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construction techniques are covered. For some row and column combina-
tions, different designs are compared. The construction of designs with rows
and columns that are nested or contiguous is also discussed.
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1. Introduction

Our aim is to produce designs with rows and columns for a factorial set of treat-
ments. The designs have at least two factors, Rows and Columns, indexing the
experimental units, and allow for the removal, from error variance, of at least
the two corresponding sources of variation. In general, the numbers of rows and
columns are not both divisible by the number of treatments. Thus the designs
may require partial confounding of some factorial treatment effects—for a re-
view of confounding in factorial experiments see, for example, Cox and Reid
[6, Section 6.2]. One area of application for such designs is glasshouse experi-
mentation, whose investigation by Tran [16] motivated the development here.
In one experiment described in [16], a design was required for an experiment
to investigate the effects of five treatment factors on the growth of species of
Australian native plants that potentially could be used in the remediation of
sites in the rail corridor either side of railway tracks. Three of the factors each
had two levels and the resulting eight treatments were to be applied to main
plots that were arranged in a 4× 10 rectangle. It was thought that there would
be interactions between the factors and so it was important that the design
gave good estimates of all interactions. The other two factors were to be applied
to subplots and are not considered in this paper. A design for the main plot
treatments is required.

As is usual for glasshouses [7, 17], the glasshouse used in this experiment is
aligned on North/South and East/West axes. Not only are trends along both
axes usually anticipated, but physical management operations performed during
the course of the experiment are often done by rows or by columns. Therefore,
row-column designs have long been recommended for these experiments. Youden
[20] recommended the use of Latin and Youden squares and Cochran and Cox
[5, Section 4.3.1] recommended Latin square designs for experiments involving
a single treatment factor. Edmondson [7] used a Graeco-Latin square in a split
plot design. Williams and John [17] used factorial designs with rows and columns
in designing glasshouse experiments and Williams, Matheson and Harwood [18,
Section 7.5.1] advocated the use of designs with rows and columns for glasshouse
experiments. Consequently, a row-column design was sought for the experiment
in [16], one in which the plots are arranged in a rectangle and the number of
rows is less than the number of treatments. Originally, Design 2 in Section 6.3
was proposed. Before the experiment was run, the researchers decided to reduce
the number of replicates of the 8 treatments from 5 to 3 and so Design 3 in
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Section 6.2 for a 4×6 rectangle was produced. It was employed in the experiment.
The other designs in Sections 6.2 and 6.3 were constructed subsequently.

Quasi-Latin square designs, introduced by Yates [19] for factorial experi-
ments, are of the type required. Unlike in a Latin square, the treatments are
arranged such that no treatment occurs more than once in a row or a column and
not all treatments occur in any row or column. However, like in a Latin square,
the treatments are applied to experimental units arranged in an equal number
of rows and columns. A quasi-Latin square design may consist of one or more
quasi-Latin squares and each quasi-Latin square contains one or more complete
sets of treatments, as described by Rao [14] and in [5]. They extend the factorial
designs that have treatment effects confounded with blocks to those that allow
for two-way elimination of heterogeneity. They are resolved, and require the total
confounding of some factorial effects with rows or columns within each replicate.
Treatments must be equally replicated and the number of replicates is restricted.
For example, consider a 23 factorial experiment. The eight treatments can be ar-
ranged in one or more 4×4 squares: the number of replicates for treatments must
be a multiple of 2. Table 1(b) shows one possible square for such an experiment.

However, not all experiments in practice satisfy the restrictions placed on the
number of replicates for a quasi-Latin square design and this was the case for ex-
periments considered in [16]. To provide more flexibility in the choice of designs,
we consider rectangular layouts. A Latin rectangle is just a Latin square with one
or more rows omitted [8], or the transpose of this. By analogy with quasi-Latin
squares, we call a design a quasi-Latin rectangle if a factorial set of treatments is
assigned, with equal replication, to a non-square rectangle, in such a way that no
treatment is repeated in any row or column. Healy [10] describes such designs for
2m factorial experiments in a 4× 8 rectangle. In addition, we consider extended
quasi-Latin rectangles : these still have equi-replicated factorial treatments, but
now the number of rows or columns (or both) exceeds the number of treatments.

We begin in Section 2 by giving notation and some definitions. In Section 3.2,
a general method for the construction of row-column designs for symmetric fac-
torial experiments is described. It is demonstrated for a range of combinations of
numbers of rows and columns in Section 4. Section 5 gives two further methods
for parameter values satisfying certain conditions and Section 6 discusses the
construction of row-column designs using the different methods and compares
designs. The examples are only representative of the designs that can be con-
structed using the methods. The only type of design considered up to this point
is the row-column design; the methods are generalized to layouts with multiple
squares or rectangles in Section 7. Some general aspects of quasi-Latin designs
are discussed in Section 8.

2. Notation and some definitions

2.1. The experimental setting

We consider designs in which there are s squares or rectangles each with k
rows by ℓ columns, for s ≥ 1. These squares and rectangles will be called whole
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frames. There are a total of v treatments, each with r replicates in each whole
frame, and these treatments are the combinations ofm factors each with p levels,
where p divides both k and ℓ. Hence v = pm and vr = kℓ. Any subrectangle
or subsquare of v units which contains one complete set of treatments will be
called a grid. A single whole frame often contains grids of different shapes. The
experimental unit, to which a single treatment is to be applied, is referred to
simply as a unit. There are skℓ units in total. We assume that p is prime. This
is not necessarily restrictive because, for a factor whose number of levels is a
power of a prime, it is possible to substitute a combination of pseudofactors all
of whose numbers of levels are equal to that prime.

2.2. Sources of variation

When s = 1 the experiment has a row-column design. The linear mixed model
assumed for such an experiment typically includes fixed effects of the treatments,
broken down into overall mean, main effects and interactions, and random effects
of the rows, columns and experimental units. The rows are indexed by a factor
Rows (abbreviated to R) with k levels. The corresponding random effects give a
k× 1 vector uR of independent identically distributed normal random variables
with mean zero and variance σ2

R. Similarly, the columns are indexed by the
factor Columns (abbreviated to C) with ℓ levels, and their random effects form
a ℓ×1 vector uC of independent identically distributed normal random variables
with mean zero and variance σ2

C . The individual experimental units are indexed
by the factor Rows ∧ Columns (abbreviated to R ∧ C), whose levels are the kl
combinations of the levels of Rows and Columns. These give a kℓ×1 vector uR∧C

of independent identically distributed normal random variables with mean zero
and variance σ2

R∧C . Furthermore, the random vectors uR, uC and uR∧C are
mutually independent.

Denote by τ the v × 1 vector of fixed treatment parameters, and by Y the
kℓ×1 vector of responses on the experimental units. The model assumed is that

Y = Xτ + ZRuR + ZCuC + uR∧C .

Here X is the kℓ × v indicator matrix of zeros and ones that shows the assign-
ment of treatments to experimental units: Xij = 1 if treatment j is assigned to
unit i, and Xij = 0 otherwise. Similarly, ZR and ZC are the kℓ × k and kℓ × ℓ
indicator matrices showing which row, respectively column, each experimental
unit belongs to.

This model can also be written as

E(Y) = Xτ and Cov(Y) = σ2
RR+ σ2

CC+ σ2
R∧CI,

where R = ZRZ
⊤
R and C = ZCZ

⊤
C . A slightly more general model for the

variance-covariance matrix Cov(Y) can be derived from the unit structure (also
called plot structure) as described in [2, Section 10.10]: the coefficients of R and
C are replaced by covariance components that can be negative.
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For factorial treatments, the vector τ is decomposed as a sum of 2m vectors
corresponding to the overall mean, main effects and interactions. Some of the
higher-order interactions may be assumed to be zero. We call these treatment
sources of variation, usually shortened to treatment sources. We use the notation
of Brien and Bailey [3] and Brien at al. [4], which is similar to that used in SAS
[13]. In particular, the main effect of treatment factor A is also called A, while
A#B (or A ∗B in SAS) denotes the interaction of factors A and B.

Sources of variation arising from inherent factors on the units are called unit
sources. In our model, these are all sources associated with random effects, whose
variances are called stratum variances. They correspond to the eigenspaces of
Cov(Y). For a row-column design, the eigenspaces are the overall mean and the
column spaces of ℓ−1R−(kℓ)−1J, k−1C−(kℓ)−1J and I−ℓ−1R−k−1C+(kℓ)−1J,
where J is the all-1 matrix. The last three sources of variation are denoted Rows,
Columns and Rows#Columns.

Thus, whether the effects of factors A and B are fixed or random, A # B
denotes the effect of the factor A ∧ B over and above the additive effects of
factors A and B.

For designs with more than one square or rectangle, random effects for the
squares or rectangles are also included in the model. If these are squares then the
corresponding factor and source of variation are both called Squares: the remain-
ing random factors are nested within Squares and so their sources of variation
are written Rows [Squares], Columns [Squares] and Rows # Columns [Squares].
The SAS notation is Rows(Squares).

Like Houtman and Speed [11], we summarize the properties of each design in
a table of canonical efficiency factors [12]. Let T and U be a treatment source
and a unit source. The canonical efficiency factor for T in U is a measure of
the amount of information about T , adjusted for previously fitted treatment
sources, that is (partially) confounded with U . However, all of our designs have
orthogonal factorial structure [1] in the sense that, within each unit source,
estimators of different treatment sources are orthogonal to each other. Thus
the canonical efficiency factors for our designs are independent of the order in
which treatment sources are fitted in the analysis. Consequently, for each T , the
sum of its canonical efficiency factors with respect to all unit sources is 1. In a
row-column design, the stratum variance for Rows#Columns should be smaller
than the stratum variance for the other unit sources; if s > 1 then the unit
source with the smallest stratum variance should be Rows#Columns [Squares].
For each T , it is desirable to maximize its canonical efficiency factor in this unit
source. Unless k and ℓ are both divisible by v, it is not possible to do this for
all treatment sources simultaneously, so the designer of the experiment must
exercise judgement about how to spread the information among the treatment
sources. What is appropriate depends on the objectives of the experiment.

2.3. Group characters used in construction

Our construction methods use group characters [2, Section 12.2]. Each level of
a p-level factor is coded with the integers 0, 1, . . . , p − 1. Each treatment com-
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bination of m factors can be written as an m-tuple of these levels. A character
specifies a linear combination of factors that can be evaluated for each treat-
ment combination; the coefficients are integers modulo p, as is the evaluation.
For example, for the 3-level factors A and B, the levels are coded 0, 1 and 2
and one of their nine treatment combinations is (2, 1). One character is A+2B
and, for (2, 1), it evaluates to 1× 2 + 2× 1 = 2 + 2 = 1.

3. A method for the construction of row-column designs for
symmetric factorial experiments

In this section we present Method 1 for constructing whole frames of shape k×ℓ.
We assume that v = pm, that v divides kℓ, that k and ℓ are both divisible by p.
The replication is r, where r = kℓ/v. The method produces quasi-Latin squares
and rectangles, extended quasi-Latin rectangles and Latin squares. It involves
dividing a whole frame into several types of frames as illustrated in Figure 1
and consists of the steps in Section 3.2. The crux of the method is to form what
we term box frames, whose dimensions are powers of p, such that each contains
one or more complete replicates of the treatments. Then sets of characters can
be confounded with sets of rows and sets of columns in each box frame. As the
method is quite technical, we first illustrate some of these concepts on a small
example.

k

ℓ

pt

pt
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row
super-frame

✲

column super-
frame

❄

pu pu
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d

r3
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✯
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Fig 1. Division of the whole frame for Method 1: the whole frame is divided into r1 row super-
frames and r2 column super-frames whose intersections form box frames of shape pt × pu;
each row super-frame is divided into r3 row frames and each column super-frame is divided
into r3 column frames; their intersections form subframes of shape c× d.
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Table 1

Quasi-Latin square for a 23 factorial experiment in 4 rows × 4 columns

(a) Constructed design (b) Randomized layout

A+ B A+ C

= 0 = 1 = 0 = 1

B + C = 0 1, 1, 1 1, 0, 0 0, 0, 0 0, 1, 1
B + C = 1 1, 1, 0 1, 0, 1 0, 1, 0 0, 0, 1
A+B + C = 0 0, 0, 0 0, 1, 1 1, 0, 1 1, 1, 0
A+B + C = 1 0, 0, 1 0, 1, 0 1, 1, 1 1, 0, 0

0, 1, 1 1, 0, 1 1, 1, 0 0, 0, 0
1, 0, 0 0, 0, 0 0, 1, 1 1, 1, 1
0, 1, 0 1, 1, 1 1, 0, 0 0, 0, 1
1, 0, 1 0, 1, 0 0, 0, 1 1, 1, 0

3.1. An example 4 × 4 quasi-Latin square design for a 23 factorial

experiment

Table 1(a) gives a quasi-Latin square design for a 23 factorial experiment in 4
rows × 4 columns. Up to relabelling of the factors, it is the same as Square II in
[5, Table 8.1]. For these parameter values, we can ignore super-frames and take
the box frame to be the whole frame. The square is subdivided into two row
frames of shape 2×4 and two column frames of shape 4×2, each containing one
complete replicate of the treatments. The whole (box) frame is a 2× 2 array of
subframes, each of which is 2 × 2: the level of A is constant on each subframe.
A randomized layout is given in Table 1(b). It is obtained by simply permuting
the rows and the columns of the design in Table 1(a), ignoring the frames used
in the construction process.

3.2. The method

Step 1 Divide up the whole frame: Having ascertained the values of p, m,
k, ℓ and r, determine values of t and u so that k = ptr1 and ℓ = pur2,
where 1 ≤ t ≤ m, 1 ≤ u ≤ m, t+ u ≥ m. That is, we factorize both k and
ℓ as a product of two integers, of which the first is p raised to a non-zero
power. The condition t+ u ≥ m means that the product of these powers
of p must be divisible by v. Select t and u as follows:

1. If v divides k, then take t = m and r1 = k/v; if k is a power of p
smaller than v or r is not divisible by p, then pt is the largest power
of p dividing k; otherwise there is some choice in the value of t.

2. If v divides ℓ, then take u = m and r2 = ℓ/v; if ℓ is a power of p
smaller than v or r is not divisible by p, then pu is the largest power
of p dividing ℓ; otherwise there is some choice in the value of u.

Note that if k < v, ℓ < v and r is a power of p, then r1 = r2 = 1.
Now divide the whole frame into r1 row super-frames of pt whole rows
and r2 column super-frames of pu whole columns. The intersection of a
row super-frame and a column super-frame forms a box frame of shape
pt × pu. Of course, if r1 = r2 = 1, then the super-frames and box frames
are all the same as the whole frame.
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To set up row and column frames, calculate c = pm−u, d = pm−t and
r3 = pt+u−m. Then r = r1r2r3. Divide each row super-frame into r3 row
frames of shape c× ℓ and each column super-frame into r3 column frames
of shape k× d. The intersection of a row frame and a column frame forms
a subframe of shape c× d and each box frame contains an r3 × r3 array of
these subframes. Also, each box frame contains r3 grids of shape pt × d,
as well as r3 of shape c× pu.

Step 2 Specify the row design: Each row frame consists of r2 grids of shape
c×pu. If u = m then c = 1. In this case, each 1×pu grid contains a complete
replicate of the treatments and there is no need to further consider the
row design. If c > 1, then select r1r3 sets of characters, one set per row
frame, so that each set specifies c − 1 treatment degrees of freedom to
confound with c rows. The characters specifying one lot of c−1 treatment
degrees of freedom must be closed under the formation of sums (modulo
p). We shall call these row characters. Each set divides the treatments
into c groups of size pu. If r2 = 1 then the groups in each row frame are
completely confounded with rows. If r2 > 1 then each row frame needs
a c × r2 row-column design ∆1 for c treatments as an auxiliary design,
where these treatments correspond to the c groups of treatments defined
by the set of row characters for this row frame. In design ∆1, the columns
are complete and the row design should be as efficient as possible.

Step 3 Specify the column design: Similarly, each column frame consists
of r1 grids of shape pt × d. If t = m then d = 1. In this case, each
pt × 1 grid contains a complete replicate of the treatments and there is
no need to further consider the column design. If d > 1, then select r2r3
sets of characters, each specifying d− 1 treatment degrees of freedom and
dividing the treatments into d groups of size pt. We shall call these column
characters. If r1 > 1 then each column frame needs a r1×d auxiliary design
∆2 for d treatments.

Step 4 Ensure a unique treatment for each unit: In each box frame, the
treatments in each 1×pu subrectangle are specified: if u = m, this subrect-
angle contains a complete set of treatments; otherwise they are specified
by the row characters and, if r2 > 1, the auxiliary design ∆1. Similarly, if
t = m, then each pt×1 subrectangle contains a complete set of treatments;
otherwise the treatments it contains are specified by the column characters
and, if r1 > 1, the auxiliary design ∆2. If r3 = 1, this uniquely determines
the treatment on each unit. Otherwise, for each box frame, choose a set of
characters which divide the treatments into r3 groups of size cd. We shall
call these unit characters. The groups are assigned to the r3 × r3 array of
subframes of shape c× d by a using a r3× r3 Latin square ∆3 as the third
auxiliary design. For each box frame, the sets of characters of whichever of
the three different types (row, column and unit) are needed must satisfy
the following condition:

any nonempty collection of characters, all of different types, must
be linearly independent modulo p. (1)
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If t = u = m, then c = d = 1 and r3 = pm so that no row and column
characters are required and there is no need to specify unit characters. All
that is needed is ∆3, which is a v × v Latin square. The whole design is
an r1 × r2 array of such Latin squares.

In general, for each set of c rows, one has to specify either (i) c characters,
including 0, closed under addition, or (ii) m−u linearly independent characters,
or (iii) (c− 1)/(p− 1) characters none of which is a multiple of any other, and
having the property that any linear combination of them is a multiple of one
of them. Similarly, for each set of d columns, one has to specify either (i) d
characters, including 0, closed under addition, or (ii) m− t linearly independent
characters, or (iii) (d− 1)/(p− 1) characters none of which is a multiple of any
other, and having the property that any linear combination of them is a multiple
of one of them. A set of characters to be confounded with c rows (d columns)
can be repeated amongst the r1r3 (r2r3) sets of row (column) characters. If the
sets of one type are not all the same, this results in partial confounding.

If r is divisible by p but is not a power of p then there is some choice in the
values of u and t. Different choices may lead to designs with different properties.
If t+u = m then r3 = 1 and there is no need for unit characters, so Condition (1)
is easier to satisfy. On the other hand, there is more freedom of choice for the
row characters when c is smaller, and more freedom of choice for the column
characters when d is smaller. The availability of good c × r2 and r1 × d row-
column designs for the possible values of c, d, r1 and r2 is also an issue. When
u is larger then c and r2 are smaller so the former are easier to find, but there
may be more choice when c and r2 are larger. For designs of practical size, it
seems unlikely that all three of r1, r2 and r3 will be bigger than one.

With k = ℓ and r1 = r2 = 1, the method is equivalent to that in [14] for
constructing quasi-Latin square designs. That is, our method generalizes that
in [14] in two ways. The first simply allows t 6= u when r1 = r2 = 1. The second
allows one or both of r1 and r2 to be bigger than one: in either case, another
auxiliary design is needed.

4. Examples of quasi-Latin squares and rectangles with dimensions
less than the number of treatments

4.1. The 23 factorial in a 4 × 4 square again

From Section 3.1, we have p = 2, m = 3, k = ℓ = 4 and r = 2. Both k and ℓ are
powers of p and so any quasi-Latin square must have t = u = 2 and r1 = r2 = 1.
Thence, c = d = 2 and r3 = 2.

Construction of the design requires two row characters, one for each row
frame, and two column characters, one for each column frame. A unit character
is also needed: this splits the 8 treatments into 2 groups of 4, which are assigned
to the four subframes by using a 2× 2 Latin square as auxiliary design ∆3.

Let U and V be the row characters, W and X be the column characters and
Y be the unit character. They can be any five characters satisfying Condition (1)
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Table 2

Canonical efficiency factors and Residual degrees of freedom (DF) for a 23 factorial
experiment in 4 rows × 4 columns

Treatment sources Residual

Unit sources A B C A#B A# C B # C A# B # C DF

Rows 0 0 0 0 0 1

2

1

2
1

Columns 0 0 0 1

2

1

2
0 0 1

Rows#Columns 1 1 1 1

2

1

2

1

2

1

2
2

so that none of U +W , U +X , V +W and V +X is equal to Y or to 0. The
four rows are defined by U = 0, U = 1, V = 0 and V = 1, respectively, and
the four columns by W = 0, W = 1, X = 0 and X = 1, respectively. These
restrictions are not enough to define the entries uniquely, so we put Y = 1 on
the top left-hand and the bottom right-hand subsquares, and put Y = 0 on
the other two subsquares. In the top left-hand corner, the four combinations of
levels of U and W , together with the constraint Y = 1, define the treatments
uniquely, giving all four treatments with Y = 1. Similarly, in the top right-hand
corner, the four combinations of levels of U and X , together with the constraint
Y = 0, define the treatments uniquely, giving the remaining four treatments.
Hence the first two rows form a complete replicate. In a similar manner, the
treatment on each unit is defined uniquely, and the first two columns form a
complete replicate, as do the last two rows and also the last two columns.

This construction results in U and V each losing half their information to
Rows, if U 6= V , while W and X each lose half their information to Columns,
if W 6= X . The character Y is necessary for the construction, but it remains
orthogonal to both Rows and Columns.

For example, if we want full information on all main effects then we can put
U = B+C, V = A+B+C, W = A+B, X = A+C and Y = A. This gives the
design in Table 1(a), from which the randomized layout given in Table 1(b) is
obtained. The canonical efficiency factors and Residual degrees of freedom for
the design are in Table 2. Clearly, the design has too few Residual degrees of
freedom to be of practical use.

To increase the Residual degrees of freedom, two squares (s = 2) are usually
proposed for a 23 factorial. Such a plan is given in [5], and it will be compared
with other designs using two squares in Section 7.1. However, there is another
possibility that applies when the rows (or columns) of the two squares are con-
tiguous. Namely, construct a single 4× 8 rectangle, as is done in Section 6.1.

4.2. A 25 factorial in an 8 × 8 square

Here p = 2, m = 5, k = ℓ = 8 and r = 2. Both k and ℓ are powers of p, and
so a quasi-Latin square must have t = u = 3 and r1 = r2 = 1. Then c = d = 4
and r3 = 2. Again, super-frames are superfluous. The row frames are 4× 8 and
column frames are 8× 4 and there are two of each. To construct the design two
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sets of three row characters are needed and two sets of three column characters.
Plan 8.3 in [5] uses the two sets {A+B + C, A+D + E, B + C +D + E} and
{A+B +D, B + C + E, A+ C +D + E} for row characters and the two sets
{A+ C + E, B + C +D, A+B +D + E} and {A+C+D, B+D+E, A+B+
C + E} for column characters. Each set of characters is closed under addition
(modulo 2). The box frame for this design is of shape 8× 8 or the whole frame.
As r3 = 2, the whole frame consists of a 2× 2 array of subframes of shape 4× 4
and a unit character is required. The unit character chosen is A + B + C +D
and a 2× 2 Latin square is used to assign its levels to the subframes.

Alternatives to the above design, not considered in this paper, are nested
and contiguous designs, based on two 4 × 8 grids. They can be constructed as
described in Section 7.

4.3. A 33 factorial experiment in a 9 × 12 rectangle

In this case p = 3, m = 3, k = 9, ℓ = 12 and r = 4 so that k is a power of p
and r is not divisible by p. Thus, t = 2 and u = 1. We have c = 9, d = 3 and
r3 = 1. The numbers of row and column super-frames are r1 = 1 and r2 = 4.
Then there is one row frame, the same as the row super-frame and the whole
frame; each column super-frame is also a column frame and a box frame, and
consists of a 9× 3 grid.

Row characters specifying 8 degrees of freedom and four column characters,
each specifying 2 degrees of freedom, are required. An auxiliary design ∆1, for
assigning the nine groups defined by the row characters, is needed and this
will be a 9 × 4 row-column design for 9 treatments. A suitable design has the
following rows: (5, 6, 8, 9), (9, 4, 6, 7), (7, 8, 4, 5), (8, 9, 2, 3), (3, 7, 9, 1), (1, 2, 7, 8),
(2, 3, 5, 6), (6, 1, 3, 4), (4, 5, 1, 2). Use two of the row characters to index groups
1–9 in lexicographical order. Then, the four degrees of freedom corresponding
to these two row characters have canonical efficiency factor 1/4 in Rows, while
the canonical efficiency factor for the four degrees of freedom for the other two
row characters is 1/16.

No unit characters are required because r3 = 1.
For example, one could choose A + B and B + C for row characters, so

that A + 2C and A + 2B + C would be required to make the complete set
of row characters. The column characters could be chosen from A + B + C,
A+B+2C and A+2B+2C. For example, one could use two of these characters
in one column frame each and the other in two column frames, thus partially
confounding the corresponding effects. Those used in just one would have 75% of
their information orthogonal to rows and columns and, for the other character,
it would be 50%.

4.4. A 24 factorial in an 8 × 12 rectangle

In this example p = 2, m = 4, k = 8 = 23, ℓ = 12 = 2231 and r = 6. As k
is a power of p, we must have t = 3. Also r is divisible by p, and so there is a
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choice of values for u; u = 2 is chosen. As a result c = 4, d = 2 and r3 = 2. The
numbers of row and column super-frames are r1 = 1 and r2 = 3, respectively.
Hence, there are two row frames of shape 4 × 12 in the one row super-frame,
and six column frames, two in each column super-frame of shape 8× 4.

The set of row characters for the upper row frame is {A+B,A+ C,B + C}
and the set for the lower row frame is {A+D,B +D,A+B}. The column
characters, one per column frame, are A+B +C +D, A+C +D, A+B +C,
C +D, A +B +D and B + C +D. Because r2 = 3, an auxiliary design ∆1 is
needed to assign the four groups defined by the row characters to the 4×3 array
of subrectangles of shape 1×4 in each row frame. The transpose of a 3×4 Youden
square, constructed by removing the last row from a Latin square, is suitable.
The three rows of the Youden square are (1, 2, 3, 4), (2, 3, 4, 1) and (3, 4, 1, 2).
As the Youden square has 1/9 of the treatment information confounded with
Columns, 1/9 of each of the row characters is confounded with Rows. Because
r1 = 1, no auxiliary design ∆2 is needed for assigning the column characters.

The box frames for this design are of shape 8 × 4. As r3 = 2, a box frame
consists of a 2 × 2 array of subframes of shape 4 × 2 and a unit character is
required for each box frame. The characters chosen are A, D and A+B+C+D.
The same auxiliary design ∆3 is used to assign unit characters in each box frame:
it is a 2× 2 Latin square with rows (0,1) and (1,0).

The constructed design is given in Table 3. The canonical efficiency factors
and Residual degrees of freedom for this design are summarized in Table 4.
This shows that the design has very good properties. Many other choices of
sets of confounding characters are possible, depending on which interactions are
considered important.

4.5. A 23 factorial in a 6 × 12 rectangle

Here p = 2, m = 3, k = 6, ℓ = 12 and r = 9. As r is not divisible by p, we are
forced to put t = 1, u = 2 and r1 = r2 = 3, which give c = 2, d = 4 and r3 = 1.
Thus the row and column super-frames are the same as the row and column
frames.

There are three row frames, each of shape 2×12. We can assign the characters
A, B and C to one row frame each. In each row frame we use, for the two levels
of the row character, the 2× 3 auxiliary design ∆1 whose rows are (0, 0, 1) and
(1, 1, 0): this confounds 1/9 of the between-level information with Rows. There
are three column frames, each of shape 6× 4: in order to satisfy Condition (1),
we take {A + B,A + C,B + C} to be the set of column characters in each
column frame. This set divides the eight treatments into four groups of two, so
our 3× 4 auxiliary design ∆2 in each column frame is the Youden square given
in Section 4.4. There is no need for a unit character or a third auxiliary design,
because r3 = 1.

The complete design is shown in Table 5. All main effects have canonical
efficiency factors 1/27, 0 and 26/27 in Rows, Columns and Rows#Columns re-
spectively, while the corresponding figures for the two-factor interactions are
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Table 4

Canonical efficiency factors and Residual degrees of freedom (DF) for the design for a 24

factorial experiment in 8 rows × 12 columns

Unit sources

Treatment sources Rows Columns Rows#Columns

A, B, C, D 0 0 1

A# B 1

9
0 8

9

A# C, A#D, B # C, B #D 1

18
0 17

18

C #D, A# B # C, A# B #D, A# C #D, 0 1

6

5

6

B # C #D, A#B # C #D

Residual DF 2 5 62

Table 5

Quasi-Latin rectangle for a 23 factorial experiment in 6 rows × 12 columns

Column frame I Column frame II Column frame III

A = 0, 0, 1 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0

A = 1, 1, 0 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1

B = 0, 0, 1 0, 0, 1 1, 0, 1 1, 0, 0 0, 0, 0 0, 0, 1 1, 0, 1 1, 0, 0 0, 0, 0 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1

B = 1, 1, 0 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1 0, 0, 1 1, 0, 1 1, 0, 0 0, 0, 0

C = 0, 0, 1 0, 1, 0 1, 0, 0 0, 0, 0 1, 1, 0 0, 1, 0 1, 0, 0 0, 0, 0 1, 1, 0 1, 0, 1 0, 1, 1 1, 1, 1 0, 0, 1

C = 1, 1, 0 1, 0, 1 0, 1, 1 1, 1, 1 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1 0, 0, 1 0, 1, 0 1, 0, 0 0, 0, 0 1, 1, 0

0, 1/9 and 8/9. The three-factor interaction is completely confounded with
Rows#Columns.

5. Other methods for constructing row-column designs for
symmetric factorial experiments

We now give two other methods for constructing (extended) quasi-Latin rectan-
gles. Method 2 applies when one of k and ℓ is a multiple of v. Method 3 divides
the design into unequally-sized segments and a design is constructed for each
segment.

For Method 2, not only must one of k and ℓ be a multiple of v, but the
other must be a proper divisor of v. Take ℓ to be a multiple of v; for the case
of k a multiple of v interchange the roles of rows and columns. While such
designs can be constructed using Method 1, this requires the specification of
both column and unit characters. Method 2 requires only column characters and
so usually allows more choice for the column characters. Further, Condition (1)
is vacuously satisfied, and so there are no constraints on the choice of column
characters. Hence, Method 2 is likely to be the preferred method for this class
of designs, unless the designer is prepared to confound column characters with
multiple column frames. The steps for Method 2 are:
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Step 1: Divide up the whole frame: Divide the design into r2 column super-
frames of shape k × v, where r2 = ℓ/v. Divide each column super-frame
into k column frames of shape k × d, where d = v/k.

Step 2: Specify the column design: In each column super-frame, choose k
sets of column characters each specifying d − 1 degrees of freedom. It is
not necessary for all the sets to be different. Each set of characters is
confounded with the columns of one of the column frames.

Step 3: Form the row design: In each column super-frame, rearrange the
treatments in each column, using the algorithm given in [2, Technique 11.1],
so that each row consists of a complete replicate.

The justification for the last step is that the column design can be viewed as
a symmetric incomplete-block design. By Hall’s Marriage Theorem, the treat-
ments in each column can be rearranged so that each row consists of a complete
replicate.

Method 3 divides the design into segments as illustrated in Figure 2. It is
useful when at least one of k and ℓ is neither a power of p nor a multiple of
v; otherwise, it duplicates Method 1 or Method 2. We assume that the normal
conditions for (extended) quasi-Latin designs apply.

Step 0: Initialize: Set k1 = k, k2 = 0, ℓ1 = ℓ and ℓ2 = 0.
Step 1: Choose the row segment sizes: If k is neither a power of p nor a

multiple of v, then choose a value of t such that pt < k, t ≤ m, v divides
ptℓ, and pt does not divide k. If there is no such value of t, then there is
nothing to be gained by row segmentation. Otherwise, it is usually sensible
to choose the largest possible value of t; in particular, if k ≥ v then take
t = m. Let k1 be the largest multiple of pt which is smaller than k, and
put k2 = k − k1. Then v divides k1ℓ and k2ℓ, and p divides k1 and k2.

Step 2: Choose the column segment sizes: If ℓ is neither a power of p nor
a multiple of v, then choose a value of u such that pu < ℓ, u ≤ m, v divides

k1
row

segment 1

k2
row

segment 2

ℓ1

column

segment 1

ℓ2

column

segment 2

1 2

3 4

Fig 2. Segmentation of the whole frame for Method 3 into four segments numbered as shown
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puk, and pu does not divide ℓ. If there is no such value of u, then there
is nothing to be gained by column segmentation. Otherwise, it is usually
sensible to choose the largest possible value of u; in particular, if ℓ ≥ v
then take u = m. Let ℓ1 be the largest multiple of pu which is smaller than
ℓ, and put ℓ2 = ℓ − ℓ1. Since v divides puk, we must have k divisible by
pm−u. If t is defined, then m− u < t, and hence pm−u divides k1 and k2;
otherwise k1 = k and k2 = 0 and again pm−u divides k1 and k2. Therefore
v divides k1ℓ1, k1ℓ2, k2ℓ1 and k2ℓ2, and p divides ℓ1 and ℓ2.

Step 3: Divide the whole frame into segments: If k2 = ℓ2 = 0, then it is
not useful to segment the design and this method does not apply. Other-
wise, segment the design as shown in Figure 2. Only if both k2 6= 0 and
ℓ2 6= 0 will there be four segments. If only one is nonzero, then there will
be two segments.

Step 4: Construct a design for each segment: Use Method 1, 2 or 3, as
appropriate, on each of the design segments. If there are two segments
in the same row segment and row characters are needed for both, then,
to minimize the amount of information on row characters in Rows in the
whole design, the row characters in each row frame of the first segment
should be a subset of those in the corresponding row frame of the sec-
ond segment; this will also require the values of these characters in the
corresponding rows of the two designs to be chosen suitably. Similar con-
siderations apply if there are two segments in the same column segment
and column characters are needed for both. The simplest situation is that
k1 = ℓ1 = v and so a Latin square can be used for segment 1. In this
situation, segment 2 will require only row characters for its construction,
segment 3 will require only column characters and segment 4 will require
both row and column characters, but these can be chosen independently
of those used for the other segments.

6. Examples comparing (extended) quasi-Latin rectangles
constructed using the different methods

In this Section we compare several row-column designs for three sets of basic de-
sign parameters using all three methods of construction that we have presented.

6.1. A 23 factorial in a 4 × 8 rectangle

For this example p = 2, m = 3, k = 22, ℓ = 23 and r = 4. Here, we compare the
properties of two designs.

Design 1: As ℓ = v, Method 2 in Section 5 applies with r2 = 1 and d = 2.
We use it to construct a design. There are four column frames of shape
4 × 2. A column character is needed for each column pair. For example,
assign each of A + B, A + C, B + C and A + B + C to be confounded
with one pair of columns, so that a different character is used for each
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Table 6

Quasi-Latin rectangle for a 23 factorial experiment in 4 rows × 8 columns constructed using
Method 2

A+B A+ C B + C A+ B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 0, 0 1, 0, 0 0, 1, 0 0, 0, 1 0, 1, 1 1, 1, 0 1, 0, 1 1, 1, 1
1, 1, 0 1, 0, 1 0, 0, 0 1, 0, 0 1, 1, 1 0, 0, 1 0, 1, 1 0, 1, 0
0, 0, 1 0, 1, 0 1, 1, 1 0, 1, 1 0, 0, 0 1, 0, 1 1, 1, 0 1, 0, 0
1, 1, 1 0, 1, 1 1, 0, 1 1, 1, 0 1, 0, 0 0, 1, 0 0, 0, 0 0, 0, 1

Table 7

Canonical efficiency factors and Residual degrees of freedom (DF) for the designs for a 23

factorial experiment in 4 rows × 8 columns

Treatment sources Residual

Design Unit sources A B C A#B A# C B # C A#B # C DF

1 Rows 0 0 0 0 0 0 0 3

Columns 0 0 0 1

4

1

4

1

4

1

4
3

Rows#Columns 1 1 1 3

4

3

4

3

4

3

4
14

2 Rows 0 0 0 0 0 0 0 3

Columns 0 0 0 0 0 0 1 6

Rows#Columns 1 1 1 1 1 1 0 15

pair. Then, 1/4 of the information on each of the corresponding effects
is lost to Columns. Table 6 shows one of the possible designs obtained
after rearranging treatments in each column to make each row a complete
replicate.

Design 2: Healy’s design in [10] can be constructed using Method 1, with r1 =
r2 = 1, t = 2 and u = 3 so that c = 1 and d = 2. Thus, r3 = 4 and the
whole (box) frame consists of a 4×4 array of 1×2 subframes. Four column
characters are needed, as well as one set of three unit characters that are
closed under addition and an auxiliary design ∆3, for assigning the four
groups of treatments determined by the four combinations of the values of
the unit characters. Healy’s design has the character A+B + C assigned
to every pair of columns, uses the set {B,C,B + C} for unit characters,
and takes a 4× 4 Latin square for the auxiliary design. So, the interaction
A#B # C is totally confounded with Columns and no treatment effects
are confounded with Rows.

Table 7 compares the canonical efficiency factors and Residual degrees of
freedom for the two designs. Because the Columns source is likely to be a larger
source of variation than Rows#Columns, Design 2 suits experiments in which
it is appropriate to confound the three-factor interaction with the Columns. An
example is an experiment in which this interaction is anticipated to be negligible.
On the other hand, Design 1 will be preferred if a three-factor interaction is
thought to be highly likely and one wants to estimate it with good precision.
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6.2. A 23 factorial in a 4 × 6 rectangle

This example is for p = 2, m = 3, k = 4, ℓ = 6 and r = 3. As always, Method 1
applies. Neither ℓ nor k is a multiple of v and so Method 2 is not applicable. On
the other hand, ℓ is neither a multiple of v nor a power of p, so that Method 3
can be used.

Three designs will be constructed, ordered according to the amount of infor-
mation partially confounded with Rows#Columns: the amount for A#B # C
decreases and that for the two-factor interactions increases. They demonstrate
how the designer can influence the spread of the information about the treat-
ment effects across the unit sources and show the flexibility of our construction
methods.

Design 1: In this design Method 1 is used. As r is not a multiple of p, it follows
that t = 2 and u = 1 so that r1 = 1 and r2 = 3. Also, c = 4, d = 2 and
r3 = 1. Hence, there are 3 column super-frames, each containing a single
4 × 2 grid that is also a column frame, a box frame and a subframe. To
construct the design requires, firstly, a set of row characters specifying
3 treatment degrees of freedom and an auxiliary design ∆1 for assigning
groups of treatments determined by the row characters. Secondly, one
column character for each column super-frame is needed. Unit characters
and the associated auxiliary design ∆3 are not required.
Let {U, V, U + V } be the set of row characters and {W,X, Y } the set of
column characters. It is not necessary for all the column characters to be
different, but Condition (1) must be satisfied. The three row characters
divide the eight treatments into four groups of two, say S1, S2, S3 and S4.
The transpose of the 3× 4 Youden square used in Section 4.4 is a suitable
auxiliary design for assigning these groups.
To maximize the minimum canonical efficiency factor for all treatment
effects when (partially) confounded with Rows#Columns, we can take
U = A, V = B, W = A + C, X = B + C and Y = A + B + C. Table 8
shows the final design.

Design 2: This design uses Method 3. Because k is a power of p, row segmen-
tation is not useful and k2 = 0. On the other hand, ℓ is not a power of p or
a multiple of v, and ℓ > 4 so that column segmentation can be employed.
Here u = 2 so that ℓ1 = 4 and ℓ2 = 2. That is, segment 1 is of shape 4× 4
and the other segment is 4 × 2. The first can be constructed as a 4 × 4
quasi-Latin square and the other as a 4 × 2 quasi-Latin rectangle, both
using Method 1.
For the quasi-Latin rectangle, which consists of a single grid, a set of
row characters specifying 3 treatment degrees of freedom and a column
character are required. Suppose that, in order to have no main effects
involved, the row characters are A+B, A+C and B+C and the column
character is A+B+C. The row characters divide the treatments into four
groups of two, one for each combination of the values of A+B, A+ C.
For the quasi-Latin square, which has the same basic design parameters
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Table 8

Designs for a 23 factorial experiment in 4 rows × 6 columns

Design 1 — Method 1

A+ C B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1

0, 0, 0 0, 0, 1 1, 0, 0 1, 0, 1 0, 1, 1 0, 1, 0
1, 0, 1 1, 0, 0 0, 1, 1 0, 1, 0 1, 1, 0 1, 1, 1
0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 0 0, 0, 0 0, 0, 1
1, 1, 1 1, 1, 0 0, 0, 0 0, 0, 1 1, 0, 1 1, 0, 0

Design 2 — Method 3

B + C A+ B + C A+ B + C

= 0 = 1 = 0 = 1 = 0 = 1 A+ B† A+ C†

A+ B = 0‡ 1, 1, 1 1, 1, 0 0, 0, 0 0, 0, 1 0, 1, 1 1, 0, 0 = 1, = 1
A+ B = 1‡ 1, 0, 0 1, 0, 1 0, 1, 1 0, 1, 0 0, 0, 0 1, 1, 1 = 0, = 0
A+ C = 0‡ 0, 0, 0 0, 1, 0 1, 0, 1 1, 1, 1 1, 1, 0 0, 0, 1 = 0, = 1
A+ C = 1‡ 0, 1, 1 0, 0, 1 1, 1, 0 1, 0, 0 1, 0, 1 0, 1, 0 = 1, = 0

†These relations apply only to units in the last two columns of the design.
‡These relations apply only to units in the first four columns of the design.

as the design given in Section 4.1, two row and two column characters, as
well as a unit character, are needed. To match the quasi-Latin rectangle,
the row characters for the quasi-Latin square should be a subset of those
for the rectangle. Take A+B and A+C. For the column characters, again
to have no main effects involved and more information about A#B # C
confounded with Columns, suppose the characters B +C and A+B +C
are chosen. The unit character is A. The transpose of the 4×4 quasi-Latin
square design in Table 1(a) is such a design.
In combining the 4× 2 rectangle and the 4× 4 square, assign the values of
the row characters in each row of the combined design so that they differ
between the two segments. The design is in Table 8.

Design 3: This design is constructed in the same manner as Design 1, but using
different characters. To completely confound A # B # C with Columns,
take U = A+ C, V = B + C and W = X = Y = A+B + C.

The canonical efficiency factors and Residual degrees of freedom for the three
designs are in Table 9. Design 3 has the advantage over the other designs in hav-
ing more Residual degrees of freedom for Columns. To achieve this there is no
information about A # B # C confounded with Rows#Columns. This is the
design that was used in the experiment described in [16], but, in retrospect, De-
sign 1 would have been better. The reason is that Design 1 has more information
about the three-factor interaction confounded with Rows#Columns, and so is
better able to distinguish between models with and without the three-factor in-
teraction, with little loss of information about the other treatment effects from
Rows#Columns.
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Table 9

Canonical efficiency factors and Residual degrees of freedom (DF) for the designs for a 23

factorial experiment in 4 rows × 6 columns

Treatment sources Residual

Design Unit sources A B C A#B A# C B # C A#B # C DF

1 Rows 1

9

1

9
0 1

9
0 0 0 0

Columns 0 0 0 0 1

3

1

3

1

3
2

Rows#Columns 8

9

8

9
1 8

9

2

3

2

3

2

3
8

2 Rows 0 0 0 1

9

1

9

1

9
0 0

Columns 0 0 0 0 0 1

3

2

3
3

Rows#Columns 1 1 1 8

9

8

9

5

9

1

3
8

3 Rows 0 0 0 1

9

1

9

1

9
0 0

Columns 0 0 0 0 0 0 1 4

Rows#Columns 1 1 1 8

9

8

9

8

9
0 9

6.3. A 23 factorial in a 4 × 10 rectangle

For this example p = 2, m = 3, k = 4, ℓ = 10 and r = 5. It requires extended
quasi-Latin rectangle designs. As always, Method 1 applies. So does Method 3,
because ℓ is neither a multiple of v nor a power of p. Neither ℓ nor k is a multiple
of v and so Method 2 is not applicable. We compare the two designs given in
Table 10. They are constructed as follows:

Design 1: Method 3 is used and segments the design into a column segment of
shape 4× 8 and a second of shape 4× 2. The first segment uses Design 1
from Section 6.1 and the second segment is constructed using Method 1. It
uses A+B and A+C, and hence B+C, for row characters and A+B+C
for the column character.

Design 2: Method 1 is used, dividing the 4 × 10 rectangle into 1 row super-
frame and 5 column super-frames. Each column super-frame contains a
single column frame which is a grid of shape 4×2. The set of row characters
is {A+B,A+ C,B + C}; a 4 × 5 extended Latin square is used as an
auxiliary design to assign the 4 pairs of treatments defined by the row
characters. The column character is A + B + C for all 5 column super-
frames.

The canonical efficiency factors and Residual degrees of freedom for the two
designs are given in Table 11. It appears that Design 2 is suitable for situa-
tions in which it is appropriate to confound the three-factor interaction with
Columns. Design 1 would be preferred where the variance of the estimate of
the three-factor interaction is to be minimized and the researcher is prepared
to sacrifice some precision in estimating the two-factor interactions by partially
confounding them with Columns; even so, only 24% of each two-factor interac-
tion is confounded with Rows or Columns.
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Table 10

Designs for a 23 factorial experiment in 4 rows × 10 columns

Design 1 — Method 3

A + B A + C B + C A + B + C A + B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 Relations
†

0, 0, 0 1, 0, 0 0, 1, 0 0, 0, 1 0, 1, 1 1, 1, 0 1, 0, 1 1, 1, 1 0, 0, 0 1, 1, 1 A + B = 0, A + C = 0

1, 1, 0 1, 0, 1 0, 0, 0 1, 0, 0 1, 1, 1 0, 0, 1 0, 1, 1 0, 1, 0 1, 0, 1 0, 1, 0 A + B = 1, A + C = 0

0, 0, 1 0, 1, 0 1, 1, 1 0, 1, 1 0, 0, 0 1, 0, 1 1, 1, 0 1, 0, 0 1, 1, 0 0, 0, 1 A + B = 0, A + C = 1

1, 1, 1 0, 1, 1 1, 0, 1 1, 1, 0 1, 0, 0 0, 1, 0 0, 0, 0 0, 0, 1 0, 1, 1 1, 0, 0 A + B = 1, A + C = 1

Design 2 — Method 1

A+ B + C A+B + C A+B + C A+ B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1
1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0
1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1
0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0

†These relations apply only to units in the last two columns of the design

Table 11

Canonical efficiency factors and Residual degrees of freedom (DF) for the designs for a 23

factorial experiment in 4 rows × 10 columns

Treatment sources Residual

Design Unit sources A B C A# B A# C B # C A#B # C DF

1 Rows 0 0 0 1

25

1

25

1

25
0 0

Columns 0 0 0 1

5

1

5

1

5

2

5
5

Rows#Columns 1 1 1 19

25

19

25

19

25

3

5
20

2 Rows 0 0 0 1

25

1

25

1

25
0 0

Columns 0 0 0 0 0 0 1 8

Rows#Columns 1 1 1 24

25

24

25

24

25
0 21

7. Choosing a unit structure

Because quasi-Latin designs are resolvable, they can allow for different sources
of unit variability. These sources define the unit structure for the experiment,
which is the decomposition of the data vector according to unit sources only, all
treatment sources being disregarded, and also define the appropriate random-
ization. One possibility is just a row-column design in a single whole frame. The
second is a nested design, consisting of s whole frames within which rows and
columns are nested. Since each whole frame consists of r complete replicates,
these designs are r-resolved: see [15]. The third possibility is a contiguous de-
sign, which is like a nested design except that the contiguity between frames



Quasi-Latin designs 1921

is acknowledged, so that treatments may be latinized to rows or columns. This
means that treatments are replicated as equally as possible in the direction being
latinized: see [9].

A row-column design anticipates differences between rows and also between
columns. In this case, the factors indexing the units are Rows and Columns
and these are crossed, as in all the designs presented in previous Sections. For
randomization, rows and columns are permuted independently.

A nested design is appropriate when (i) there is a set of frames among which
differences are anticipated and (ii) differences are also anticipated between rows
and columns within each frame, these not being consistent across frames. Its
factors are Frames, Rows and Columns, with Rows and Columns nested within
Frames, as in Design 1 in Section 7.1, where the word Squares is used for Frames.
For the randomization of a nested design, frames are permuted, as are rows and
columns within each frame.

A contiguous design, like a nested design, has frames. It is used when, in addi-
tion to the unit variability for the nested design, consistent differences between
rows, for horizontally-aligned frames, and columns, for vertically-aligned frames,
are expected across frames. To account for these differences, the treatments are
latinized across frames to rows or columns or both, depending on the contigu-
ity of the design. For designs in which either rows or columns are contiguous,
the factors are Frames, Rows and Columns. If only rows are contiguous, then
Rows are crossed with Frames and Columns, and Columns are nested within
Frames. An example is Design 2 in Section 7.1, where the word Squares is used
for Frames. Randomization involves the permutation of frames, of rows, and of
columns within frames.

In constructing both nested and contiguous designs the first step is to specify
the number and size of whole frames, which is akin to Method 3, except that
the designer has more freedom in choosing the size of the whole frames. How-
ever, each whole frame needs to meet the conditions for a quasi-Latin square or
(extended) quasi-Latin rectangle and will be an r-resolved design. For nested
designs, the second step is to apply our methods to each whole frame indepen-
dently, although the overall pattern of (partial) confounding of the treatment
effects must be considered. For contiguous designs, the whole frames are joined
into a single frame and our methods are applied to this combined frame. This
ensures that the same characters are confounded between the contiguous entities
(rows or columns). However, in choosing the characters for the noncontiguous
entities, the overall pattern of their (partial) confounding must be considered.
Also, care is needed in choosing the unit characters and auxiliary design ∆3,
as this will determine the treatment effects confounded with the interaction of
whole frames and the contiguous entities.

7.1. The 23 factorial in a 4 × 8 rectangle revisited

In Section 4.1 it was suggested that a nested design consisting of two 4 × 4
squares, like the plan given in [5, Table 8.1], is more useful than a design with
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a single square. It was also noted that constructing a single 4 × 8 rectangle, as
is done in Section 6.1, is an alternative. Here, these designs are compared with
a design for two contiguous quasi-Latin squares. In constructing the nested and
contiguous designs, the first step is to divide them into two squares (whole
frames) of shape 4 × 4. Then, p = 2, m = 3, s = 2, k = ℓ = 4 and r = 2 so
t = u = 2 and c = d = 2.

The nested quasi-Latin-square design given in [5, Table 8.1], which we refer to
as Design 1, can be constructed by applying Method 1 to each square. The first
square of the design is in Table 1(a); the second square is obtained from this by
swapping row and column characters. The design involves complete replicates
in grids of shape 2 × 4 and 4 × 2 in each square, and is a nested, 2-resolved
design.

The nested design does not take advantage of the contiguity of the rows of
the two squares because there is no constraint on the treatments assigned to
the same row in different squares. On the other hand, although the quasi-Latin
rectangle design in Table 6 has a complete replicate in each row and in each of
four 4×2 grids, it has shortcomings as a contiguous design, because no attention
has been paid to the confounding with rows within squares. In particular, the
factorial effects estimated from a unit source are not orthogonal to each other.
Our construction method can be used to choose a better confounding pattern
for a contiguous design.

Design 2 consists of two row-contiguous 4 × 4 quasi-Latin squares and is 2-
resolved. To construct it, we apply Method 1 to the whole design, which is of
shape 4× 8. The construction is similar to that of Design 2 in Section 6.1. That
is, we require four column characters, which need not be different, and one set
of three unit characters that are closed under addition. Also, necessary is an
auxiliary design ∆3 for assigning the values of the unit characters. For example,
take as the column characters B +C and A+C in both squares to leave other
interaction characters for unit characters. Take the set {A+B + C,A+B,C}
for unit characters. In order to have A+B+C and A+B, but not C, partially
confounded with Rows#Squares, number the combinations of the values of the
first two characters as follows: 1 = (0, 0), 2 = (0, 1), 3 = (1, 0) and 4 = (1, 1).
Then assign assign these groups to the 4 × 4 array of 1 × 2 subframes using
the particular Latin square whose rows are (2, 1, 3, 4), (3, 4, 2, 1), (1, 3, 4, 2) and
(4, 2, 1, 3). The design is in Table 12.

The canonical efficiency factors and Residual degrees of freedom for the two

Table 12

Contiguous design for a 23 factorial experiment in 4 rows × 8 columns

B + C A+ C B + C A+ C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 1, 1 1, 0, 1 0, 0, 0 1, 1, 0 1, 1, 1 0, 0, 1 0, 1, 0 1, 0, 0
1, 1, 1 0, 0, 1 0, 1, 0 1, 0, 0 0, 1, 1 1, 0, 1 0, 0, 0 1, 1, 0
0, 0, 0 1, 1, 0 1, 1, 1 0, 0, 1 1, 0, 0 0, 1, 0 1, 0, 1 0, 1, 1
1, 0, 0 0, 1, 0 1, 0, 1 0, 1, 1 0, 0, 0 1, 1, 0 1, 1, 1 0, 0, 1
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Table 13

Canonical efficiency factors and Residual degrees of freedom (DF) for the nested and
contiguous designs for a 23 factorial experiment in 4 rows × 8 columns

Treatment sources Residual

Design Unit sources A B C A#B A# C B # C A# B # C DF

1 Squares 0 0 0 0 0 0 0 1

Rows [Squares] 0 0 0 1

4

1

4

1

4

1

4
2

Columns [Squares] 0 0 0 1

4

1

4

1

4

1

4
2

Rows # Columns [Squares] 1 1 1 1

2

1

2

1

2

1

2
11

2 Squares 0 0 0 0 0 0 0 1

Rows 0 0 0 0 0 0 0 3

Rows # Squares 0 0 0 1

2
0 0 1

2
1

Columns [Squares] 0 0 0 0 1

2

1

2
0 4

Rows # Columns [Squares] 1 1 1 1

2

1

2

1

2

1

2
11

designs are given in Table 13. There are now the four unit sources of variation for
Design 1, and five for Design 2. The designs have the same efficiency factors for
treatments effects confounded with the unit source Rows # Columns [Squares].

Design 1 in Section 6.1 and the two designs from this Section are row-
column, nested and contiguous designs, respectively. Comparing them shows
that allowing for the removal of the difference between squares reduces the
Rows # Columns [Squares] source’s (i) efficiencies for the interactions and (ii)
Residual degrees of freedom (from 14 to 11). The choice between these designs
depends on the sources of unit variability that are expected.

8. Discussion

The (extended) quasi-Latin rectangle designs increase the range of situations
in which factorial treatments can be assigned in a row-column design with or-
thogonal factorial structure. Our objective is not to obtain the “best design” for
a given set of factorial treatments and of units, but to give several competing
designs each of which is applicable in different circumstances; see for example
Section 6.2. This is possible because our construction methods are flexible and
permit a degree of direct control of the confounding in a quasi-Latin design.
The choice between the competing designs depends on the potential treatment
effects. The issue is usually about which interactions, if any, need to be allowed
for. If the designer decides that certain interactions are likely, then in view of
the likely smaller size of interactions [19], it is especially important to maximize
the amount of information about them which is confounded with the unit source
anticipated to have the smallest stratum variance. In addition, the methods can
be used to produce row-column, nested or contiguous designs as demonstrated
in Section 7. Here the sources of variation expected in the experiment are im-
portant in deciding on a design.
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A design constructed as one type can often be deployed as a design of a
different type. For example, the nested design constructed in Section 7.1 can be
deployed as a row-column design and the contiguous design as a row-column or
nested design. This requires the randomization and analysis appropriate to the
type of design actually deployed.
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