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Abstract: We study the problem of detection of a p-dimensional sparse
vector of parameters in the linear regression model with Gaussian noise.
We establish the detection boundary, i.e., the necessary and sufficient con-
ditions for the possibility of successful detection as both the sample size n

and the dimension p tend to infinity. Testing procedures that achieve this
boundary are also exhibited. Our results encompass the high-dimensional
setting (p ≫ n). The main message is that, under some conditions, the
detection boundary phenomenon that has been previously established for
the Gaussian sequence model, extends to high-dimensional linear regres-
sion. Finally, we establish the detection boundaries when the variance of
the noise is unknown. Interestingly, the rate of the detection boundary in
high-dimensional setting with unknown variance can be different from the
rate for the case of known variance.
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1. Introduction

We consider the linear regression model with random design:

Yi =

p
∑

j=1

θjXij + ξi, i = 1, . . . , n, (1.1)

where θj ∈ R are unknown coefficients, ξi are i.i.d. N (0, σ2) random variables
and the n random vectors (Xij , 1 ≤ j ≤ p), i = 1, . . . , n are i.i.d. The covariates

1476

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/10-EJS589
mailto:yurii_ingster@mail.ru
mailto:alexandre.tsybakov@ensae.fr
mailto:nicolas.verzelen@supagro.inra.fr


Y.I. Ingster et al./Detection boundary in regression 1477

Xij are assumed to have zero mean and variance 1: E(Xij) = 0, E(X2
ij) = 1

for 1 ≤ j ≤ p, 1 ≤ i ≤ n. We also assume that Xij , 1 ≤ j ≤ p, 1 ≤ i ≤ n, are
independent of ξi, 1 ≤ i ≤ n.

We study separately the models with known σ > 0 (then assuming that σ = 1
without loss of generality) and with unknown σ > 0.

Based on the observations Z = (X,Y ) where X = (Xij , 1 ≤ j ≤ p, 1 ≤ i ≤
n), and Y = (Yi, 1 ≤ i ≤ n), we consider the problem of detecting whether the
signal θ = (θ1, . . . , θp) is zero (i.e., we observe the pure noise) or θ is some sparse
signal, which is sufficiently well separated from 0. Specifically, we state this as
a problem of testing the hypothesis H0 : θ = 0 against the alternative

Hk,r : θ ∈ Θk(r) = {θ ∈ R
p
k : ‖θ‖ ≥ r},

where Rpk denotes the ℓ0 ball in R
p of radius k, ‖ · ‖ is the Euclidean norm, and

r > 0 is a separation constant.
The smaller is r, the harder is to detect the signal. The question that we

study here is: What is the detection boundary, i.e., what is the smallest separa-
tion constant r such that successful detection is still possible? The problem is
formalized in an asymptotic minimax sense, cf. Section 2 below. This question
is closely related to the previous work by several authors on detection and clas-
sification boundaries for the Gaussian sequence model [4, 7–9, 11–13, 15–24].
These papers considered model (1.1) with p = n and Xij = δij , where δij is the
Kronecker delta, or replications of such a model (in classification setting). The
main message of the present work is that, under some conditions, the detection
boundary phenomenon similar to the one discussed in those papers, extends to
linear regression. Our results cover the high-dimensional p≫ n setting.

We now give a brief summary of our findings under the simplifying assump-
tion that all the regressors Xij are i.i.d. standard Gaussian. We consider the
asymptotic setting where p → ∞, n → ∞ and k = p1−β for some β ∈ (0, 1).
The results are different for moderately sparse alternatives (0 < β ≤ 1/2) and
highly sparse alternatives (1/2 < β < 1). We show that for moderately sparse
alternatives the detection boundary is of the order of magnitude

r ≍ p1/4√
n

∧ 1

n1/4
, (1.2)

whereas for highly sparse alternatives (1/2 < β < 1) it is of the order

r ≍
√

k log p

n
∧ 1

n1/4
. (1.3)

This solves the problem of optimal rate in detection boundary for all the range
of values (p, n). Furthermore, for highly sparse alternatives under the additional
assumption

p1−β log(p) = o(
√
n) (1.4)
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we obtain the sharp detection boundary, i.e., not only the rate but also the exact
constant. This sharp boundary has the form

r = ϕ(β)

√

k log p

n
, (1.5)

where

ϕ(β) =

{√
2β − 1, 1/2 < β ≤ 3/4,√
2(1−√

1− β), 3/4 < β < 1.
(1.6)

The function ϕ(·) here is the same as in the above mentioned detection and
classification problems for the Gaussian sequence model, as first introduced
in [15]. We also provide optimal testing procedures. In particular, the sharp
boundary (1.5)–(1.6) is attained on the Higher Criticism statistic.

One of the applications of this result is related to transmission of signals
with compressed sensing, cf. [5, 10]. Assume that a sparse high-dimensional
signal θ is coded using compressed sensing with i.i.d. Gaussian Xij and then
transmitted through a noisy channel. Observing the noisy outputs Yi, we would
like to detect whether the signal was indeed transmitted. For example, this is of
interest if several signals appear in consecutive time slots but some slots contain
no signal. Then the aim is to detect informative slots. Our detection boundary
(1.5) specifies the minimal energy of the signal sufficient for detectability. We
note that ϕ(·) <

√
2, so that successful detection is possible for rather weak

signals whose energy is under the threshold
√

2k log(p)/n. This can be compared
with the asymptotically optimal recovery of sparsity pattern (RSP) by the Lasso
in the same Gaussian regression model as ours [29, 30]. Observe that the RSP
property is stronger than detection (i.e., it implies correct detection) but [30]
defines the alternative by {θ ∈ R

p
k : |θj | ≥ c

√

log(p)/n, ∀j} for some constant
c > 2, which is better separated from the null than our alternative Θk(r).
Thresholds that are even larger in order of magnitude would be required if one
would like to perform detection based on estimation of the values of coefficients
in the ℓ2 norm [3, 5].

In many applications, the variance of the noise ξ is unknown. Does the prob-
lem of detection become more difficult in this case? In order to answer this
question, we investigate the detection boundaries in the unknown variance set-
ting. Related work [27, 28] develop minimax bounds for detection in model (1.1)
under assumptions different from ours and under unknown variance. However,
[28] does not provide a sharp boundary. Here, we prove that for β ∈ (1/2, 1)
and k log(p) ≪ √

n, the detection boundaries are the same for known and un-
known variance. In contrast, when k log(p) ≫ √

n, the detection boundary is
much larger in the case of unknown variance than for known variance. We also
provide an optimal testing procedure when the variance is unknown.

After we have obtained our results, we became aware of the interesting par-
allel unpublished work of Arias-Castro et al. [2]. There the authors derive the
detection boundary in model (1.1) with known variance of the noise for both
fixed and random design. Their approach based on the analysis of the Higher
Criticism shares some similarities with our work. When the variables Xij are



Y.I. Ingster et al./Detection boundary in regression 1479

i.i.d. standard normal and the variance is known, we can directly compare our re-
sults with [2]. In [2] the detection boundaries analogous to (1.2) and (1.3) do not
contain the minimum with the n−1/4 term, because they are proved in a smaller
range of values (p, n) where this term disappears. In particular, the conditions
in [2] for the model with Gaussian Xij exclude the high-dimensional case p≫ n.
We also note that, due to the constraints on the classes of matrices X , [2] ob-
tains the sharp boundary (1.5)–(1.6) under the condition p1−β(log(p))2 = o(

√
n)

which is more restrictive than our condition (1.4). The other difference is that [2]
does not treat the case of unknown variance of the noise.

Below we will use the following notation. We write Z = (X,Y ) where
X = (Xij , 1 ≤ j ≤ p, 1 ≤ i ≤ n), and Y = (Yi, 1 ≤ i ≤ n) are the ob-
servations satisfying (1.1). Let Pθ and PX be the probability measures that
correspond to observations Z and X respectively. We denote by PXθ the condi-
tional distribution of Y given X . The corresponding expectations are denoted
by Eθ, EX and EXθ , while the variances are denoted by Varθ, VarX and VarXθ
respectively. Clearly,

Pθ(dZ) = PXθ (dY )PX(dX). (1.7)

For a random variable or vector ζ, we denote by Eζ the expectation operator
with respect to its distribution. We denote by Xj ∈ R

n the jth column of matrix
X = (Xij), and set

(Xj , Xl) =
n
∑

i=1

XijXil, ‖Xj‖2 = (Xj , Xj).

For two sequences (anp) and (bnp), we write anp ≫ bnp if anp/bnp → ∞ as
n → ∞ and p → ∞. Finally, P and E are used as the generic probability and
expectation signs, and Φ(·) is the standard Gaussian pdf.

2. Detection problem

For θ ∈ R
p, we denote by M(θ) =

∑p
j=1 1θj 6=0 the number of non-zero compo-

nents of θ, where 1A is the indicator function. As above, let R
p
k, 1 ≤ k ≤ p,

denote the ℓ0 ball in R
p of radius k, i.e., the subset of Rp that consists of vectors

θ with M(θ) ≤ k, or equivalently, θ ∈ R
p
k contains no more than k nonzero co-

ordinates. In particular Rpp = R
p. As above, we set Θk(r) = {θ ∈ R

p
k : ‖θ‖ ≥ r}.

We consider the problem of testing the hypothesis H0 : θ = 0 against the
alternative Hk,r : θ ∈ Θk(r). In this paper we study the asymptotic setting
assuming that p → ∞, n → ∞, and k = p1−β . Accordingly, all the limits, as
well as the o(1) and O(1) symbols, are considered under this asymptotics. The
coefficient β ∈ [0, 1] is called the sparsity index. We assume in this section that
σ2 is known. Modifications for the case of unknown variance are discussed in
Section 4.2.

We call a test any measurable function ψ(Z) with values in [0, 1]. For a test
ψ, let α(ψ) = E0(ψ) be the type I error probability and β(ψ, θ) = Eθ(1−ψ) be
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the type II error probability for the simple alternative θ ∈ Θk(r) ⊂ R
p. We set

β(ψ,Θk(r)) = sup
θ∈Θk(r)

β(ψ, θ), γ(ψ,Θk(r)) = α(ψ) + β(ψ,Θk(r)) .

We denote by β(α) = βn,p,k(α, r) the minimax type II error probability for a
given level α ∈ (0, 1),

β(α) = inf
ψ:α(ψ)≤α

β(ψ,Θk(r)), 0 ≤ β(α) ≤ 1− α .

Accordingly, we denote by γn,p,k(r) the minimax total error probability in the
hypothesis testing problem:

γn,p,k(r) = inf
ψ

γ(ψ,Θk(r)),

where the infimum is taken over all tests ψ. Clearly,

γn,p,k(r) = inf
α∈(0,1)

(α+ β(α)), 0 ≤ γn,p,k(r) ≤ 1.

The aim of this paper is to establish the asymptotic detection boundary,
i.e., the conditions on the separation constant r, which delimit the zone where
γn,p,k(r) → 1 (indistinguishability) from the zone where γn,p,k(r) → 0 (distin-
guishability). The distinguishability is equivalent to β(α) → 0, ∀ α ∈ (0, 1). We
are interested in tests ψ = ψn,p or ψα = ψn,p,α such that either γ(ψ,Θk(r)) → 0
or α(ψα) ≤ α+ o(1), and β(ψα,Θk(r)) → 0. Here and later the limits are taken
as p→ ∞, n→ ∞ unless otherwise stated.

3. Assumptions on X

We will use at different instances some of the following conditions on the random
variables Xij .

A1. The random variables Xij are uncorrelated, i.e., E(XijXil) = 0 for all
1 ≤ j < l ≤ p.

A2. The random variables Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n, are independent.

A3. The random variables Xij , 1 ≤ j ≤ p, 1 ≤ i ≤ n, are i.i.d. standard
Gaussian: Xij ∼ N (0, 1).

We will need the following technical assumptions.

B1.

max
1≤j<l≤p

E((X1jX1l)
4) = O(1) . (3.1)

B2. There exists h0 > 0 such that max1≤j≤l≤p E(exp(hX1jX1l)) = O(1) for
|h| < h0, and

log3(p) = o(n). (3.2)
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B3. There exists m ∈ N such that max1≤j≤l≤p E(|X1jX1l|m) = O(1), and

log2(p)p4/m = o(n). (3.3)

Assumption B1 implies that

max
1≤j<l≤p

E(|X1jX1l|m) = O(1), m = 2, 3, 4 . (3.4)

In particular, Assumption B1 holds true under A2 if

max
1≤j≤p

E(X4
1j) = O(1). (3.5)

Since (XijXil, i = 1, . . . , n) are independent zero-mean random variables, we
have (cf. [25], p. 79):

E(|(Xj , Xl)|m) ≤ C(m)nm/2−1
n
∑

i=1

E(|XijXil|m), m > 2 .

This and (3.4) yield
∑

1≤j<l≤p
E(|(Xj , Xl)|m) = O(nm/2p2), m = 2, 3, 4 . (3.6)

Finally, Assumptions B1 and B2 hold true under A3 and (3.2).

4. Main results

4.1. Detection boundary under known variance

In this section we assume that the variance σ2 is known and we set σ = 1
without loss of generality.

4.1.1. Lower bounds

We first present the lower bounds on the detection error, i.e., the indistinguisha-
bility conditions. We assume that k = p1−β , β ∈ (0, 1). Indistinguishability con-
ditions consist of two joint conditions on the radius r = rnp. The first one is

r2np = o(n−1/2). (4.1)

The second condition differs according to whether β ≤ 1/2 or β > 1/2. If
β ≤ 1/2 (i.e., p = O(k2)), which corresponds to moderate sparsity, we require
that

r2np = o(
√
p/n) . (4.2)

The case β > 1/2 (i.e., k2 = o(p)) corresponds to high sparsity. In this case we
define xn,p by rnp = xn,p

√

k log(p)/n and require that

lim sup(xn,p − ϕ(β)) < 0, (4.3)

where ϕ(β) is defined in (1.6). Clearly, condition (4.3) implies r2np =
O(k log(p)/n), which is stronger than (4.2) when β > 1/2.
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Theorem 4.1. Assume A1, B1, and either B2 or B3. We also require that rnp
satisfies (4.1) and either (4.2) (for β ∈ (0, 1/2]) or (4.3) (for β ∈ (1/2, 1)).
Then γn,p,k(rnp) → 1, so that asymptotic distinguishability is impossible.

Remark 4.1. This theorem can be extended to non-random design matrix X .
In the proof, instead of B1, we only need the assumption: For some Bn,p tending
to ∞ slowly enough,

∑

1≤j<l≤p
|(Xj , Xl)|m < Bn,pn

m/2p2, m = 2, 3, 4. (4.4)

Indeed, B1 is used in the proofs only to assure that (4.4) holds true with PX -
probability tending to 1 (this is deduced from assumption B1 and (3.6)).

Also instead of B2 and B3, we can assume that there exists ηn,p → 0 such
that

r2np max
1≤j<l≤p

|(Xj , Xl)| < ηn,pk, max
1≤j≤p

|‖Xj‖2 − n| < ηn,pn. (4.5)

Under B2, B3, relations (4.5) hold with PX -probability tending to 1, see Corol-
lary 7.1. The result of the theorem remains valid for non-random matrices X
satisfying (4.4) and (4.5).

4.1.2. Upper bounds

In order to construct a test procedure that achieves the detection boundary,
we combine several approaches based on χ2-statistics, U -statistics and Higher
Criticism statistics.

First, we study the widest non-sparse case k = p, i.e., we consider Θp(r) =
{θ ∈ R

p : ‖θ‖ ≥ r}. Consider the statistic

t0 = (2n)−1/2
n
∑

i=1

(Y 2
i − 1), (4.6)

which is the H0-centered and normalized version of the classical χ2
n-statistic

∑n
i=1 Y

2
i . The corresponding tests ψ0

α and ψ0 are of the form:

ψ0
α = 1t0>uα

, ψ0 = 1t0>Tnp

where α ∈ (0, 1), uα is the (1−α)-quantile of the standard Gaussian distribution
and Tnp is any sequence satisfying Tnp → ∞.

Theorem 4.2. For all α ∈ (0, 1) we have:
(i) Type I errors satisfy α(ψ0

α) = α+ o(1) and α(ψ0) = o(1).
(ii) Type II errors. Assume A2 and B1, and consider a radius rnp such that

nr4np → ∞. Then β(ψ0
α,Θp(rnp)) → 0. If the threshold Tnp is chosen such that

lim supTnpn
−1/2r−2

np < 1, then β(ψ0,Θp(rnp)) → 0.
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Note that under A2 we can replace B1 by (3.5). If nr4np → ∞, then one can
take Tnp such that γ(ψ0,Θp(rnp)) → 0 under A2 and B1. This justifies the
“minimal” character of condition (4.1) in the lower bound.

We now introduce a test ψ1
α that achieves the part (4.2) of the lower bound.

Consider the following kernel

K(Zi, Zk) = p−1/2YiYk

p
∑

j=1

XijXkj .

The U -statistic t1 based on the kernel K is defined by

t1 = N−1/2
∑

1≤i<k≤n
K(Zi, Zk), N = n(n− 1)/2.

Note that the U -statistic t1 can be viewed as the H0-centered and normal-
ized version of the statistic χ2

p = n
∑p
j=1 θ̂

2
j based on the estimators θ̂j =

n−1
∑n
i=1 YiXij :

χ2
p = 2n−1

p
∑

j=1

∑

1≤i<k≤n
YiYkXijXkj + n−1

p
∑

j=1

n
∑

i=1

Y 2
i X

2
ij .

Indeed, up to a normalization, the first sum is the U -statistic t1, and moving
off the second sum corresponds to centering.

Given α ∈ (0, 1), we consider the test ψ1
α = 1t1>uα

.

Theorem 4.3. Assume A2 and B1. For all α ∈ (0, 1) we have:
(i) Type I error satisfies: α(ψ1

α) = α+ o(1).
(ii) Type II error. Assume that p = o(n2) and consider a radius rnp such that

nr2np/
√
p→ ∞. Then β(ψ1

α,Θp(rnp)) → 0.

Remark 4.2. Combining the tests ψ0
α/2 and ψ1

α/2 we obtain the test ψ∗
α =

max(ψ0
α/2, ψ

1
α/2) with asymptotic level not more than α. Moreover, it achieves

β(ψ∗
α,Θp(rnp)) → 0 for any radius rnp satisfying

r2np ≫
√
p

n
∧ 1√

n
.

We can omit the condition p = o(n2) since the test ψ0
α/2 achieves the optimal

rate for p ≥ n. Combining this bound with Theorem 4.1, we conclude that ψ∗
α

simultaneously achieves the optimal detection rate for all β ∈ (0, 1/2].

We now turn to testing in the highly sparse case, β ∈ (1/2, 1). Here we use a
version of Higher Criticism tests (HC-tests, cf. [7]). Set

yj = (Y,Xj)/‖Y ‖, 1 ≤ j ≤ p.

Let qj = P (|N (0, 1)| > |yj |) be the p-value of the j-th component and let q(j)
denote these quantities sorted in increasing order. We define the HC-statistic
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by

tHC = max
1≤j≤p

max
q(j)≤1/2

√
p(j/p− q(j))

√

q(j)(1− q(j))
. (4.7)

Given a constant a > 0, the HC-test ψHC rejects H0 when the statistic tHC is
greater than (1 + a)

√
2 log log p :

ψHC = 1tHC>(1+a)
√
2 log log p .

Theorem 4.4. Assume A3, i.e., that Xij are i.i.d. standard Gaussian. Then
we have:

(i) Type I error satisfies α(ψHC) = o(1).
(ii) Type II error. Assume that β ∈ (1/2, 1) and k log(p) = o(n). Consider

the radius rnp = xn,p
√

k log(p)/n such that lim inf(xn,p − ϕ(β)) > 0. Then
β(ψHC ,Θk(rnp)) → 0.

Remark 4.3. Theorem 4.4 remains valid if the cutoff 1/2 in the definition (4.7)
of tHC is replaced by any c ∈ (0, 1).

Remark 4.4. If k log(p) = o(n), the HC-test asymptotically detects any k-
sparse signal whose rescaled intensity rnp

√

n/(k log(p)) is above the detection
boundary ϕ(β).

Remark 4.5. Assume A3. Combining the tests ψ0
α and ψHC , we obtain the

test ψ∗,HC
α = max(ψ0

α, ψ
HC) of asymptotic level not more than α. Moreover, it

achieves β(ψ∗,HC
α ,Θk(rnp)) → 0 for any radius rnp satisfying

rnp = xn,p

√

k log(p)

n
, lim inf xn,p ≥ ϕ(β) or r2np ≫

1√
n
.

We can omit the condition k log(p) = o(n) since the test ψ0
α achieves the op-

timal rate for k log(p) ≫ √
n. Combining this bound with Theorem 4.1, we

conclude that ψ∗,HC
α simultaneously achieves the optimal detection rate for all

β ∈ (1/2, 1).

In conclusion, under Assumption A3, the test max(ψ0
α/2, ψ

1
α/2, ψ

HC) simul-

taneously achieves the optimal detection rate for all β ∈ (0, 1). The detection
boundary is of the order of magnitude

r ≍
√

k log p

n
∧ 1

n1/4
. (4.8)

Furthermore, we establish the sharp detection boundary (i.e., with exact asymp-
totic constant) of the form

r = ϕ(β)

√

k log p

n

for β > 1/2 and k log(p) = p1−β log(p) = o(
√
n).
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4.2. Detection boundary under unknown variance

4.2.1. Detection problem with unknown variance

In this section, we write Eθ,σ instead of Eθ in order to indicate explicitly the
dependence on σ. The variance of the noise σ2 is now assumed to be unknown
and we will consider tests ψ that do not require the knowledge of σ2. The type I
error probability is now taken uniformly over σ > 0:

αun(ψ) = sup
σ>0

E0,σ(ψ) .

Accordingly, we define the type II error probability for an alternative Θ ⊂ R
p

as follows:

βun(ψ,Θ) = sup
θ∈Θ,σ>0

β(ψ, θσ, σ) = sup
θ∈Θ,σ>0

Eθσ,σ(1− ψ) . (4.9)

Similarly to the setting with known variance, we consider the sum of the two
errors:

γun(ψ,Θ) = αun(ψ) + βun(ψ,Θ).

Finally, the minimax total error probability in the hypothesis testing problem
with unknown variance is

γunn,p,k(r) = inf
ψ

γun(ψ,Θk(r)).

4.2.2. Lower bounds

Set, as above, rnp = xn,p
√

k log(p)/n. As in the case of known variance, we
consider the condition

lim sup(xn,p − ϕ(β)) < 0 . (4.10)

Theorem 4.5. Fix some β > 1/2 and assume A3. If Condition (4.10) holds and
if k log(p) = o(n), then distinguishability is impossible, i.e., γunn,p,k(rnp) → 1 . If
k log(p)/n→ ∞, then for any radius r > 0, distinguishability is impossible, i.e.
γunn,p,k(r) → 1.

The detection boundary stated in Theorem 4.5 does not depend on the un-
known σ2. This is due to the definition (4.9) of the type II error probability
βun(ψ,Θk(r)) that considers alternatives of the form σθ with θ ∈ Θk(r).

4.2.3. Upper bounds

The HC-test ψHC defined in (4.7) still achieves the optimal detection rate when
the variance is unknown as shown in the next proposition.
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Proposition 4.6. Assume A3, i.e., that Xij are i.i.d. standard Gaussian. Then
we have:

(i) Type I error satisfies αun(ψHC) = o(1).
(ii) Type II error. Assume that β ∈ (1/2, 1) and k log(p) = o(n). Consider

the radius rnp = xn,p
√

k log(p)/n such that lim inf(xn,p − ϕ(β)) > 0. Then
βun(ψHC ,Θk(rnp)) → 0.

In conclusion, in the setting with unknown variance we prove that the sharp
detection boundary (i.e., with exact asymptotic constant) of the form

ϕ(β)

√

k log p

n

holds for β > 1/2 and k log(p) = p1−β log(p) = o(n), i.e., for a larger zone
of values (p, n) than for the case of known variance. However, this extension
corresponds to (p, n) for which the rate itself is strictly slower than under the
known variance. Indeed, if the variance σ2 is known, as shown in Section 4.1, the
detection boundary is of the order (4.8). Thus, there is an asymptotic difference
in the order of magnitude of the two detection boundaries for k log(p) ≫ √

n.

5. Proofs of the lower bounds

5.1. The prior

Take c ∈ (0, 1), and define h = ck/p, b = rnp/c
√
k, a = b

√
n. Note that the

condition r2np = o(1/
√
n) is equivalent to b4k2n = o(1). Consider a random

vector θ = (θ1, . . . , θp) with coordinates

θj = bεj,

where εj are i.i.d. random variables taking values in {0,+1,−1} with probabil-
ities

P (εj = 0) = 1− h, P (εj = +1) = P (εj = −1) = h/2.

This introduces a prior probability measure πj on θj and the product prior mea-
sure π =

∏p
j=1 πj on θ. The corresponding expectation and variance operators

will be denoted by Eπ and Varπ.

Lemma 5.1. Let k → ∞. Then

π
(

Θk(rnp)
)

→ 1.

Proof. Observe that

‖θ‖2 = b2
p
∑

j=1

ε2j , M(θ) =

p
∑

j=1

|εj |.

We have
Eπ(‖θ‖2) = b2ph = r2np/c, Eπ(M(θ)) = ph = ck,
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and
Varπ(‖θ‖2) ≤ phb4 = r4np/(kc

3), Varπ(M(θ)) ≤ ph = ck.

Applying the Chebyshev inequality, we get with C = c−1 > 1,

π(‖θ‖2 < r2np) = π(Eπ(‖θ‖2)− ‖θ‖2 > r2np(C − 1)) ≤ Varπ(‖θ‖2)
r4np(C − 1)2

→ 0,

and similarly, π(M(θ) > k) → 0. Since π
(

Θk(rnp)
)

= π(‖θ‖ ≥ rnp,M(θ) ≤ k),
the lemma follows.

We will use the scheme of proving minimax lower bounds based on a reduction
to the Bayes risk with the prior π, see for instance [21], Proposition 2.9. Define
the mixture distribution Pπ by

Pπ(dZ) , EπPθ(dZ) =

∫

Rp

Pθ(dZ)π(dθ)

and consider the likelihood ratio

Lπ(Z) =
dPπ
dP0

(Z),

which is well-defined since Pπ is absolutely continuous with respect to P0. In
order to prove the lower bounds it is enough to check that

Lπ(Z) → 1 in P0 − probability. (5.1)

Indeed, since the maximal risk is greater than the Bayes risk, we get that, for
any test ψ,

γ(ψ,Θk(r)) ≥
∫

Eθ(1− ψ)π(dθ) + E0(ψ)− π̄

=

∫

(1 − ψ)dPπ +

∫

ψdP0 − π̄

=

∫

(

(1− ψ)Lπ + ψ
)

dP0 − π̄

≥
∫

(

(1− ψLR)Lπ + ψLR
)

dP0 − π̄

where π̄ = 1− π
(

Θk(rnp)
)

and ψLR = 1Lπ>1 is the likelihood ratio test. Com-
bining the last display with (5.1), Lemma 5.1, and the Fatou lemma, we find
that lim inf{infψ γ(ψ,Θk(r))} ≥ 1, which implies infψ γ(ψ,Θk(r)) → 1.

Consider x = lim supxn,p. If β ≤ 1/2, then x = 0 since nb2 = O(1). For
β > 1/2, we take c ∈ (0, 1) such that xc = x/c < ϕ(β), which is possible as
x < ϕ(β). We will use the short notation x and a for xc and ac = b

√
n = a/c.

For j = 1, . . . , p we set

aj = b‖Xj‖, xj = aj/
√

log(p), (5.2)

y′j = (Xj , Y )/‖Xj‖, Tj = aj/2 + log(h−1)/aj ,

which corresponds to he−
1
2a

2
j+ajTj = 1.



Y.I. Ingster et al./Detection boundary in regression 1488

5.2. Study of the likelihood ratio Lπ

First observe that, by (1.7),

Pπ(dZ) = PX(dX)Eπ
(

PXθ (dY )
)

, Lπ(Z) = Eπ

(

dPXθ
dPX0

(Y )

)

.

Note that the conditional measure PXθ corresponds to observation of a random
vector with the n-dimensional Gaussian distribution Nn(v, In) with mean v =
∑p
j=1 θjXj and the n × n identity covariance matrix In. Thus, the likelihood

ratio under the expectation is

dPXθ
dPX0

(Y ) = exp(−‖v‖2/2 + (v, Y )) = gθ(Z)e
−∆(X,θ)/2,

where

gθ(Z) =

p
∏

j=1

exp(−θ2j‖Xj‖2/2 + θj(Xj , Y )), ∆(X, θ) = 2
∑

1≤j<l≤p
θjθl(Xj , Xl).

(5.3)
Set

Λ(Z) = Eπ (gθ(Z)) =

p
∏

j=1

(1− h+ he−b
2‖Xj‖2/2 cosh(b(Xj , Y ))) ,

and define η̄j = e−b
2‖Xj‖2/2 cosh(b(Xj , Y )) − 1. Take now δ > 0 and introduce

the set
ΣX = {θ ∈ R

p : |∆(X, θ)| ≤ δ}.
We can write

Lπ(Z) =

∫

Rp

gθ(Z)e
−∆(X,θ)π(dθ) ≥ e−δ

∫

ΣX

gθ(Z)π(dθ) = e−δΛ(Z)πZ(ΣX),

where πZ =
∏p
j=1 πZ,j is the random probability measure on R

p with the density

dπZ
dπ

(θ) =
gθ(Z)

Λ(Z)
=

p
∏

j=1

dπZ,j
dπj

(θ);

dπZ,j
dπj

(θ) =
e−θ

2
j‖Xj‖2/2+θj(Xj ,Y )

1 + hη̄j
, θj ∈ {0,±b},

i.e., the measure πZ,j is supported at the points {0, b,−b} and

πZ,j(0) =
1− h

1 + hη̄j
, πZ,j(±b) =

h±Z,j
2
, h±Z,j =

hedj
±

1 + hη̄j
,

where

d±j = −a2j/2± ajy
′
j , η̄j =

ed
+
j

2
+
ed

−
j

2
− 1.
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Proposition 5.1. In P0-probability,

πZ(ΣX) → 1. (5.4)

Proof of Proposition 5.1 is given in Section 5.3.

Proposition 5.2. In P0-probability,

Λ(Z) → 1. (5.5)

Proof of Proposition 5.2 is given in Section 5.4.

Propositions 5.1 and 5.2 imply that, for any δ > 0,

P0(Z : Lπ(Z) > 1− δ) → 1.

Since E0Lπ(Z) = 1 and Lπ(Z) ≥ 0, this yields Lπ(Z) → 1 in P0-probability.
Thus, the indistinguishability follows.

5.3. Proof of Proposition 5.1

5.3.1. Replacing the measure πZ by π̃Z

Consider the random measure π̃Z =
∏p
j=1 π̃Z,j , where π̃Z,j is supported at the

points {0, b,−b} and

π̃Z,j(0) = 1−
q+Z,j
2

−
q−Z,j
2
, π̃Z,j(±b) =

q±Z,j
2
,

where

q±Z,j = (h/2)edj
±1A±

j
, A±

j = {hedj± < 1} = {±y′j < Tj} .

Observe that the event A±
j implies q±Z,j ≤ 1/2, i.e., the measures π̃Z,j are cor-

rectly defined. Consider the random event

A = An,p , ∩pj=1(A+
j ∩A−

j ) =
{

Z = (X,Y ) : |y′j | < Tj, j = 1, . . . , p
}

.

Lemma 5.2.
P0(An,p) → 1.

Proof. Denote by Ac the complement of the event A. Since y′j ∼ N (0, 1) under
P0, we have

PX0 ((An,p)
c) ≤

p
∑

j=1

PX0 ((A+
j )

c) + PX0 ((A−
j )

c) = 2

p
∑

j=1

Φ(−Tj).

By Corollary 7.1 we get aj = b‖Xj‖ ∼ b
√
n uniformly in 1 ≤ j ≤ p in

PX -probability. By definition of b, we have lim sup aj/
√

log(p) < ϕ(β) for

any β ∈ (1/2, 1) and aj/
√

log(p) = oPX
(1) if β ≤ 1/2. By (7.1) this implies

∑p
j=1 Φ(−Tj) = o(1) in PX -probability.
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Observe now that we can replace the measure πZ by π̃Z in (5.4). This follows
from the next lemma.

Lemma 5.3. In P0-probability,

Eπ̃Z
|dπZ/dπ̃Z − 1| → 0. (5.6)

Proof. Using that Eπ̃Z
(dπZ/dπ̃Z) = 1 and applying the inequality 1 + x ≤ ex,

we get

(Eπ̃Z
|dπZ/dπ̃Z − 1|)2 ≤ Eπ̃Z

(dπZ/dπ̃Z − 1)2 = Eπ̃Z
(dπZ/dπ̃Z)

2 − 1

=

p
∏

j=1

Eπ̃Z,j
(dπZ,j/dπ̃Z,j)

2 − 1

=

p
∏

j=1

(1 + Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2)− 1

≤ exp





p
∑

j=1

Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2



− 1.

Consequently, we only have to prove that in P0-probability,

H(Z) =

p
∑

j=1

Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2 → 0.

Since H(Z) ≥ 0, the last relation follows from

EX0 (H) → 0, in PX -probability

by Markov’s inequality. Observe that

Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2 =

(h+Z,j − q+Z,j)
2

2q+Z,j
+

(h−Z,j − q−Z,j)
2

2q−Z,j

+
(h+Z,j + h−Z,j − q+Z,j − q−Z,j)

2

2(2− q+Z,j − q−Z,j)
.

By Lemma 5.2, it is sufficient to study these terms under the event A which
corresponds to max1≤j≤p q

±
Z,j ≤ 1/2. Under this event, we have h±Z,j =

q±Z,j/λj , λj = 1 + q+Z,j + q−Z,j − h, and direct calculation gives

(h+Z,j − q+Z,j)
2

2q+Z,j
+

(h−Z,j − q−Z,j)
2

2q−Z,j
+

(h+Z,j + h−Z,j − q+Z,j − q−Z,j)
2

2(2− q+Z,j − q−Z,j)

=
(q+Z,j + q−Z,j)∆

2
j

λ2j (2− q+Z,j − q−Z,j)
,
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where
∆j = q+Z,j + q−Z,j − h = h(ed

+
j 1A+

j
+ ed

−
j 1A−

j
− 2)/2.

Since max1≤j≤p q
±
Z,j ≤ 1/2, we only have to control the sum

∑p
j=1 ∆

2
j .

EX0 1A∆2
j ≤ h2

2

(

ea
2
jΦ(Tj − 2aj) + e−a

2
j − 4Φ(Tj − aj) + 2

)

.

CASE 1: nb2 = O(1). By corollary 7.1, (aj/(
√
nb)−1) = oPX

(1). Consequently,
Tj − 2aj ≍ log(p) so that Φ(Tj − 2aj) = 1− oPX

(p−2).

EX0



1A p
∑

j=1

∆2
j



 ≤ ph2

2
sinh2(nb2(1 + opX (1))/2) + oPX

(1)

=
ph2nb2

2
+ oPX

(1) = oPX
(1) ,

since r2np = o(
√
p/n).

CASE 2: lim supnb2 = ∞. This implies that k2 = o(p) and therefore ph2 =
o(1).

EX0



1A p
∑

j=1

∆2
j



 ≤ ph2

2
enb

2(1+oPX
(1)) + o(1) = p−(2β−1)+x2+oPX

(1) + o(1) .

Since x < ϕ(β) ≤ √
2β − 1 for β > 1/2, this yields the result.

5.3.2. Study of Eπ̃Z
(∆2(X, θ))

By Lemma 5.3, the relation (5.4) follows from π̃Z(ΣX) → 1, in P0-probability.
By Chebyshev’s inequality, to prove this convergence, it is enough to show that,
in P0-probability, Eπ̃Z

(∆2) → 0 for ∆ = ∆(X, θ) defined by (5.3). In turn, by
Markov’s inequality, Eπ̃Z

(∆2) → 0 in P0-probability follows from

EX0 Eπ̃Z
(∆2) → 0, in PX -probability.

Thus, it suffices to prove the last relation. This will be our aim for the rest of
the proof of Proposition 5.1. For 0 < ν < 1, we introduce the random events

X j = {‖Xj‖2 − n < νn}, X jl = {log(p)|(Xj , Xl)| < νn},

and
Xn,p =

⋂

1≤j,l≤p, j 6=l

(

X j ∩ X jl
)

.

It follows from Corollary 7.1 that under assumptions B2 or B3 there exists
ν = νn,p → 0 such that PX(Xn,p) → 1. This ν will be considered in the sequel,
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so that it will be sufficient to control the random variable EX0 Eπ̃Z
(∆2) on the

event Xn,p. We have

Eπ̃Z
(∆2) = b4Eπ̃Z





p
∑

j1,j2,j3,j4=1

1j1 6=j21j3 6=j4εj1εj2εj3εj4(Xj1 , Xj2)(Xj3 , Xj4)





= 4A2 + 8A3 + 8A4,

where

A2 = b4
∑

1≤j1<j2≤p
Eπ̃Z

(

ε2j1ε
2
j2

)

(Xj1 , Xj2)
2, (5.7)

A3 = b4
∑

1≤j1<j2<j3≤p
Eπ̃Z

(

ε2j1εj2εj3
)

(Xj1 , Xj2)(Xj1 , Xj3)

+Eπ̃Z

(

εj1ε
2
j2εj3

)

(Xj1 , Xj2)(Xj2 , Xj3)

+Eπ̃Z

(

εj1εj2ε
2
j3

)

(Xj1 , Xj3)(Xj2 , Xj3) , (5.8)

A4 = b4
∑

1≤j1<j2<j3<j4≤p
Eπ̃Z

(εj1εj2εj3εj4) [(Xj1 , Xj2)(Xj3 , Xj4) +

(Xj1 , Xj3)(Xj2 , Xj4) + (Xj1 , Xj4)(Xj2 , Xj3)] .(5.9)

Here and in what follows the random variables εj = θj/b are i.i.d. in j with
respect to π̃Z and they are distributed on {−1, 0, 1} with probabilities

π̃Z(εj = ±1) = q±Z,j , π̃Z(εj = 0) = 1− q+Z,j − q−Z,j .

Below we write for brevity
qj = qZ,j .

5.3.3. Structure of the expectations EX0 Eπ̃Z
(·)

For notational convenience, we introduce the auxiliary variables ηk taking values
in {1,−1}, which are considered as non-random in this subsection. With this
notation, the expectations over π̃Z can be written in the form

Eπ̃Z

(

ε2j1ε
2
j2

)

=
(q+j1 + q−j1)(q

+
j2
+ q−j2)

4
=

1

4

∑

η1,η2

2
∏

k=1

q
(ηk)
jk

, (5.10)

Eπ̃Z

(

ε2j1εj2εj3
)

=
(q+j1 + q−j1)(q

+
j2
− q−j2)(q

+
j3
− q−j3)

8

=
∑

η1,η2,η3

η2η3
8

3
∏

k=1

q
(ηk)
jk

(5.11)

Eπ̃Z
(εj1εj2εj3εj4) =

1

16

4
∏

k=1

(q+jk − q−jk)

=
1

16

∑

η1,η2,η3,η4

η1η2η3η4

4
∏

k=1

q
(ηk)
jk

, (5.12)
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where q
(ηk)
jk

= q+jk if ηk = 1, and q
(ηk)
jk

= q−jk if ηk = −1, and the sums are taken
over all possible values of binary variables η1, η2, η3, η4.

We now take the expectation EX0 over Y givenX of each of these expressions.
Noting V = b

∑m
k=1 ηkXjk , we have

EX0

(

m
∏

k=1

q
(ηk)
jk

)

=
hm

2m
EX0

(

e−
1
2

∑m
k=1 b

2‖Xjk
‖2+b(Y,

∑m
k=1 ηkXjk

)
m
∏

k=1

1(Y,ηkXjk
)<Tjk

‖Xjk
‖

)

=
hm

2m
eb

2∑
1≤r<s≤m

ηrηs(Xjr ,Xjs )EX0

(

e−
1
2‖V ‖2+(Y,V )

m
∏

k=1

1(Y,ηkXjk
)<Tjk

‖Xjk
‖

)

=
hm

2m
exp



b2
∑

1≤r<s≤m
ηrηs(Xjr , Xjs)



 pj1,...,jm(η),

where

pj1,...,jm(η) = EX0

(

m
∏

k=1

1(Y+V,ηkXjk
)<Tjk

‖Xjk
‖

)

= EX0

(

m
∏

k=1

1(Y,ηkXjk
)<Tjk

‖Xjk
‖−(V,ηkXjk

)

)

= EX0

(

m
∏

k=1

1ηky′jk<Tjk
−(V,ηkXjk

)/‖Xjk
‖

)

.

Define

mjk(η) = ηk

m
∑

s=1, s6=k
ηs(Xjs , Xjk)/‖Xjk‖, zk = ηky

′
jk
.

Then we can write pj1,...,jm(η) in the form

pj1,...,jm(η) = PX0 (z1 < Tj1 − aj1 − bmj1(η), . . . , zm < Tjm − ajm − bmjm(η)) .

We have

EX0

(

2
∏

k=1

q
(ηk)
jk

)

=
h2

4
exp

(

η1η2b
2(Xj1 , Xj2)

)

pj1,j2(η), (5.13)

EX0

(

3
∏

k=1

q
(ηk)
jk

)

=
h3

8
exp



b2
∑

1≤s<r≤3

ηsηr(Xjs , Xjr )



 pj1,j2,j3(η), (5.14)

EX0

(

4
∏

k=1

q
(ηk)
jk

)

=
h4

16
exp



b2
∑

1≤s<r≤4

ηsηr(Xjs , Xjr )



 pj1,j2,j3,j4(η). (5.15)
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5.3.4. Evaluation of probabilities pj1,...,jm(η)

By definition of (z1, . . . , zm) we have

EX0 zk = 0, EX0 z
2
k = 1, EX0 zkzs

∆
= r̄ks(η) =

ηkηs(Xjk , Xjs)

‖Xjk‖‖Xjs‖
, 1 ≤ k < s ≤ m.

Define T̃jk = Tjk − ajk . Observe that

pj1,...,jm(η) = 1−
m
∑

k=1

Φ(−T̃jk − bmjk(η))

+ O





∑

1≤k<s≤m
Φr̄ks(η)

(

−T̃jk − bmjk(η),−T̃js − bmjs(η)
)



 (5.16)

where, for the Gaussian random vector (z1, z2) with Ezk = 0, Ez2k = 1, k =
1, 2, Ez1z2 = ρ, we set

Φρ(t1, t2) = P (z1 < t1, z2 < t2) = P (z1 > −t1, z2 > −t2).

The control of pj1,...,jm(η) then depends on the sequence xn,p.

CASE 1: x = 0. Under the event Xn,p, we have maxj aj = o(
√

log(p)),

T̃jk/
√

log(p) → ∞, and

b|mjk(η)| ≤ b
∑

s6=k
|(Xjs , Xjk)|/‖Xjk‖ ≤ o(b

√
n/ log(p)) = o(1/

√

log(p)) .

It follows that

max
j

Φ(−T̃jk − bmjk(η)) = o(p−α), ∀ α > 0.

We conclude that

pj1,...,jm(η) = 1−O
(

m
∑

k=1

Φ(−T̃jk − bmjk(η))

)

= 1−o(p−α), ∀ α > 0. (5.17)

CASE 2: x > 0. Then, under the event Xn,p, we have b|mjk(η)| =

o(b
√
n/ log(p)) = o(1), and T̃jkb = O(log(p)/

√
n). Hence, T̃jkb|mjk(η)| = o(1).

Applying Lemma 7.2, we write the first term in (5.16) as

m
∑

k=1

Φ(−T̃jk − bmjk(η)) =

m
∑

k=1

Φ(−T̃jk)− b

m
∑

k=1

mjk(η)Φ(−T̃jk)

+ b2
m
∑

k=1

O
(

m2
jk
(η)T̃jkΦ(−T̃jk)

)

.
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We have

Rm
∆
=

m
∑

k=1

Φ(−T̃jk) = o((ph)−1), (5.18)

by (7.1) and (7.2) since x < ϕ(β) ≤
√
2(1−√

1− β). Applying again (7.1) and
(7.2), we get

b(Xjs , Xjk)Φ(−T̃jk)/‖Xjk‖ = O
[

Tjk(Xjs , Xjk)Φ(−T̃jk)n−1
]

= O
[

TjkΦ(−T̃jk)|r̄ks|
]

= o(|r̄ks|/(ph))

b2(Xjs , Xjk)
2T̃jkΦ(−T̃jk)n−1 = O(T 3

jk)Φ(−T̃jk)r̄2ks = o(r̄2ks/(ph)).

It follows that

m
∑

k=1

Φ(−T̃jk − bmjk(η)) = Rm −
∑

1≤k<s≤m
o (|r̄ks|/(ph)) +

∑

1≤k<s≤m
o
(

r̄2ks/(ph)
)

=
∑

1≤k<s≤m
o
(

(1 + |r̄ks|+ r̄2ks)/(ph)
)

.

Let us turn to the second term in (5.16). If T̃jk ≥ log(p), then

Φr̄ks(η)

(

−T̃jk − bmjk(η),−T̃js − bmjs(η)
)

≤ Φ(−T̃jk − bmjk(η)) = o
(

(ph)−2
)

.

If T̃jk ≤ log(p), we have T̃jk r̄ks = o(1) under the event Xn,p. By Lemma 7.3 and
the above relations, we get

Φr̄ks(η)

(

−T̃jk − bmjk(η),−T̃js − bmjs(η)
)

= Φ(−T̃jk − bmjk(η))Φ(−T̃js − bmjs(η))O
(

1 + r̄2ks + |r̄ks|
)

= o
(

(ph)−2
)

.

Finally, we obtain

pj1,...,jm(η) = 1−Rm + o





∑

1≤k<s≤m
|r̄ks|/ph



+ o((ph)−2) (5.19)

= 1 + o((ph)−1). (5.20)

5.3.5. Evaluation of A2

We have b2 max1≤j1<j2≤p |(Xj1 , Xj2)| = o(1) under the event Xn,p. Since
pj1,j2(η) = O(1), we get from (5.13)

EX0

(

2
∏

k=1

q
(ηk)
jk

)

= O(h2).
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By Assumption B1, we have

sup
j1 6=j2

EX
(

(Xj1 , Xj2)
2
)

= O(n).

Then, it follows from (5.7) and (5.10) that A2 is of the order

b4h2
∑

1≤j1<j2≤p
(Xj1 , Xj2)

2 ≍ p2h2b4n ≍ nk2b4 → 0 ,

in PX -probability.

5.3.6. Evaluation of A3

Let us evaluate A3. By symmetry, it is enough to control the term

A′
3 = b4

∑

1≤j1<j2<j3≤p
Eπ̃Z

(

ε2j1εj2εj3
)

(Xj1 , Xj2)(Xj1 , Xj3) . (5.21)

Consider independent random variables η1, η2, η3 taking values in {−1, 1} with
probabilities 1/2. By (5.11) and (5.14), we can write

Eπ̃Z

(

ε2j1εj2εj3
)

=
h3

8
Eη



η2η3 exp



b2
∑

1≤s<r≤3

ηsηr(Xjs , Xjr )



 pj1,j2,j3(η)



 .

Under the event Xn,p it follows from (5.17), (5.20), and the definition of Xn,p
that

pj1,j2,j3(η) = 1 + o((ph)−1) and b2
∑

1≤s<r≤3

ηsηr(Xjs , Xjr ) = o(1).

It follows that

Eπ̃Z

(

ε2j1εj2εj3
)

=
h3

8
Eη



η2η3 exp



b2
∑

1≤s<r≤3

ηsηr(Xjs , Xjr )







+ o
(

h2p−1
)

.

Set csr = b2(Xjs , Xjr ). By Taylor expansion of the exponential function, the
above expectation over η is of the form:

Eη
[

η2η3
(

1 + η1η2c12 + η1η3c13 + η2η3c23 +O
(

c212 + c213 + c223
))]

= b2(Xj2 , Xj3) +O



b4
∑

1≤s<r≤3

(Xjs , Xjr)
2



 .

Under the event Xn,p, we derive from (5.21) that

A′
3 ≤ h3

(

b6O(H1) + b8O(H2)
)

+ b4o(H3h
2p−1),
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where

H1 =
∑

1≤j1<j2<j3≤p
|(Xj1 , Xj2)||(Xj1 , Xj3)||(Xj2 , Xj3)|,

H2 =
∑

1≤j1<j2<j3≤p

∑

1≤s<r≤3

|(Xj1 , Xj2)||(Xj1 , Xj3)|(Xjs , Xjr )
2,

H3 =
∑

1≤j1<j2<j3≤p
|(Xj1 , Xj2)||(Xj1 , Xj3)|.

Since

|(Xj1 , Xj2)||(Xj1 , Xj3)||(Xjr , Xjs)| ≤ |(Xj1 , Xj2)|3 + |(Xj1 , Xj3)|3
+ |(Xjr , Xjs)|3,

|(Xj1 , Xj2)||(Xj1 , Xj3)|(Xj2 , Xj3)
2 ≤ (Xj1 , Xj2)

4 + (Xj1 , Xj3)
4 + (Xj2 , Xj3)

4,

|(Xj1 , Xj2)||(Xj1 , Xj3)| ≤ (Xj1 , Xj2)
2 + (Xj1 , Xj3)

2,

we derive from (3.6) that

EXH1 = O(p3n3/2), EXH2 = O(p3n2), EXH1 = O(p3n).

Applying Markov’s inequality yields

H1 = OPX
(p3n3/2), H2 = OPX

(p3n2), H1 = OPX
(p3n).

Combining these bounds and using the symmetry, we obtain

A3 = OPX
(b6h3p3n3/2) +OPX

(b8h3p3n2) + b4oPX
(b4h2p2n).

Since b4k2n = o(1), hp ≍ k, b = o(1), we get A3 = oPX
(1).

5.3.7. Evaluation of A4

Finally, we evaluate the term A4. By symmetry, it suffices to consider the term

A′
4 = b4

∑

1≤j1<j2<j3<j4≤p
Eπ̃Z

(εj1εj2εj3εj4) (Xj1 , Xj2)(Xj3 , Xj4) . (5.22)

Acting as in the evaluation of A3 in Subsection 5.3.6, we can write

Eπ̃Z
[εj1εj2εj3εj4)

= h4Eη



η1η2η3η4 exp



b2
∑

1≤s<r≤4

ηsηr(Xjs , Xjr )



 pj1,j2,j3,j4(η)



 . (5.23)

Under the event Xn,p we have

b2
∑

1≤s<r≤4

ηsηr(Xjs , Xjr ) = o(1).
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CASE 1: x > 0. By (5.19), we have

pj1,j2,j3,j4(η) = 1−R4 + o





∑

1≤k<s≤4

|r̄ks|/hp



+ o((ph)−2).

The Taylor expansion of the exponential term in (5.23) yields

Eη



η1η2η3η4 exp



b2
∑

1≤s<r≤4

ηsηr(Xjs , Xjr)



 pj1,j2,j3,j4(η)





= Eη



η1η2η3η4



1 + b2
∑

1≤s<r≤4

ηsηr(Xjs , Xjr)



 (1−R4)





+O(|δ1|) +O(|δ2|)
= O(|δ1|) +O(|δ2|),

where

δ1 = O



b4
∑

1≤s<r≤4

(Xjs , Xjr )
2



 ,

δ2 = o





∑

1≤k<s≤4

|r̄ks|/ph



+ o((ph)−2) .

CASE 2: x = 0. By (5.17), pj1,j2,j3,j4(η) = 1 − o(p−2). Arguing as in Case 1,
we get

Eη



η1η2η3η4 exp



b2
∑

1≤s<r≤4

ηsηr(Xjs , Xjr )



 pj1,j2,j3,j4(η)





= O



b4
∑

1≤s<r≤4

(Xjs , Xjr )
2



+ o(p−2).

Combining the above arguments we obtain that under the event Xn,p,

A′
4 ≤ h4b8O(H1) +

{

o(H2b
4h4/p2), x = 0,

o(H3b
4h3/np+H2b

4h2/p2), x > 0,

where

H1 =
∑

1≤j1<j2<j3<j4≤p
|(Xj1 , Xj2)||(Xj3 , Xj4)|

∑

1≤s<r≤4

(Xjs , Xjr)
2,

H2 =
∑

1≤j1<j2<j3<j4≤p
|(Xj1 , Xj2)||(Xj3 , Xj4)|,

H3 =
∑

1≤j1<j2<j3<j4≤p
|(Xj1 , Xj2)||(Xj3 , Xj4)|

∑

1≤s<r≤4

|(Xjs , Xjr)|.
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From (3.6) and the trivial bounds

|(Xj1 , Xj2)||(Xj3 , Xj4)|(Xjs , Xjr)
2 ≤ (Xj1 , Xj2)

4 + (Xj3 , Xj4)
4 + (Xjs , Xjr)

4,

|(Xj1 , Xj2)||(Xj3 , Xj4)| ≤ (Xj1 , Xj2)
2 + (Xj3 , Xj4)

2,

|(Xj1 , Xj2)||(Xj3 , Xj4)||(Xjs , Xjr )| ≤ |(Xj1 , Xj2)|3 + |(Xj3 , Xj4)|3
+ |(Xjs , Xjr )|3 .

we obtain

EX(H1) = O(p4n2), EX(H2) = O(p4n), EX(H3) = O(p4n3/2).

Applying Markov’s inequality yields

H1 = OPX
(p4n2), H2 = OPX

(p4n), H3 = OPX
(p4n3/2).

Since b4k2n = o(1), hp ≍ k, we get

h4b8H1 = O(h4p4b8n2) = oPX
(1), H2b

4h2/p2 = OPX
(b4h2p2n) = oPX

(1).

If x > 0, we also have to bound from above the term H3. Since r
2
np = o(1/

√
n)

(cf. (4.1)) and since x > 0, we derive that k = o(
√
n). Then, we get

H3b
4h3/np = OPX

(b6p3h3n3/2/nb2) = oPX
(1) .

Thus, we obtain A′
4 = oPX

(1) and A4 = oPX
(1) by symmetry. The proposition

follows.

5.4. Proof of Proposition 5.2

Consider the random events

Zn,p = {Z = (X,Y ) : |y′j| < Tj , 1 ≤ j ≤ p, X ∈ Xn,p} = An,p ∩ Xn,p,

where An,p and Xn,p are defined in Sections 5.3.1 and 5.3.2 respectively. It
follows from Lemma 5.2 and from the property P0(Xn,p) → 1 (cf. Section 5.3.2)
that P0(Zn,p) → 1. Therefore, to prove Proposition 5.2 it suffices to show that
for any δ > 0 the P0-probability of the event {| log(Λ(Z))| > δ} ∩ Zn,p tends to
0. We have

log(Λ(Z)) =

p
∑

j=1

log
(

1 + (h/2)(ed
+
j + ed

−
j − 2)

)

.

Under the event An,p we can replace the quantities (h/2)ed
±
j by q±j =

(h/2)ed
±
j 1±y′

j
<Tj

. Then log(Λ(Z)) is replaced by

L̃ =

p
∑

j=1

log(1 + ∆j), ∆j = (q+j + q−j − h).
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Recall that he−a
2
j/2+ajTj = 1. Thus, uniformly in 1 ≤ j ≤ p,

q+j + q−j ≤ he−a
2
j/2 cosh(ajy

′
j)1|y′j |<Tj

≤ he−a
2
j/2 cosh(ajTj)

= (1 + e−2ajTj )/2 ≤ (1 + h2)/2.

Consequently, for h > 0 small enough,

L̃ = Ã1 +O(Ã2), Ã1 =

p
∑

j=1

∆j , Ã2 =

p
∑

j=1

∆2
j .

It is shown in the proof of Lemma 5.3 (cf. Cases 1 and 2) that EX0 (1An,p
Ã2) =

oPX
(1). Markov’s inequality then implies that for any δ > 0 the P0-probability

of the event {|Ã2| > δ}∩Zn,p tends to 0. To finish the proof of the proposition, it

remains to show that the same property holds if we replace here Ã2 by Ã1. This
will be done by proving that EX0 (Ã1) → 0 in PX -probability and 1Zn,p

|Ã1 −
EX0 (Ã1)| → 0 in P0-probability. Observe that

EX0 (Ã1) = h

p
∑

j=1

(Φ(Tj − aj)− 1) = −h
p
∑

j=1

Φ(−Tj + aj).

By (7.1) and (7.2) we have

h

p
∑

j=1

Φ(−Tj + aj) ≍
p
∑

j=1

Φ(−Tj) = o(1).

Thus, to finish the proof it remains to show that 1Zn,p
|Ã1 − EX0 (Ã1)| → 0

in P0-probability. Note first that |Ã1 − EX0 (Ã1)|2 ≤ B + Ã2, where B =
∑

1≤j<l≤p ∆̂j∆̂l and ∆̂j = ∆j − EX0 ∆j . Since the convergence of Ã2 is already
proved, it is enough to check now that, in PX -probability,1Xn,p

EX0 (B) = 1Xn,p

∑

1≤j<l≤p
EX0 (∆̂j∆̂l) → 0.

Note that
EX0 (∆̂j∆̂l) = Bjl − Cjl,

where
Bjl = EX0

(

(q+j + q−j )(q
+
l + q−l )

)

,

Cjl = h2Φ(Tj − aj)Φ(Tl − al) = h2P 0
j,l.

Here we set

P 0
j,l = Φ(T̃j)Φ(T̃l) = 1− Φ(−T̃j)− Φ(−T̃l) + Φ(−T̃j)Φ(−T̃l), T̃l = Tl − al.

Consider independent random variables η1, η2 taking values −1 and 1 with prob-
abilities 1/2. Using (5.13) we can write

Bjl = h2Eη
[

exp
(

η1η2b
2(Xj , Xl)

)

pj,l(η)
]

.
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Therefore,
Bjl − Cjl = h2(Ujl + Vjl) , (5.24)

where

Ujl = Eη
[(

exp
(

η1η2b
2(Xj , Xl)

)

− 1
)

pj,l(η)
]

, Vjl = Eη
(

pj,l(η)− P 0
j,l

)

.

Set

mjl(η) =
η1η2(Xj , Xl)

‖Xj‖
,

and, as in Section 5.3.4,

r̄jl(η) = η1η2r̄jl, r̄jl =
(Xj , Xl)

‖Xj‖‖Xl‖
.

Moreover, let zj and zl be the standard Gaussian random variables with
Cov(zj , zl) = r̄jl(η). Then, pj,l(η) can be written as

pj,l(η) = PX0 (zj < T̃j − bmjl(η), zl < T̃l − bmlj(η))

= 1− Φ(−T̃j + bmjl(η)) − Φ(−T̃l + bmlj(η))

+PX0 (zj < −T̃j + bmjl(η), zl < −T̃l + bmlj(η)) .

Let us first evaluate the terms Vjl.

CASE 1: x = 0. The control of the terms Vjl in (5.24) is similar to that in
Section 5.3.4. We get

P 0
j,l = 1− o(p−2), pj,l(η) = 1− o(p−2), |pj,l(η)− P 0

j,l| = o(p−2),

which implies that h2
∑

1≤j<l≤p Vj,l = o(h2).

CASE 2: x > 0. We have (compare with (5.18) and (5.20))

Φ(−T̃j)Φ(−T̃l) = o((ph)−2),

PX0 (zj < −T̃j + bmjl(η), zl < −T̃l+ bmlj(η)) = o((ph)−2),

Φ(−T̃j + bmjl(η)) = Φ(−T̃j)+ η1η2br̄jl+ o(r̄2jl/(ph)),

Taking the expectation over η, we get

Eη (pj,l(η))− P 0
j,l = o(r̄2jl/(hp)) + o((ph)−2).

in PX -probability. Therefore

h2
∑

1≤j<l≤p
Vjl = O(Hhp−1) + o(1), H =

∑

1≤j<l≤p
r̄2jl.

Under Xn,p we have r̄2jl = n−2(Xj , Xl)
2(1 + o(1)). Since EX [(Xj , Xl)

2] = O(n)
for j 6= l (Assumption B1), we get

H = OPX
(n−1p2) .
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This leads to h2
∑

1≤j<l≤p Vjl = OPX
(ph/n) + o(1). Since r2np = o(1/

√
n)

by (4.1) and since x > 0, we derive that k = o(
√
n). Consequently, ph/n =

O(k/n) = o(1).

Finally, we evaluate the terms Ujl. They are handled as in Section 5.3.2. Since
b2|(Xj , Xl)| = O(1) on the event Xn,p, and Eη(η1η2) = 0, we find that, on Xn,p,

Ujl = Eη
[{

η1η2b
2(Xj , Xl) +O

(

b4(Xj , Xl)
2
)} (

1 + o((ph)−1)
)]

= O
(

b4(Xj , Xl)
2
)

+O
(

b2|(Xj , Xl)|/(ph)
)

,

where the term o((ph)−1) under the expectation is uniform in η. Hence, we get

h2
∑

1≤j<l≤p
Ujl = O

(

h2b4H1

)

+O
(

hb2H2/p
)

,

where

H1 =
∑

1≤j<l≤p
(Xj , Xl)

2, H2 =
∑

1≤j<l≤p
|(Xj , Xl)| ≤ pH

1/2
1 .

Arguing as for H , we get

H1 = OPX
(p2n), H2 = OPX

(p2n1/2).

It follows that

h2
∑

1≤j<l≤p
Ujl = OPX

(p2h2b4n) +OPX
(phb2n1/2) = oPX

(1),

since p2h2b4n ≍ k2b4n→ 0 by (4.1). This proves the proposition.

5.5. Proof of Theorem 4.5

As in the proof of Theorem 4.1, we consider x = lim supxn,p and we take

c ∈ (0, 1) such that xc = x/c < ϕ(β). We also define b = xc
√

log(p)/n.

CASE 1: k log(p)/n → 0. We use a different prior π than in the proof of
Theorem 4.1. Denote by M(k, p) the collection of all subsets of {1, . . . , p} of
size k. We consider a random vector θ = (θj) with coordinates θj = bǫj where
ǫj ∈ (0, 1). The set of non-zero coefficients of ǫ is drawn uniformly in M(k, p).
This introduces a prior probability π on θ. Notice that the support of π is
included in Θk(xc

√

k log(p)). Define the mixture distribution Pπ by

Pπ(dZ) , EπPθ,
√
1−kb2(dZ) =

∫

Rp

Pθ,
√
1−kb2(dZ)π(dθ),

where Pθ,σ denotes the distribution of Z when the noise variance is σ2. Consider
the likelihood ratio

Lπ(Z) =
dPπ
dP0,1

(Z) ,
dPπ
dP0

(Z) .
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We will write for brevity P0 = P0,1 and E0 = E0,1. As in the proof of Theorem
4.1, it is enough to show that Lπ(Z) converges to 1 in P0-probability, cf. remarks
after (5.1). By definition of π, this implies that

inf
ψ



E0,1(ψ) + sup
θ∈Θk

(

xc

√
k log(p)

)

Eθ,
√
1−bk2 (1− ψ)



→ 1.

Hence, by definition of γunn,p,k(·) and βun(·, ·), cf. (4.9), we get

γunn,p,k
(

xc
√

k log(p)/
√

1− kb2
)

→ 1.

Since kb2 converges to 0, this completes the proof.

The likelihood ratio has the form Lπ(Z) =
∑

m∈M(k,p) |M(k, p)|−1Lm(Z) and

Lm(Z) = (1− kb2)−n/2 exp

(

− kb2‖Y ‖2
2(1− kb2)

+
b(Y,

∑

i∈mXi)

1− kb2

)

× exp



−
∑

i,j∈m

b2

2(1− kb2)
(Xi, Xj)



 . (5.25)

Definition 5.1. Consider δ ∈ (0, 1), a positive integer s and a n × p matrix
A. We say that A satisfies a δ-restricted isometry property of order s if for all
θ ∈ R

p
s ,

(1− δ)‖θ‖ ≤ ‖Aθ‖ ≤ (1 + δ)‖θ‖ .
Let us define the events Ω1 and Ω2 by

Ω1 : “X/
√
n satisfies a δ(1)n,p restricted isometry of order 2k′′

Ω2 : “For any 1 ≤ i ≤ p, (Y,Xi/‖Xi‖) ≤
√

2 log(p)(1 + δ(2)n,p)
′′ ,

where δ
(1)
n,p = 16

√

k log(p)/n and δ
(2)
n,p = log−1/4(p). Applying a deviation in-

equality due to Davidson and Szarek (Theorem 2.13 in [6]), we derive that
PX(Ωc1) = o(1). By the standard concentration inequality for the maximum
of Gaussian variables, we have P0(Ω

c
2) = o(1). Consider the random event

Ω = Ω1 ∩ Ω2.

Lemma 5.4. We have E0

[

L2
π(Z)1Ω] ≤ 1 + o(1).

Lemma 5.5. We have E0 [Lπ(Z)1Ωc ] = o(1).

Since E0 [Lπ(Z)] = 1, we get the desired result by combining these two lemmas.

CASE 2: k log(p)/n→ ∞. We consider b > 0 defined by

kb2

1− kb2
= (2β − 1)

k log(p)

n
.
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Lemma 5.6. We have

E0

[

L2
π(Z)

]

= 1 + o(1) .

This lemma implies that for r =
√

(2β − 1)k log(p)/n → ∞, we have
γunn,p,k(r)→ 1.

In the proof of the following lemmas, o(1) stands for a positive quantity which
depends only on (k, p, n) and tends to 0 as (n, p) tend to infinity.

5.5.1. Proof of Lemma 5.4

In order to bound E0

[

L2
π(Z)1Ω] from above, we first control

E0[Lm1(Z)Lm2(Z)1Ω] for any m1,m2 ∈ M(k, p). Consider the random
variables W1 =

∑

i∈m1\m2
Xi, W2 =

∑

i∈m2\m1
Xi, and W3 =

∑

i∈m1∩m2
Xi.

We denote by S = |m1 ∩m2| the cardinality of the set m1 ∩m2. Then

Lm1(Z)Lm2(Z) = (1− kb2)−n exp

(

−kb
2‖Y ‖2

1− kb2
+
b(Y, 2W3 +W1 +W2)

1− kb2

)

× exp

[

− b2

2(1− kb2)
(‖W1 +W3‖2 + ‖W2 +W3‖2)

]

.

We now take the expectation of Lm1(Z)Lm2(Z) with respect to (W1,W2). We
have

E0[Lm1(Z)Lm2(Z)|(Y,W3)]

= (1− Sb2)−n exp

[

−‖Y ‖2Sb2
1− Sb2

+
2b(Y,W3)

1− Sb2
− b2‖W3‖2

1− Sb2

]

.

When S = 0, we have E0[Lm1(Z)Lm2(Z)|(Y,W3)] = 1. Let us now consider the
case S > 0. On the event Ω, we get

(Y,
W3

‖W3‖
) ≤

√

2 log(p)(1 + δ(2)n,p)

∑

i∈m1∩m2
‖Xi‖

‖∑i∈m1∩m2
Xi‖

≤
√

2S log(p)(1 + o(1)) ,

since X/
√
n satisfies a δ

(1)
n,p-restricted isometry of order 2k. Then, we can bound

the expectation with respect to Y :

E0[1ΩLm1(Z)Lm2(Z)|W3] ≤ (1− S2b4)−n/2 exp

[

b2‖W3‖2
1 + Sb2

]

× Φ
[

√

2S log(p)(1 + o(1))− 2b‖W3‖(1− o(1))
]

.

Moreover on Ω, we have

√

1− δ
(1)
n,p ≤ ‖W3‖/

√
nS ≤

√

1 + δ
(1)
n,p. Since k log(p)/n

goes to 0, we get

E0[1ΩLm1(Z)Lm2(Z)] ≤ exp
[

x2cS log(p)(1 + o(1))
]

× Φ
[

√

S log(p)
(√

2− 2xc + o(1)
)]

.
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For any x < 0, we have Φ(x) ≤ e−x
2/2. Hence, we get Φ(x) ≤ e−x

2
−/2 for any

x ∈ R. It follows that

E0[1ΩLm1(Z)Lm2(Z)] ≤ exp
[

S log(p)
{

x2c − (1 −
√
2xc)

2
− + o(1)

}]

. (5.26)

Hence, we get

E0[1ΩL2
π(Z)] ≤ ES

[

pS{x
2
c−(1−

√
2xc)

2
−+o(1)}

]

,

where the random variable S has a hypergeometric distribution with parameters
p, k and k/p. By Aldous [1], p.173, S has the same distribution as the random
variable E(U |Bp) where U is binomial random variable with parameters k, k/p
and Bp some suitable σ-algebra. By a convexity argument, we then obtain

E0[1ΩL2
π(Z)] ≤

[

1 +
k

p

(

px
2
c−(1−

√
2xc)

2
−+o(1) − 1

)

]k

≤ exp

[

k2

p
px

2
c−(1−

√
2xc)

2
−+o(1)

]

≤ exp
[

p1−2β+x2
c−(1−

√
2xc)

2
−+o(1)

]

.

Since xc < ϕ(β), one can check that 1− 2β + x2c − (1−
√
2xc)

2
− is negative and

we conclude that E0[1ΩL2
π(Z)] ≤ 1 + o(1).

5.5.2. Proof of Lemma 5.5

By symmetry, it is sufficient to prove that E0(Lm(Z)1Ωc) = o(1). Let
us decompose E0(Lm(Z)1Ωc) = E0(Lm(Z)1Ωc

1
) + E0(Lm(Z)1Ωc

2∩Ω1). Since

EX0 (Lm(Z)) = 1, PX almost surely, we have E0(Lm(Z)1Ωc
2
) = PX(Ωc2) = o(1).

Let us turn to E0(Lm(Z)1Ωc
2∩Ω1). For any 1 ≤ i ≤ p, we define the event Ω(i)

by (Y,Xi/‖Xi‖) ≥
√

2 log(p)(1 + δ
(2)
n,p). Then,

E0(Lm(Z)1Ωc
2∩Ω1) ≤

p
∑

i=1

E0 [Lm(Z)1Ω11Ω(i) ] .

The value of these expectations depends on i through the property “i ∈ m” or
“i /∈ m”. Let us assume for instance that 1 ∈ m and 2 /∈ m. Then, we get

E0(Lm(Z)1Ωc
2∩Ω1) ≤ kE0 [Lm(Z)1Ω11Ω(1) ] + pE0 [Lm(Z)1Ω11Ω(2) ] . (5.27)

First, we bound from above the term E0[Lm(Z)1Ω21Ω(2) ]. Taking the expecta-
tion of Lm(Z) with respect to (Xi)i∈m leads to E0(Lm(Z)|Y,X2) = 1. Hence,
we get

E0[Lm(Z)1Ω11Ω(2) ] ≤ P0(Ω
(2)) ≤ p−1e−

√
log(p) = o(p−1) . (5.28)
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Let us now evaluate E0[Lm(Z)1Ω11Ω(1) ]. We first take the expectation of Lm(Z)
conditionally on X1 and Y :

E0(Lm(Z)|Y,X1) = (1 − b2)−n/2 exp

[

− b2‖Y ‖2
2(1− b2)

− b2‖X1‖2
2(1− b2)

+
(Y,X1)b

1− b2

]

.

Then we take the expectation with respect to Y :

E0(Lm(Z)1Ω(1) |X1) ≤ 1− Φ

[

√

2 log(p)

1− b2
(1 + δ(2)n,p)−

‖X1‖b√
1− b2

]

.

Moreover, on Ω1 we have ‖X1‖ ≤ √
n(1 + o(1)), so that

E0(Lm(Z)1Ω(1)∪Ω2
|X1) ≤ Φ

[

√

log(p)(xc −
√
2 + o(1))

]

≤ C exp
[

− log(p)(
√
2− xc − o(1))2/2

]

for (n, p) large enough, since xc < ϕ(β) <
√
2.

kE0(Lm(Z)1Ω(1)∪Ω2
|X1) ≤ p−(

√
2−xc)

2/2+1−β+o(1) = o(1) , (5.29)

since xc <
√
2(1 − √

1− β) ≤ ϕ(β). Combining (5.27), (5.28), and (5.29) com-
pletes the proof.

5.5.3. Proof of Lemma 5.6

Arguing as in the proof of Lemma 5.4, we get

E0[Lm1(Z)Lm2(Z)|W3] = (1− S2b4)−n/2 exp

[

b2‖W3‖2
1 + Sb2

]

.

Taking the expectation with respect to W3 leads to

E0[Lm1(Z)Lm2(Z)] = (1− Sb2)−n/2 ≤ exp

[

nSb2

2(1− kb2)

]

As in the proof of Lemma 5.4, bound from above the term E0[L
2
π(Z)] by Jensen’s

inequality.

E0[L
2
π(Z)] ≤

[

1 +
k

p

{

exp

(

nb2

2(1− kb2)

)

− 1

}]k

≤ exp

[

k2

p
exp

(

nb2

2(1− kb2)

)]

≤ exp
[

p1−2β exp {(β − 1/2) log(p)}
]

= 1 + o(1) ,

since b satisfies kb2/(1− kb2) = (2β − 1)k log(p)/n.
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6. Proofs of the upper bounds

6.1. Proof of Theorem 4.2. Tests based on the χ2 statistic

We consider the statistic

t0 = (2n)−1/2
n
∑

i=1

(Y 2
i − 1).

Under H0, the random variables Yi = ξi ∼ N (0, 1) are i.i.d. This implies
E0(t0) = 1, Var0(t0) = 1. By the Central Limit Theorem, t0 converges in
P0-distribution to N (0, 1) as n→ ∞. This yields Theorem 4.2 (i).

Consider now the type II errors. We need to show that, if nr4 → ∞, then
supθ∈Θp(r) Pθ(t0 ≤ uα) → 0. We will prove that, uniformly over θ ∈ Θp(r),

Eθt0 → ∞, Varθt0 = o((Eθt0)
2). (6.1)

Indeed, if (6.1) is true, we derive that for n, p large enough,

Pθ(t0 ≤ uα) = Pθ(Eθt0 − t0 ≥ Eθt0 − uα) ≤ Pθ(|Eθt0 − t0| ≥ Eθt0 − uα)

≤ Varθ(t0)

(Eθt0 − uα)2
= o(1) , (6.2)

by Chebychev’s inequality. In order to check (6.1), we use the identities

Eθt0 = EX(EXθ t0), Varθt0 = VarX(EXθ t0) + EX(VarXθ t0).

Under PXθ , θ ∈ Θk(r), we have Y ∼ Nn(v, In), where

v = v(θ,X) =

p
∑

j=1

θjXj , ‖v‖2 =
p
∑

j=1

θ2j‖Xj‖2 + 2
∑

1<j<l≤p
θjθl(Xj , Xl).

It follows that

EXθ (t0) = (2n)−1/2‖v‖2, VarXθ (t0) = 1 + 2n−1‖v‖2.

Since EX(‖Xj‖2) = n, EX((Xj , Xl)) = 0, j 6= l, we get the first convergence
in (6.1):

Eθt0 = (2n)−1/2EX(‖v‖2) = (n/2)1/2
p
∑

j=1

θ2j = (n/2)1/2‖θ‖2 ≥ (n/2)1/2r2 → ∞.

Let us turn to the variance term

EX(VarXθ t0) = 1 + 2n−1EX(‖v‖2) = 1 + 2‖θ‖2 = o(Eθt0),

VarX(EXθ (t0)) = (2n)−1VarX(‖v‖2).
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By A2, the random variables Xij are independent in (i, j), i = 1, . . . , n, j =
1, . . . , p. Consequently, the random variables (Xj1 , Xl1) with {j1, l1} 6= {j2, l2}
are uncorrelated. Moreover, ‖Xj1‖2 and (Xj , Xl) are uncorrelated as long as
(j, l) 6= (j1, j1). We have

VarX‖Xj‖2 = VarX(X2
ij)n, EX((Xj , Xl)

2) = n, j 6= l,

where maxj VarX(X2
ij) ≤ maxj EX(X4

ij) = O(1) by B1. Then, we get

n−1VarX‖v‖2 = n−1

p
∑

j=1

θ4jVarX‖Xj‖2 + 4n−1
∑

1≤j<l≤p
θ2j θ

2
l EX((Xj , Xl)

2)

≤ max
j

[EX(X4
1j)]

p
∑

j=1

θ4j + 4‖θ‖4 ≤ (O(1) + 4)‖θ‖4

≤ o(n‖θ‖4) = o
(

(Eθt0)
2
)

, as n‖θ‖4 ≥ nr4 → ∞.

Therefore we get the second relation (6.1).

Note that if nr4 → ∞, then in the inequality (6.2), we can replace uα by a
sequence Tnp → ∞ such that lim supTnpr

−2n−1/2 < 1, for instance by Tpn =
n1/2r2/2. Then the corresponding test ψ0 satisfies γ(ψ0,Θp(r)) → 0. Theorem
4.2 follows.

6.2. Proof of Theorem 4.3. Tests based on the U-statistic

First observe that under H0, the statistic t1 is a degenerate U -statistic of the
second order, i.e., for Zs = (X(s), Ys), s = 1, 2, 3 one has EZ1K(Z1, Z2) = 0,
which yields E0t1 = 0. By Assumption A1,

E0t
2
1 = E0(K

2(Z1, Z2)) = p−1E0(Y
2
1 Y

2
2 )

p
∑

j=1

p
∑

l=1

EX (X1jX2jX1lX2l)

= p−1

p
∑

j=1

EX
(

X2
1jX

2
2j

)

= 1.

Set

G(Z1, Z2) = EZ3 (K(Z1, Z3)K(Z2, Z3)) ,

G2 = E0(G
2(Z1, Z2)),

G4 = E0(K
4(Z1, Z2)),

where EZ3 denotes the expectation over Z3 under P0. In order to establish the
asymptotic normality of t1 we only need to check the two following conditions,
see [14] Lemma 3.4,

G2 = o(1), G4 = o(n2). (6.3)
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We have by Assumption A1,

G(Z1, Z2) = p−1EZ3



Y1Y2Y
2
3

p
∑

j=1

p
∑

l=1

X1jX3jX2lX3l





= p−1Y1Y2

p
∑

j=1

p
∑

l=1

X1jX2lEX(X3jX3l)

= p−1Y1Y2

p
∑

j=1

X1jX2j = p−1/2K(Z1, Z2).

Since E0(K
2(Z1, Z2)) = 1, we get the first relation in (6.3). Next by A2,

E0(K
4(Z1, Z2))

= p−2E0(Y
4
1 Y

4
2 )

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

EX(X1jX2jX1lX2lX1rX2rX1sX2s)

= 9p−2

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

H2
jlrs,

since E0(Y
4
1 Y

4
2 ) = E2

0(Y
4
1 ) = 9, where we set

Hjlrs
∆
=EX(X1jX1lX1rX1s) =































EX(X4
1j), j = l = r = s,

1,











j = l 6= r = s

or j = r 6= l = s

or j = s 6= r = l,

0, otherwise.

As a consequence, we get

E0(K
4(Z1, Z2)) ≤ 9p−1b24 + 27 ,

where b4
∆
= maxj EX(X4

1j). By B1, the second relation in (6.3) holds true. Thus,
Theorem 4.3 (i) follows.

Let us now evaluate the type II errors under Pθ. Recall that by (1.1),

Yi = vi + ξi, vi =

p
∑

j=1

θjXij ,

where ξi are i.i.d. N (0, 1) random variables. Observe that EθYiXij = θj and set

Kθ(Z1, Z2) = p−1/2

p
∑

j=1

(Y1X1j − θj)(Y2X2j − θj).
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Consider the representation

K(Z1, Z2) = Kθ(Z1, Z2) + δ(Z1) + δ(Z2) + h(θ)

where

δ(Zi) = p−1/2

p
∑

j=1

(YiXij − θj)θj , h(θ) = p−1/2

p
∑

j=1

θ2j .

Note that the kernel Kθ(Z1, Z2) is symmetric and degenerate under Pθ, i.e.,

Eθ(Kθ(Z1, Z2)|Z1) = Eθ(Kθ(Z1, Z2)|Z2) = 0.

The random variables Kθ(Z1, Z2), δ(Z1), and δ(Z2) are centered and uncorre-
lated under Pθ. As a consequence, we obtain that

Eθ(K(Z1, Z2)) = p−1/2‖θ‖2, (6.4)

Varθ(K(Z1, Z2)) = Varθ(Kθ(Z1, Z2)) + Varθ(δ(Z1)) + Varθ(δ(Z2)).(6.5)

We now bound the variances. Let δij be the Kronecker delta. Using the repre-
sentation

Kθ(Z1, Z2) = p−1/2

p
∑

j=1

(

ξ1X1j +

p
∑

r=1

θr(X1rX1j − δrj)

)

×
(

ξ2X2j +

p
∑

s=1

θs(X2sX2j − δsj)

)

,

we find that

EXθ (Kθ(Z1, Z2)) = p−1/2

p
∑

j=1

p
∑

r=1

p
∑

s=1

θrθs(X1rX1j − δrj)(X2sX2j − δsj),

Denoting Hrsj = (X1rX1j − δrj)(X2sX2j − δsj) observe that

VarXE
X
θ (Kθ(Z1, Z2)) = p−1

p
∑

j=1

p
∑

r=1

p
∑

s=1

p
∑

l=1

p
∑

u=1

p
∑

v=1

θrθsθuθvEX(HrsjHuvl).

Note that
EX(HrsjHuvl) = DrujlDsvjl,

where

Drujl = EX ((X1rX1j − δrj)(X1uX1l − δul)) ,

Dsvjl = EX ((X2sX2j − δsj)(X2vX2l − δvl)) .

Observe that

Drujl ≤











1, r = l 6= u = j or r = u 6= j = l,

b4 − 1, r = u = j = l,

0, otherwise.



Y.I. Ingster et al./Detection boundary in regression 1511

We obtain

VarXE
X
θ (Kθ(Z1, Z2))

= p−1

p
∑

j=1

p
∑

r=1

p
∑

s=1

p
∑

l=1

p
∑

u=1

p
∑

v=1

θrθsθuθvDrujlDsvjl

≤ (b4 − 1)2

p

p
∑

r=1

θ4r +
2b4 − 1

p

∑

1≤r,s≤p, r 6=s
θ2rθ

2
s +

1

p

∑

1≤j,r,s≤p, j 6=r,j 6=s
θ2rθ

2
s

≤ O

[

p
∑

j=1

θ4j

]

+O

[(

p
∑

j=1

θ2j

)2]

= O(‖θ‖4).

We now bound EX [VarXθ (Kθ(Z1, Z2))]. We have

VarXθ (Kθ(Z1, Z2))

= p−1
∑

1≤j,l≤p
X1jX2jX1lX2l

+ p−1

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

X1jX1lθrθs(X2rX2j − δjr)(X2sX2l − δsl)

+ p−1

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

X2jX2lθrθs(X1rX1j − δjr)(X1sX1l − δsl) .

Taking the expectation with respect to X and using Assumption A2 we find

EX [VarXθ (Kθ(Z1, Z2))]

= 1 + 2p−1

p
∑

j=1

p
∑

r=1

p
∑

s=1

θrθsEX [(X2rX2j − δjr)(X2sX2j − δsj)]

≤ 1 + 2

p
∑

r=1

b4θ
2
r = 1 +O(‖θ‖2) = O(1 + ‖θ‖4)

Since

Varθ(Kθ(Z1, Z2)) = EXVarXθ (Kθ(Z1, Z2)) + VarXE
X
θ (Kθ(Z1, Z2)),

we get

Varθ(Kθ(Z1, Z2)) = O(1 + ‖θ‖4). (6.6)

Similarly, we bound the variance of δ(Zi), i = 1, 2. Since

δ(Zi) = p−1/2

p
∑

j=1

θj

(

ξiXij +

p
∑

l=1

θl(XijXil − δjl)

)

,
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we obtain

EXθ (δ(Zi)) = p−1/2

p
∑

j=1

p
∑

l=1

θjθl(XijXil − δjl),

VarXθ (δ(Zi)) = p−1

p
∑

j=1

p
∑

l=1

θjθlXijXil, EXVarXθ (δ(Zi)) = p−1‖θ‖2,

VarXE
X
θ (δ(Zi)) = p−1

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

θjθlθrθsDjrls.

This and the above bounds for Djrls yield

VarXE
X
θ (δ(Z)) ≤ p−1



(b4 − 1)

p
∑

j=1

θ4j + 2‖θ‖4


 = O(‖θ‖4/p). (6.7)

Combining (6.4), (6.5), (6.6), and (6.7) we obtain, for r2np−1/2 → ∞ and p =
o(n2),

Eθ(t1) =
√
NEθ(K(Z1, Z2)) =

√
Nh(θ) ∼ n(2p)−1/2‖θ‖2 ≥ n√

2p
r2 → ∞,

Varθ(t1) = Varθ(Kθ(Z1, Z2)) +
n3

N
Varθ(δ(Z1)) = O(1 + ‖θ‖4) +O(n‖θ‖4/p)

= o
(

(Eθ(t1))
2
)

.

Applying Chebyshev’s inequality as in the proof of Theorem 4.2 yields the result.

6.3. Proof of Theorem 4.4. Higher Criticism Tests

6.3.1. Type I error

The random vectorsX1, . . . , Xp, Y are independent under P0 and (Xj , a)/‖a‖ ∼
N (0, 1) for any a ∈ R

p, a 6= 0, in view of A3. Thus, for any (t1, . . . , tp) ∈ R
p we

have

P0(y1 < t1, . . . , yp < tp) = EY
[

P Y0 ((X1, Y )/‖Y ‖ < t1, . . . , (Xp, Y )/‖Y ‖ < tp
]

= EY (Φ(t1) . . .Φ(tp))

= Φ(t1) . . .Φ(tp) = P0(y1 < t1) . . . P0(yp < tp).

It follows that yj = (Xj , Y )/‖Y ‖ ∼ N (0, 1) and y1, . . . , yp are i.i.d. under P0. As
a consequence, the random variables qj are independent uniformly distributed
on (0, 1) under P0. We denote by Fp(t) the empirical cdf of (qj)1≤j≤p:

Fp(t) =
1

p

p
∑

j=1

1qj≤t , t ∈ R.
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Consider the normalized uniform empirical process defined by

Wp(t) =
√
p
Fp(t)− t
√

t(1− t)
, t ∈ (0, 1).

Arguing as in Donoho and Jin [7], we observe that tHC = sup0<t≤1/2Wp(t). It
remains to use the convergence in probability

sup0<t≤1/2Wp(t)√
2 log log p

→P 1 , p→ ∞,

cf., e.g., [26], Chapter 16. This proves Theorem 4.4 (i).

6.3.2. Type II error

We define Hnp = (1 + a)
√
2 log log p. Consider some β ∈ (1/2, 1) and assume

that k log(p)/n→ 0. It is sufficient to prove that for an arbitrarily small δ0 > 0
the radius

rnp = (ϕ(β) + δ0)
√

k log(p)/n (6.8)

is such that
β(ψHC ,Θk(rnp)) → 0 . (6.9)

For any θ ∈ R
p
k, we set ‖θ‖∞ ∆

= maxi |θi|. In order to prove the convergence
(6.9), we consider a partition of Θk(rnp):

Θ̃
(1)
k (rnp)

∆
= Θk(rnp) ∩

{

θ ∈ R
p
k, ‖θ‖2 ≥

4k log(p)

n

}

Θ̃
(2)
k (rnp)

∆
= Θk(rnp) ∩ [Θ̃

(1)
k (rnp)]

c ∩
{

θ ∈ R
p
k , ‖θ‖2∞ ≥ 4 log(p)

n

}

Θ̃
(3)
k (rnp)

∆
= Θk(rnp) ∩ [Θ̃

(1)
k (rnp)]

c ∩ [Θ̃
(2)
k (rnp)]

c .

The sets Θ̃
(1)
k (rnp) and Θ̃

(2)
k (rnp) contain the parameters θ whose l2 or l∞ norms

are large, while the set Θ̃
(3)
k (rnp) contains the remaining parameters.

Proposition 6.1. Consider the set of parameters

Θ̃
(4)
k

∆
=

{

θ ∈ R
p
k,

‖θ‖2∞
1 + ‖θ‖2 ≥ 3 log(p)

n

}

.

Let the statistic tmax and the corresponding test ψmax be defined by

tmax
∆
=(pq(1))

−1/2 − (pq(1))
1/2 ≤ tHC , ψmax ∆

=1tmax>Hnp
.

Then β(ψmax, Θ̃
(4)
k ) → 0.
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It follows that β(ψHC , Θ̃
(4)
k ) → 0. Observe that

Θ̃
(1)
k (rnp) ⊂

{

θ ∈ R
p
k ,

‖θ‖2
1 + ‖θ‖2 ≥ 4k log(p)/n

1 + 4k log(p)/n

}

.

Since k‖θ‖2∞ ≥ ‖θ‖2 and since k log(p)/n converges to 0, it follows that

Θ̃
(1)
k (rnp) ⊂ Θ̃

(4)
k for n large enough. Thus, we get β(ψHC , Θ̃

(1)
k (rnp)) → 0.

Let us turn to Θ̃
(2)
k (rnp). For any θ ∈ Θ̃

(2)
k (rnp), we have

‖θ‖2∞
1 + ‖θ‖2 ≥ 4 log(p)/n

1 + 4k log(p)/n
.

This quantity is larger than 3 log(p)/n for n large enough. We get

β(ψHC , Θ̃
(2)
k (rnp)) → 0.

Proposition 6.2. Set Tp =
√

log(p) and define

u ,

{

2ϕ(β), β ∈ (1/2, 3/4] ,√
2, β ∈ (3/4, 1) .

(6.10)

Let the statistic L(u) and the corresponding test ψL be defined by

L(u)
∆
=

p
∑

j=1

1|yj |>uTp
− 2Φ(−uTp)

√

2pΦ(−uTp)
, ψL = 1L(u)≥Hnp

.

Then β(ψL, Θ̃
(3)
k (rnp)) → 0. Moreover, we have L(u) ≤ tHC for p large enough.

It follows from Proposition 6.2 that β(ψHC , Θ̃
(3)
k (rnp)) → 0, which completes

the proof.

6.3.3. Proof of Proposition 6.1

It follows directly from the definition (4.7) that tmax ≤ tHC . Consider the test
ψ

′ max defined by

ψ
′ max = 1‖y‖∞≥

√
2.5 log(p)

(6.11)

If ψ
′ max = 1, it follows that q(1) ≤ 2Φ(−

√

2.5 log(p)) ≤ 2p−5/4. Hence,

tmax ≥ p1/8/
√
2 −

√
2p−1/8. For p large enough, this implies that ψmax = 1.

Consequently, it suffices to prove that β(ψ
′ max, Θ̃

(4)
k ) → 0.

Consider θ ∈ Θ̃
(4)
k . By symmetry, we may assume that ‖θ‖∞ = |θ1|. We use

the following decomposition

‖Y ‖y1 = θ1‖X1‖2 + (Y − θ1X1, X1) .
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The random variables ‖Y ‖2/(1+‖θ‖2) and ‖X1‖2 have a χ2 distribution with n
degrees of freedom. Since Y − θ1X1 is independent of X1, the random variable
(Y − θ1X1, X1/‖X1‖) is normal with mean 0 and variance 1 +

∑

i6=1 θ
2
i . With

probability greater than 1−O(n−1 ∨ log−1(p)), we obtain

‖Y ‖2/n ≤ (1 + ‖θ‖2)[1 + o(n−1/4)],

(1− o(n−1/4)) ≤ ‖X1‖2/n ≤ (1 + o(n−1/4)),

|(Y − θ1X1, X1)|/‖X1‖ ≤ (1 +
∑

i6=1

θ2i )
1/2
√

2 log(log(p)) .

Thus, we get

|y1| ≥
√
n|θ1|

(1 + ‖θ‖2)1/2 [1− o(n−1/4)]−O(
√

log log(p))

with probability greater than 1 − O(n−1 ∨ log−1(p)). Since θ ∈ Θ̃
(4)
k , we have

n|θ1|2/(1 + ‖θ‖2) ≥ 3 log(p) and the test ψ′
max rejects with probability going to

one. It follows that β(ψ
′ max, Θ̃

(4)
k ) → 0.

6.3.4. Proof of Proposition 6.2

Connection between tHC and L(u). Set ŝu
∆
=
∑p
i=1 1|yj|>uTp

. Observe that
q(ŝu) ≤ P (|N (0, 1)| > uTp) ≤ 1/2 for p large enough. If follows that

L(u) =

√
p[ŝu/p− 2Φ(−uTp)]
√

2Φ(−uTp)
≤

√
p[ŝu/p− q(ŝu)]√

q(ŝu)
≤ tHC .

Power of ψL. Under Pθ, ‖Y ‖2/(1 + ‖θ‖2) has a χ2 distribution with n degrees

of freedom. For any θ ∈ Θ̃
(3)
k (rnp), we have ‖θ‖2 ≤ 4k log(p)/n = o(1). As a

consequence, we have |‖Y ‖2 − n| ≤ 4k log(p) + 4
√

n log(n) = o(n) with prob-

ability greater than 1 − O(1/n) uniformly over all θ ∈ Θ̃
(3)
k (rnp). Consider the

event Znp,1 = {|‖Y ‖2 − n| ≤ Hn}, where Hn = 4k log(p) + 4
√

n log(n) = o(n).
It is sufficient to prove that

sup
θ∈Θ̃

(3)
k

(rnp)

Pθ(Znp,1 ∩ {L(u) ≤ Hnp}) → 0. (6.12)

Fix θ ∈ Θ̃
(3)
k (rnp). We denote by ξ the vector (ξi, 1 ≤ i ≤ n). Assume without

loss of generality that θk+1 = · · · = θp = 0. Then Y =
∑k

j=1 θjXj + ξ does
not depend on Xk+1, . . . , Xp. Arguing as for the type I error, we derive that
yk+1, . . . , yp are independent standard Gaussian variables and do not depend
on (y1, . . . , yk). We can write L(u) = L1(u) + L2(u), where

L1(u) =

∑k
j=1

(1|yj|>uTp
− 2Φ(−uTp)

)

√

2pΦ(−uTp)
,

L2(u) =

∑p
j=k+1

(1|yj|>uTp
− 2Φ(−uTp)

)

√

2pΦ(−uTp)
.
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We find

Eθ(L2(u)) = 0, Varθ(L2(u)) =
2pΦ(−uTp)(1− 2Φ(−uTp))

2pΦ(−uTp)
≤ 1 ,

which yields,
Pθ(|L2(u)| > Hnp) → 0 . (6.13)

In order to study the term L1(u), we will find a statistic L̃1(u) such that

Pθ[L̃1(u) < L1(u)] = 1 − o(1) uniformly over Θ
(3)
k (rnp). For such a L̃1(u), we

will have

Pθ[L(u) ≤ Hnp] ≤ Pθ[L1(u) ≤ 2Hnp]+ o(1) ≤ Pθ[L̃1(u) ≤ 2Hnp]+ o(1). (6.14)

Construction of L̃1(u). Observe that under Pθ,

yj = (ŷj‖ξ‖+ nθj +∆j) /‖Y ‖ ,

∆j =

k
∑

l 6=j
θl(Xj , Xl) +

(

‖Xj‖2 − n
)

θj , j = 1, . . . , k,

where
ŷj = (Xj , ξ)/‖ξ‖.

We only need to consider Z ∈ Znp,2 = {‖ξ‖2 − n| < n2/3} since Pθ(Znp,2) → 1.
Set Znp,3 = Znp,1 ∩ Znp,2. Thus, for a positive sequence δ = δnp → 0 one has

{|yj| > uTp} ∩ Znp,3
⊃ {|n−1/2ŷj‖ξ‖+ n−1/2∆j + n1/2θj)| > uTp(1 + δ)} ∩ Znp,3
⊃ {sgn(θj)ŷj(1 − δ) > uTp(1 + δ)− n1/2|θj |+ |S̃j |)} ∩ Znp,3 , (6.15)

where S̃j = n−1/2∆j .

Lemma 6.1. For any T > 0 going to infinity and such that T = o(
√
n), we

have

log(PX(|S̃j | > T ‖θ‖)) ≤ −1

4
T 2(1 + o(1)) ,

uniformly over θ ∈ Θ̃
(3)
k (rnp).

Taking T =
√

4 log(p), we obtain

PX(|S̃j | > T ‖θ‖) = o(p−1).

We recall that ‖θ‖2 ≤ 4k log(p)/n = o(1) since θ ∈ Θ̃
(3)
k (rnp). Hence, we get

PX

[

max
1≤j≤k

|S̃j | > o(
√

log(p))

]

= o(1), uniformly over θ ∈ Θ̃
(3)
k (rnp).
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Combining this bound with (6.15), we obtain that there exists an event Znp,4
of probability tending to one and a positive sequence δ = δnp → 0 such that

{|yj | > uTp}∩Znp,4 ⊃ {sgn(θj)ŷj > uTp(1+δ)−(1−δ)n1/2|θj |}∩Znp,4 . (6.16)

Observe that the random variables sgn(θj)ŷj are independent standard normal.

Setting ũ = u(1 + δ), ρ̃j = (1− δ)n1/2|θj | we define

L̃1(u) =

∑k
j=1

(1sgn(θj)ŷj>ũTp−ρ̃j − 2Φ(−uTp)
)

√

2pΦ(−uTp)
.

By (6.16), L̃1(u) satisfies Pθ[L̃1(u) ≤ L1(u)] = 1−o(1) uniformly over Θ̃
(3)
k (rnp).

In view of (6.14), in order to complete the proof it suffices to show that

Pθ[L̃1(u) ≤ 2Hnp] = o(1) uniformly over Θ̃
(3)
k (rnp). (6.17)

Control of Pθ[L̃1(u) ≤ 2Hnp]. In order to evaluate this probability, recall that
sgn(θj)ŷj ∼ N (0, 1) i.i.d. under Pθ. Thus,

Eθ(L̃1(u)) =

∑k
j=1 (Φ(−ũTp + ρ̃j)− 2Φ(−uTp))

√

2pΦ(−uTp)
,

Varθ(L̃1(u)) ≤
∑k

j=1 Φ(−ũTp + ρ̃j)

2pΦ(−uTp)
.

By Chebyshev’s inequality, we get

Pθ(L̃1(u) ≤ 2Hnp) = Pθ(Eθ(L̃1(u))− L̃1(u) ≥ Eθ(L̃1(u))− 2Hnp)

≤ Varθ(L̃1(u))

(Eθ(L̃1(u))− 2Hnp)2
.

Lemma 6.2. There exists η > 0 such that, for n, p large enough,

inf
θ∈Θ̃

(3)
k

(rnp)

∑k
j=1 Φ(−ũTp + ρ̃j)
√

2pΦ(−uTp)
∼ inf

θ∈Θ̃
(3)
k

(rnp)

Eθ(L̃1(u)) > pη. (6.18)

In the sequel, we denote by Ap a log-sequence, i.e., a sequence such that Ap =
(log(p))cp , |cp| = O(1) as p → ∞. Since u ∈ [0,

√
2], we have pΦ(−uTp) ≥ Ap.

Combining this bound with Lemma 6.2 yields

Varθ(L̃1(u)) = O
(

ApEθ(L̃1(u))
)

.

Since Hnp = o(pη), this implies (6.17) and then (6.12).
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6.3.5. Proof of Lemma 6.1

We use the Chernoff type argument. First, we bound the exponential moments
of ∆j . For any h such that h2‖θ‖2 ≤ 1/4, we have

EX(exp(h∆j)) = EXj
EX(exp(h∆j)|Xj)

= EXj



exp
(

hθj(‖Xj‖2 − n
)

EX



exp



h
∑

l 6=j
θl(Xj , Xl)





∣

∣

∣

∣

∣

∣

Xj









= EXj



exp



hθj(‖Xj‖2 − n) +
h2

2
‖Xj‖2

∑

l 6=j
θ2l









= exp



−nhθj −
n

2
log



1− 2hθj − h2
∑

l 6=j
θ2l







 ,

since 2hθj + h2
∑

l 6=j θ
2
l < 1. Using the Taylor expansion of the logarithm:

−hx− 1

2
log(1 − 2hx− h2y2) =

1

2
h2(2x2 + y2)(1 + o(1)), h2(2x2 + y2) = o(1),

we get that, for h2‖θ‖2 = o(1),

EX(exp(h∆j)) = EX(exp(
√
nhS̃j)) = exp





n

2
h2(2θ2j +

∑

l 6=j
θ2l )(1 + o(1))





≤ exp
[

nh2‖θ‖2(1 + o(1))
]

. (6.19)

Applying the exponential transformation and Markov’s inequality we find

PX(S̃j > T ‖θ‖) ≤ EX

[

exp

(

T S̃j
2‖θ‖ − T 2

2

)]

,

PX(−S̃j > T ‖θ‖) ≤ EX

[

exp

(

− T S̃j
2‖θ‖ +

T 2

2

)]

.

These inequalities and (6.19) yield

log(PX(|S̃j | > T ‖θ‖)) ≤ −1

4
T 2(1 + o(1)) if T 2 = o(n) and T → ∞.

6.3.6. Proof of Lemma 6.2

Recall that we consider rnp = (ϕ(β) + δ0)
√

k log(p)/n with arbitrarily small

δ0 > 0 (see (6.8)). Recalling that Tp =
√

log(p), we apply the results of Section
7.5 for δ = δnp > 0, δnp = o(1), and

T = ũTp, ũ = (1 + δ)u, v = (1− δ)(ϕ(β) + δ0) < ũ, t0 = vTp, R = 2Tp,
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since for tj = ρ̃j = (1 − δ)n1/2|θj | one has

k
∑

j=1

t2j = (1− δ)2n

k
∑

j=1

θ2j ≥ (1 − δ)2nr2np = kt20.

Since v < ũ < 2 for p large enough, we derive from Remark 7.1 that the relations
(7.4) hold true. Applying Lemmas 7.4 and 7.5, we get

inf
θ∈Θ̃

(3)
k

(rnp)

k
∑

j=1

Φ(−ũTp + ρ̃j) = kΦ(−ũTp + t0).

We recall that Ap denotes any log-sequence. Since Φ(−tTp) = App
−t2/2 for

t > 0, we have

inf
θ∈Θ̃

(3)
k

(rnp)

Eθ(L̃1(u)) =
k (Φ(−ũTp + t0)− 2Φ(−uTp))

√

2pΦ(−uTp)
∼ kΦ(−ũTp + t0)
√

2pΦ(−uTp)

=
kΦ(−(ũ− v)Tp)
√

2pΦ(−uTp)
= App

1/2−β−(ũ−v)2+/2+u2/4.

In order to obtain (6.18), we have to check that there exists η > 0 such that,
for n, p large enough,

G
∆
=

1

2
− β − (ũ − v)2+

2
+
u2

4
≥ η.

Let β ∈ (1/2, 3/4]. Recalling that ϕ2(β) = 2β− 1 > 0 and (6.10) we see, that
for δ = δnp = o(1) and δ0 ∈ (0, ϕ(β)), one can find η = η(β, δ0) > 0 such that

G = −ϕ
2(β)

2
− (ϕ(β) − δ0)

2

2
+ ϕ2(β) + o(1)

= ϕ(β)δ0 −
δ20
2

+ o(1) ≥ η + o(1).

Let us now consider β ∈ (3/4, 1]. Recalling that ϕ(β) =
√
2(1 − √

1− β)
and (6.10), we see that for δ = δnp = 0(1) and δ0 ∈ (0,

√
2− 2β), one can find

η = η(β, δ0) > 0 such that

G =
1

2
− β −

(√
2−

√
2
(

1−√
1− β

)

− δ0
)2

2
+

1

2
+ o(1)

= 1− β −
(

√

1− β − δ0/
√
2
)2

+ o(1)

=
√

2− 2β δ0 −
δ20
2

+ o(1) ≥ η + o(1).

The relation (6.18) follows.
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6.4. Proof of Proposition 4.6

Under H0, the distributions of the variables (yi)i=1,...,p do not depend on σ2.
As a consequence, E0,σ(ψ

HC) = E0,1(ψ
HC). This last quantity has been shown

to converge to 0 in Theorem 4.4. Hence, we get αun(ψHC) = o(1).

Let us turn to the type II error probability. We consider the model Yi =
∑p
j=1 θjXij + ξi where Var(ξi) = σ2. Dividing this equation by σ, we obtain the

model:

Y ′
i =

p
∑

j=1

(θj/σ)Xij + ξ′i ,

where ξ′i = ξi/σ, Var(ξ
′
i) = 1. The statistic tHC is exactly the same for the

data Z = (Y,X) and Z ′ = (Y ′, X), where Y ′ = (Y ′
1 , . . . , Y

′
n). Consequently,

we obtain Eθσ,σ(1 − ψHC) = Eθ,1(1 − ψHC). It remains to use the bound on
Eθ,1(1 − ψHC) from Theorem 4.4.

7. Appendix: Technical results

7.1. Thresholds

For j = 1, . . . , p, consider aj = xj
√

log(p), h = p−β , τj = xj/2 + β/xj , and the
threshold

Tj =
aj
2

+
log(h−1)

aj
.

If for some δ0 > 0, we have xj + δ0 < ϕ2(β)
∆
=
√
2(1 − √

1− β) ≤ ϕ(β) , then
there exists δ1 > 0 such that τj >

√
2 + δ1. For such a xj , we derive that

pT rj Φ(−Tj) = o(1), ∀ r > 0 . (7.1)

In particular, if xj = o(1), then τj → ∞ and (7.1) holds.

If there exists δ > 0 such that τj > xj + δ, then

Φ(−Tj) ≍ hΦ(−Tj + aj) (7.2)

This result holds in particular if xj < ϕ2(β) ≤
√
2.

7.2. Norms ‖Xj‖ and scalar products (Xj, Xl)

Clearly,

EX(‖Xj‖2) = n, EX(Xj , Xl) = 0 , VarX(Xj , Xl) = n.

By Assumption B1, there exists ω > 0 such that maxj 6=l VarX(Xj , Xl) ≤ nω
and maxj VarX(‖Xj‖2) ≤ nω.
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Lemma 7.1. (1) Assume that there exists h0 > 0 such that sup1≤j≤l≤p EX ×
(ehX1jX1l) = O(1) for any |h| < h0. Then, for any sequence t = tn such that
t = o(

√
n) and t

√
n→ ∞,

PX(|‖Xj‖2 − n| > t
√
n) ≤ exp[−t2/(2ω)(1 + o(1))],

and

PX(|(Xj , Xl)|| > t
√
n) ≤ exp[−t2/(2ω)(1 + o(1))],

(2) Assume that max1≤j≤l≤p EX(|X1jX1l|m) = O(1), for some m > 2. Then
there exists Cm <∞ such that

PX(|‖Xj‖2 − n| > t
√
n) ≤ Cmt

−m/2, PX(|(Xj , Xl)| > t
√
n) ≤ Cmt

−m.

Proof follows from the standard arguments based on the moment inequalities
and exponential inequalities. If EZ = 0, Var(Z) = 1, E(eh0Z) < ∞, then
log(EehZ) = h2/2(1 + o(1)) as h → 0. Therefore, we take h = t/

√
n = o(1) for

the study of the exponential moments of Sn =
∑n
i=1 Zi.

Corollary 7.1. (1) Let log(p) = o(n) and the assumptions of Lemma 7.1 (1)
hold true. Then for any v > 2 we have

PX( max
1≤j≤p

|‖Xj‖2 − n| >
√

2vωn log(p) ) = o(1),

PX( max
1≤j<l≤p

|(Xj , Xl)| >
√

2vωn log(p) ) = o(1).

(2) Let p = o(nm/4) and the assumptions of Lemma 7.1 (2) hold true. Then for
any sequence vn going to infinity we have

PX( max
1≤j≤p

|‖Xj‖2 − n| > √
np2/mvn) = o(1),

PX( max
1≤j<l≤p

|(Xj , Xl)| >
√
np2/mvn) = o(1).

(3) Under the assumptions of (1) or (2) of Lemma 7.1 for any δ > 0 we have

PX( max
1≤j≤p

|(aj/b
√
n)− 1| > δ) → 0, PX( max

1≤j≤p
|(xj/x)− 1| > δ) → 0,

where aj and xj are introduced in (5.2).

7.3. Expansion of Φ(t)

Let Φ(t) be the standard Gaussian cdf and φ(t) be the standard Gaussian pdf.

Lemma 7.2. Let δ → 0, tδ = O(1). Then

Φ(t+ δ) = Φ(t) + δφ(t) +O
(

δ2(|t|+ 1)φ(t)
)

.
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Proof follows from the Taylor expansion and the properties of φ(t).

Observe that for any b ∈ R there exists C = C(b) > 0 such that (|t| +
1)φ(−t) ≤ C(b)Φ(−t) as t ≤ b. It follows from Lemma 7.2 that as δ → 0, tδ =
O(1), t ≤ B for some B ∈ R, then

Φ(−t+ δ) = Φ(−t)(1 + O(δ2)) + δφ(t).

7.4. Tails of correlated vectors

Lemma 7.3. Let (X,Y ) be a two-dimensional Gaussian random vector with

E(X) = E(Y ) = 0, Var(X) = Var(Y ) = 1, Cov(X,Y ) = ρ, |ρ| < 1.

Let t1 ≍ t2 → ∞, ρt1 = o(1). Then

P (X > t1, Y > t2) = Φ(−t1)Φ(−t2)
(

1 +O(ρ2)
)

+ ρφ(t1)φ(t2).

Proof. Observe that the conditional distribution L(Y |X = x) is Gaussian
N (m(x), σ2(x)) with m(x) = ρx, σ2(x) = 1− ρ2. Therefore

P (X > t1, Y > t2) =

∫ ∞

t1

P (Y > t2|X = x)dΦ(x) =

∫ ∞

t1

Φ

(

−t2 + ρx
√

1− ρ2

)

dΦ(x).

Setting h = |ρ|−1, observe that

∫ ∞

h

Φ

(

−t2 + ρx
√

1− ρ2

)

dΦ(x) ≤ Φ(−h) = o
(

ρ2Φ(−t1)Φ(−t2)
)

.

It is sufficient to study the integral over the interval ∆ = [t1, h]. For x ∈ ∆, we
have

−t2 + ρx
√

1− ρ2
= −t2 + δ(x), δ(x) = ρx+O(ρ2t2 + |ρ3x|) = O(1).

Applying Lemma 7.2, we have

∫

∆

Φ

(

−t2 + ρx
√

1− ρ2

)

dΦ(x)

= Φ(−t2) (Φ(−t1)− Φ(−h))
(

1 +O(ρ2)
)

+ rφ(t2)

∫

∆

xdΦ(x)

= Φ(−t1)Φ(−t2)
(

1 + O(ρ2)
)

+ ρφ(t1)φ(t2),

since
∫

∆
xdΦ(x) = φ(t1)− φ(h) = φ(t1) + o(ρ2Φ(−t1)).
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7.5. A minimization problem

Let f(·) be a function defined on the interval [0, R]. Fix t0 ∈ [0, R] and define
Fk(t0) as the value of the minimization problem

inf

k
∑

j=1

f(tj) subject to

k
∑

j=1

t2j ≥ kt20, tj ∈ [0, R], j = 1, . . . , k. (7.3)

Lemma 7.4. Assume that there exists λ > 0 such that

inf
t∈[0,R]

(f(t)− λt2) = f(t0)− λt20.

Then Fk(t0) = kf(t0).

Proof. Clearly, Fk(t0) ≤ kf(t0) since (t1, . . . , tk) = (t0, . . . , t0) is in the feasible
set of the problem (7.3). On the other hand, for any (t1, . . . , tk) such that tj ∈
[0, R],

∑k
j=1 t

2
j ≥ kt20,

k
∑

j=1

f(tj) ≥
k
∑

j=1

f(tj)− λ





k
∑

j=1

t2j − kt20



 =

k
∑

j=1

(

f(tj)− λt2j
)

+ kλt20

≥ k
(

f(t0)− λt20
)

+ kλt20 = kf(t0).

We apply Lemma 7.4 to the function f(x) = Φ(−T + x). Let φ(x) = Φ′(x)
stand for the standard Gaussian pdf.

Lemma 7.5. Let f(t) = Φ(−T + t), and

t0 > 0, T > t0 +
2

t0
, T < R ≤

(

t0
φ(−T + t0)

)1/2

. (7.4)

Set λ = φ(−T + t0)/2t0. Then the assumptions of Lemma 7.4 are fulfilled, i.e.,

inf
0≤t≤R

(f(t)− λt2) = f(t0)− λt20.

Proof. Define g(t) = Φ(−T + t) − λt2. By the choice of λ we have g′(t0) = 0.
The second derivative of g has the form

g′′(t) = (T − t)φ(−T + t)− 2λ = (T − t)φ(−T + t)− φ(−T + t0)/t0.

Observe that the function −xφ(x) is positive for x < 0, increases for x ∈
(−∞,−1) and decreases for x ∈ (−1, 1); limx→−∞ φ(x) = 0,

g′′(t0) = (T − t0 − t−1
0 )φ(−T + t0) > 0.
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Furthermore, there exist two points t1, t2 such that t1 < t0 < t2 < T ,

g′′(t1) = g′′(t2) = 0, g′′(t) < 0 as t < t1 and t > t2.

The function g(t) is therefore convex on [t1, t2], concave on (−∞, t1] and on
[t2,∞), and there is a local minimum of g at t0. By the concavity of g outside
[0, R], the global minimum of g(t) for t ∈ [0, R] is achieved either at t = t0 or at
the border of the interval [0, R]. Therefore it suffices to show that g(0) > g(t0)
and g(R) > g(t0).

In order to verify the first inequality, observe that g(0) > 0. Recalling the
well known inequality:

Φ(−y) < 1

y
φ(−y), ∀y > 0 ,

we get

g(t0) = Φ(−T + t0)− t0φ(−T + t0)/2 < φ(−T + t0)

(

1

T − t0
− t0

2

)

< 0 ,

because T > t0 + 2t−1
0 . The second inequality follows from the constrains (7.4)

on R

g(R) = Φ(−T +R)− R2φ(−T + t0)

2t0
>
t0 −R2φ(−T + t0)

2t0
> 0 .

Remark 7.1. If we take 0 < v < u < b and

T = uTp, t0 = vTp, R = bTp ,

with Tp large enough, then the assumptions (7.4) hold.
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