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Abstract: The present article presents a methodological advance which
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1. Introduction

This paper considers the development of smooth, pointwise confidence intervals
for the survival function defined by S(x) = P (T > x) where T is a random
variable representing the observed lifetime of an individual. Practically S(x)
expresses the probability that a continuous duration will exceed a specified
time point x. Naturally then, it has many applications in fields as diverse as
reliability, medicine demography and insurance to name but a few.

Development of the confidence intervals is based on the kernel survival func-
tion estimate of [4], discussed in detail in Section 2. In the same article, Gulati
and Padgett improved the coverage accuracy of the confidence bands of [8],
by utilizing the smaller Mean Square Error (MSE) of kernel smooth estimates
compared to that of their empirical counterparts. Both approaches though are
still dependent on the empirical estimate of the Brownian motion probabilities
(as exhibited in remark 2 below) which determines the width of the intervals
and the confidence level. As a result, the bias of the estimated probabilities
undermines the coverage accuracy of the obtained intervals. The purpose of the
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present research is to remedy this by quantifying the difference between the true
and the estimated survival function as a normally distributed random variable.
As a result, the estimated Brownian motion probabilities of the two aforemen-
tioned approaches are replaced by the usual normal distribution quantiles. This
leads in significant improvement in coverage accuracy as it is evident from the
replication of the simulation study of [4] in Section 4 below.

The methodological contributions of the present research include a central
limit theorem for the smooth estimate of [4] as well as establishment of the rate
with which uniform consistency of the estimate is achieved.

The rest of the paper is organized as follows. The framework of study to-
gether with definition of the smooth estimate is given in Section 2. Section 3 is
devoted to the central limit theorem for the estimate, its consistency and the
suggested confidence interval. The simulation study on the coverage accuracy of
the suggested confidence interval is given in Section 4. Proofs of all theorems are
deferred for Section 5 while Section 6 contains the proofs of auxiliary lemmas.

2. Notation and preliminaries

Let T1, T2, . . . , Tn be a sample of n i.i.d. survival times censored at the right by
n i.i.d. random variables U1, U2, . . . , Un, independent of the Ti’s. Let f and F be
the density and distribution function of the Ti’s and H the distribution function
of the Ui’s. The observed data are then the pairs (Xi,∆i), i = 1, 2, . . . , n with
Xi = min{Ti, Ui} and ∆i = 1{Ti≤Ui} where 1{·} is the indicator random vari-
able of the event {·}. The observed data form an i.i.d. sample with probability
density g and distribution function G which satisfies 1−G = (1−F )(1−H). An
estimate of the unknown survival function can be defined by Ŝ(x) = 1 − F̂ (x)
where

F̂ (x) =
1

n

n
∑

i=1

∆i

1−H(Xi)
W

(

x−Xi

h

)

,

W (x) =

∫ x

−∞

K(u) du.

The real-valued function K is called kernel and integrates to 1, while h is called
bandwidth and controls the amount of smoothing applied to the estimate. Es-
timator Ŝ(x) cannot be used directly in practice as it involves the unknown
censoring distribution H(x). One solution is to reverse the intuitive role played
by Ti and Ui and estimate 1−H(x) by the (sightly modified) [10] estimator,

1− Ĥ(x) =















1, 0 ≤ x ≤ Z1
∏k−1

i=1

(

n−i+1
n−i+2

)1−Λi

, Zk−1 < x ≤ Zk, k = 2, . . . , n
∏n

i=1

(

n−i+1
n−i+2

)1−Λi

, Zn < x,

where (Zi,Λi) are the ordered Xi’s, along with their censoring indicators ∆i,
i = 1, . . . , n. This gives rise to the practically useful estimator

Ŝn(x) = 1− 1

n

n
∑

i=1

∆i

1− Ĥ(Xi)
W

(

x−Xi

h

)

.
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Estimator Ŝn(x) was employed in the context of survival function estimation
in [4] where its asymptotic mean square error, optimal (with respect to MSE)
bandwidth, strong uniform consistency and convergence to a mean zero Gaus-
sian process were established. In addition, [13] and [15] respectively provided the
conditions under which the estimate has superior Mean Square Error (MSE) and
Mean Integrated Absolute Error compared to the Kaplan-Meier Estimate. Ap-
plications of Ŝn(x) include the works of [7, 12] on kernel hazard rate estimation.
Moreover, the distribution estimate 1 − Ŝn(x) has been applied extensively on
quantile estimation under random right censorship, see [16] and the references
therein.

3. Assumptions and main results

The main results of this research are presented in this section in the form of
theorems 2–3 below. These concern, quantification of the asymptotic distribu-
tion of Ŝ(x) and the rate of its uniform consistency with respect to the true
curve. Furthermore, theorem 2 is applied in construction of smooth confidence
intervals for the true survival curve. Prior to that, the necessary notation, as-
sumptions and the already established in the literature asymptotic properties
of Ŝ(x) are given.

First, denote with µi(K) the ith moment, i = 0, 1, 2 of the function K and
with R(K) the integral of the real function K2 over its domain. The following
conditions are assumed throughout

1. S(x) is twice differentiable and S′′(x) is bounded and uniformly continu-
ous.

2. For l = 0, 1, 2, the lth derivative of K, K(l), is bounded and absolutely
integrable with finite second moments.

3. R(K) < +∞ and µ0(K) = 1, µ1(K) = 0, µ2(K) < +∞, i.e. the kernel K
is of order 2.

4. There exists small enough h such that W ((y − x)h−1)/(1 −G(y)) is uni-
formly bounded for |y − x| > M , for any M > 0.

A consequence of condition 2 is that W (x) is bounded, while condition 3 and
particularly µ0(K) = 1 implies

lim
x→−∞

W (x) = 0, and lim
x→+∞

W (x) = 1.

If, in contrast to condition 3, a kernel with order higher than 2 is used, then,
while this will be asymptotically beneficiary in terms of bias, the resulting es-
timate may be negative which does not make any sense from a practical per-
spective. Conditions 1–3 are satisfied by virtually all kernels in use in practice,
see for example [12]. Condition 4 essentially means that there should be enough
censored data at the right end of the estimation region for the asymptotics to
apply. It has to be noted that it is automatically satisfied when the kernel has
bounded support. The following theorem summarizes the asymptotic properties
of Ŝ(x) and it is a direct consequence of lemma 1 in [16], see also [4].
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Theorem 1. Let n → +∞, h → 0. Then, under conditions 1–4,

E

{

Ŝ(x)
}

− S(x) = S′′(x)
h2

2
µ2(K) + o(h2)

Var
{

Ŝ(x)
}

=
1

n

∫ x

0

f(y)

1−H(y)
dy − S(x)2

n

− 2h

n

f(x)

1−H(x)

∫

yK(y)W (y) dy + O(h2n−1).

The next theorem establishes the pointwise asymptotic normality of Ŝ(x).

Theorem 2. Under conditions 1–4, provided that nh → +∞ as h → 0 as

n → +∞,
√

Var
{

Ŝ(x)
}−1 (

Ŝ(x) − E

{

Ŝ(x)
})

d→ N(0, 1). (1)

The next theorem provides the rate with which uniform consistency of Ŝ(x)
is achieved.

Theorem 3. Define T = sup {x : F (x) < 1− ε} for a small ε > 0. Under

conditions 1–4 we have

sup
0<x<T

|Ŝ(x) − S(x)| = Op(h
2 + n− 1

2 ).

Using the strong convergence of the Kaplan - Meier estimator to the true
survival function it is easy to show that

Ŝn(x) = Ŝ(x) + op

(

n−1/2
)

(2)

which means that Ŝ(x) and Ŝn(x) are asymptotically equivalent.

Corollary 1. Using (2) and Slutsky’s lemma it is readily verified that theorems

1, 2 and 3 hold also for estimator Ŝn(x).

Now, by theorem 1 we have that

Bn =
E

{

Ŝ(x)
}

− S(x)
√

Var
{

Ŝ(x)
}

≃ S′′(x)h
2

2 µ2(K)
√

Var
{

Ŝ(x)
}

. (3)

Then, combining corollary 1, (1) of theorem (2) and (3), it easily follows that a
100(1− α)% two sided confidence interval for S(x) is

Ŝn(x)−
(

za/2 + Ŝ′′
n(x)

h2

2
µ2(K)

)
√

Var
{

Ŝn(x)
}

≤ S(x)

≤ Ŝn(x) +

(

za/2 − Ŝ′′
n(x)

h2

2
µ2(K)

)
√

Var
{

Ŝn(x)
}

. (4)
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Remark 1. By theorem 2 a confidence interval for EŜn(x) is

[

Ŝn(x) − za/2

√

Var
{

Ŝ(x)
}

, Ŝn(x) + za/2

√

Var
{

Ŝ(x)
}

]

. (5)

Note though that in the case where nh4 → 0, the deterministic term Bn → 0
and therefore the confidence interval (5) is applicable to S(x) as well. In the
general case where nh4 → c 6= 0, by theorem 3 and corollary 1, EŜn(x) can be
regarded as the estimable part of S(x) so still it is sensible to regard (5) as an
asymptotically valid confidence interval for S(x). The obvious advantage of (5)
over (4) is that no derivative estimation is required. But the nominal coverage
of (5), as a confidence interval of S(x), is Φ(za/2 − Bn) + Φ(za/2 + Bn) − 1,
which is less than 1− a. This means that for medium and below sized samples,
(5) will have inferior performance compared to (4).

Remark 2. The confidence bands of [4] for the survival function S(x) are

[

Ŝn(x)− Ŝn(x)
λ̂n

(nc)1/2(1− cd̂∗n(t)[1 + cd∗n(t)]
−1)

,

Ŝn(x) + Ŝn(x)
λ̂n

(nc)1/2(1 − cd̂∗n(t)[1 + cd∗n(t)]
−1)

]

(6)

where λ̂n is such that Qcd̂∗

n
(T )(λ̂n) = 1−α, QT (λ) denotes the probability that

the standard Brownian motion process, say B(x), lies between ±λ(1+x) for all
x ∈ (0, T ) and

d̂∗n(t) = −
∫ t

0

(Ŝn(u)Ĥ(u))−1 dŜn(u)

is the limit variance of the process
√
n(Ŝn(x)−S(x))S−1(x). From theorem 3.1

of [8], λ̂n determines the confidence level and since it is estimated empirically it
inherits loss in precision. This constitutes a substantial difference with (5) (and
(4)) where due to theorem 2 the confidence level is determined by za/2.

Remark 3. The bootstrap (see [14] and the references therein for an overview
and applications) version of the proposed confidence intervals can be obtained in
a straightforwardmanner by combining the suggestions of [2] on resampling from
censored data and those of [6] on constructing bootstrap-t confidence intervals
in the density setting.

First, the bootstrap samples can be obtained by resampling with replacement
the pairs (Xi,∆i), i = 1, 2, . . . , n, with probability n−1 for each doublet to be
drawn. This leads to the sample (X∗

i ,∆
∗
i ), i = 1, 2, . . . , n in each iteration where

inevitably some pairs are contained more than once while others are omitted.
According to [2], this is equivalent to constructing the Kaplan-Meier estimates
for both the survival and the censoring populations and treating them as the
true distributions for the purpose of drawing second stage samples.



848 D. Bagkavos and D. Ioannides

Construction then of a confidence interval for the survival function is based
on approximating the sampling distribution of the adjusted by the standard
deviation difference between the estimated and the true curve. For this, let
L∗(x) = (Ŝ∗

n(x) − Ŝn(x))(σ
∗(x))−1 where Ŝ∗

n(x) denotes Ŝn(x) using the re-
sample (X∗

i ,∆
∗
i ), i = 1, 2, . . . , n and σ∗(x) is its standard deviation. Define the

bootstrap estimate of the ath quantile, ûa, of the distribution of L∗(x), by

P (L∗(x) ≤ ûa|(X∗
i ,∆

∗
i ), i = 1, 2, . . . , n) = a.

Then, by arguments entirely similar to [6], bootstrap-t confidence intervals for
S(x) with explicit bias correction are given by

[

Ŝn(x) − ûa

√

Var
{

Ŝn(x)
}

− Ŝ′′
n(x)

h2

2
µ2(K),

Ŝn(x) − û(1−a)/2

√

Var
{

Ŝn(x)
}

− Ŝ′′
n(x)

h2

2
µ2(K)

]

. (7)

Another alternative is to deliberately undersmooth Ŝn(x) in constructing the
above confidence interval so that its bias be identically 0. In this case the cor-
responding confidence interval for S(x) would be

[

Ŝn(x)− ûa

√

Var
{

Ŝn(x)
}

, Ŝn(x)− û(1−a)/2

√

Var
{

Ŝn(x)
}]

(8)

where now Ŝn(x) is using bandwidth ch where 0 < c < 1.

Practical implementation of the suggested confidence intervals as well as their
performance is discussed in the next section.

4. Simulations

In this section the performance of the suggested confidence intervals is inves-
tigated through numerical examples. For this purpose the simulation examples
of [4] have been replicated so as to compare the coverage probabilities of all
approaches discussed here, see [4], Section 4 for full implementation details.

In addition, estimation of 1−H(x) is done by 1− Ĥ(x), defined in Section 2.
The density f(x) is estimated by estimator fn(x) of [17] (equation (2.1) there).
The bandwidth of fn(x) is determined by the ISE optimal rule of [17], i.e. by
minimization of the cross validation criterion, page 1526, [17], over the region
(0, X(n)/2) where X(n) is the largest sample observation. The routine nlminb

of S-plus is used to minimize the cross validation function. Moreover, in each
example fn(x) uses the density equivalent kernel of Ŝn(x). In all expressions
that involve Ŝ′′

n(x), its value is obtained by

S′′
n(x) = − 1

na2

n
∑

i=1

∆i

1− Ĥ(Xi)
K ′

(

x−Xi

a

)
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where a is the bandwidth resulting from minimization of the same cross vali-
dation criterion as in the case of density estimation but with fn(x) replaced by
S′′
n(x), fn,i(x) by S′′

n,i(x) (the leave the ith observation out versions of fn(x) and
S′′
n(x) respectively) and K ′ is the first derivative of the kernel K. The confidence

intervals (7), (8) are implemented as follows. For each of the 2000 (or 1000) it-
erations used in [4], 800 bootstrap iterations are used for every implementation
of (7) and (8). For each bootstrap sample, L∗(x) is being calculated and then
definition 7 of [9] is applied on the 800 L∗(x) values to determine ûa for the
desired level a. Particularly for (8), Ŝn(x) is undersmoothed in each instance of
calculation by a grid search; that is Ŝn(x) is calculated 100 times, one for each
ch, c = 0.01, 0.02, . . . , 1 and h determined as indicated by [4] and the version of
which corresponds to minimum bias at x, compared to the true survival function
is used.

Particular focus is given here on the right tail of the area of estimation as
this is the area with most room for improvement. The reason is that, as also
noted by [4], sparseness of the data on the right tail together with censoring
make it more difficult to estimate accurately the required percentiles on the
right tail. The present simulation confirmed the good performance of the Gulati
and Padgett, [4], suggestion on the left tail and showed that both approaches
are rather equivalent there, with the confidence intervals obtained by (4) being
slightly better in terms of coverage probabilities. Consequently, only coverage
probabilities that concern the right tail are presented here. Moreover, it should
be clarified that the confidence bands (6) are used as confidence intervals here
just as a benchmark to examine the performance of (4). Use of (4) is more
appropriate for point estimations such as distribution parameters or in general
inference proportions or impact numbers (measures) used for inference. On the
contrary, (6) would be more appropriate when a continuous estimate is required
such as when estimating the survival function as a whole.

The results are presented in table 1. Column n is the sample size, the second
column (D) is the distribution used to generate the data, the third column
(PC) is the percentage of censoring, the fourth column (CD) is the censoring
distribution, column CL is the confidence level, column NR is the number of
replications, column K denotes the kernel used in the implementation (T is for
Triangular and N for Normal), column t is the point of estimation. The columns
titled CP1 and CP2 are the achieved coverage probabilities that correspond to
the approach of [4] and (4) respectively. As, in contrast with the approach of [4],
the coverage probabilities obtained by (4) are independent of the c parameter,
only the best coverage probabilities in terms of the c, for each estimation point
t and distribution are compared the with present suggestion. In the reported
coverage probabilities in table 1 all values in the CP1 column correspond to
c = 1.5 in the tables of [4]. In addition, the proposed confidence intervals are
compared with those obtained by using the Kaplan Meier estimate with the
variance correction proposed by [19]. This approach is readily implemented in
the survival package of R by the survfit routine and the results are contained
in column CP3 of table 1. The reasoning behind this comparison is that it gives
a feel on how the proposed confidence intervals perform when compared with



850 D. Bagkavos and D. Ioannides

Table 1

Coverage probabilities for the confidence intervals obtained by (6) (column CP1, the Gulati
and Padgett approach in [4]), (4) (column CP2, the suggested approach resulting from
theorem 2), the survfit in R (column CP3) and (5) (column CP4, the simplified –

compared to (4) – approach stemming from using ESn(x) instead of S(x)) and the bootstrap
confidence intervals of (7) and (8) (columns (CP5, CP6)

n D PC CD CL NR K t CP1 CP2 CP3

25 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.927 0.965 0.966
25 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.969 0.989 0.925
50 exp(1) 50 exp(1) 0.9 2000 T 1.7 0.869 0.956 0.913
50 exp(1) 50 exp(1) 0.9 2000 T 2.1 0.758 0.944 0.832
50 exp(1) 50 exp(1) 0.95 2000 T 1.5 0.872 0.968 0.938
50 exp(1) 50 exp(1) 0.95 2000 T 1.8 0.787 0.954 0.84
50 exp(1) 50 exp(1) 0.95 2000 N 1.5 0.868 0.981 0.892
50 exp(1) 50 exp(1) 0.95 2000 N 1.8 0.785 0.964 0.862
30 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.1 0.861 0.99 0.887
30 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.6 0.805 0.959 0.892
50 W(2,1) 50 exp(0.865) 0.95 1000 T 1.65 0.944 0.983 0.991

n D PC CD CL NR K t CP4 CP5 CP6

25 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.984 0.968 0.966
25 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.995 0.978 0.984
50 exp(1) 50 exp(1) 0.9 2000 T 1.7 0.978 0.962 0.958
50 exp(1) 50 exp(1) 0.9 2000 T 2.1 0.954 0.941 0.939
50 exp(1) 50 exp(1) 0.95 2000 T 1.5 0.989 0.97 0.966
50 exp(1) 50 exp(1) 0.95 2000 T 1.8 0.978 0.958 0.955
50 exp(1) 50 exp(1) 0.95 2000 N 1.5 0.997 0.989 0.982
50 exp(1) 50 exp(1) 0.95 2000 N 1.8 0.976 0.959 0.955
30 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.1 0.98 0.978 0.977
30 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.6 0.972 0.964 0.961
50 W(2,1) 50 exp(0.865) 0.95 1000 T 1.65 0.986 0.979 0.979

standard methods of survival analysis. Furthermore the proposed confidence
intervals are compared to the confidence intervals obtained by (5) (column CP4
of table 1) so as to exhibit the difference in precision of the two methods in
practice. Finally, columns CP5 and CP6 correspond to the bootstrap confidence
intervals obtained by (7) and (8) respectively.

It is evident from table 1 that on the examples considered, utilizing the
approach suggested by (4) leads to an improvement of approximately 11% com-
pared to (6), on average across all examples. The improvement is driven by the
independence of (4) of percentile estimation. A side indication of this compari-
son though is that the proposed methodology produces consistently larger cov-
erage probabilities compared to the [4] approach. Also, the confidence intervals
produced by (4) appear to have closest to the nominal coverage probabilities,
in general, compared to those produced by the R/survfit approach, (5), (7)
and (8). It has to be noted that especially (7) and (8) produce actually results
slightly inferior compared to (4), but one has to take into account that they are
obtained by a quite computer intensive manner. Finally, in table 2, on exactly
the same settings as in table 1 the average widths of the confidence intervals are
displayed.
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Table 2

Coverage probabilities for the confidence intervals obtained by (6) (column CP1, the Gulati
and Padgett approach in [4]), (4) (column CP2, the suggested approach resulting from
theorem 2), the survfit in R (column CP3) and (5) (column CP4, the simplified –

compared to (4) – approach stemming from using ESn(x) instead of S(x)) and the bootstrap
confidence intervals of (7) and (8) (columns (CP5, CP6)

n D PC CD CL NR K t CP1 CP2 CP3

25 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.1969 0.2009 0.1992
40 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.1914 0.1933 0.1934
40 exp(1) 50 exp(1) 0.9 2000 T 1.7 0.1915 0.1958 0.1846
40 exp(1) 50 exp(1) 0.9 2000 T 2.1 0.2005 0.1985 0.1995
25 exp(1) 50 exp(1) 0.95 2000 T 1.5 0.2087 0.2134 0.1866
25 exp(1) 50 exp(1) 0.95 2000 T 1.8 0.2035 0.2096 0.2197
25 exp(1) 50 exp(1) 0.95 2000 N 1.5 0.2075 0.2164 0.208
25 exp(1) 50 exp(1) 0.95 2000 N 1.8 0.214 0.2064 0.2182
25 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.1 0.2162 0.2081 0.213
25 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.6 0.2183 0.2259 0.2124
25 W(2,1) 50 exp(0.865) 0.95 1000 T 1.65 0.2104 0.2235 0.22

n D PC CD CL NR K t CP4 CP5 CP6

25 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.201 0.1976 0.1972
40 exp(1) 25 exp(3) 0.9 2000 T 2.1 0.2005 0.1996 0.2009
40 exp(1) 50 exp(1) 0.9 2000 T 1.7 0.2228 0.1964 0.1956
40 exp(1) 50 exp(1) 0.9 2000 T 2.1 0.1883 0.1921 0.1917
25 exp(1) 50 exp(1) 0.95 2000 T 1.5 0.2132 0.198 0.1972
25 exp(1) 50 exp(1) 0.95 2000 T 1.8 0.2204 0.1956 0.1949
25 exp(1) 50 exp(1) 0.95 2000 N 1.5 0.1945 0.2019 0.2005
25 exp(1) 50 exp(1) 0.95 2000 N 1.8 0.2126 0.1958 0.1949
25 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.1 0.1935 0.1996 0.1994
25 W(0.5,1) 30 exp(0.375) 0.95 1000 T 3.6 0.2014 0.1968 0.1962
25 W(2,1) 50 exp(0.865) 0.95 1000 T 1.65 0.22 0.1998 0.1998

5. Proofs

5.1. Proof of theorem 2

Estimator F̂ (x) can be written as follows

S = F̂ (x) =

n
∑

i=1

Si, Si =
1

n

∆i

1−H(Xi)
W

(

x−Xi

h

)

.

The proof is based on lemma 4.1, [5] according to which the standardized ver-
sions of S and its projection on the subspace of all such independent terms,
say Ŝ, have the same asymptotic distribution. Then, it suffices to establish the
asymptotic normality of the standardized Ŝ via the Lyapunov theorem. The
approximation of S is given by

Ŝ =

n
∑

i=1

E(S|Yi)− (n− 1)ES.

The following conditions, which are easy to verify must hold

EŜ = ES and E(S − Ŝ)2 = Var(S)−Var(Ŝ). (9)
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We should also show that

Var(Ŝ)/Var(S) → 1 as n → +∞. (10)

Now,
E(Si|Yi) = n−1V (Xi), (11)

where

V (Xi) =
∆i

1−H(Xi)
W

(

x−Xi

h

)

.

Using the fact that for i 6= j E(Sj |Yi) = ESj , lemma 1 of [16], (9), (11) and
lemma 1, it is easily seen that for a constant C > 0

Var(Ŝ) = Var

(

n
∑

i=1

{

n−1V (Xi) + n−1
ES + (n− 1)n−1C

}

)

= Var(S) + nVar(ES) = Var(S).

Hence (10) is proved. By (9) and (10)

E





Ŝ − EŜ
√

Var(Ŝ)
− S − ES
√

Var(Ŝ)





2

=
E

(

Ŝ − S
)2

Var(Ŝ)
=

Var(Ŝ)− Var(S)

Var(Ŝ)
→ 0

which proves that S and Ŝ have the same asymptotic distribution. Finally, in
order to show that the standardized version of Ŝ converges in distribution to
the standard normal distribution, note that the Lyapunov condition is readily
established by combining lemma 3 and the fact that h → 0 as n → +∞. From
theorem 1, easily one derives that, (EŜ(x)−S(x))/Var(Ŝ(x))) → 0 as n → +∞
which completes the proof.

5.2. Proof of (2)

By [11], we have that

sup
0<x<T

|
√
n(1− Ĥ(x)− S(x))| = Op(1). (12)

Using (12) in the last step below yields

Ŝn(x) =
1

n

n
∑

i=1

∆i

1−H(Xi)
W

(

x−Xi

h

)

+
1

n

n
∑

i=1

∆iW

(

x−Xi

h

)

{

1

1− Ĥ(Xi)
− 1

1−H(Xi)

}

= Ŝ(x) + op
(

(
√
n)−1

)

.

which together with theorem 1, theorem 2 and the Slutsky lemma gives the
result.
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5.3. Proof of theorem 3

First, denote with H the Heaviside function (H(x) = 1(x > 0)). Following [1],
write

W (x) =

∫ x

−∞

K(t) dt =

∫ +∞

−∞

K(t)H(z − t) dt = K ∗H(z)

where ∗ denotes convolution. Then the Fourier transform of W is the product
of the Fourier transforms of K and H . Denote with F(F ) the Fourier transform
of the function F . We have

F(W (x)) = F(K(x))F(H(x)) = κ(t)πδ(t) + κ(t)(it)−1

with δ(t) being the dirac delta function and κ(t) the characteristic function of
K, i.e.

κ(t) =

∫

eitxK(x) dx.

From the inversion theorem of Fourier transforms,

W (x) =
1

2π

∫

e−itx
(

κ(t)πδ(t) + κ(t)(it)−1
)

dt.

Then, estimator F̂ (x) can be written as

F̂ (x) =
1

n

n
∑

i=1

∆i

1−H(Xi)
W

(

x−Xi

h

)

=
1

n

n
∑

i=1

∆i

1−H(Xi)

1

2π

∫

e−it( x−Xi

h ) (κ(t)πδ(t) + κ(t)(it)−1
)

dt

=
1

2π

∫

{(

1

n

n
∑

i=1

∆i

1−H(Xi)
e

itXi

h

)

e
−itx

h κ(t)
(

πδ(t) + (it)−1
)

dt

}

=
h

2π

∫

(

1

n

n
∑

i=1

∆i

1−H(Xi)
eisXi

)

e−isxκ(sh)
(

πδ(sh) + (ish)−1
)

ds

after setting s = t/h in the last step above. Then,

F̂ (x) =
h

2π

∫

e−isxφ̂(s)κ(sh)
(

πδ(sh) + (ish)−1
)

ds,

where

φ̂(s) =
1

n

n
∑

i=1

∆i

1−H(Xi)
eisXi

is an empirical estimate of the characteristic function of φ(x) of f(x),

φ(x) =

∫

eixyf(y) dy
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Therefore

F̂ (x) − EF̂ (x) =
h

2π

∫

e−itx
(

φ̂(s)− E(φ̂(s))
)

κ(sh)
(

πδ(sh) + (ish)−1
)

ds.

Now,

E

(

∆i

1−H(Xi)
eisXi

)

= E

(

E

(

∆i

1−H(Xi)
eisXi

∣

∣

∣Xi = X(r)

))

= E

(

E

(

∆(r)

1−H(X(r))
eisX(r)

))

= nE

∫

f(y)(1−H(y))

(1−H(y))g(y)
eisy

(

n

r

)

Gr(y)(1−G(y))n−rg(y) dy

= nE

∫

eisy
(

n

r

)

Gr(y)(1 −G(y))n−rf(y) dy.

Since r = i with probability 1/n,

E

(

∆i

1−H(Xi)
eisXi

)

=
1

n

n
∑

r=1

n

∫

eisy
(

n

r

)

Gr(y)(1−G(y))n−rf(y) dy

=

∫

eisyf(y) dy.

Hence

Eφ̂(s) =
1

n

n
∑

i=1

E

(

∆i

1−H(Xi)
eisXi

)

=

∫

eisyf(y) dy = φ(s)

and therefore φ̂(s) is an unbiased estimator of φ(s). Then,

F̂ (x) − EF̂ (x) =
h

2π

∫

e−itx
(

φ̂(s)− φ(s)
)

κ(sh)
(

πδ(sh) + (ish)−1
)

ds.

Thus

|F̂ (x)− EF̂ (x)| =
∣

∣

∣

∣

h

2π

∫

e−itx
(

φ̂(s)− φ(s)
)

κ(sh)
(

πδ(sh) + (ish)−1
)

ds

∣

∣

∣

∣

.

Now,
∣

∣e−itx
∣

∣ = | cos tx− i sin tx| = (cos2 tx+ sin2 tx)
1
2 = 1

and then

sup
x

|F̂ (x) − EF̂ (x)| ≤ h

2π

∫

∣

∣

∣φ̂(s)− φ(s)
∣

∣

∣ |κ(sh)|
∣

∣πδ(sh) + (ish)−1
∣

∣ ds.

Note that the RHS in the equation above does not depend on x and thus no
supremum is needed. Now,

E sup
x

|F̂ (x)−EF̂ (x)| ≤ h

2π

∫

E

∣

∣

∣φ̂(s)− φ(s)
∣

∣

∣ |κ(sh)|
∣

∣πδ(sh) + (ish)−1
∣

∣ ds.
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Set g = E|φ̂(s)− φ(s)|. Then,

E sup
x

|F̂ (x) − EF̂ (x)| ≤ h

2π
g

∫

|κ(sh)|
∣

∣πδ(sh) + (ish)−1
∣

∣ ds

=
1

2π
g

∫

|κ(t)|
∣

∣πδ(t) + (it)−1
∣

∣ dt after using sh = t

From the definition of the delta dirac function and its property that it integrates
to 1 over R, the fact that the kernel is a non-negative function, the property
κ(0) = 1 we get

∫

|κ(t)| |πδ(t)| dt =
∫

κ(t)πδ(t) dt =

∫

κ(0)πδ(t) dt = π

∫

δ(t) dt = π.

Also, noting that κ(t) is an even function as the fourier transform of an even
function,

∫

κ(t)(it)−1 dt = i−1

∫

κ(t)t−1 dt = 0

as the integral of an odd function over a compact set (since the kernel vanishes
outside its compact support and since the product of an odd with an even
function is an odd function). Thus we conclude,

E sup
x

|F̂ (x) − EF̂ (x)| ≤ 1

2
E

∣

∣

∣φ̂(s)− φ(s)
∣

∣

∣

Now,

E

∣

∣

∣φ̂(t)− φ(t)
∣

∣

∣ = E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

∆i

1−H(Xi)

(

e−itXi − Ee−itXi

)

∣

∣

∣

∣

∣

= E

∣

∣

∣

1

n

n
∑

i=1

∆i

1−H(Xi)
(cos tXi − E cos tXi)

+ i
1

n

n
∑

i=1

∆i

1−H(Xi)
(sin tXi − E sin tXi)

∣

∣

∣.

Set

V1 =
1

n

n
∑

i=1

∆i

1−H(Xi)
(cos tXi − E cos tXi)

V2 =
1

n

n
∑

i=1

∆i

1−H(Xi)
(sin tXi − E sin tXi) .

Note that EV1 = 0 = EV2 and so Var(V1) = EV 2
1 and Var(V2) = EV 2

2 . Also it

can be easily seen that E(V 2
1 +V 2

2 )
1
2 ≤ (EV 2

1 +EV 2
2 )

1
2 by setting Z2 = V 2

1 +V 2
2 .
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With these in mind we get

E

∣

∣

∣φ̂(t)− φ(t)
∣

∣

∣ = E|V1 + iV2| = E((V1 + iV2)(V1 − iV2))
1
2

= E(V 2
1 + V 2

2 )
1
2 ≤ (EV 2

1 + EV 2
2 )

1
2

= (Var {V1}+ Var {V2})
1
2 . (13)

Now,

Var {V1} = Var

{

1

n

n
∑

i=1

∆i

1−H(Xi)
(cos tXi − E cos tXi)

}

≤ Var

{

1

n

n
∑

i=1

∆i

1−H(Xi)
cos tXi

}

=
1

n2

n
∑

i=1

Var

{

∆i

1−H(Xi)
cos tXi

}

− 2

n2

n−1
∑

i=1

Cov

{

∆i

1−H(Xi)
cos tXi,

∆i+1

1−H(Xi+1)
cos tXi+1

}

≤ ν

n2p

∫ x

0

f(u)

1−H(u)
cos2(tu) du+ o(n−1).

where ν = {#∆i = 1}. Similarly,

Var {V2} ≤ ν

n2p

∫ x

0

f(u)

1−H(u)
sin2(tu) du+ o(n−1).

Note that ν ≤ n. Then for a positive constant C,

Var {V1}+ Var {V2} ≤ n

n2p

∫ x

0

f(u)

1−H(u)
du+ o(n−1) ≤ Cn−1

and hence (13) becomes,

E

∣

∣

∣φ̂(t)− φ(t)
∣

∣

∣ ≤ Cn− 1
2 .

Hence
E sup

x
|F̂ (x) − EF̂ (x)| ≤ C

√
n−1 = Op

(

n− 1
2

)

.

Using Markov’s inequality

P
{

sup |F̂ (x)− EF̂ (x)| > ε
}

= Op

(

n− 1
2

)

which implies that

sup
x

|F̂ (x) − EF̂ (x)| = Op

(

n− 1
2

)

(14)
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Finally, using (14)

sup
x

|F̂ (x)− F (x)| ≤ sup
x

|F̂ (x)− EF̂ (x)| + sup
x

|EF̂ (x) − F (x)|

= Op

(

n− 1
2

)

+O(h2) = Op

(

n− 1
2 + h2

)

.

This means that there is C such that sup0<x<T |F̂ (x) − F (x)| ≤ C(h2 + n− 1
2 ).

Also, Un = Op(Wn) if for each ε > 0 there exist M and N depending on ε such
that P (|Un| ≤ M |Wn|) > 1− ε for all n > N . Hence

sup
0<x<T

|F̂ (x) − F (x)| = Op(h
2 + 1/

√
n)

from which theorem 3 follows immediately.

6. Auxiliary lemmas

First, define Kh(·) = h−1K(·/h).
Lemma 1. For i 6= j,

E (Sj |Yi) = n−1

∫

Kh (x− y)F (y) dy +O(n−1).

Proof. Let Y(r), Y(k) denote the rth and kth respectively ordered statistics, as
these correspond to X(r) and X(k), the rth and kth in order of magnitude
observations of the sample, along with their censoring indicators.

E(Sj |Yi) = E

(

E(Sj |Yi)
∣

∣

∣Yj = Y(r), Yi = Y(k)

)

=
1

n
E

(

E

(

∆(r)

1−H(X(r))
W

(

x−X(r)

h

)

∣

∣

∣Y(k)

)

∣

∣

∣r < k

)

+
1

n
E

(

E

(

∆(r)

1−H(X(r))
W

(

x−X(r)

h

)

∣

∣

∣Y(k)

)

∣

∣

∣r > k

)

. (15)

The density of X(r) is

X(r) ∼
{
(

n−2
r−1

)

G(X(r))
r−1(1−G(X(r)))

n−(r+1), r < k
(

n−2
r−2

)

G(X(r))
r−2(1−G(X(r)))

n−r , r > k.

Also, from [18] we have that E(∆(r)|X(r) = y) = f(y)(1 − H(y))/g(y). In the
case where r < k we have that

1

n
E

(

E

(

∆(r)

1−H(X(r))
W

(

x−X(r)

h

)

∣

∣

∣
Y(k)

)

∣

∣

∣
r < k

)

=
1

n

n
∑

r=1

∫

f(y)(1−H(y))

(1−H(y))g(y)
W

(

x− y

h

)(

n− 2

r − 1

)

×Gr−1(y)(1 −G(y))n−(r+1)g(y) dy

=
1

n

∫

W

(

x− y

h

)

f(y) dy (16)
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where we used the fact that

n
∑

r=1

(

n− 2

r − 1

)

Gr−1(y)(1−G(y))n−(r+1)

=
n−1
∑

i=0

(

n− 2

i

)

Gi(y)(1−G(y))n−i−2, for i = r − 1

=
m+1
∑

i=0

(

m

i

)

Gi(y)(1−G(y))m−i, for n− 2 = m

=

m
∑

i=0

(

m

i

)

Gi(y)(1−G(y))m−i +

(

m

m+ 1

)

Gi(y)(1 −G(y))m−i = 1

after applying the binomial theorem on the first term in the last step above and
using, on the second term, the fact that

(

n
r

)

= 0 when n > 0 and n < r. In the
case that r > k we have

1

n
E

(

E

(

∆(r)

1−H(X(r))
W

(

x−X(r)

h

)

∣

∣

∣Y(k)

)

∣

∣

∣r > k

)

=
1

n

n
∑

r=2

∫

f(y)(1−H(y))

(1−H(y))g(y)
W

(

x− y

h

)(

n− 2

r − 2

)

Gr−2(y)(1−G(y))n−rg(y) dy

=
1

n

n
∑

i=0

∫ [(

n− 2

i

)

Gi(y)(1 −G(y))n−i−2

]

W

(

x− y

h

)

f(y) dy

=
1

n

∫

1

(1−G(y))2
W

(

x− y

h

)

f(y) dy. (17)

In view of (3), [12], (16) and (17), (15) becomes

E(Sj |Yi) = n−1

∫

Kh(x− y)F (y) dy

+ n−1

∫

1

(1−G(y))2
W

(

x− y

h

)

f(y) dy

from which, under condition 4, the lemma follows immediately.

Lemma 2. Under conditions 1-4, for m, l > 0 and for i fixed,

E

{

(

∆i

1−H(Xi)
W

(

x−Xi

h

))m(
∆i

1−H(Xi)
W

(

y −Xi

h

))l
}

= h

∫

Wm(t)W l

(

y − x+ ht

h

)

f(x− ht)

(1−H(x− ht))m+l−1
dt.

Proof. The proof is based on conditioning on the number of the uncensored
observations of the observed sample Yi = (Xi,∆i), i = 1, . . . , n. If N denotes
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the number of the uncensored observations then N ∼Binomial(n, p) where p =
∫

f(x)(1 − H(x)) dx. For given N = ν, (Xi : ∆i = 1) is a set of i.i.d random
variables with density f(x)(1 −H(x))/p for ν = 1, 2, . . . , n. Then,

E

{

(

∆i

1−H(Xi)
W

(

x−Xi

h

))m(
∆i

1−H(Xi)
W

(

y −Xi

h

))l
}

= E

(

E

{

(

∆i

1−H(Xi)
W

(

x−Xi

h

))m(
∆i

1−H(Xi)
W

(

y −Xi

h

))l ∣
∣

∣∆i = 1

})

= E

{

1

p

∫

f(z)

(1−H(z))m+l−1
Wm

(

x− z

h

)

W l

(

y − z

h

)

dz

}

= h

∫

Wm(t)W l

(

y − x+ ht

h

)

f(x− ht)

(1−H(x− ht))m+l−1
dt.

Where, in the last step above we used the fact that since i is fixed, (Xi : ∆i = 1)
is a Bernouli random variable with mean p as well as the change of variable
x− z = ht.

Lemma 3. Under conditions 1–4,

EV r =
hf(x)

(1−H(x))r−1
ar,h + o(ar,h), r = 1, 2, . . . .

Proof. Apply lemma 2 with m = r, l = 0 and expand in Taylor series around x
the term f(x− ht)(1−H(x− ht))−r to get

EV r =
hf(x)

(1−H(x))r−1
ar,h

+

∫

|x−y|≥M

1

(1−G(y))r
W r

(

x− y

h

)

f(y)(1− F (y))r dy + o(ar,h)

from which, using condition 4 and choosing M so that F (x+M) < 1 the result
follows immediately.
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