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IRMA, Université de Strasbourg, 7 rue René Descartes,
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1. Introduction

Let (Xi, Yi), i = 1, . . . , n be independent copies of a random pair (X,Y ) in E×R

where E is an infinite dimensional space associated to a semi-metric d. We ad-
dress the problem of estimating q(αn|x) ∈ R verifying P(Y > q(αn|x)|X =
x) = αn where αn → 0 as n → ∞ and x ∈ E. In such a case, q(αn|x) is
referred to as a large conditional quantile in contrast to classical conditional
quantiles (or regression quantiles) for which αn = α is fixed in (0, 1). While the
nonparametric estimation of ordinary regression quantiles has been extensively
studied (see for instance [37, 41] or [20], Chapter 5), less attention has been
paid to large conditional quantiles despite their potential interest. In clima-
tology, large conditional quantiles may explain how climate change over years
might affect extreme temperatures. In the financial econometrics literature, they
illustrate the link between extreme hedge fund returns and some measures of
risk. Parametric models are introduced in [10, 40] and semi-parametric meth-
ods are considered in [2, 32]. Fully non-parametric estimators have been first
introduced in [9, 6] through local polynomial and spline models. In both cases,
the authors focus on univariate covariates and on the finite sample proper-
ties of the estimators. Nonparametric methods based on moving windows and
nearest neighbors are introduced respectively in [25] and [26]. We also refer
to [15], Theorem 3.5.2, for the approximation of the nearest neighbors distribu-
tion using the Hellinger distance and to [21] for the study of their asymptotic
distribution.

An important literature is devoted to the particular case where the condi-
tional distribution of Y given X = x has a finite endpoint ϕ(x) and when X is a
finite dimensional random variable. The function ϕ is referred to as the frontier
and can be estimated from an estimator of the conditional quantile q(αn|x) with
αn → 0. As an example, a kernel estimator of ϕ is proposed in [28], the asymp-
totic normality being proved only when Y given X = x is uniformly distributed
on [0, ϕ(x)]. We refer to [34] for a review on this topic.

Estimation of unconditional large quantiles is also widely studied since the
introduction of Weissman estimator [43] dedicated to heavy-tailed distribu-
tions, Weibull-tail estimators [12, 24] dedicated to light-tailed distributions and
Dekkers and de Haan estimator [11] adapted to the general case.

In this paper, we focus on the setting where the conditional distribution of
Y given X = x has an infinite endpoint and is heavy-tailed, an analytical char-
acterization of this property being given in the next section. In such a case, the
frontier function does not exist and q(αn|x) → ∞ as αn → 0. Nevertheless, we
show, under some conditions, that large regression quantiles q(αn|x) can still
be estimated through a functional kernel estimator of P(Y > .|x). We provide
sufficient conditions on the rate of convergence of αn to 0 so that our estima-
tor is asymptotically Gaussian distributed. Making use of this, some functional
estimators of the conditional tail-index are introduced and a functional Weiss-
man estimator [43] is derived, permitting to estimate large conditional quantiles
q(βn|x) where βn → 0 arbitrarily fast.
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Assumptions are introduced and discussed in Section 2. Main results are
provided in Section 3 and illustrated both on simulated and real data in Section 4
and Section 5. Extensions of this work are briefly discussed in Section 6. Proofs
are postponed to the appendix.

2. Notations and assumptions

The conditional survival function (csf) of Y given X = x is denoted by F̄ (y|x) =
P(Y > y|X = x). The functional estimator of F̄ (y|x) is defined for all (x, y) ∈
E × R by

ˆ̄Fn(y|x) =
n
∑

i=1

K(d(x,Xi)/h)Q((Yi − y)/λ)

/

n
∑

i=1

K(d(x,Xi)/h), (2.1)

with Q(t) =
∫ t

−∞
Q′(s)ds where K : R

+ → R
+ and Q′ : R → R

+ are two
kernel functions, and h = hn and λ = λn are two nonrandom sequences (called
window-width) such that h→ 0 as n→ ∞. Let us emphasize that the condition
λ→ 0 is not required in this context. This estimator was considered for instance
in [20], page 56. Its rate of uniform strong consistency is established by [16]. In
Theorem 1 hereafter, the asymptotic distribution of (2.1) is established when
estimating small tail probabilities, i.e when y = yn goes to infinity with the
sample size n. Similarly, the functional estimators of conditional quantiles q(α|x)

are defined via the generalized inverse of ˆ̄Fn(.|x):

q̂n(α|x) =
ˆ̄F←n (α|x) = inf{t, ˆ̄Fn(t|x) ≤ α}, (2.2)

for all α ∈ (0, 1). Many authors are interested in this estimator for fixed
α ∈ (0, 1). Weak and strong consistency are proved respectively in [41] and [22].
Asymptotic normality is shown in [3, 38, 42] when E is finite dimensional and
by [18] for a general metric space under dependence assumptions. In Theorem 2,
the asymptotic distribution of (2.2) is investigated when estimating large quan-
tiles, i.e when α = αn goes to 0 as the sample size n goes to infinity. The
asymptotic behavior of such estimators depends on the nature of the condi-
tional distribution tail. In this paper, we focus on heavy tails. More specifically,
we assume that the csf satisfies

(A.1): F̄ (y|x) = c(x) exp

{

−

∫ y

1

(

1

γ(x)
− ε(u|x)

)

du

u

}

,

where γ is a positive function of the covariate x, c is a positive function and
|ε(.|x)| is continuous and ultimately decreasing to 0. Examples of such distribu-
tions are provided in Table 1. (A.1) implies that the conditional distribution of
Y given X = x is in the Fréchet maximum domain of attraction. In this context,
γ(x) is referred to as the conditional tail-index since it tunes the tail heaviness
of the conditional distribution of Y given X = x. More details on extreme-value
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Table 1

Examples of distributions satisfying (A.1). Their parameters θ(x), τ(x) and λ(x) are
positive

F̄ (y|x) γ(x) c(x) ε(y|x)

Pareto y−θ(x) 1

θ(x)
1 0

Cauchy
1

π
tan−1(1/y) +

1

2
(1 − sign(y)) 1

1

4

2

3

1

y2
(1 + o(1))

Fréchet 1− exp(−y−θ(x))
1

θ(x)
1− e−1 θ(x)

2
y−θ(x)(1 + o(1))

Burr (1 + yτ(x))−λ(x) 1

λ(x)τ(x)
2−λ(x) λ(x)τ(x)y−τ(x)(1 + o(1))

theory can be found for instance in [14]. Assumption (A.1) also yields that
F̄ (.|x) is regularly varying at infinity with index −1/γ(x). i.e for all ζ > 0,

lim
y→∞

F̄ (ζy|x)

F̄ (y|x)
= ζ−1/γ(x). (2.3)

We refer to [4] for a general account on regular variation theory. The auxiliary
function ε(.|x) plays an important role in extreme-value theory since it drives
the speed of convergence in (2.3) and more generally the bias of extreme-value
estimators. Therefore, it may be of interest to specify how it converges to 0.
In [1, 29], |ε(.|x)| is supposed to be regularly varying and the estimation of the
corresponding regular variation index is addressed.
Some Lipschitz conditions are also required:

(A.2): There exist κε, κc, κγ > 0 and u0 > 1 such that for all (x, x′) ∈ E×E
and u > u0,

|log c(x)− log c(x′)| ≤ κcd(x, x
′),

|ε(u|x)− ε(u|x′)| ≤ κεd(x, x
′),

∣

∣

∣

∣

1

γ(x)
−

1

γ(x′)

∣

∣

∣

∣

≤ κγd(x, x
′).

The last two assumptions are standard in the functional kernel estimation frame-
work.

(A.3): K is a function with support [0, 1] and there exist 0 < C1 < C2 <∞
such that C1 ≤ K(t) ≤ C2 for all t ∈ [0, 1].

(A.4): Q′ is a probability density function (pdf) with support [−1, 1].

One may also assume without loss of generality that K integrates to one. In
this case, K is called a type I kernel, see [20], Definition 4.1. Letting B(x, h) be
the ball of center x and radius h, we finally introduce ϕx(h) := P(X ∈ B(x, h)

the small ball probability of X . Under (A.3), the τ -th moment µ
(τ)
x (h) :=
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E{Kτ(d(x,X)/h) can be controlled for all τ > 0 by Lemma 3 in Appendix. It

is shown that µ
(τ)
x (h) is of the same asymptotic order as ϕx(h).

3. Main results

The first step towards the estimation of large conditional quantiles is the esti-
mation of small tail probabilities F̄ (yn|x) when yn → ∞ as n→ ∞.

3.1. Estimation of small tail probabilities

Defining

Λn(x) =

(

nF̄ (yn|x)
(µ

(1)
x (h))2

µ
(2)
x (h)

)−1/2

,

the following result provides sufficient conditions for the asymptotic normality

of ˆ̄Fn(yn|x).

Theorem 1. Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and
introduce yn,j = ajyn(1 + o(1)) for j = 1, . . . , J with 0 < a1 < a2 < · · · < aJ
and where J is a positive integer. If yn → ∞ such that nϕx(h)F̄ (yn|x) → ∞
and nϕx(h)F̄ (yn|x)(λ/yn ∨ h log yn)2 → 0 as n→ ∞, then

{

Λ−1n (x)

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix C(x) where

Cj,j′(x) = a
1/γ(x)
j∧j′ for (j, j′) ∈ {1, . . . , J}2.

Note that nϕx(h)F̄ (yn|x) → ∞ is a necessary and sufficient condition for the
almost sure presence of at least one sample point in the region B(x, h)×(yn,∞)
of E×R, see Lemma 4 in Appendix. Thus, this natural condition states that one

cannot estimate small tail probabilities out of the sample using ˆ̄Fn. Besides, from
Lemma 3, Λ−2n (x) is of the same asymptotic order as nϕx(h)F̄ (yn|x) and conse-

quently Λn(x) → 0 as n→ ∞. Theorem 1 thus entails ˆ̄Fn(yn,j|x)/F̄ (yn,j |x)
P
−→

1 which can be read as a consistency of the estimator. The second condition
nϕx(h)F̄ (yn|x)(λ/yn ∨ h log yn)2 → 0 imposes to the biases λ/yn and h log yn
introduced by the two smoothings to be negligible compared to the standard
deviation Λn(x) of the estimator. Theorem 1 may be compared to [13] which
establishes the asymptotic behavior of the empirical survival function in the
unconditional case but without assumption on the distribution.

3.2. Estimation of large conditional quantiles within the sample

In this paragraph, we focus on the estimation of large conditional quantiles of
order αn such that nϕx(h)αn → ∞ as n→ ∞. This is a necessary and sufficient
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condition for the almost sure presence of at least one sample point in the region
B(x, h)× (q(αn|x),∞) of E×R, see Lemma 4 in Appendix. In other words, the
large conditional quantile q(αn|x) is located within the sample. Letting

σn(x) =

(

nαn
(µ

(1)
x (h))2

µ
(2)
x (h)

)−1/2

,

Lemma 3 shows that σn(x) is of the same asymptotic order as (nϕx(h)αn)
−1/2

and thus the condition nϕx(h)αn → ∞ is equivalent to σn(x) → 0 as n→ ∞.

Theorem 2. Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and
consider a sequence τ1 > τ2 > · · · > τJ > 0 where J is a positive integer. If
αn → 0 such that σn(x) → 0 and σ−1n (x)(λ/q(αn|x) ∨ h logαn) → 0 as n→ ∞,
then

{

σ−1n (x)

(

q̂n(τjαn|x)

q(τjαn|x)
− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix γ2(x)Σ where Σj,j′ =
1/τj∧j′ for (j, j′) ∈ {1, . . . , J}2.

Remark that (A.1) provides an asymptotic expansion of the density function
of Y given X = x:

f(y|x) =
1

γ(x)

F̄ (y|x)

y
(1− ε(y|x)) =

1

γ(x)

F̄ (y|x)

y
(1 + o(1))

as y → ∞. Consequently, Theorem 2 entails that the random vector
{

µ
(1)
x (h)

(µ
(2)
x (h))1/2

f(q(τjαn|x)|x)

(nτjαn(1− τjαn))1/2
(q̂n(τjαn|x) − q(τjαn|x))

}

j=1,...,J

is also asymptotically Gaussian and centered. This result coincides with [3],
Theorem 6.4 established in the case where αn = α is fixed in (0, 1) and in a
finite dimensional setting.

3.3. Estimation of arbitrary large conditional quantiles

This paragraph is dedicated to the estimation of large conditional quantiles of
arbitrary small order βn. For instance, if nϕx(h)βn → c ∈ [1,∞) then q(βn|x) is
located near the boundary of the sample. If nϕx(h)βn → c ∈ [0, 1) then q(βn|x)
is located outside the sample. Here, a functional Weissman estimator [43] is
proposed to tackle all possible situations:

q̂W

n (βn|x) = q̂n(αn|x)(αn/βn)
γ̂n(x). (3.1)

Here, q̂n(αn|x) is the functional estimator (2.2) of a large conditional quantile
q(αn|x) within the sample and γ̂n(x) is an estimator of the conditional tail-index
γ(x). As illustrated in the next theorem, the extrapolation factor (αn/βn)

γ̂n(x)

allows to estimate arbitrary large quantiles.
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Theorem 3. Suppose (A.1) – (A.4) hold. Let x ∈ E and introduce

• αn → 0 such that σ−1n (x)(λ/q(αn|x) ∨ h logαn ∨ ε(q(αn|x)|x)) → 0 and
σn(x) → 0 as n→ ∞,

• (βn) such that βn/αn → 0 as n→ ∞,

• γ̂n(x) such that σ−1n (x)(γ̂n(x)− γ(x))
d

−→ N (0, V (x)) where V (x) > 0.

Then,
σ−1n (x)

log(αn/βn)

(

q̂W

n (βn|x)

q(βn|x)
− 1

)

d
−→ N (0, V (x)).

Let us now focus on the estimation of the conditional tail-index. Let αn → 0
and consider a sequence 1 = τ1 > τ2 > · · · > τJ > 0 where J is a positive
integer. Two additional notations are introduced for the sake of simplicity: u =
(1, . . . , 1)t ∈ R

J and v = (log(1/τ1), . . . , log(1/τJ))
t ∈ R

J . The following family
of estimators is proposed

γ̂φn(x) =
φ(log q̂n(τ1αn|x), . . . , log q̂n(τJαn|x))

φ(log(1/τ1), . . . , log(1/τJ))
, (3.2)

where φ : RJ → R denotes a twice differentiable function verifying the shift and
location invariance conditions

{

φ(θv) = θφ(v)
φ(ηu + x) = φ(x)

(3.3)

for all θ > 0, η ∈ R and x ∈ R
J . In the case where J = 3, τ1 = 1, τ2 = 1/2 and

τ3 = 1/4, the function

φFP(x1, x2, x3) = log

(

exp(4x2)− exp(4x1)

exp(4x3)− exp(4x2)

)

leads us to a functional version of Pickands estimator [36]:

γ̂φFP

n (x) =
1

log 2
log

(

q̂n(αn|x)− q̂n(2αn|x)

q̂n(2αn|x) − q̂n(4αn|x)

)

.

We refer to [27] for a different variant of Pickands estimator in the context where
the distribution of Y given X = x has a finite endpoint. Besides, introducing
the function mp(x1, . . . , xJ ) =

∑J
j=1(xj − x1)

p for all p > 0 and considering

φp(x) = m
1/p
p (x) gives rise to a functional version of the estimator considered

for instance in [39], example (a):

γ̂φp

n (x) =





J
∑

j=1

[log q̂n(τjαn|x)− log q̂n(αn|x)]
p

/

J
∑

j=1

[log(1/τj)]
p





1/p

.

As a particular case φ1(x) = m1(x) corresponds to a functional version of the
Hill estimator [33]:

γ̂φ1

n (x) =

J
∑

j=1

[log q̂n(τjαn|x)− log q̂n(αn|x)]

/

J
∑

j=1

log(1/τj) .
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More interestingly, if {φ(1), . . . , φ(H)} is a set of H functions satisfying (3.3)
and if A : RH → R is a homogeneous function of degree 1, then the aggregated
function A(φ(1), . . . , φ(H)) also satisfies (3.3). Generalizations of the functional
Hill estimator can then be obtained usingH = 2, Ap(x, y) = xpy1−p and defining

φp,q,r = Ap(φq, φr) = m
p/q
q m

(1−p)/r
r :

γ̂φp,q,r

n (x)=

(
∑J

j=1[log q̂n(τjαn|x)−log q̂n(αn|x)]p
)p/q(∑J

j=1[log(1/τj)]
r
)(p−1)/r

(
∑J

j=1[log q̂n(τjαn|x)−log q̂n(αn|x)]r
)(p−1)/r(∑J

j=1[log(1/τj)]
p
)p/q

.

For instance, the estimator introduced by [30], equation (2.2) corresponds to
the particular function φp,p,1 and the estimator of [5] corresponds to φp,pθ,p−1.
For an arbitrary function φ, the asymptotic normality of γ̂φn(x) is a consequence
of Theorem 2. The following result permits to establish the asymptotic normality
of the above mentioned estimators in an unified way.

Theorem 4. Under the assumptions of Theorem 2 and if σ−1n (x)ε(q(αn|x)|x) →
0 as n → ∞, then, σ−1n (x)(γ̂φn(x) − γ(x)) converges to a centered Gaussian
random variable with variance

Vφ(x) =
γ2(x)

φ2(v)
(∇φ(γ(x)v))tΣ(∇φ(γ(x)v)).

Let us note that the additional condition σ−1n (x)ε(q(αn|x)|x) → 0 is standard
in the extreme-value framework: Neglecting the unknown function ε(.|x) in the
construction of γ̂φn(x) yields a bias that should be negligible with respect to
the standard deviation σn(x) of the estimator. Finally, combining Theorem 3
and Theorem 4, the asymptotic distribution of the functional large quantile
estimator q̂W,φ

n (βn|x) based on (3.1) and (3.2) is readily obtained.

Corollary 1. Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and
consider a sequence 1 = τ1 > τ2 > · · · > τJ > 0 where J is a positive integer. If

• αn → 0, σn(x) → 0 and σ−1n (x)(λ/q(αn|x) ∨ h logαn ∨ ε(q(αn|x)|x)) → 0
as n→ ∞,

• βn/αn → 0 as n→ ∞,

then
σ−1n (x)

log(αn/βn)

(

q̂W,φ
n (βn|x)

q(βn|x)
− 1

)

d
−→ N (0, Vφ(x)).

As an example, in the case of the functional Hill and Pickands estimators,
we obtain

Vφ1
(x) = γ2(x)





J
∑

j=1

2(J − j) + 1

τj
− J2





/





J
∑

j=1

log(1/τj)





2

.

VφFP
(x) =

γ2(x)(22γ(x)+1 + 1)

4(log 2)2(2γ(x) − 1)2
.

Clearly, VφFP
(x) is the variance of the classical Pickands estimator, see for in-

stance [31], Theorem 3.3.5.
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Fig 1. Four realizations of the random function X(.).

4. Illustration on simulated data

The finite sample performance is illustrated on N = 200 replications of a sample
of size n = 500 from a random pair (X,Y ), where the functional covariate
X ∈ E = L2[0, 1] is defined by X(t) = cos(2πZt) for all t ∈ [0, 1] where Z is
uniformly distributed on [1/4, 1]. Some examples of simulated random functions
X are depicted on Figure 1. Besides, the conditional distribution of Y given
X is a Burr distribution (see Table 1) with parameters τ(X) = 2 and λ(X) =
2/(8‖X‖22 − 3) with

‖X‖22 =

∫ 1

0

X2(t)dt =
1

2

(

1 +
sin(4πZ)

4πZ

)

.

We focus on the estimation of q(βn|x) with βn = 5/n. To this end, the functional
Weissman estimator q̂W

n (βn|x) is used with a piecewise linear kernel K(t) =
(1.9− 1.8t)I{t ∈ [0, 1]} and the triangular kernel Q′. The conditional tail index
is estimated by the functional Hill estimator γ̂φ1

n . The choice of the semi-metric d
is a recurrent issue in functional estimation (see [20], Chapter 3). Here, two semi-
metrics are considered. The first one is defined for all (s, t) ∈ E2 by dX(s, t) =
‖s− t‖2 and coincides with the L2 distance between functions. Remarking that
the conditional quantile q(αn|X) depends only on ‖X‖22, or equivalently on Z,
another interesting semi-metric is dZ(s, t) = |‖s‖22 −‖t‖22|. Finally, in Section 5,
an example of the use of a metric based on second derivatives is presented.
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With such choices, the functional Weissman estimator q̂W

n (βn|x) depends on
three parameters h, λ and αn and on the τj ’s used to compute γ̂φ1

n .
- The smoothing parameter h is selected using the cross-validation approach
introduced in [44] and implemented for instance in [8, 23]:

hopt = argmin







n
∑

i=1

n
∑

j=1

(

I{Yi ≥ Yj} −
ˆ̄Fn,−i(Yj |Xi)

)2

, h ∈ H







where ˆ̄Fn,−i is the estimator (depending on h) given in (2.1) computed from the
sample {(Xℓ, Yℓ), 1 ≤ ℓ ≤ n, ℓ 6= i}. Here, H is a regular grid, H = {h1 ≤ h2 ≤
· · · ≤ hM} with h1 = 1/100, hM = 1/10 and M = 20. Let us note that this
approach was originally proposed for finite dimensional covariates. Up to our
knowledge, its optimality (with respect to the mean integrated squared error
for instance) is not established in the functional framework. We refer to [17] for
such a work in functional regression.
- In our experiments, the choice of the bandwidth λ appeared to be less crucial
than the other smoothing parameter h. It could have been selected with the same
criteria as previously, but for simplicity reasons, it has been fixed to λ = 0.1.
- The choice of αn is equivalent to the choice of the number of upper order
statistics in the non-conditional extreme-value theory. It is still an open question,
even though some techniques have been proposed, see for instance [7] for a
bootstrap based method.
- The selection of the τj ’s is equivalent to the selection of an estimator for
the conditional tail index. Once again, extreme-value theory does not provide
optimal solution to this problem.

In order to assess the impact of the choice of αn and τj ’s, the L2-errors

∆
(r)
d =

n
∑

i=1

(

q̂W

n (βn|Xi)
(r) − q(βn|Xi)

)2

,

r = 1, . . . , N have been computed. Here, q̂W

n (βn|Xi)
(r) is the estimation com-

puted on the rth replication and d can be either dX or dZ . Different values of αn

and τj are investigated: αn = c log(n)/n with c ∈ {5, 10, 15, 20} and τj = (1/j)s

with s ∈ {1, 2, 3, 10}. The median, 10% quantile and 90% quantile of the ∆
(r)
d

errors are collected in Table 2. For a fixed value of s, the best error obtained
with the semi-metric dZ is always smaller than the best error obtained with dX
(both displayed in bold font). Let us note that the optimal value of c does not
seem to depend on the semi-metric. Besides, it will appear in the following that
the estimations are not, at least visually, very sensitive with respect to the choice
of αn (or equivalently c) and τj (or equivalently s). In Figure 2–4, the estimator
q̂W

n (βn|x) is represented as a function of Z. The estimator has been computed
for two sets of (αn, τj): (αn = 15 log(n)/n, τj = (1/j)3) and (αn = 10 log(n)/n,
τj = (1/j)2) and for the two semi-metrics dX and dZ . We limited ourselves to
the representation of the estimator computed on the replications giving rise to

the median, 10% quantile and 90% quantile of the L2-errors ∆
(r)
d , r = 1, . . . , N .

It appears that there is no visual significative difference between the two choices
of (αn, τj).
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Table 2

Median [10% quantile, 90% quantile] of the L2-errors ∆
(r)
d

for αn = c log(n)/n,
c ∈ {5, 10, 15, 20} and τj = (1/j)s, s ∈ {1, 2, 3, 10} for the two semi-metrics dX and dZ

c = 5 c = 10 c = 15 c = 20

s = 1 d = dX 105 [2787, 108] 863 [363, 3103] 793 [311, 2402] 936 [344, 2492]

d = dZ 107 [7208, 1012] 860 [323, 3137] 688 [287, 2242] 751 [352, 2586]

s = 2 d = dX 6391 [871, 105] 429 [176, 1347] 349 [144, 1056] 341 [151, 1106]

d = dZ 105 [2310, 108] 449 [195, 1525] 342 [156, 1212] 329 [148, 1260]

s = 3 d = dX 2300 [570, 105] 318 [126, 1083] 272 [111, 792] 231 [099, 650]

d = dZ 13651 [1436, 106] 309 [141, 1301] 277 [115, 863] 228 [109, 672]

s = 10 d = dX 430 [191, 1963] 392 [191, 6357] 665 [423, 943] 895 [633, 1164]

d = dZ 795 [328, 8062] 378 [170, 6477] 660 [372, 933] 894 [577, 1155]

5. Illustration on real data

In this section, we propose to illustrate the behaviour of our large conditional
quantiles estimators on functional chemometric data. It concerns n = 215
samples of finely chopped meat (see for example [19] for more details). For
each unit i taken among this sample, we observe one spectrometric curve χi

discretized at 100 wavelengths λ1, . . . , λ100. The covariate xi is thus defined
by xi = (xi,1, . . . , xi,100)

t with xi,j = χi(λj) for all j = 1, . . . , 100. Each
variable xi,j is the − log10 of the transmittance recorded by the Tecator In-
fratec Food and Feed Analyzer spectrometer. The dataset can be found at
http://lib.stat.cmu.edu/datasets/tecator.

Clearly, the covariate xi is in fact a discretized curve but, as mentioned in [35],
the fineness of the grid spanning the discretization allows us to consider each
subject as a continuous curve. Hence, the covariate can be considered as belong-
ing to an infinite dimensional space E. For each spectrometric curve χi, the fat
content Ỹi ∈ [0, 100] (in percentage) is given. Since these values are bounded
they cannot satisfy model (A.1) and we propose to use as variable of interest
the inverse of the fat content defined as: Yi = 100/Ỹi ∈ [1,∞), i = 1, . . . , n.

In the following, the semi-metric based on the second derivative is adopted,
as advised in [20], Chapter 9:

d2(χi, χj) =

∫

(

χ
(2)
i (t)− χ

(2)
j (t)

)2

dt,

where χ(2) denotes the second derivative of χ. To compute this semi-metric,
one can use an approximation of the functions χi and χj based on B-splines as

proposed in [20], Chapter 3. Here, we limit ourselves to a discretized version d̃
of d:

d̃2(xi, xj) =

99
∑

l=2

{(xi,l+1 − xj,l+1) + (xi,l−1 − xj,l−1)− 2(xi,l − xj,l)}
2 .

http://lib.stat.cmu.edu/datasets/tecator
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Fig 2. Comparison of the estimated quantile q̂Wn (βn|x) corresponding to the 10% quantile

of the L2-errors ∆
(r)
d

with the true quantile function (continuous line). Horizontally: Z,

vertically: quantiles. Two sets of (αn,τj) are considered: (αn = 15 log(n)/n, τj = (1/j)3,
dashed line) and (αn = 10 log(n)/n, τj = (1/j)2, dotted line). Top: semi-metric dZ , bottom:
semi-metric dX .
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Fig 3. Comparison of the estimated quantile q̂Wn (βn|x) corresponding to the median of the

L2-errors ∆
(r)
d

with the true quantile function (continuous line). Horizontally: Z, verti-

cally: quantiles. Two sets of (αn,τj) are considered: (αn = 15 log(n)/n, τj = (1/j)3, dashed
line) and (αn = 10 log(n)/n, τj = (1/j)2, dotted line). Top: semi-metric dZ , bottom: semi-
metric dX .
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Fig 4. Comparison of the estimated quantile q̂Wn (βn|x) corresponding to the 90% quantile

of the L2-errors ∆
(r)
d

with the true quantile function (continuous line). Horizontally: Z,

vertically: quantiles. Two sets of (αn,τj) are considered: (αn = 15 log(n)/n, τj = (1/j)3,
dashed line) and (αn = 10 log(n)/n, τj = (1/j)2, dotted line). Top: semi-metric dZ , bottom:
semi-metric dX .
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Fig 5. Selected spectrometric curves χi0 and χi1 .

Other semi-metrics could be considered: Functional Principal Component Anal-
ysis (FPCA) or Multivariate Partial Least-Squares Regression (MPLSR) are
useful tools for computing proximities between curves in reduced dimensional
spaces, see [20], Section 3.4.

We propose to estimate the large conditional quantile of order βn = 5/n in a
given direction of the space E. More precisely, we focus on the segment [χi0 , χi1 ]
where χi0 and χi1 denote the most different curves in the sample, i.e.

(i0, i1) = arg max
1≤i<j≤n

d̃(xi, xj).

The selected curves χi0 and χi1 are plotted in Figure 5. Since these curves appear
to be smooth, the chosen semi-metric, which is based on the second derivative,
seems to be well adapted. The conditional quantile to estimate is q(βn, t(ξ))
where t(ξ) = ξχi1+(1−ξ)χi0 for ξ ∈ [0, 1]. To this end, the functional Weissman
estimator is considered with the same kernels as in the previous section. The
selected smoothing parameters are h = 0.02 and λ = 0.1.

The estimated quantile q̂W

n (βn, t(ξ)) is plotted as a function of ξ in Figure 6 for
different values of weights τj and probability αn. Here again, it appears that the
estimated quantiles are not too sensitive with respect to these parameters. The
globally decreasing shape of the curves indicates that heaviest tails (i.e. largest
values of γ(t(ξ))) are found in the neighbourhood of the curve χi0 (i.e. for small
values of ξ). At the opposite, lightest tails are found in the neighbourhood of the
curve χi1 . These results are confirmed by Figure 7: The estimated conditional
tail-index γ̂φ1

n (x) is larger for x = χi0 than for x = χi1 . These very different
shapes confirm a strong heterogeneity of the sample in terms of tail behaviour.
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Fig 6. Quantile estimate of order βn = 5/n as a function of t(ξ) = ξχi1 + (1 − ξ)χi0 ,
ξ ∈ [0, 1]. Continuous line: τj = (1/j)3 and αn = 15 log(n)/n, dashed line: τj = (1/j)2 and
αn = 10 log(n)/n.
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Fig 7. Estimation of the conditional tail-index γ̂φ1
n (x) as a function of αn with τj = (1/j)2.

Continuous line: x = χi0 , dashed line: x = χi1 .
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6. Further work

Our further work will consist in establishing uniform convergence results. The

rate of uniform strong consistency of the csf estimator ˆ̄Fn(y|x) defined in (2.1)
is already known since [16] for fixed y. The first step will then to adapt this
result for y = yn → ∞ as n → ∞. On this basis, it should be possible to get
uniform results for q̂(αn|x) (see (2.2)) in the case of large conditional quantiles
withing the sample, ie. αn → 0 with nϕx(x)αn → ∞. The last step would be to
extend these results to q̂W

n (βn|x) defined in (3.1) when βn → 0 arbitrarily fast.
Such results would require the uniform convergence of γ̂n(x), the estimator of
the conditional tail index.

7. Appendix: Proofs

7.1. Preliminary results

The following two lemmas are of analytical nature. The first one is dedicated to
the control of the local variations of the csf when the quantity of interest y goes
to infinity.

Lemma 1. Let x ∈ E and suppose (A.1) and (A.2) hold.
(i) If yn → ∞ and h log yn → 0 as n→ ∞, then, for n large enough,

sup
x′∈B(x,h)

∣

∣

∣

∣

F̄ (yn|x)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

≤ 2(κc + κγ + κε)h log yn.

(ii) If yn → ∞ and y′n → ∞ as n→ ∞, then, for n large enough,

sup
x′∈B(x,h)

∣

∣

∣

∣

F̄ (y′n|x
′)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(

yn
y′n

)2/γ(x)

− 1

∣

∣

∣

∣

∣

.

Proof. (i) Assumption (A.1) yields, for all x′ ∈ B(x, h):
∣

∣

∣

∣

log

(

F̄ (yn|x)

F̄ (yn|x′)

)∣

∣

∣

∣

≤ |log c(x)− log c(x′)|

+

∫ yn

1

(∣

∣

∣

∣

1

γ(x)
−

1

γ(x′)

∣

∣

∣

∣

+ |ε(u|x)− ε(u|x′)|

)

du

u

≤ κch+

∫ yn

1

(κγ + κε)h
du

u

≤ (κc + κγ + κε)h log yn,

eventually, from (A.2). Thus,

sup
d(x,x′)≤h

∣

∣

∣

∣

log

(

F̄ (yn|x)

F̄ (yn|x′)

)∣

∣

∣

∣

= O(h log yn) → 0

as n→ ∞ and taking account of log(u+ 1) ∼ u as u→ 0 gives the result.
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(ii) Let us assume for instance y′n > yn. From (A.1) we have

∣

∣

∣

∣

F̄ (y′n|x
′)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

= 1−

(

y′n
yn

)−1/γ(x′)

exp

(

∫ y′

n

yn

ε(u|x′)

u
du

)

≤ 1−

(

y′n
yn

)−1/γ(x′)−|ε(yn|x
′)|

. (7.1)

Now, x′ ∈ B(x, h) and (A.2) imply for n large enough that

1

γ(x′)
+ |ε(yn|x

′)| ≤
1

γ(x)
+ (κε + κγ)h+ |ε(yn|x)| ≤

2

γ(x)
.

Replacing in (7.1), it follows that

∣

∣

∣

∣

F̄ (y′n|x
′)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

≤ 1−

(

y′n
yn

)−2/γ(x)

.

The case y′n ≤ yn is similar.

The second lemma provides a second order asymptotic expansion of the quantile
function. It is proved in [8].

Lemma 2. Suppose (A.1) hold.
(i) Let 0 < βn < αn with αn → 0 as n→ ∞. Then,

| log q(βn|x)− log q(αn|x) + γ(x) log(βn/αn)| = O(log(αn/βn)ε(q(αn|x)|x)).

(ii) If, moreover, lim inf βn/αn > 0, then

β
γ(x)
n q(βn|x)

α
γ(x)
n q(αn|x)

= 1 +O(ε(q(αn|x)|x)).

The following lemma provides a control on the moments µ
(τ)
x (h) for all τ > 0,

the case τ = 1 being studied in [20], Lemma 4.3. The proof is straightforward.

Lemma 3. Suppose (A.3) holds. For all τ > 0 and x ∈ E, 0 < Cτ
1ϕx(h) ≤

µ
(τ)
x (h) ≤ Cτ

2ϕx(h).

The following lemma provides a geometrical interpretation of the condition
nϕx(h)F̄ (yn|x) → ∞.

Lemma 4. Suppose (A.1), (A.2) hold and let yn → ∞ such that h log yn →
0 as n → ∞. Consider the subset of E × R defined as Rn(x) = B(x, h) ×
(yn,∞) where x ∈ E is such that ϕx(h) > 0. Then, P(∃i ∈ {1, . . . , n}, (Xi, Yi) ∈
Rn(x)) → 1 as n→ ∞ if, and only if, nϕx(h)F̄ (yn|x) → ∞.

Proof. Since (Xi, Yi), i = 1, . . . , n are independent and identically distributed
random variables,

P(∃i ∈ {1, . . . , n}, (Xi, Yi) ∈ Rn(x)) = 1− (1− P((X,Y ) ∈ Rn(x)))
n (7.2)
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where

P((X,Y ) ∈ Rn(x))) = E(I{X ∈ B(x, h) ∩ Y ≥ yn})

= E(I{X ∈ B(x, h)}F̄ (yn|X))

= F̄ (yn|x)ϕx(h)

+ F̄ (yn|x)E

((

F̄ (yn|X)

F̄ (yn|x)
− 1

)

I{X ∈ B(x, h)}

)

.

In view of Lemma 1(i), we have

E

(∣

∣

∣

∣

F̄ (yn|X)

F̄ (yn|x)
− 1

∣

∣

∣

∣

I{X ∈ B(x, h)}

)

≤ 2(κc + κγ + κε)ϕx(h)h log yn

and therefore

P((X,Y ) ∈ Rn(x)) = F̄ (yn|x)ϕx(h)(1 +O(h log yn)).

Clearly, this probability converges to 0 as n→ ∞ and thus (7.2) can be rewritten
as

P(∃i ∈ {1, . . . , n}, (Xi, Yi) ∈ Rn(x)) = 1− exp
(

−nϕx(h)F̄ (yn|x)(1 + o(1))
)

,

which converges to 1 if and only if nϕx(h)F̄ (yn|x) → ∞.

Let us remark that the kernel estimator (2.1) can be rewritten as ˆ̄Fn(y|x) =

ψ̂n(y, x)/ĝn(x) with

ψ̂n(y, x) =
1

nµ
(1)
x (h)

n
∑

i=1

K(d(x,Xi)/h)Q((Yi − y)/λ),

ĝn(x) =
1

nµ
(1)
x (h)

n
∑

i=1

K(d(x,Xi)/h).

Lemma 5 and Lemma 6 are respectively dedicated to the asymptotic properties
of ĝn(x) and ψ̂n(y, x).

Lemma 5. Suppose (A.3) holds and let x ∈ E such that ϕx(h) > 0. We have:

(i) E(ĝn(x)) = 1.
(ii) If, moreover, ϕx(h) → 0 as h→ 0 then

0 < lim inf nϕx(h) var(ĝn(x)) ≤ lim supnϕx(h) var(ĝn(x)) <∞.

Therefore, under (A.3), if ϕx(h) → 0 and nϕx(h) → ∞ then ĝn(x) converges
to 1 in probability.

Proof. (i) is straightforward.
(ii) Standard calculations yields

nϕx(h)var(ĝn(x)) = ϕx(h)

(

µ
(2)
x (h)

(µ
(1)
x (h))2

− 1

)
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and Lemma 3 entails

(C1/C2)
2 ≤ ϕx(h)

µ
(2)
x (h)

(µ
(1)
x (h))2

≤ (C2/C1)
2.

The condition ϕx(h) → 0 concludes the proof.

Lemma 6. Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and
introduce yn,j = ajyn(1 + o(1)) for j = 1, . . . , J with 0 < a1 < a2 < · · · < aJ
and where J is a positive integer. If yn → ∞ such that h log yn → 0, λ/yn → 0
and nϕx(h)F̄ (yn|x) → ∞ as n→ ∞, then

(i) E(ψ̂n(yn,j , x)) = F̄ (yn,j |x)(1 +O(h log yn ∨ λ/yn)), for j = 1, . . . , J .
(ii) The random vector

{

Λ−1n (x)

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j , x))

F̄ (yn,j |x)

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix C(x) where

Cj,j′ (x) = a
1/γ(x)
j∧j′ for (j, j′) ∈ {1, . . . , J}2.

Proof. (i) The (Xi, Yi), i = 1, . . . , n being identically distributed, we have

E(ψ̂n(yn,j, x)) =
1

µ
(1)
x (h)

E{K(d(x,X)/h)Q((Y − yn,j)/λ)}

=
1

µ
(1)
x (h)

E{K(d(x,X)/h)E(Q((Y − yn,j)/λ)|X)}

Taking account of (A.4), it follows that

E(Q((Y − yn,j)/λ)|X) = F̄ (yn,j |X)+

∫ 1

−1

Q′(u)(F̄ (yn,j +λu|X)− F̄ (yn,j|X))du

and thus the bias can be expanded as

E(ψ̂n(yn,j , x))− F̄ (yn,j |x) =: T1,n + T2,n, (7.3)

where we have defined

T1,n =
1

µ
(1)
x (h)

E{K(d(x,X)/h)(F̄ (yn,j|X)− F̄ (yn,j |x))},

T2,n =
1

µ
(1)
x (h)

E

{

K(d(x,X)/h)F̄ (yn,j |X)

∫ 1

−1

Q′(u)

(

F̄ (yn,j + λu|X)

F̄ (yn,j |X)
− 1

)

du

}

.

Focusing on T1,n and taking account of (A.3), it follows that

T1,n =
1

µ
(1)
x (h)

E(K(d(x,X)/h)(F̄ (yn,j |X)− F̄ (yn,j |x))I{d(x,X) ≤ h})

=
F̄ (yn,j |x)

µ
(1)
x (h)

E

(

K(d(x,X)/h)

(

F̄ (yn,j |X)

F̄ (yn,j |x)
− 1

)

I{d(x,X) ≤ h}

)

.
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Lemma 1(i) implies that

∣

∣

∣

∣

F̄ (yn,j |X)

F̄ (yn,j |x)
− 1

∣

∣

∣

∣

I{d(x,X) ≤ h} ≤ 2(κc + κγ + κε)h log yn,j

≤ 3(κc + κγ + κε)h log yn,

eventually and therefore

|T1,n| = F̄ (yn,j |x)O(h log yn). (7.4)

Let us now consider T2,n. From Lemma 1(ii), for all u ∈ [−1, 1], we eventually
have

∣

∣

∣

∣

F̄ (yn,j + λu|X)

F̄ (yn,j|X)
− 1

∣

∣

∣

∣

I{d(x,X) ≤ h} ≤

∣

∣

∣

∣

∣

(

1 +
λu

yn,j

)2/γ(x)

− 1

∣

∣

∣

∣

∣

≤ Cγ(x)
λ

yn,j
,

since λ/yn → 0 as n → ∞ and where Cγ(x) is a positive constant. As a conse-
quence,

|T2,n| ≤ Cγ(x)
λ

yn,j

1

µ
(1)
x (h)

E(K(d(x,X)/h)F̄ (yn,j |X))

= Cγ(x)
λ

yn,j
(F̄ (yn,j |x) + T1,n) = F̄ (yn,j |x)O(λ/yn) (7.5)

in view of (7.4). Collecting (7.3), (7.4) and (7.5) concludes the first part of the
proof.
(ii) Let β 6= 0 in R

J and consider the random variable

Ψn =

J
∑

j=1

βj

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j, x))

Λn(x)F̄ (yn,j |x)

)

=:

n
∑

i=1

Zi,n,

where, for all i = 1, . . . , n, the random variable Zi,n is defined by

nΛn(x)µ
(1)
x (h)Zi,n =







J
∑

j=1

βjK(d(x,Xi)/h)Q((Yi − yn,j)/λ)

F̄ (yn,j |x)

− E





J
∑

j=1

βjK(d(x,Xi)/h)Q((Yi − yn,j)/λ)

F̄ (yn,j |x)











.

Clearly, {Zi,n, i = 1, . . . , n} is a set of centered, independent and identically
distributed random variables. Let us determine an asymptotic expansion of their
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variance:

var(Zi,n) =
1

n2(µ
(1)
x (h))2Λ2

n(x)
var





J
∑

j=1

βjK(d(x,Xi)/h)
Q((Yi − yn,j)/λ)

F̄ (yn,j |x)





=
1

n2(µ
(1)
x (h))2Λ2

n(x)
βtB(x)β

=
F̄ (yn|x)

nµ
(2)
x (h)

βtB(x)β, (7.6)

where B(x) is the J × J covariance matrix with coefficients defined for (j, j′) ∈
{1, . . . , J}2 by

Bj,j′(x) =
Aj,j′(x)

F̄ (yn,j |x)F̄ (yn,j′ |x)
,

Aj,j′(x) = cov {K(d(x,X)/h)Q((Y − yn,j)/λ), K(d(x,X)/h)Q((Y − yn,j′)/λ)}

= E
{

K2(d(x,X)/h)Q((Y − yn,j)/λ)Q((Y − yn,j′)/λ)
}

− E{K(d(x,X)/h)Q((Y − yn,j)/λ)}E{K(d(x,X)/h)Q((Y − yn,j′)/λ)}

=: T3,n − T4,n.

Let us first focus on T3,n:

T3,n = E{K2(d(x,X)/h)E(Q((Y − yn,j)/λ)Q((Y − yn,j′)/λ)|X)} (7.7)

and remark that

E(Q((Y − yn,j)/λ)Q((Y − y′n,j)/λ)|X) =: Ω(yn,j , yn,j′) + Ω(yn,j′ , yn,j)

where we have defined

Ω(y, z) =
1

λ

∫

R

Q′((t− y)/λ)Q((t− z)/λ)F̄ (t|X)dt

=

∫ 1

−1

Q′(u)Q(u+ (y − z)/λ)F̄ (y + uλ|X)du.

Let us consider the case j < j′. We thus have aj < aj′ and consequently (yn,j −
yn,j′)/λ→ −∞ as n→ ∞. Therefore, for n large enough u+(yn,j−yn,j′)/λ < −1
and Q(u + (yn,j − yn,j′)/λ) = 0. It follows that, eventually Ω(yn,j, yn,j′) = 0.
Similarly, for n large enough Q(u+ (yn,j′ − yn,j)/λ) = 1 and

Ω(yn,j′ , yn,j) =

∫ 1

−1

Q′(u)F̄ (yn,j′ + uλ|X)du.

For symmetry reasons, it follows that, for all j 6= j′,

E(Q((Y − yn,j)/λ)Q((Y − y′n,j)/λ)|X) =

∫ 1

−1

Q′(u)F̄ (yn,j∨j′ + uλ|X)du

= E(Q((Y − yn,j∨j′ )/λ)|X),



Functional kernel estimators of large conditional quantiles 1737

and replacing in (7.7) yields

T3,n = E{K2(d(x,X)/h)E(Q((Y − yn,j∨j′)/λ)|X)}

= E{K2(d(x,X)/h)Q((Y − yn,j∨j′)/λ)}.

Now, since K2 is a kernel also satisfying assumption (A.3), part (i) of the proof
implies

T3,n = µ(2)
x (h)F̄ (yn,j∨j′ |x)(1 +O(h log yn ∨ λ/yn)), (7.8)

for all j 6= j′. In the case where j = j′, by definition,

T3,n = E{K2(d(x,X)/h)E(Q2((Y − yn,j)/λ)|X)}

whereK2 is a kernel also satisfying assumption (A.3) and where the pdf associ-
ated to Q2 satisfies assumption (A.4). Consequently, (7.8) also holds for j = j′.
Second, part (i) of the proof implies

T4,n = (µ(1)
x (h))2F̄ (yn,j |x)F̄ (yn,j′ |x)(1 +O(h log yn ∨ λ/yn)).

As a consequence,

Aj,j′ (x) = µ(2)
x (h)F̄ (yn,j∨j′ |x)(1 +O(h log yn ∨ λ/yn))

− (µ(1)
x (h))2F̄ (yn,j |x)F̄ (yn,j′ |x)(1 +O(h log yn ∨ λ/yn))

leading to

Bj,j′(x) =
µ
(2)
x (h)

F̄ (yn,j∧j′ |x)

(

1 + O(h log yn ∨ λ/yn)

−
(µ

(1)
x (h))2

µ
(2)
x (h)

F̄ (yn,j∧j′ |x)(1 +O(h log yn ∨ λ/yn))
)

.

In view of Lemma 3, (µ
(1)
x (h))2/µ

(2)
x (h) is bounded and taking account of the

fact that F̄ (yn,j∧j′ |x) → 0 as n→ ∞ yields

Bj,j′(x) =
µ
(2)
x (h)

F̄ (yn,j∧j′ |x)
(1 + o(1)).

Now, from the regular variation property (2.3), it is easily seen that

F̄ (yn,j∧j′ |x) = a
−1/γ(x)
j∧j′ F̄ (yn|x)(1 + o(1))

entailing Bj,j′(x) = Cj,j′(x)µ
(2)
x (h)/F̄ (yn|x)(1 + o(1)). Replacing in (7.6), it

follows that

var(Zi,n) =
βtC(x)β

n
(1 + o(1)),

for all i = 1, . . . , n. As a preliminary conclusion, var(Ψn) → βtC(x)β as n →
∞. Consequently, Lyapounov criteria for the asymptotic normality of sums of
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triangular arrays reduces to
∑n

i=1 E |Zi,n|
3
= nE |Z1,n|

3 → 0 as n → ∞. Next,
remark that Z1,n is a bounded random variable:

|Z1,n| ≤
2C2

∑J
j=1 |βj |

nΛn(x)µ
(1)
x (h)F̄ (yn,J |x)

= 2C2a
1/γ(x)
J

µ
(1)
x (h)

µ
(2)
x (h)

J
∑

j=1

|βj |Λn(x)(1 + o(1))

≤ 2(C2/C1)
2a

1/γ(x)
J

J
∑

j=1

|βj |Λn(x)(1 + o(1));

in view of Lemma 3 and thus,

nE |Z1,n|
3 ≤ 2(C2/C1)

2a
1/γ(x)
J

J
∑

j=1

|βj |Λn(x)nvar(Z1,n)(1 + o(1))

= 2(C2/C1)
2a

1/γ(x)
J

J
∑

j=1

|βj |β
tC(x)βΛn(x)(1 + o(1)) → 0

as n → ∞ in view of Lemma 3. As a conclusion, Ψn converges in distribution
to a centered Gaussian random variable with variance βtC(x)β for all β 6= 0 in
R

J . The result is proved.

7.2. Proofs of main results

Proof of Theorem 1. Keeping in mind the notations of Lemma 6, the following
expansion holds

Λ−1n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j|x)

F̄ (yn,j|x)
− 1

)

=:
∆1,n +∆2,n −∆3,n

ĝn(x)
, (7.9)

where

∆1,n = Λ−1n (x)

J
∑

j=1

βj

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j , x))

F̄ (yn,j |x)

)

∆2,n = Λ−1n (x)

J
∑

j=1

βj

(

E(ψ̂n(yn,j, x)) − F̄ (yn,j|x)

F̄ (yn,j|x)

)

∆3,n =





J
∑

j=1

βj



Λ−1n (x) (ĝn(x) − 1) .

Let us highlight that the two assumptions nh2ϕx(h) log
2(yn)F̄ (yn|x) → 0 and

nϕx(h)F̄ (yn|x) → ∞ imply that h log yn → 0 as n→ ∞. Thus, from Lemma 6(ii),
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the random term ∆1,n can be rewritten as

∆1,n =
√

βtC(x)βξn, (7.10)

where ξn converges to a standard Gaussian random variable. The nonrandom
term ∆2,n is controlled with Lemma 6(i):

∆2,n = O(Λ−1n (x)(h log yn ∨ λ/yn)) = o(1). (7.11)

Finally, ∆3,n can be bounded by Lemma 5 and Lemma 3:

∆3,n = OP (Λ
−1
n (x)(nϕx(h))

−1/2) = OP (F̄ (yn|x))
1/2 = oP (1). (7.12)

Collecting (7.9)–(7.12), it follows that

ĝn(x)Λ
−1
n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)

=
√

βtC(x)βξn + oP (1).

Finally, ĝn(x)
P
−→ 1 concludes the proof.

Proof of Theorem 2. Introduce for j = 1, . . . , J ,

αn,j = τjαn,

σn,j(x) = q(αn,j |x)σn(x),

vn,j(x) = α−1n,jγ(x)σ
−1
n (x),

Wn,j(x) = vn,j(x)
(

ˆ̄Fn(q(αn,j |x) + σn,j(x)zj |x)− F̄ (q(αn,j |x) + σn,j(x)zj |x)
)

,

an,j(x) = vn,j(x)
(

αn,j − F̄ (q(αn,j |x) + σn,j(x)zj |x)
)

,

and zj ∈ R. Let us study the asymptotic behavior of J-variate function defined
by

Φn(z1, . . . , zJ) = P





J
⋂

j=1

{

σ−1n,j(x)(q̂n(αn,j |x) − q(αn,j |x)) ≤ zj
}





= P





J
⋂

j=1

{Wn,j(x) ≤ an,j(x)}



 .

We first focus on the nonrandom term an,j(x). Under (A.1), F̄ (.|x) is differen-
tiable. Thus, for all j ∈ {1, . . . , J} there exists θn,j ∈ (0, 1) such that

F̄ (q(αn,j |x)|x) − F̄ (q(αn,j |x) + σn,j(x)zj |x) = −σn,j(x)zj F̄
′(qn,j |x), (7.13)

where qn,j = q(αn,j |x) + θn,jσn,j(x)zj . It is clear that q(αn,j |x) → ∞ and
σn,j(x)/q(αn,j |x) → 0 as n → ∞. As a consequence, qn,j → ∞ and thus
(A.1) entails

lim
n→∞

qn,jF̄
′(qn,j |x)

F̄ (qn,j |x)
= −1/γ(x). (7.14)
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Moreover, since qn,j = q(αn,j |x)(1 + o(1)) and F̄ (.|x) is regularly varying at
infinity, it follows that F̄ (qn,j |x) = F̄ (q(αn,j |x)|x)(1+ o(1)) = αn,j(1+ o(1)). In
view of (7.13) and (7.14), we end up with

an,j(x) =
vn,j(x)σn,j(x)αn,jzj

γ(x)q(αn,j |x)
(1 + o(1)) = zj(1 + o(1)). (7.15)

Let us now turn to the random term Wn,j(x). Defining aj = τ
−γ(x)
j , yn,j =

q(αn,j |x) + σn,j(x)zj for j = 1, . . . , J and yn = q(αn|x), we have yn,j =
q(αn,j |x)(1 + o(1)) = ajyn(1 + o(1)) since q(.|x) is regularly varying at 0 with
index −γ(x). The same argument yields log yn = −γ(x) log(αn)(1 + o(1)). As a
consequence, Theorem 1 applies and the random vector

{

σ−1n (x)

vn,j(x)F̄ (yn,j |x)
Wn,j

}

j=1,...,J

= (1 + o(1))

{

Wn,j

γ(x)

}

j=1,...,J

converges to a centered Gaussian random variable with covariance matrix C(x).
Taking account of (7.15), we obtain that Φn(z1, . . . , zJ) converges to the cumu-
lative distribution function of a centered Gaussian distribution with covariance
matrix γ2(x)C(x) evaluated at (z1, . . . , zJ), which is the desired result.

Proof of Theorem 3. The proof is based on the following expansion:

σ−1n (x)

log(αn/βn)
(log(q̂W

n (βn|x)) − log(q(βn|x))) =
σ−1n (x)

log(αn/βn)
(Qn,1 +Qn,2 +Qn,3)

where we have introduced

Qn,1 = σ−1n (x)(γ̂n(x)− γ(x)),

Qn,2 =
σ−1n (x)

log(αn/βn)
log(q̂n(αn|x)/q(αn|x)),

Qn,3 =
σ−1n (x)

log(αn/βn)
(log q(αn|x)− log q(βn|x) + γ(x) log(αn/βn)).

First,Qn,1
d

−→ N (0, V (x)) as a straightforward consequence of the assumptions.

Second, Theorem 2 implies that q̂n(αn|x)/q(αn|x)
P
−→ 1 and

Qn,2 =
σ−1n (x)

log(αn/βn)

(

q̂n(αn|x)

q(αn|x)
− 1

)

(1 + oP (1)) =
OP (1)

log(αn/βn)
.

Consequently, Qn,2
P
−→ 0 as n → ∞. Finally, from Lemma 2(i), Qn,3 =

O(σ−1n (x)ε(q(αn|x)|x)), which converges to 0 in view of the assumptions.

Proof of Theorem 4. The following expansion holds for all j = 1, . . . , J :

log q̂n(τjαn|x) = log q(αn|x) + log

(

q(τjαn|x)

q(αn|x)

)

+ log

(

q̂n(τjαn|x)

q(τjαn|x)

)

. (7.16)
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First, Lemma 2(ii) entails that

log

(

q(τjαn|x)

q(αn|x)

)

= γ(x) log(1/τj) +O(ε(q(αn|x)|x)), (7.17)

where the O(ε(q(αn|x)|x)) is not necessarily uniform in j = 1, . . . , J . Second, it
follows from Theorem 2 that

log

(

q̂n(τjαn|x)

q(τjαn|x)

)

= σn(x)ξn,j (7.18)

where (ξn,1, . . . , ξn,J )
t converges to a centered Gaussian random vector with

covariance matrix γ2(x)Σ. Replacing (7.17) and (7.18) in (7.16) yields

log q̂n(τjαn|x) = log q(αn|x) + γ(x) log(1/τj) + σn(x)ξn,j +O(ε(q(αn|x)|x)),

for all j = 1, . . . , J and therefore, in view of the shift invariance property of φ,
we have that φ ({log q̂n(τjαn|x)}j=1,...,J ) is equal to

φ ({γ(x) log(1/τj) + σn(x)ξn,j +O(ε(q(αn|x)|x))}j=1,...,J) .

A first order Taylor expansion yields:

φ ({log q̂n(τjαn|x)}j=1,...,J) = φ (γ(x)v)

+

J
∑

j=1

(σn(x)ξn,j +O(ε(q(αn|x)|x)))
∂φ

∂xj
(γ(x)v)

+ OP





J
∑

j=1

(σn(x)ξn,j +O(ε(q(αn|x)|x)))
2



 .

Thus, under the condition σ−1n (x)ε(q(αn|x)|x) → 0 as n→ ∞, it follows that

σ−1n (x)(φ ({log q̂n(τjαn|x)}j=1,...,J)− φ (γ(x)v)) =
J
∑

j=1

ξn,j
∂φ

∂xj
(γ(x)v) + oP (1).

Taking into account of the scale invariance property of φ, we finally obtain

σ−1n (x)(γ̂φn(x) − γ(x)) =
1

φ(v)

J
∑

j=1

ξn,j
∂φ

∂xj
(γ(x)v) + oP (1)

and the conclusion follows.
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