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1. Introduction

By model selection we mean the choice of the best model from a set of candidate
models that may have been produced by maximum likelihood estimation (mle).
The best model is usually selected using bootstrapping, cross-validation or an
information criterion. The generalized information criterion (gic) [2, 5, 7, 8]
includes many well known information criteria, such as aic [1] and bic [6], as
well as others. Asymptotic properties of gic have been investigated [5, 7, 12]. In
this article we reexamine these asymptotic properties and we give new conditions
under which the gic is overfitting, consistent, or underfitting.
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2. Generalized information criterion

Consider a family of probability distributions, f(z; θ), where z ∈ ℜd+1 consisting
of both response, y, and explanatory variables, x ∈ ℜd, and θ ∈ Θ ⊂ ℜm is a
set of parameters. Let S be a subset of {1, 2, . . . , d}. Each subset S represents
a class of probability models {f(z; θ) : θ ∈ Θ(S) ⊂ Θ}. Let {zi, i = 1, . . . , n} be
a sample of random vector, Z ∼ f(z; θ0), where θ0 represents the true model,
denoted by S0.

LetS = {S1,S2, . . . ,SK} be a set of candidate model subsets. Model selection
is to choose the best model in S. Let ln(θ) =

∑
i log f(zi; θ) be the log-likelihood

function, and θ̂n(Sk) be the mle of θ(Sk). We consider the problem of model
selection using the generalized information criterion,

gic = −2ln(θ̂n(Sk)) + ακ(Sk), (2.1)

where α ≥ 0 is the tuning parameter, and κ(Sk) is the model size defined as
the number of elements in Sk. Let Skn

∈ S be the model selected by gic.
Model selection is consistent if Pr{Skn

= S0} → 1 as n → ∞. The selected
model is overfitted or underfitted according as the selected model size, κ(Skn

),
is greater than or less than the true model size, κ(S0), respectively. In this paper,
probability (Pr) and expectation (E) statements are all with respect to the true
underlying model.

We use the terms overfitting and underfitting as defined in the sense of effi-
ciency by [4]. In this framework, model selection is to find the best model that is
either a true model or a model closest to the true model. This definition is appro-
priate for multicollinear variables. For example, suppose there are three variables
x1, x2, and x3, and x3 = x1+x2. Assume the true model consists of the variable
x3. Then the model having the variables x1 and x2 may be considered as over-
fitting. If κ(Skn

) > κ(S0) then using (2.1), we have ln(θ̂n(Skn
)) > ln(θ̂n(S0)).

So the overfitting implies the model has a larger likelihood value.

3. Asymptotic properties

The asymptotic properties of gic are derived under the following conditions:

C1. The true model S0 is identifiable, that is, each model S with κ(S) ≤ κ(S0)
satisfies the condition:

sup
θ∈Θ(S0)

E{log f(Z; θ)} − sup
θ∈Θ(S)

E{log f(Z; θ)} ≥ ∆,

where ∆ > 0 is a constant.
C2. S0 ∈ S, S0 ⊂ SK , and the largest model size, κ(SK), is fixed or bounded.

C3. θ̂n(Sk) converges to a point, θ∗(Sk), almost surely, and Wald consistency
conditions [10] hold.

For linear models the identifiable condition C1 is the same as used by [7]. If
the largest model size, κ(SK), grows up with the sample size n, then further
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assumptions are required as Wang, Li and Leng [11]. If S0 /∈ S, the asymptotic
properties may be considered for selecting the best model, which is the most
parsimonious and closest to the true model.

Without loss of generality, we assume κ(S1) ≤ κ(S2) ≤ · · · ≤ κ(SK), and

κ(S1) < κ(SK). For notational simplicity, let ln,k = ln(θ̂n(Sk)) and κk = κ(Sk).

Similarly, let ln,0 = ln(θ̂n(S0)) and κ0 = κ(S0). Define

γ = lim
n→∞

min
κk<κ0

n−1{2ln,0 − 2ln,k}

κ0 − κk

(3.1)

If κ0 = 1, γ = ∞. It is shown in Lemma 4.1 that under condition C3,

lim
n→∞

n−1ln,k = lim
n→∞

n−1ln(θ
∗(Sk)) = E{log f(Z; θ∗(Sk))}.

Then the limit in (3.1) exists, and along with condition C1,

γ = min
κk<κ0

2E{log f(Z; θ0)− log f(Z; θ∗(Sk))}

κ0 − κk

≥ 2∆/(κ0 − 1). (3.2)

The γ may also be defined as a limit inferior if the limit in (3.1) doesn’t exist.
Let κ(α) be the model size selected by gic with tuning parameter α. To

emphasize the tuning parameter depends on the sample size n, we also use the
notation αn instead of α.

Theorem 3.1. Let n−1αn → r.

(1) If αn < ∞, then as n → ∞,

Pr{κ(α) = κ0} ≤ Pr{χ2
κK−κ0

≤ α(κK − κ0)},
Pr{κ(α) > κ0} = 1− Pr{κ(α) = κ0}.

(2) If αn → ∞ and r < γ, Pr{κ(α) = κ0} → 1 as n → ∞.
(3) If αn → ∞ and r > γ, Pr{κ(α) < κ0} → 1 as n → ∞.
(4) If αn → ∞ and r = γ, Pr{κ(α) ≤ κ0} → 1 as n → ∞.

Corollary 3.1. Let n−1αn → r 6= γ. Then asymptotically:
(1) If αn < ∞, gic selects either the true model or an overfitted model.
(2) If αn → ∞ and r < γ, gic is consistent.
(3) If αn → ∞ and r > γ, gic is underfitting.

The proof of Theorem 3.1 is given in Section 4. Corollary 3.1 is directly de-
rived from Theorem 3.1. From Theorem 3.1 and Corollary 3.1, the gic with
αn bounded has the same asymptotic property as aic. The gic with αn un-
bounded and limn−1αn < γ, has the same asymptotic property as bic. For
αn = log logn, logn, or nν , 0 < ν < 1, the gic is consistent since n−1αn → 0.
In the existing results, the consistency of gic was derived under the condition
of n−1αn → 0 [7, 12]. However, from Corollary 3.1, the condition n−1αn → 0 is
sufficient but not necessary for the consistency.
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In the case S0 = SK , from Lemma 4.1 and condition C1, for k < K we have,

lim
n→∞

n−1[ln,K − ln,k] = E{log f(Z; θ0)} − E{log f(Z; θ∗(Sk))} > 0.

So for α < ∞, as n → ∞,

n−1[gic (SK)− gic (Sk)] = −2n−1[ln,K − ln,k] + n−1α(κK − κk) < 0.

Hence the gic with bounded α almost surely selects the true model, S0. Then
from Theorem 3.1 and Corollary 3.1, we have the following corollary,

Corollary 3.2. Let n−1αn → r 6= γ. If S0 = SK , then asymptotically
(1) if αn → ∞ and r < γ, gic is consistent;
(2) if αn → ∞ and r > γ, gic is underfitting.

3.1. An example of linear regression

Consider a linear model Y = XTβ + ε, where X = (X1, . . . , Xd)
T ∈ ℜd, and ε

is assumed to be independent normal with mean zero and variance σ2. (β, σ) ∈
Θ ⊂ ℜd× [σ0,∞), where σ0 > 0. With the assumption that Θ is a closed subset
and E{|XjXk|} < ∞, we next show that the condition C3 holds, and the γ,
defined in (3.1), is closely related to the signal-to-noise ratio.

The density function

log f(y;β|x) = −
1

2σ2
(y − xTβ)2 −

1

2
log πσ2. (3.3)

Let β0 ∈ ℜd with κ0 elements of nonzero be the true parameter. From (3.3),

E{| log f(Y ;β|X)|} ≤
1

2σ2
(β − β0)

TE{XXT}(β − β0) +
1

2
| log πσ2| < ∞.

Then Wald Assumption 6 [10] holds. Similarly, it can be directly checked from
(3.3) that other Wald assumptions hold.

For independent and identically distributed samples, by strong law of
large number, we have

∑n

i=1 XijXik/n → E{XjXk} and
∑n

i=1 XijYi/n →

E{XjX
T }β0 almost surely as n → ∞. Then β̂(Sk) → β∗(Sk) almost surely,

where β∗(Sk) = E{X(Sk)X(Sk)
T }−1E{X(Sk)X

T }β0, assuming the inverse of
matrix above exists. So the condition C3 holds. From (3.2),

γ = min
κk<κ0

E{|X(S0)
Tβ0(S0)−X(Sk)

Tβ∗(Sk)|
2}

(κ0 − κk)σ2
,

and then γ may be viewed as an average signal-to-noise ratio.

4. Proofs

Before giving the proof of Theorem 3.1, we introduce some lemmas.
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Lemma 4.1. Let ln(θ) =
∑

i log f(zi; θ) be the log-likelihood function. Let θ̂n be

the mle of θ. Assume θ̂n → θ almost surely. Under Wald conditions, we have

lim
n→∞

n−1ln(θ̂n) = lim
n→∞

n−1ln(θ) = E{log f(Z; θ)}.

Proof of Lemma 4.1. Define

f(z; θ, ρ) = sup
‖θ′−θ‖≤ρ

f(z; θ′),

and ln(θ, ρ) =
∑

i log f(zi; θ, ρ). Under Wald conditions, we haveE{| log f(Z; θ)|} <
∞ and E{| log f(Z; θ, ρ)|} < ∞. By the strong law of large numbers,

lim
n→∞

n−1ln(θ) = E{log f(Z; θ)},

lim
n→∞

n−1ln(θ, ρ) = E{log f(Z; θ, ρ)}.

Since ln(θ̂n) ≥ ln(θ),

lim inf
n→∞

n−1ln(θ̂n) ≥ lim
n→∞

n−1ln(θ) = E{log f(Z; θ)}. (4.1)

Since θ̂n → θ almost surely, there exists Nρ such that ‖ θ̂n−θ ‖≤ ρ almost surely

for n > Nρ. Then for n > Nρ, log f(z; θ̂n) ≤ log f(z; θ, ρ) and ln(θ̂n) ≤ ln(θ, ρ)
almost surely. Hence

lim sup
n→∞

n−1ln(θ̂n) ≤ lim
n→∞

n−1ln(θ, ρ) = E{log f(Z; θ, ρ)}. (4.2)

From (4.1) and (4.2),

E{log f(Z; θ)} ≤ lim inf
n→∞

n−1ln(θ̂n) ≤ lim sup
n→∞

n−1ln(θ̂n) ≤ E{log f(Z; θ, ρ)}.

From Lemma 2 in Wald [10], limρ→0 E{log f(Z; θ, ρ)} = E{log f(Z; θ)}. So

lim
n→∞

n−1ln(θ̂n) = lim
ρ→0

E{log f(Z; θ, ρ)} = E{log f(Z; θ)}.

Lemma 4.2. gic can select the model Sk if and only if ln,k = max{j,κj=κk} ln,j
and Ak,1 ≤ α ≤ Ak,2, where

Ak,1 = max
κj>κk

2{ln,j − ln,k}/(κj − κk),

Ak,2 = min
κj<κk

2{ln,j − ln,k}/(κj − κk).

Here we define AK,1 = 0 and A1,2 = ∞.
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Proof of Lemma 4.2. gic selects model Sk if and only if −2{ln,j− ln,k}+α(κj−
κk) ≥ 0, that is,

ln,j ≤ ln,k, κj = κk;
α ≤ 2{ln,j − ln,k}/(κj − κk), κj < κk,
α ≥ 2{ln,j − ln,k}/(κj − κk), κj > κk,

or Ak,1 ≤ α ≤ Ak,2.

Lemma 4.3. Asymptotically

Pr{κ(α) = κ0} = Pr{A0,1 ≤ α ≤ A0,2},
Pr{κ(α) > κ0} = Pr{A0,1 ≥ α},
Pr{κ(α) < κ0} = Pr{A0,2 ≤ α}.

Proof of Lemma 4.3. From C1, for κk ≤ κ0, n
−1(ln,0 − ln,k) ≥ ∆ as n is large

enough, and then ln,0 = max{j,κj=κ0} ln,j . Therefore, from Lemma 4.2, as n is
large enough, κ(α) = κ0 if and only if A0,1 ≤ α ≤ A0,2. That is,

Pr{κ(α) = κ0} = Pr{ln,0 = max{j,κj=κ0} ln,j , A0,1 ≤ α ≤ A0,2}
= Pr{A0,1 ≤ α ≤ A0,2}.

From Lemma 4.1,

limn−1ln,K = E{log f(Z; θ∗(SK))} ≤ E{log f(Z; θ0)}.

On the other hand, from the condition C2, ln,K ≥ ln,0, and then

limn−1ln,K ≥ limn−1ln,0 = E{log f(Z; θ0)}.

So limn−1ln,K = E{log f(Z; θ0)}, and n−1(ln,K − ln,0) → 0. Hence

n−1A0,1 → 0. (4.3)

From C1, we also have

n−1A0,2 ≥ ∆ min
κj<κ0

{2/(κ0 − κj)}. (4.4)

From (4.3) and (4.4), A0,1 ≤ A0,2 as n is large enough.
If the selected model size, κ(α) = κk, is greater than the true model size, κ0,

then ln,k > ln,0, and from the definition, we have

Ak,2 ≤ 2{ln,0 − ln,k}/(κ0 − κk) ≤ A0,1.

Hence, from Lemma 4.2, if κ(α) > κ0, then α ≤ A0,1.

Similarly, if κ(α) < κ0, we have α ≥ A0,2. Note that if κ(α) = κ0, then
A0,1 ≤ α ≤ A0,2. Hence, Lemma 4.3 follows.
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4.1. Proof of Theorem

Proof of Theorem 3.1 (1). Since α is bounded, from Lemma 4.3 and (4.4), asymp-
totically Pr{κ(α) < κ0} = Pr{A0,2 ≤ α} = 0. So

Pr{κ(α) = κ0} = 1− Pr{κ(α) > κ0}.

From Lemma 4.3,

Pr{κ(α) = κ0} = Pr{A0,1 ≤ α ≤ A0,2}
≤ Pr{A0,1 ≤ α}
≤ Pr{2{ln,K − ln,0}/(κK − κ0) ≤ α}
= Pr{χ2

κK−κ0
≤ α(κK − κ0)}.

Proof of Theorem 3.1 (2). Since r < γ, n−1αn < n−1A0,2 as n is larger. From
Lemma 4.3, and ln,K ≥ ln,k, as n is large enough, we have

Pr{κ(α) = κ0} = Pr{A0,1 ≤ αn ≤ A0,2}
= Pr{A0,1 ≤ αn, αn/n ≤ A0,2/n}
= Pr{A0,1 ≤ αn}
≥ Pr{maxκj>κ0

2{ln,K − ln,0}/(κj − κ0) ≤ αn}
≥ Pr{2{ln,K − ln,0} ≤ αn}
= Pr{χ2

κK−κ0
≤ αn} → 1.

Proof of Theorem 3.1 (3). Since r > γ, n−1αn > n−1A0,2 as n is larger. Then,
from Lemma 4.3, Pr{κ(α) < κ0} = Pr{A0,2 ≤ αn} = 1.

Proof of Theorem 3.1 (4). Since n−1αn → r = γ > 0, from (4.3), n−1A0,1 <
n−1αn for n large enough. So, from Lemma 4.3, Pr{κ(α) > κ0} = Pr{A0,1 ≥
αn} = 0.

5. Conclusions

We have reexamined the asymptotic properties of gic for model selection and
have derived conditions on the tuning parameter, under which the gic is asymp-
totically overfitting, consistent or underfitting. These new results elucidate the
performance of the gic. The proofs of the asymptotic properties employed the
strong law of large numbers. If the weak law of large number is used, then the
type of convergence is in probability, and the asymptotic properties are the weak
rather than strong properties.

Recently, Zhang, Li and Tsai [14] considered the asymptotic properties of
gic in the case that the candidate models are produced by non-concave penal-
ized likelihood methods, such as least absolute shrinkage and selection operator
(lasso) [9], smoothly clipped absolute deviation (scad) [3] and minimax con-
cave penalty (mcp) [13]. It would be interesting to extend our derived asymptotic
properties to this case where the largest model size could also increase with the
sample size.
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