ11X

′

XΣ11 Σ22 +XΣ11X
′

)
⊗ V.
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Thus, there has

R(LY ; Θ, σ2) = σ2{tr[(LX − I)Σ11(LX − I)′P + LΣ22L
′P − 2w · LΣ22T

−X ]

+ w · tr(Σ22T
−)}V +Θ′K ′(LX − I)′P (LX − I)KΘ. (3.1)

Therefore, we get

R(LY ; Θ, σ2)−R(LPXY ; Θ, σ2) = σ2 · tr[(LΣ22L
′ − LPXΣ22P

′

XL′)P ]V

= σ2 · tr[L(I − PX)Σ22(I − PX)′L′P ]V

≥ 0

for all (Θ, σ2) ∈ Rr×q ×R+, from which and (2) of Definition 1.1, it easily gets
Φ[R(LPXY ; Θ, σ2)] ≤ Φ[R(LY ; Θ, σ2)] for all (Θ, σ2) ∈ Rr×q × R+. By (3)
of Definition 1.1 again, we easily get the equality holds if and only if LΣ22 =
LPXΣ22. This completes the proof of Lemma 3.2.

The following lemmas play crucial roles in proving main results.

Lemma 3.3. For the multivariate random effects linear model

Z = (X ′T−X)B + ξ,

where Cov
(
vec

(
B
ξ

))
= σ2

(
Σ11 0

0 X′T−Σ22T
−X

)
⊗ V and E

(
B
ξ

)
= (KΘ

0 ). Let

C1 = (1 − w)P−1S, L1 = {DZ : D ∈ Rp×p}, the loss function LP (d, C1B)
= (d − C1B)′P (d − C1B) and D∗ = D − wP−1. In the above model, C1B is

estimable. Then under the loss function LP (d, C1B), D∗Z
L1∼
G

C1B holds if and

only if DX ′T−Y
L0∼
G

B holds under model (1.1) and the generalized balanced loss

function (1.2).

Proof. From (3.1), it is easy to get

R(DX ′T−Y ; Θ, σ2) = σ2{tr[(DX ′T−X − I)Σ11(DX ′T−X − I)′P +DX ′T−

· Σ22T
−XD′P − 2w ·DX ′T−Σ22T

−X ] + w · tr(Σ22T
−)}

· V +Θ′K ′(DX ′T−X − I)′P (DX ′T−X − I)KΘ. (3.2)

Furthermore, it gets

ELP (D
∗Z,C1B) = σ2{tr[(DX ′T−X − I)Σ11(DX ′T−X − I)′P +DX ′T−Σ22

· T−XD′P − 2w ·DX ′T−Σ22T
−X ] + w2 · tr(X ′T−Σ22T

−

·XP−1)}V +Θ′K ′(DX ′T−X − I)′P (DX ′T−X − I)KΘ.

(3.3)

If DX ′T−Y
L0∼
G

B, then for arbitrary MX ′T−Y ∈ L0, there has

R(DX ′T−Y ; Θ, σ2) ≤ R(MX ′T−Y ; Θ, σ2) (3.4)
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for every (Θ, σ2) ∈ Rr×q ×R+, and there exists one point (Θ0, σ
2
0) such that

R(MX ′T−Y ; Θ0, σ
2
0)−R(DX ′T−Y ; Θ0, σ

2
0) 6= 0. (3.5)

By (3.2) and (3.3), (3.4) and (3.5) hold if and only if

ELP (D
∗Z,C1B) ≤ ELP (M

∗Z,C1B) (3.6)

holds for every (Θ, σ2) ∈ Rr×q ×R+ with

ELP (M
∗Z,C1B)− ELP (D

∗Z,C1B) 6= 0 (3.7)

at (Θ0, σ
2
0), where M∗ = M − wP−1.

Thus (3.6) and (3.7) are equivalent to D∗Z
L1∼
G

C1B. This completes the proof

of Lemma 3.3.

It is easy to get the following lemma from [7].

Lemma 3.4. Under assumption of Lemma 3.3, D∗Z
L1∼
G

C1B holds with respect

to loss function LP (D
∗Z,C1B) if and only if D∗Z

L1∼
G

C1B with respect to loss

function LI(D
∗Z,C1B).

Lemma 3.5. DX ′T−Y is Φ better than MX ′T−Y if and only if DX ′T−Y is
G better than MX ′T−Y .

Proof. First, it is easy to prove that DX ′T−Y is G better than MX ′T−Y if
and only if

tr[(DX ′T−X − I)Σ11(DX ′T−X − I)′P +DX ′T−Σ22T
−XD′P

− 2w ·DX ′T−Σ22T
−X ]

≤ tr[(MX ′T−X − I)Σ11(MX ′T−X − I)′P +MX ′T−Σ22T
−XM ′P

− 2w ·MX ′T−Σ22T
−X ], (3.8)

and

K ′(DX ′T−X − I)′P (DX ′T−X − I)K

≤ K ′(MX ′T−X − I)′P (MX ′T−X − I)K, (3.9)

moreover, when the equality holds in (3.8), there has

K ′(MX ′T−X − I)′P (MX ′T−X − I)K

6= K ′(DX ′T−X − I)′P (DX ′T−X − I)K. (3.10)

Therefore, we only need to prove that DX ′T−Y is Φ better than MX ′T−Y

if and only if (3.8), (3.9) and (3.10) with the equality holding in (3.8) hold
simultaneously.
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On the other hand, DX ′T−Y is Φ better than MX ′T−Y if and only if

Φ[R(DX ′T−Y ; Θ, σ2)] ≤ Φ[R(MX ′T−Y ; Θ, σ2)] (3.11)

holds for every (Θ, σ2) ∈ Rr×q ×R+ with inequality strictly holding for at least
some point, hence the following work is to prove that (3.11) holds for every
(Θ, σ2) with strict inequality holding for at least some point if and only if (3.8),
(3.9) and (3.10) with the equality holding in (3.8) hold simultaneously.

Sufficiency. From (3.8) and (3.9), it easily gets

R(DX ′T−Y ; Θ, σ2) ≤ R(MX ′T−Y ; Θ, σ2)

holds for every (Θ, σ2) ∈ Rr×q × R+. And by (2) of Definition 1.1, (3.11) evi-
dently holds for every (Θ, σ2) ∈ Rr×q ×R+.

If the inequality strictly holds in (3.8), taking (Θ, σ2) = (0, 1), thus by (1)
and (3) of Definition 1.1, there has

Φ[R(DX ′T−Y ; 0, 1)]

= {tr[(DX ′T−X − I)Σ11(DX ′T−X − I)′P +DX ′T−Σ22T
−XD′P

− 2w ·DX ′T−Σ22T
−X ] + w · tr(Σ22T

−)}ϕ(V )Φ(V )

< {tr[(MX ′T−X − I)Σ11(MX ′T−X − I)′P +MX ′T−Σ22T
−XM ′P

− 2w ·MX ′T−Σ22T
−X ] + w · tr(Σ22T

−)}ϕ(V )Φ(V )

= Φ[R(MX ′T−Y ; 0, 1)], (3.12)

which means that the strict inequality in (3.11) holds at (0, 1).

If the equality holds in (3.8), then from (3.9) and (3.10), there exists α0 ∈ Rr

such that

ζ0 = α′
0K

′(DX ′T−X − Ip)
′P (DX ′T−X − Ip)Kα0

< α′

0K
′(MX ′T−X − Ip)

′P (MX ′T−X − Ip)Kα0 = η0.

Thus, taking Θ0 = (α0, 0, . . . , 0), it gets by (1) and (3) of Definition 1.1

Φ[Θ′

0K
′(DX ′T−X − Ip)

′P (DX ′T−X − Ip)KΘ0]

= (ζ0)
ϕ(E11)Φ(E11) < (η0)

ϕ(E11)Φ(E11)

= Φ[Θ′

0K
′(MX ′T−X − Ip)

′P (MX ′T−X − Ip)KΘ0], (3.13)

where E11 denotes a q× q square matrix whose (1, 1)th is one and others are all
zeros. Selecting satisfyingly small σ2

0 , from (3.13) and (4) of Definition 1.1, the
strict inequality in (3.11) holds at (Θ0, σ

2
0). Hence, the sufficiency is proved.

Necessity. If (3.11) holds for every (Θ, σ2) ∈ Rr×q × R+, we take again
(Θ, σ2) = (0, 1) in (3.11) and get (3.8) evidently holds from (1) of Definition 1.1
and (3.12). Let Θ = (α, 0, . . . , 0) again in (3.11), where α ∈ Rr, by (3) and (4)
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of Definition 1.1, there is

lim
σ2→0+

Φ[R(DX ′T−Y ; (α, 0, . . . , 0), σ2)]

= Φ[α′K ′(DX ′T−X − Ip)
′P (DX ′T−X − Ip)KαE11]

= [α′K ′(DX ′T−X − Ip)
′P (DX ′T−X − Ip)Kα]ϕ(E11)Φ(E11)

≤ lim
σ2→0+

Φ[R(MX ′T−Y ; (α, 0, . . . , 0), σ2)]

= Φ[α′K ′(MX ′T−X − Ip)
′P (MX ′T−X − Ip)KαE11]

= [α′K ′(MX ′T−X − Ip)
′P (MX ′T−X − Ip)Kα]ϕ(E11)Φ(E11).

Using (1) and (3) of Definition 1.1 and arbitrariness of α, (3.9) is obtained.
Furthermore, if the equality in (3.8) holds and (3.10) does not hold, by (3.2)
and (3.9), we get R(DX ′T−Y ; Θ, σ2) ≡ R(MX ′T−Y ; Θ, σ2), which evidently
results in

Φ[R(DX ′T−Y ; Θ, σ2)] ≡ Φ[R(MX ′T−Y ; Θ, σ2)]

for every (Θ, σ2), contradictory to strict inequality in (3.11) holding for at least
some point. Therefore, (3.10) holds when the equality holds in (3.8). The neces-
sity is proved.

This completes the proof of Lemma 3.5.

4. Proofs of main results

Proof of Theorem 2.1. First, from Lemma 3.3 and Lemma 3.5, under the loss

function (1.2) DX ′T−Y
L0∼
Φ

B holds if and only if D∗Z
L1∼
G

C1B holds under the

loss function LP (d;C1B) = (d− C1B)′P (d− C1B).

Then from Lemma 3.1, 3.2, 3.4 and matrix calculations, it gets under the loss

function (1.2), LY
LH
∼
Φ

B if and only if (a), (b), (c) and (d) hold simultaneously.

Therefore, this completes the proof of Theorem 2.1.

Proof of Theorem 2.3. We only need to prove that LY + Γ
LI
∼
Φ

B holds if and

only if LY
LH
∼
Φ

B and Γ ∈ µ[(LX − I)K] hold simultaneously.

Necessity. First, we prove Γ ∈ µ[(LX − I)K] if LY + Γ
LI
∼
Φ

B.

Let T0 be an orthogonal projection matrix onto µ[P
1
2 (LX − I)K] and Υ =

P−
1
2 T0P

1
2Γ, then evidently Υ ∈ µ[(LX − I)K].

Notice that

R(LY +Γ;Θ, σ2) = σ2{tr[(LX−I)Σ11(LX−I)′P+LΣ22L
′P−2w · LΣ22T

−X ]

+ w · tr(Σ22T
−)}V +[(LX−I)KΘ+Γ]′P [(LX−I)KΘ+Γ].
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Thus, it gets

R(LY + Γ;Θ, σ2)−R(LY +Υ;Θ, σ2) = Γ′PΓ−Υ′PΥ

= Γ′P
1
2 (I − T0)P

1
2Γ ≥ 0,

from which and (2) of Definition 1.1, it is easy to get

Φ[R(LY +Υ;Θ, σ2)] ≤ Φ[R(LY + Γ;Θ, σ2)] (4.1)

for all (Θ, σ2).
By Υ ∈ µ[(LX − I)K], there exists a p× q matrix Υ0 such that Υ = (LX −

I)KΥ0.
If Γ 6∈ µ[(LX−I)K], selecting Θ = −Υ0 and satisfyingly small σ2, we get the

strict inequality in (4.1) holds, from which and (4.1), LY +Υ is Φ better than

LY + Γ, contradictory to LY + Γ
LI
∼
Φ

Θ. Hence, there has Γ ∈ µ[(LX − I)K].

Next, we prove LY
LH
∼
Φ

Θ if LY + Γ
LI
∼
Φ

Θ.

If LY
LH
≁

Φ
Θ, there exists an estimator L1Y such that

Φ[R(L1Y ; Θ, σ2)] ≤ Φ[R(LY ; Θ, σ2)] (4.2)

for all (Θ, σ2) with strict inequality holding for at least one point (Θ0, σ
2
0). By

Γ ∈ µ[(LX − I)K], there exists a p× q matrix Γ0 such that Γ = (LX − I)KΓ0.
So by (4.2), there has

Φ[R(LY + Γ;Θ, σ2)] ≡ Φ[R(LY ; Θ + Γ0, σ
2)]

≥ Φ[R(L1Y ; Θ + Γ0, σ
2)]

≡ Φ[R(L1Y + (L1X − I)Γ0; Θ, σ2)]

for all (Θ, σ2) with strict inequality holding at (Θ0 − Γ0, σ
2
0). This means that

L1Y + (L1X − I)Γ0 is Φ better than LY + Γ, contradictory to LY + Γ
LI
∼
Φ

Θ.

Hence, the necessity is proved.

Sufficiency. If LY + Γ
LI
≁

Φ
Θ, there exists an estimator L2Y +Π such that

Φ[L2Y +Π;Θ, σ2)] ≤ Φ[R(LY + Γ;Θ, σ2)] (4.3)

for all (Θ, σ2) with strict inequality holding at (Θ1, σ
2
1).

Notice that

Φ[R(LY + Γ;Θ, σ2)] ≡ Φ[R(LY ; Θ + Γ0, σ
2)]. (4.4)

Hence, from (4.3) and (4.4), we get

Φ[L2Y +Π;Θ, σ2)] ≤ Φ[R(LY ; Θ + Γ0, σ
2)] (4.5)

for all (Θ, σ2) with strict inequality holding at (Θ1, σ
2
1).



Φ admissibility under a GBLF 2343

Selecting Θ = −Γ0 in (4.5), by (2) and (4) of Definition 1.1, there has

Φ{[Π− (L2X − I)KΓ0]
′P [Π− (L2X − I)KΓ0]} = lim

σ2→0+
Φ[L2Y +Π;−Γ0, σ

2)]

≤ lim
σ2→0+

Φ[R(LY ; 0, σ2)] = 0.

(4.6)

Thus, by (4.6), (1) of Definition 1.1 and Φ : W → [0,+∞), there is

Π = (L2X − I)KΓ0. (4.7)

From (4.5) and (4.7), we get

Φ[L2Y +Π;Θ, σ2)] ≡ Φ[L2Y + (L2X − I)KΓ0; Θ, σ2)]

≡ Φ[R(L2Y ; Θ̃, σ2)] ≤ Φ[R(LY ; Θ̃, σ2)]

for all (Θ̃, σ2) with strict inequality holding at (Θ1+Γ0, σ
2
1), where Θ̃ = Θ+Γ0.

This means that L2Y is Φ better than LY , which is contradictory to LY
LH
∼
Φ

Θ.

Therefore, the sufficiency is proved.

This completes the proof of Theorem 2.3.

5. Examples

In this section, we give some examples to illustrate applications to our results.

Example 5.1. From Remark 2.2, we know that the best linear unbiased pre-
dictor B̂ is a Φ admissible estimator of stochastic regression coefficients B in a
class of homogeneous linear estimators.

Example 5.2. Let X = ( 0 1
1 1 ), Σ22 = ( 1 1

1 1 ), L =
(

−1 1
0.875 0

)
, K = Σ11 = I, S =

X ′T−X , w = 0.5 and arbitrary nonnegative definite matrix V in model (1.1),
then it is easy to verify that conditions (a) and (b) in Theorem 2.1 evidently hold,
and furthermore to get N = I and P = X ′T−X . Then the left of condition (c)
is ( 0.25 0

0 0.28125 ) and the right is ( 0.25 0
0 0.3125 ), hence condition (c) holds. Finally,

it is easy to get condition (d) holds. Therefore, LY is a Φ admissible estimator
of B in a class of homogeneous linear estimators.

On the other hand, if Γ ∈ µ(LX − I) where µ(LX − I) =
(
0 0
0 −0.125

)
, then

LY + Γ is Φ admissible in a class of nonhomogeneous linear estimators.

Remark 5.1. Under the assumption of model (1.1) in the second example, if
L =

(
−1 1
c 0

)
where 0.75 < c < 1, we can still verify that LY is Φ admissible

in a class of homogeneous linear estimators. Moreover, if Γ ∈ µ(LX − I) where
µ(LX−I) =

(
0 0
0 c−1

)
, then LY +Γ is Φ admissible in a class of nonhomogeneous

linear estimators.
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6. Concluding remarks

In this article, we investigate Φ admissible estimators of stochastic regression
coefficients in a multivariate random effects model with respect to generalized
balanced loss function. The sufficient and necessary conditions are obtained.
Throughout this article, Σ12 = 0 is assumed in model (1.1). So, it is interesting
to study Φ admissibility when Σ12 6≡ 0. We hope that this limitation will be
removed as a result of further work in this area.
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