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1. Introduction

Maximum Empirical Likelihood (MEL) and MEL-like methods have attracted
considerable amount of interest and applications over the last decade; for recent
literature see e.g., Cheng, Small, Tan et al. (2009), Crepet, Harari-Kermadec
and Tressou (2009), Devereux and Tripathi (2009), Hjort, Mckeague and van
Keilegom (2009), Wang and Chen (2009), Wong, Liu, Chen et al. (2009), Zhou,
Zhou, Chen et al. (2009), Chen and van Keilegom (2009). The methods oper-
ate within the empirical estimating equations (E3) approach to estimation and
inference. The approach allows for a flexible semi-parametric modelling, and is
attractive wherever a model can be formulated in terms of the general estimat-
ing equations. The E3 approach replaces a model specified by general estimating
equations with a set of data-supported probability mass functions that satisfy
their empirical counterparts. In this paper, we demonstrate that the E3 ap-
proach may not work for every statistical model and data set and thereby may
face what we call an empty set problem (ESP). Due to ESP, studies of finite-
sample properties of the E3-based methods, may be distorted for some models.
In applications of MEL and other E3-based methods, this means the model
should be checked for emptiness.

1.1. Empirical estimating equations approach

In statistics and other fields such as econometrics, it is rather common to for-
mulate a probabilistic model for the random variable X ∈ Rd with a probability
distribution rX(x; θ) that is parametrized by θ ∈ Θ ⊆ RK, as a set Φ(Θ) of
probability distributions with certain moment properties. This is accomplished
through general estimating functions u(X; θ) ∈ RJ of parameter θ. The estimat-
ing functions are employed to form the set Φ(Θ) =

⋃

θ∈Θ Φ(θ) of parametrized
probability distributions F (x; θ), where Φ(θ) is defined through the estimating
equations (cf. Godambe and Kale (1991)) as

Φ(θ) =

{

F (x; θ) :

∫

u(x; θ) dF (x; θ) = 0

}

.
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In general, we assume that rX(x; θ) need not belong to Φ(Θ). Given a random
sample Xn

1 = X1, X2, . . . , Xn from rX(x; θ) the objective is to estimate θ and
draw inferences. To this end, the Empirical Estimating Equations (E3) approach
replaces the model Φ(Θ) with its empirical, data-based counterpart Φq(Θ) =
⋃

θ∈Θ Φq(θ) where

Φq(θ) = {q(x; θ) : ch (u (Xn
1 ; θ)) ∩ {0}} ,

where ch(A) denotes the convex hull of the set A ⊆ RJ , and 0 is the J-
dimensional zero vector. Note that this approach replaces the set Φ(Θ) of prob-
ability distributions with the set Φq(Θ) of probability mass functions (pmf’s)

q(x; θ) that are supported on the data Xn
1 . An estimate θ̂ of θ is then obtained by

means of a method that selects a pmf q̂(·; θ̂) from Φq(Θ). One prominent method
is the Maximum Empirical Likelihood (MEL) method (cf. Qin and Lawless
(1994), Owen (2001)) which selects

q̂(·; θ̂)MEL = arg sup
q(·;θ)∈Φq(Θ)

1

n

n
∑

i=1

log q(xi; θ). (1)

By means of the convex duality (cf. Rockafellar (1970)), θ̂MEL can be obtained
as

θ̂MEL = arg inf
θ∈Θ

sup
λ∈RJ

−
1

n

n
∑

i=1

log q(xi; θ, λ), (2)

where

q(·; θ, λ) =



n



1 −
J
∑

j=1

λjuj(·; θ)









−1

.

The Maximum Empirical Likelihood (MEL) estimator is a non-linear function of
the data and can be obtained by a numerical solution. Asymptotic distributional
properties of the MEL estimator are known (cf. Qin and Lawless (1994)), and
provide a basis for inference.

Methods other than MEL can be used for estimation within the E3 approach.
In particular, the objective function in (1) can be replaced by another mea-
sure of closeness of q(·) to the uniform distribution, supported on the sam-
ple; cf. Back and Brown (1990), Brown and Chen (1998), Corcoran (2000),
Imbens, Spady and Johnson (1998), Kitamura and Stutzer (1997), Mittelham-
mer, Judge and Miller (2000), Owen (2001), Schennach (2005). Most common
are the measures of closeness (also known as divergences) encapsulated by the
Cressie Read (CR) family Cressie and Read (1984) or the so-called convex sta-
tistical distances, which lead to the Generalized Minimum Contrast (GMC)
estimators Bickel, Klaassen, Ritov et al. (1993), Corcoroan (1998), Kitamura
(2007). The GMC class contains MEL and Maximum Entropy Empirical Like-
lihood (also known as the Exponential Tilt, cf. Imbens, Spady and Johnson
(1998), Kitamura and Stutzer (1997), Corcoran (2000), Mittelhammer, Judge
and Miller (2000)) as special cases. The two estimators are contained also in the
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Generalized Empirical Likelihood Smith (1997) class that is based on the CR
family.

Finally, note a modification of E3, without the usual nonnegativity con-
straints where Φq(θ) is replaced by

Φm
q (θ) = {q(x; θ) : ah (u (Xn

1 ; θ)) ∩ {0}} .

In this case, ah(A) is the affine hull (cf. Rockafellar (1970)) of the set A ⊆ RJ .
A method such as the Euclidean Empirical Likelihood (cf. Brown and Chen
(1998)), or some other member of the CR class of estimators operates within
the modified E3 approach (mE3) to provide a basis for estimation and inference.

1.2. Paper format

The paper is organized as follows: in Sect. 2, we define the empty set problem
and the affine empty set problem. Section 3 is devoted to a detailed analysis
of three examples from Qin and Lawless (1994) that are subject to the empty
set problem. An E3 model by Brown and Chen (1998) is shown to be free of
ESP. Section 4 contains some other models that are contaminated with ESP.
In Section 5 we draw implications of ESP for practical applications of E3 and
mE3-based methods.

2. Empty set problem

The replacement of Φ(Θ) by Φq(Θ) may seem natural1. However, because Φq(Θ)
is data-dependent, it can be empty for some model and data and therefore may
be subject to an empty set problem (ESP); cf. Grendar and Judge (2009b). In
other words, ESP introduces the possibility that for a sample size n, there may
exist Xn

1 ∼ rX(x; θ) such that Φq(Θ) = ∅. Consequently for such a model the
very existence of an estimator and corresponding inferences that are obtained
by methods that operate within E3, are data-dependent.

In the section ahead, we demonstrate that models considered in a seminal
MEL paper Qin and Lawless (1994) (abbreviated QL), are subject to the empty
set problem. A few other models are used to illustrate the problem and provide
a basis for further discussion.

There are models, such as QL, Example 1, where even the modified E3 ap-
proach is subject to an empty set problem. In this case the empty set problem
concerns the possibility that for samples of size n, there may exist Xn

1 ∼ rX(x; θ)
such that Φm

q (Θ) = ∅. This form of ESP will be referred to as the affine Empty

Set Problem (aESP). Whenever there is the affine ESP for a data set, then there
is also ESP; the opposite need not be true.

Three items are worth emphasizing:

1In particular, when it is phrased in context of the Generalized Minimum Contrast esti-
mation, cf. Kitamura (2007), Corcoroan (1998), Bickel, Klaassen, Ritov et al. (1993).
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Remark 1) The empty set problem is a substantive extension of the convex
hull problem, that is known in the Empirical Likelihood literature; cf. Owen
(2001), see also Sect. 3.3.1. Indeed, the convex hull problem can be seen as the
empty set problem, in the case when Θ = {θ0}, i.e., when the parametric space
comprises a single point. It is well-known that in this case the set Φq(θ0) may
be empty, for some data set, and some θ0. Our objective is to demonstrate that
for some models there are data, for which Φq(Θ) may be empty, for the entire
Θ.

Remark 2) Another substantive point concerns the affine form Φm
q (Θ) of the

model. We show that even in this case there are models that are subject to the
affine empty set problem. This means, that the modifications of MEL, that are
designed to mitigate the convex hull problem by expanding it into the affine
hull, cannot, in general, serve as a rescue.

Remark 3) It is well known that methods of estimation other than those
that operate within E3 may break down for some models and data sets. For
instance, in some models, the Maximum Likelihood estimator (MLE) may not
exist for some data sets. However, non-existence of MLE relates to the absence
of a finite maximum of the likelihood function, and the impossibility to attain
supremum of the likelihood function for any finite value of the parameter vector,
for the data set. There are also the E3 models where the Maximum Empirical
Likelihood (MEL) estimator may not exist for some data sets due to absence
of a finite (point of) maximum. However, unlike MLE, MEL, or any other E3-
based estimator may not exist for some data because of emptiness of the model
set Φq(Θ).

3. Some models from the literature

3.1. QL, Example 1

QL, Example 1, p. 301 and pp. 309-311, consider the following setup: there
is a random variable X, with pdf r(X; θ), where θ ∈ Θ = R, and a random
sample Xn

1 = X1, . . . , Xn, drawn from rX(x; θ). A researcher specifies a pair of
estimating functions

u1(X; θ) = X − θ,

u2(X; θ) = X2 − (2θ2 + 1).

The estimating functions, through unbiased estimating equations, define a set
of pdf’s (i.e., the model) Φ(Θ) =

⋃

θ∈Θ Φ(θ) where Θ = R and

Φ(θ) = {fX(x; θ) : Eu1(X; θ) = 0; Eu2(X; θ) = 0} ,

into which, in the researcher’s view, the ’true’ sampling distribution should
belong. In this case J > K and the model is referred to in the econometric
literature as over-identified.
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As noted in the Introduction, the Empirical Estimation Approach (E3) pro-
ceeds by replacing the set Φ(θ) by its empirical analogue

Φq(θ) =

{

q(x; θ) :

n
∑

i=1

q(xi; θ)u1(xi; θ) = 0;

n
∑

i=1

q(xi; θ)u2(xi; θ) = 0;

n
∑

i=1

q(xi; θ) = 1; q(xi; θ) ≥ 0, 1 ≤ i ≤ n

}

.

Our objective is to derive a condition on data Xn
1 under which the set

Φq(Θ) is empty. To this end, note that the two empirical estimating equations
∑n

i=1 q(xi; θ)(xi − θ) = 0,
∑n

i=1 q(xi; θ)(x
2
i − (2θ2 + 1)) = 0 can be combined

into a single equation

n
∑

i=1

q(xi; ·)x
2
i − 2

(

n
∑

i=1

q(xi; ·)xi

)2

= 1. (3)

The question is whether for an observed sample Xn
1 = xn

1 the value on the
Right-Hand Side of (3) can be attained, for some q(·, ·). If not, then for the data
xn

1 the set Φq(Θ) is empty. The expression on the Left-Hand Side of (3) can
attain its maximal value for such a q(x; ·) that the only non-zero elements of
q(x; ·) are q(1) , q(x(1); ·) and q(n) , q(x(n); ·); there x(1) denotes the lowest,
x(n) the largest value in xn

1 . The value q̂(1) of q(1) for which the LHS of (3)
attains its maximum is

q̂(1) = arg max
q(1)∈[0,1]

L(q(1)), (4)

where

L(q(1)) , q(1)x
2
(1) +

(

1 − q(1)

)

x2
(n) − 2

(

q(1)x(1) + (1 − q(1))x(n)

)2
. (5)

Without a [0, 1] constraint on the range of the values that q(1) can take on, the
optimal value q̂m

(1) is

q̂m
(1) =

x2
(1)−x2

(n)

4(x(1)−x(n))
− x(n)

x(1) − x(n)
,

if x(1) 6= x(n). Then q̂m
(n) = 1 − q̂m

(1). Without the [0, 1]-range constraint the

maximal value of the LHS of (3) is given by inserting q̂m
(1) into (5); we denote

the result by v. Under the range constraint the maximal value of the LHS of
(3) can be only smaller or equal to v. If the data Xn

1 ∼ rX(x; θ) are such that v
is smaller than 1 (i.e., the RHS of (3)) then Φm

q (Θ) as well as Φq(Θ) is empty
for such data. Consequently, for such data there is no mE3-based or E3-based
estimator.

For a given r(X; θ) and n, we are interested in the probability Pr(v < 1)
that the LHS maximal value is smaller than 1, the RHS value of (3); i.e., the
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probability that Φm
q (Θ) (as well as Φq(Θ)) is empty. The probability can be

estimated by means of a Monte Carlo simulation from r(X; θ). For r(X; θ) being
n(0, 1) and n = 15, as in QL, the Monte Carlo estimate of the probability is
0.0173, based on M = 10000 samples. Thus, 17 of 1000 samples of size n = 15
drawn from n(0, 1)2 are such that Φm

q (Θ) (as well as Φq(Θ)) is empty, and
hence it is meaningless in these samples to look for EL, or any other E3-based
(or mE3-based) estimate.

QL performed an MC study of small-sample properties of MEL, with the
objective of comparing it with other estimators (sample mean and ML). The
above results raise questions concerning the meaning of the numbers in Table
1. Since MEL does not exist if Φq(Θ) is empty, this puts into question the com-
parison of MEL with other competitive estimators. Indeed, the entire Empirical
Estimating Equations approach is questionable, except asymptotically3, where
the feasible set Φq(Θ) becomes ’always’ non-empty. The same holds for mE3.

The setup considered by QL in their Example 1 is a simple one. Its simplicity
permits the empty set problem of E3 to be illustrated analytically. The E3

approach, and its most common instance - the Maximum Empirical Likelihood
Estimation, - are commonly studied with more complicated models, where the
question whether Φq(Θ) is non-empty for a particular data, may be much harder
to answer.

3.2. QL, Example 2

In the second QL example, there is a random sample (X, Y )n
1 of bivariate ob-

servations, such that E(X) = E(Y ) = θ, θ ∈ Θ = R. The authors suggest
using the bivariate estimating function u(x, y; θ) = (X − θ, Y − θ) and esti-
mating θ by MEL. However, due to the problem of the empty set Φq(Θ) this
is not always possible. For instance, let X ∼ n(0, σ2

1), Y ∼ n(0, σ2
2). Then, as

noted in Qin and Lawless (1994), Φq(Θ) will be empty for every sample, such
that Xi − Yi > 0, or Xi − Yi < 0, for all i = 1, . . . , n. For n = 10 the prob-
ability is 2(0.5)10 = 0.002. The probability increases, as the model becomes
misspecified. For instance, assume that X ∼ n(−0.3, 0.1) and Y ∼ n(0, 0.1),
then X − Y ∼ n(−0.3, 0.2) and the probability Pr(X − Y < 0) = 0.749, so that
Pr(X − Y > 0) = 0.251. Consequently, for n = 10, the probability that Φq(Θ)
is empty is 0.74910 + 0.25110 = 0.056.

3.3. QL, Example 3

The third QL example concerns the selection of a ’representative member’ from

Φ(Θ = {a}) = {fX(x; θ) : Efu(X; θ) = 0} ,

2Note, that the data sampling distribution n(0,1) belongs to Φ(Θ). When it is replaced
by n(0.1, σ = 0.9), the MC estimate of the probability is 0.0453.

3The point that MEL is an asymptotic method has already been made in
Grendar and Judge (2009a), albeit from a different point of view.
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where a ∈ R is known, and there is a random sample Xn
1 from unknown rX(x).

In the E3 approach, the model Φ(a) is replaced by its empirical analogue

Φq(a) =

{

q(x; a) :

n
∑

i=1

q(xi; a)u(xi; a) = 0,

n
∑

i=1

q(xi; a) = 1, q(xi; a) ≥ 0, ∀i

}

,

and a pmf is selected from Φq(a) by some method, such as MEL, or Minimum
Discriminant Information (cf. Haberman (1984)). Even in this simple setting
the empty set problem appears. For the sake of illustration, let us assume that
rX(x) = [0.025, 0.025, 0.15, 0.8] is a pmf on X = {1, 2, 3, 4}. Let u(X) = X−a,
a = 2.0 and let the sample size n = 40. The probability that Φq(2) is empty
is the probability that the sample contains only values greater than 2, or only
values smaller than 2, which is 0.129.

3.3.1. EL confidence intervals and tests

The empty set problem in the setting of this Example also has bearing for
constructing confidence intervals and tests by those in applied work who use
the Empirical Likelihood (EL) method. Although we are concerned here with
MEL estimation and inference, it is worth noting that EL inference is also
undermined by the empty set problem. For instance, assume - in the context
of the above Example - that the null hypothesis H0 : EX = µ = 2.0 is to be
tested. The EL test and confidence interval are based on the Non-parametric
Likelihood Ratio statistic (cf. Owen (2001)), which involves computation of the
value of the Non-parametric Likelihood at µ = 2.0. If the data are such that
Φq(2.0) is empty then no confidence interval or test can be performed. In the
above setting this happens with probability 0.129, for the data of size n = 40.

Existence of the empty set problem in the construction of confidence inter-
vals and statistical tests by EL is not new, and in Owen (2001) (cf. Sect. 3.14,
Sect. 10.4, Chap. 12, among others), it is referred to as the convex hull condi-
tion. Recently, Chen, Variyath and Brown (2008) suggested an adjustment of
EL, with the aim of mitigating this problem; see also Zhou, Zhou, Chen et al.
(2009), and Liu and Chen (2009), Emerson and Owen (2009) for different ways
of mitigating the convex hull restriction. The authors suggest adding to the data
an additional observation which is the negative multiple of the sample average.
The multiplication constant serves to rescue EL from the empty set problem.
However, the value of the constant which achieves the goal is also data depen-
dent.

3.4. Mean and median

Brown and Chen (1998) investigated the problem of estimating a location pa-
rameter of a sampling distribution by a data-based combination of the mean
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and the median. Their empirical model is

Φq(θ) =

{

q(x; θ) :

n
∑

i=1

q(xi; θ)(xi − θ) = 0;

n
∑

i=1

q(xi; θ)sgn(xi − θ) = 0;

n
∑

i=1

q(xi; ·) = 1; q(xi; ·) ≥ 0, 1 ≤ i ≤ n

}

,

and θ ∈ Θ = R. In their model J > K and thus is over-determined. Unless
Θ is restricted to a subspace of R (cf. Sect. 4.4), there is no problem of an
empty set, and hence in this case MEL always exists. However, an EL confidence
interval/test need not exist for every θ.

4. Some other models with ESP

4.1. Estimation of a location parameter from noisy data

Motivated by Gzyl and Ter Horst (2009), consider the following data-generating
process: Y = X +ǫ, where X ∼ Exp(θ = 1), ǫ ∼ n(0, σ2) and X⊥ǫ. A researcher
observes a random sample Y n

1 and would like to estimate the location parameter
θ of the distribution fX(x; θ) of X; σ is assumed known. Since neither fX(x; θ)
nor the distribution of ǫ are known, the researcher chooses an over-determined
model based on the first two moments of Y :

Φ(θ) = {fY (y; θ) : E(Y − θ) = 0; E(Y 2 − (2θ2 + σ2) = 0},

and θ ∈ Θ = (0,∞). To make it operative, Φ(θ) is replaced, in the usual way,
by its empirical analogue Φq(θ). Observe that the model is just a modification
of Example 1 of QL, so the argument of Sect. 3.1 can be employed to find
probability that in this setting Φq(Θ) is empty. The sets Φm

q (Θ) and Φq(Θ) are
empty for those data sets for which L(q̂m

(1)) from (5) is smaller than σ2. For

σ = 3 and n = 100 the probability is 0.215 (estimated by 10000 MC runs).
If also σ ∈ Σ = (0,∞) was unknown, then the condition for presence of

ESP becomes L(q̂m
(1)) < 0. For the true σ = 3 and n = 10 the probability of

observing a data with ESP is 0.084, estimated by 10000 MC runs. For n = 100,
the probability becomes smaller than 1/10000.

4.2. Score E3

Let rX(x; θ) and Θ be such that the Maximum Likelihood (ML) estimator θ̂ML

of θ is identical with the solution of the score equations. If Φ(Θ) is defined by
estimating functions which are based on the score equations, then the corre-
sponding Φq(Θ) is free of the empty set problem, for any random sample Xn

1

drawn from rX(x; θ). Any of the GMC estimators is then identical with θ̂ML. A
trivial example is given by the gaussian n(0, 1) sampling distribution, where the
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score equation for the location parameter θ is 1
n

∑n

i=1 Xi − θ = 0. Then for the
estimating function u(X; θ) = X − θ the set Φq(Θ), where Θ = R, cannot be
empty for any Xn

1 from n(0, 1). Changing Θ into the halfline [0,∞) gives rise
to ESP; cf. Sect. 4.4.

4.3. Discrete random variable

It is clear that the empty set problem is not a peculiarity of a continuous ran-
dom variable. As an illustration, consider an over-identified model given as the
set of pmfs which satisfy the estimating equations for the estimating functions
u1(x; θ) = X − θ, u2(x; θ) = X2 − θ2 − θ, θ ∈ Θ = [0,∞), and defined on the
support X = {0, . . . ,∞}. Its empirical analogue Φq(Θ) is empty for any data
Xn

1 , for which

q(1)x
2
(1) +(1−q(1))x

2
(n)−(q(1)x(1)+(1−q(1))x(n))

2−q(1)x(1)−(1−q(1))x(n) < 0,

where q(1) = 0.5 + 0.5/(x(n) − x(1)). This follows from the same reasoning as in
Sect. 3.1. For the Poisson sampling distribution Poi(1), the probability that for
a sample of size n = 10 there will be no empirical estimator is 7/1000 (estimated
by 10000 MC runs).

4.4. Restricted parameter space

Let the sampling distribution rX(x; θ) be parametrized by a parameter θ which
can take on any value in Θ = R. Assume, for the sake of simplicity, the exactly
identified model specified by a single estimating function u(X; θ) = X − θ, and
by θ ∈ Θ̃ = (a, b), a, b are finite. The model is misspecified in the sense that
Θ̃ ⊂ Θ. In the E3 approach, the model Φ(Θ̃) is replaced by its empirical analogue
Φq(Θ̃). The probability that Φq(Θ̃) is empty depends on rX(x; θ), the values of
a, b, and the sample size n. Consider the following illustrative example. Let
the sampling distribution be n(0, 1), n = 100, Θ̃ = (2, 3). The probability that
the set Φq(Θ̃) is empty is essentially determined by the probability that all the
observed values are below 2, which is 0.100. An extreme case of this setting was
considered in Sect. 3.3, where Θ̃ comprised a single element.

Another possibility for getting an empty Φq(Θ), is by restricting the parame-
ter space Θ of the sampling distribution. As an illustration, assume the gaussian
n(θ, 1) sampling distribution, with θ ∈ Θ = [0,∞), and let the model be given
by the estimating function u(X; θ) = X − θ. Whenever the sample Xn

1 is such
that all its elements are smaller than 0, the parametric space restriction cannot
be satisfied; cf. also Owen (2001), Sect. 10.5. Note, that for such a sample the
parametric space restriction can be satisfied within the modified E3, and hence,
there is no affine ESP in this model.

Two possibilities are pertinent also for the over-identified (i.e., J > K)
and the under-identified (i.e., J < K) models. As an example of the under-
determined model consider the one given by the estimating function u(X; θ,
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σ2) = (X − θ)2 − σ2, where θ, σ2 are parameters of the sampling distribution;
θ ∈ Θ = R, σ2 ∈ Σ = (0,∞). Let the space of values which both θ and σ2 can
take be restricted in the model, in such a way that the resulting set of distribu-
tions is non-empty. The corresponding empirical counterpart of the model can
be empty for any data which, regardless of q, cannot satisfy restrictions of the
parametric space.

5. Implications for theory and practice

The empty set problem (ESP) of the empirical estimating equations (E3) ap-
proach to estimation and inference places a limit on the approach and means
that every model should be checked for emptiness of the set Φq(Θ). To the best
of our knowledge this check has not been done in the past. As a result, studies
of finite-sample properties of the E3-based methods may be distorted for those
models that are subject to ESP.

If the proposed model Φq(Θ) is non-empty for all data sets, then it is free
of ESP, and, in principle, any E3-based method4 can be used to select the
representative parametrized, data-supported probability mass function q(·; θ)
from Φq(Θ). If the model is subject to ESP, then no E3-based estimate can be
obtained for those data sets, for which the set Φq(Θ) is empty. Nonexistence
of the estimate for the data set also affects all the methods that are based
on it; e.g., the Empirical Likelihood confidence intervals, bootstrap confidence
intervals from the Maximum Nonparametric Likelihood estimator (cf. Owen
(2001), Sect. 9.8), model selection by the Empirical Likelihood-like criteria (cf.
Hong, Preston and Shum (2003)).

In some models that are subject to ESP an escape route may be provided
by lifting the non-additivity constraints; i.e., by replacing the model Φq(Θ)
with the modified model Φm

q (Θ). However, this may not always help. There
are models (cf. Sect. 3.1 for an example) where the modified E3 approach is
subject to the affine ESP. For such models, the existence of estimators that are
obtained by methods that operate within the modified E3 (mE3) approach can
be data-dependent.

If MEL and other E3-based methods are to be used, then models should
be checked on case-by-case basis for the absence or presence of the empty set
problem. In simple models such as those discussed in Sects. 3 and 4 it is possible
to check presence of ESP analytically.

Routine numerical computations of E3-based estimates in a MC study may
not reveal the presence of ESP. For instance, in context of the Example 1 of QL
(cf. Sect. 3.1) data for which the set Φq(Θ) is empty can lead to a meaningfully
looking MEL estimate. Only a review of the ’optimal’ result of the inner opti-
mization in (2), will reveal that it failed. On the other hand, difficulty with the
inner optimization cannot be taken as a proof that the set Φq(Θ) is empty, for
the data in hand.

4See Grendar and Judge (2009a) for an asymptotic argument that singles out MEL among
the E3-based methods.
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As a possible exploratory tool of presence of ESP for an E3 model we suggest
that the E3 equations be combined into a set of equations that does not depend
on θ. Then for a batch of samples of a small sample size, check by numerical
optimization over q, whether the equations can be satisfied. Clearly, this tool
cannot be used to claim nonexistence of ESP if it does not show up in the batch
of samples; but it reveals ESP if for some data set the equations cannot be
satisfied.
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