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Abstract: Here we propose a penalized orthogonal-components regression
(POCRE) for large p small n data. Orthogonal components are sequentially
constructed to maximize, upon standardization, their correlation to the re-
sponse residuals. A new penalization framework, implemented via empiri-
cal Bayes thresholding, is presented to effectively identify sparse predictors
of each component. POCRE is computationally efficient owing to its se-
quential construction of leading sparse principal components. In addition,
such construction offers other properties such as grouping highly correlated
predictors and allowing for collinear or nearly collinear predictors. With
multivariate responses, POCRE can construct common components and
thus build up latent-variable models for large p small n data.
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1. Introduction

Available high-throughput biotechnologies make it possible to comprehensively
analyze genomic, proteomic, or metabolomic profiles of biological samples, thus
identifying molecular signatures to understand complex biological systems. Such
profile analysis holds an enormous promise for its use in early disease detection,
assessment of prognosis, measurement of drug efficacy, and eventually, person-
alized medicine. However, it usually entails collection of a massive amount of
possible predictors (i.e., large p) from each of a small number of biological indi-
viduals (i.e., small n), and therefore identifying the underlying sparse predictors
presents a task of “finding a very few needles in a haystack”. The structured
and noisy predictors make the task even more difficult.

Breiman [2] showed that classical step-wise regression is unstable since modi-
fying a single observation can change the fitted model significantly. On the other
hand, ridge regression is stable but it lacks the ability to select variables. Tib-
shirani [19] employed an ℓ1-norm penalty and proposed the lasso method, which
gained popularity due to its ability to select variables and, at the same time, ex-
hibit the stability of ridge regression. This method has a Bayesian interpretation
with independent Laplace priors, see Tibshirani [19] and Park and Casella [16].
However, lasso lacks the grouping property, that is, it tends to select one predic-
tor from a group of highly correlated predictors as discussed in Zou et al. [23].

The grouping property plays an important role in analyzing p ≫ n data
with clustered but noisy predictors. The predictors for molecular signatures are
naturally grouped due to sharing metabolomic pathways or biological processes,
and are preferred to be included or excluded from the model simultaneously. On
the other hand, highly correlated predictors can borrow strength from each other
to counter the noise effect. Many lasso variants have therefore been proposed
to take advantage of the grouped predictors either implicitly or explicitly. For
example, Zou et al. [23] proposed the elastic net (EN) which added a ℓ2-norm
penalty; Tibshirani et al. [20] proposed the fused lasso including another ℓ1-
norm penalty to encourage similarity between coefficients; and Yuan and Lin
[22] proposed the group lasso which modified the ℓ1-norm penalty for grouped
coefficients.

Another strategy in analyzing p ≫ n data is to first reduce the dimension
of predictors by constructing components, i.e., “eigen” predictors, and then fit
regression models by applying step-wise approaches to these components. Such
construction of components not only provides a potential solution to the “curse
of dimensionality”, but also groups predictors which are highly correlated or
share certain common coherent patterns. Both unsupervised and supervised
dimension reduction methods have been proposed. While many unsupervised
methods have been proposed on the basis of principal component analysis (PCA;
[9, 1, 5]), the partial least squares (PLS; [8]) regression is a supervised approach
and has been widely used in chemometrics and bioinformatics, see Kramer [13],
and Nguyen and Rocke [15], among others. Recently, sparse partial least squares
(SPLS) algorithm has been developed to enable PLS for variable selection func-
tion [4, 3].
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Here we propose a penalized orthogonal-components regression (POCRE)
via a new penalization framework which can effectively identify sparse predic-
tors from a large number of candidates. Section 2 presents the general idea
of orthogonal-components regression, and the penalized orthogonal-components
regression is proposed in Section 3. The penalization is implemented in Section 4
using the empirical Bayes thresholding proposed by Johnstone and Silverman
[11]. Such implementation allows adaptively identifying sparse predictors and
leads to the computationally efficient POCRE algorithm which is summarized
in Section 5. Simulation studies and real data analysis are shown in Section 6
and 7 respectively. We conclude this paper with a discussion.

2. Orthogonal-components regression

To illustrate the ideas behind the orthogonal-components regression, we assume

Y = βTX + ǫ, (2.1)

where Y is a k-dimensional column vector, X is a p-dimensional column vector
uncorrelated to ǫ, E[X] = 0, and β is a p × k matrix. When var(X) is non-
singular and the sample size n is reasonably larger than p, either likelihood
method or moment method can provide a satisfactory estimate of β.

Here we are interested in estimating β in the large p paradigm. First, var(X)
may be singular or nearly singular due to collinear or highly correlated predictors
in X. Second, when p is very large, it is usually infeasible to assume that the
sample size n is larger than p. In either case, it is difficult, if not impossible, to
estimate β using the classical methods.

To avoid possible problems with large p, we construct orthogonal components
as linear combinations of all predictors inX, and then regress Y on these orthog-
onal components. Such orthogonal components can be sequentially constructed.
Specifically, let X̃1 = X and Ỹ1 = Y . The first component ωT

1 X̃1 is constructed
with ω = ω1 maximizing ‖cov(Ỹ1 , ω

T X̃1)‖2 under the condition ‖ω‖ = 1. Since

‖cov(Ỹ1, ω
T X̃1)‖2 = ‖cov(Y, ωTX)‖2,

ω1 is the leading eigenvector of cov(Y,X)T cov(Y,X). Here the leading eigen-
vector refers to the one with the largest eigenvalue. When Y is univariate, i.e.,
k = 1, ω1 ∝ cov(Y,X)T .

After constructing the j-th component ωT
j X̃j , we then remove ωT

j X̃j from

X̃j such that X̃j+1 = X̃j − θjω
T
j X̃j is uncorrelated to ωT

j X̃j , i.e.,

cov(X̃j+1 , ω
T
j X̃j) = 0 =⇒ θj =

var(X̃j)ωj

ωT
j var(X̃j )ωj

. (2.2)

We also remove ωT
j X̃j from Ỹj such that Ỹj+1 = Ỹj − ϑjω

T
j X̃j is uncorrelated

to ωT
j X̃j, i.e.,

cov(Ỹj+1 , ω
T
j X̃j) = 0 =⇒ ϑj =

cov(Ỹj , X̃j)ωj

ωT
j var(X̃j)ωj

=
cov(Y, X̃j)ωj

ωT
j var(X̃j )ωj

, (2.3)
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where the last equality holds due to Theorem 1 in the below. Then the (j+1)-st
component ωT

j+1X̃j+1 is constructed with

ωj+1 = arg max
ω:‖ω‖=1

{‖cov(Ỹj+1, ω
T X̃j+1)‖2}

= arg max
ω:‖ω‖=1

{‖cov(Y, ωT X̃j+1)‖2}. (2.4)

Note that ωj+1 is the leading eigenvector of cov(Y, X̃j+1)
T ×cov(Y, X̃j+1). When

k = 1, ωj+1 equals to the normalized cov(Y, X̃j+1)
T .

This construction stops whenever Y is uncorrelated to X̃j . Since

ωT
j X̃j = ωT

j (I − θj−1ω
T
j−1)X̃j−1 = · · · = ωT

j

{
j−1∏

l=1

(I − θj−lω
T
j−l)

}
X,

we denote the j-th component as ̟T
j X. Upon the completion of the construc-

tion, ̟T
1 X, ̟T

2 X, · · · , are uncorrelated, i.e., they constitute a sequence of
orthogonal components, which lead to the orthogonal-components regression
model.

Theorem 1. ̟T
1 X, ̟T

2 X, · · · , are orthogonal, i.e., uncorrelated, for the linear
regression model (2.1) when X is uncorrelated to ǫ with E[ǫ] = 0. Furthermore,

E[Y |X] =
∑

j

ϑj

(
̟T

j X
)
, (2.5)

where

̟j =

{
j−1∏

l=1

(I − ωj−lθ
T
j−l)

}
ωj ,

with θj , ϑj and ωj specified in (2.2), (2.3) and (2.4), respectively.

Compared to the original regression (2.1), the orthogonal-components regres-
sion (2.5) can be fit by only calculating the eigenvectors of matrices but not the
inverses, which makes it appealing in analyzing p≫ n data. Furthermore, if the
predictors are highly correlated or even collinear, the orthogonal-components
regression is still able to provide robust solution. The calculation is very fast
due to the facts that ̟T

1 X, ̟T
2 X, · · · , can be easily constructed and that they

are uncorrelated.

3. Penalized orthogonal-components regression

Implementing the orthogonal-components regression (2.5) is subject to finding
the leading eigenvector of cov(Y, X̃j)

T cov(Y, X̃j) to construct the j-th compo-
nent ̟T

j X. However, the involved covariances are not observed and need to be
estimated from the observed data, say the i.i.d. sample (Yn×k,Xn×p). Wold
[21] estimated the covariances with their empirical estimates and proposed the
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partial least squares (PLS). Each subsequently constructed component of PLS
is a linear combination of all available predictors.

As shown by James and Stein [10] and Donoho and Johnstone [6], shrink-
age and threshold methods can significantly improve the estimate of high-
dimensional parameters. Especially in the case of p ≫ n data, it is usually
assumed that only a small number of predictors contribute to the response
variables. Here we will pursue a penalized construction of sparse loadings which
provides sparsity-adaptive thresholding estimators as shown in the next section.

Let
M = ĉov(Y, X̃j),

be an estimate of cov(Y, X̃j ). A major step in implementing the orthogonal-
components regression is to find the leading sparse eigenvector of MT M. The
following theorem by Zou et al. [24] implies that finding the leading eigenvector
can be taken as an optimization problem, which sheds light on constructing
sparse eigenvectors.

Theorem 2 (Zou et al. [24]). For any κ > 0, let

(α̃, γ̃) = arg min
α,γ:‖α‖=1

{
‖M−MγαT ‖2 + κ‖γ‖2

}
. (3.1)

Then, ω = γ̃/‖γ̃‖ is the leading eigenvector of MTM, i.e., MT Mω = cω where
c is the largest eigenvalue of MTM.

To ensure a sparse principal component, we consider a general version of the
criterion (3.1), i.e., with tuning parameter λ and penalty function pλ(γ),

(α̂(κ), γ̂(κ)) = arg min
α,γ:‖α‖=1

{
‖M− MγαT ‖2 + κ‖γ‖2 + pλ(γ)

}
. (3.2)

Here the penalty is introduced to benefit estimating covariances and to threshold
γ such that most of the elements in γ are zero, i.e., γ is sparse. While Theorem 2
implies that a specific value of κ does not affect the solution to optimization
problem (3.1), the following theorem states that a sparse γ can be derived from
a problem without specifying κ in (3.2).

Theorem 3. Suppose pλ(cγ) = cpλ(γ) for any scaler c > 0. Let (α̂(κ), γ̂(κ)) be
the solution to (3.2). And (α̂, γ̂) is the solution to the following problem

(α̂, γ̂) = arg min
α,γ:‖α‖=1

{
−2γT MTMα+ ‖γ‖2 + pλ(γ)

}
. (3.3)

Then, γ̂(κ)/‖γ̂(κ)‖ approaches to γ̂/‖γ̂‖ when κ→ ∞.

We will iteratively solve (3.3) for α̂ and γ̂. First, for a given γ, we have

α̂(γ) = arg min
α:‖α‖=1

{
−2γTMT Mα

}
= MTMγ/‖MT Mγ‖.

Second, for a given α, we have

γ̂(α) = arg min
γ

{
‖γ − MTMα‖2 + pλ(γ)

}
, (3.4)
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which will be approximated using the empirical Bayes thresholding as discussed
in the following section. Note that POCRE reduces to PLS without the penalty
pλ(γ) in (3.2)–(3.4).

4. Penalization via empirical Bayes thresholding

Denote ξ = MT Mα. Then solving for γ̂(α) in (3.4) is subject to minimizing ‖ξ−
γ‖2+pλ(γ) with respect to γ. As shown in Theorem 2 and Theorem 3, an optimal
γ/‖γ‖ is pursued as the leading eigenvector. Let ξi denote the i-th component of
ξ. Since each ξi/‖ξ‖ is an estimate of certain conditional correlation coefficient,
we therefore take a Fisher’s z-transformation,

zi =
1

2
log

1 − ξi/‖ξ‖
1 + ξi/‖ξ‖

,

and further assume,

zi = µi + ǫi, ǫi ∼ N

(
0,

λ2

p− 3

)
,

where µi leads to the pursued eigenvector. Note that the tuning parameter λ
partially accounts for possible under- or over-dispersion due to dependent data,

see Efron [7]. Without loss of generality, hereafter we assume ǫi
iid∼ N(0, 1).

When pλ(·) is specified by the logarithm of a prior density function, the
optimal γ can be calculated through a Bayesian estimate of (µ1, · · · , µp)

T . In
consideration of the sparsity of γ, we employ the empirical Bayes thresholding
(EBT) proposed by Johnstone and Silverman [11, 12] for a better approximation
to the leading sparse eigenvalue of MT M, say

γ̂ = EBTλ(MTMα).

Specifically, we assume a mixture prior with a point mass at zero and a
quasi-Cauchy distribution for each µi, i.e.,

π(µ) = (1 − w)δ0(µ) + w
1√
2π

{
1 − |µi|Φ(−|µi|)

φ(µi)

}
,

where δ0(·) is Dirac’s delta function. Since the marginal distribution of zi is

g(zi) =
1 − w√

2π
e−z2

i
/2 +

w√
2πz2

i

(
1 − e−z2

i
/2

)
,

an estimate of w, say ŵ, can be calculated by maximizing the marginal likeli-
hood. Then µi can be estimated by the posterior median, i.e.,

µ̂i = µ̂(zi) = median(µi|zi, ŵ).

As ŵ provides a data-driven estimate of the parameter sparsity, the resultant
estimate is adaptive to the sparsity of the underlying parameter and can reach
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the overall risk bounds. Johnstone and Silverman [11] also showed that the
empirical Bayes estimator µ̂(z) is a thresholding estimator in the sense that (i)
µ̂(z) is increasing on z ∈ R; (ii) |µ̂(z)| ≤ |z|, ∀z ∈ R; (iii) µ̂(−z) = −µ̂(z); (iv)
there exists τ > 0 such that µ̂(z) = 0 if and only if |z| ≤ τ .

As noted above, although µ̂i is constructed by assuming all components
of Z are independent, using the tuning parameter λ in the penalty function
pλ(·) accounts for possible dependence. In practice, ten-fold cross-validation
can be employed to elicit the optimal value of λ ranging from 0.8 to 1.5. As
demonstrated by our simulation studies, it usually suffices to consider λ ∈
{0.8, 0.9, 1.0, · · · , 1.5}.

5. The algorithm

Without loss of generality, we further assume that both X and Y are centered.
Therefore, an estimate of cov(Y,X) is M ∝ YTX. Suppose that ω1, · · · , ωj−1

have been calculated, Xj has been updated accordingly, and an estimate of

cov(Y, X̃j ) is proportional to YTXj . We can therefore proceed to find ωj as
follows,

1. Initialize γ to be the leading eigenvector of XT
j YYTXj ;

2. Update α = XT
j YYT Xjγ/‖XT

j YYTXjγ‖;
3. Update γ = EBTλ

(
XT

j YYTXjα
)
;

4. Repeat 2 – 3 until convergence, then ωj = γ/‖γ‖;
5. Calculate ηj = Xjωj;
6. Calculate Pj = ηT

j Xj/η
T
j ηj, and update Xj+1 = Xj − ηjPj.

Note that the first five steps are used to calculate the leading principal com-
ponent of XT

j YYT Xj , which is adaptive to the sparsity of the non-zero loadings.
Among these steps, the first step may be easily implemented using the following
power method (Stewart [18]), which has been used for the nonlinear iterative
partial least squares (NIPALS) by Wold [21],

1.a. Initialize ψ to be the first column of Y;
1.b. γ = XT

j ψ/‖XT
j ψ‖;

1.c. η = Xjγ;
1.d. ϕ = YT η/‖Yη‖;
1.e. ψ = Yϕ;
1.f. Repeat 1.b – 1.e until the convergence of γ.

Once ωj converges to the leading eigenvector of XT
j YYT Xj, ηj is an eigen-

vector of XjX
T
j YYT , which defines the j-th orthogonal component. Note that

Pj in Step 6 helps calculate Xj+1 due to the fact that ηT
j Xj+1 = 0.

As
Xj+1 = Xj − ηjPj = Xj(I − ωjPj),

when writing Xj+1 = Xζj+1, ζj+1 can be sequentially calculated as follows,

ζ1 = Ip×p; ζj+1 = ζj(I − ωjPj), j = 1, 2, · · · .
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Suppose that the above algorithm stops at (l + 1)-st step, i.e., ωl+1 = 0.
Then we regress Y on the orthogonal components ηj, j = 1, 2, · · · , l, and fit the
following model,

Ŷ =

l∑

j=1

ηjQj ,

which implies that Qj = ηT
j Y/ηT

j ηj. Since ηj = Xζjωj, the estimate β̂ of β in
(2.1) can then be derived as

β̂ =

l∑

j=1

ζjωjQj.

6. Simulation studies

We consider five different cases of large p small n data to evaluate the per-
formance of POCRE and compare it with other approaches such as principal
component regression (PCR), sparse princiapl component regression (SPCR),
partial least squares (PLS), sparse partial least squares (SPLS by Chun and
Keles [4]), ridge regression, lasso, and elastic net (EN). The first two cases have
highly and mildly correlated predictors respectively, the third one has clustered
predictors, the fourth one demonstrates a measurement-error model, and the
fifth one features a latent-variable model. In all cases, we fix p = 1000 and
consider both n = 50 and n = 100.

Case 1 (High Correlations). Y = 2
∑10

j=1
Xj +

∑110

j=101
Xj + ε, where ε ∼

N(0, 1), and each block {Xk+1, · · · , Xk+100} is simulated from an AR(1) process
with ρ = 0.9, k = 0, 100, · · · , 900.

Case 2 (Mild Correlations). Same as Case 1 except that ρ = 0.5.

Case 3 (Clustered Predictors). Y = 1.5
∑30

j=1
Xj + ε, where ε ∼ N(0, 152),

and Xj = Z11{j≤10} + Z21{11≤j≤20} + Z31{21≤j≤30} + ξj . Here Z1, Z2, Z3
iid∼

N(0, 1), and ξj
iid∼ N(0, 0.01).

Case 4 (Errors in Predictors). Y =Z1+2Z2+Z3+ε, where ε∼N(0, 1). Note
that Xj = sign(5.5−j)Z11{j≤10}+sign(15.5−j)Z21{11≤j≤20}+Z31{21≤j≤30}+

ξj , where Z1, Z2, Z3

iid∼ N(0, 1), and ξj
iid∼ N(0, 1).

Case 5 (Latent-Variable Model). Yk = akZ1 + bkZ2 + εk, 1 ≤ k ≤ 5,
where a1 = a2 = b2 = 2, b1 = a3 = b3 = −2, a4 = a5 = 3, b4 = −b5 = 1.5,

and εk
iid∼ N(0, 1). Z1 = X50 + X150 + X250 + X350 + X450 + X550 and Z2 =

X51 +X153 +X256 +X359 +X467 +X583, where X’s are the same as in Case 1
except that ρ = 0.3.

Here we evaluate the algorithms on the basis of two different criteria, i.e.,
the loss defined as E[‖Y − Ŷ ‖2

∣∣β̂]− tr{var(Y |X)}, and the false discovery rate
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Table 1

Summary on losses (with standard errors in parentheses) where the two best methods are
shown in bold

n Method Case 1 Case 2 Case 3 Case 4 Case 5
EN 29.80(1.31) 2.03(1.53) 103.34(4.35) 1.45(0.04) 13.48(1.29)

Lasso 0.66(0.02) 1.76(0.10) 72.12(4.04) 1.59(0.03) 12.47(0.79)
PCR 310.43(2.62) 123.71(0.44) 228.25(4.48) 2.32(0.03) 281.17(0.47)
PLS 81.44(1.15) 89.94(0.48) 187.57(3.25) 3.10(0.02) 254.43(0.79)

100 POCRE 1.08(0.12) 2.97(0.28) 16.78(2.90) 0.86(0.03) 2.13(1.30)
POCRE0 6.13(0.53) 3.58(0.42) 14.93(2.81) 0.87(0.03) 4.74(1.99)

Ridge 81.60(1.13) 89.71(0.44) 193.90(3.21) 3.09(0.02) 253.18(0.52)
SPCR 313.88(4.96) 123.97(0.96) 13.28(0.99) 0.65(0.01) 281.92(0.67)
SPLS 0.44(0.04) 1.06(0.20) 15.94(3.77) 0.86(0.03) 1.08(0.26)
EN 39.23(2.09) 52.45(2.65) 141.90(7.93) 2.30(0.13) 250.51(2.92)

Lasso 1.98(0.13) 33.24(1.66) 167.93(9.64) 2.74(0.06) 234.97(3.21)
PCR 308.84(2.87) 124.90(0.57) 378.19(5.39) 3.41(0.05) 282.37(0.61)
PLS 196.82(2.25) 111.26(0.73) 331.31(4.35) 4.24(0.03) 273.23(0.83)

50 POCRE 2.53(0.30) 38.76(1.79) 64.94(8.51) 1.77(0.06) 227.55(6.55)
POCRE0 9.10(2.00) 40.88(2.05) 62.69(5.78) 1.78(0.06) 236.53(5.17)

Ridge 192.01(2.26) 110.56(0.53) 333.79(4.45) 4.22(0.03) 269.71(0.62)
SPCR 315.06(5.15) 125.42(0.95) 29.84(9.09) 0.77(0.01) 284.60(1.04)
SPLS 1.04(0.13) 41.26(2.32) 61.93(7.92) 1.85(0.06) 192.28(9.29)

(FDR). In each case, we simulated 100 datasets, and therefore calculated the
values of the loss and FDR on the basis of the estimated parameters. Ten-fold
cross-validations are used to find the optimal tuning parameters and/or the
optimal numbers of components for different methods, including a naive ver-
sion of POCRE, i.e., POCRE0. Indeed, POCRE0 imposed the empirical Bayes
thresholding penalization by assuming ξi ∼ N(0, λ2σ2) with σ estimated by

σ̂ = median1≤i≤p{|ξi|}/Φ−1(0.75).

Note that SPCR was implemented using the gene expression arrays SPCA al-
gorithm by Zou et al. [24], and the tuning parameter was optimized over 10α

where α ranges from −2 to 3 with step 0.5.
Since none of the PCR, PLS and ridge regression selects variables and all

instead build up the model using all available predictors, FDR is not reported
for these three methods. In all cases, these three methods report very large losses
compared to the other methods due to inflated prediction errors by using all
predictors. It is interesting to note that, in terms of losses, SPCR outperforms
others in Cases 3 and 4 but performs the worst in all other cases, and both
PLS and ridge regression perform similarly but PLS is able to build common
components for multivariate responses. Overall, POCRE and SPLS perform the
best and are competitive to each other.

In Case 1 with highly correlated predictors, lasso, POCRE, and SPLS present
much smaller losses than EN, as shown in Table 1. When the correlations be-
tween predictors are mild as in Case 2, the loss of EN dramatically decreases
and is comparable to lasso, POCRE, and SPLS when n = 100. For n = 50, all
methods except PCR, SPCR and ridge regression increase the losses. In both
cases, lasso performs reasonably well. However, POCRE, POCRE0 and SPLS
are able to build up common components shared by multiple responses and re-
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Table 2

Summary on FDR where the two best methods are shown in bold

n Method Case 1 Case 2 Case 3 Case 4 Case 5
EN 0.9603 0.7260 0.4118 0.7216 0.8452

Lasso 0.5745 0.7037 0.7931 0.6087 0.8421
100 POCRE 0.1304 0.1304 0.0000 0.0385 0.1429

POCRE0 0.5745 0.1304 0.0909 0.1724 0.2500
SPCR 0.9800 0.9800 0.8165 0.8165 0.9880
SPLS 0.0476 0.2308 0.0323 0.0400 0.0769

EN 0.9184 0.8365 0.7285 0.8167 0.9622
Lasso 0.4722 0.6818 0.8222 0.6333 0.8197

50 POCRE 0.1304 0.4599 0.0657 0.5238 0.7817
POCRE0 0.3103 0.5102 0.1892 0.4194 0.7742

SPCR 0.9800 0.9800 0.6532 0.6842 0.9880
SPLS 0.0909 0.5849 0.0769 0.4762 0.0909

duces the losses, as shown in Case 5. Indeed, these three methods have much
smaller loss than other methods for n = 100, and are comparable to lasso for
n = 50.

In Case 3 with clustered predictors, POCRE, POCRE0, SPCR, and SPLS
perform extremely well when compared to all other methods. In Case 4 with
errors in predictors, these four methods also present the smallest losses. More
specifically, in Case 3, these four methods can decrease more than half of the
losses when compared to all other methods. And in Case 4, these four meth-
ods decrease more than 20% and 40% of the losses for n = 50 and n = 100,
respectively. Therefore, all four methods prevail in handling clustered or noisy
predictors due to their construction of components through maximizing some
covariance/correlation matrices.

In all five cases, POCRE, POCRE0, and SPLS perform the best in terms of
FDR, as shown in Table 2. With n = 100, POCRE can control the FDR under
15%, and SPLS can control the FDR under 25% for all cases. Indeed, POCRE
reports FDR= 0 for Case 3. On the other hand, lasso presents FDR as high as
84.21%, with the lowest level at 57.45%. Not surprisingly, EN performs better
than lasso in Case 3, i.e., with the lowest FDR at 41.18%, as it accounts for
group effects of predictors. However, it presents higher FDRs than lasso for all
other cases. With n = 50, POCRE still presents FDRs comparable to SPLS in
all cases except Case 5.

7. Real data analyses

Lan et al. [14] designed an experiment to identify the genetic basis for differences
between two inbred mouse populations (B6 and BTBR). A total of 60 arrays
were used to monitor the expression levels of 22,690 genes of 31 female and 29
male mice. Some physiological phenotypes, including numbers of stearoyl-CoA
desaturase 1 (SCD1), glycerol-3-phosphate acyltransferase (GPAT) and phos-
phoenopyruvate carboxykinase (PEPCK), were also measured by quantitative
real-time RT-PCR. The gene expression data and the phenotypic data are avail-
able at GEO (http://www.ncbi.nlm.nih.gov/geo; accession number GSE3330).

http://www.ncbi.nlm.nih.gov/geo
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Table 3

Summary on Real Data Analyses

Sum of Squared Prediction Error Number of Selected Genes

Method SCD1 GPAT PEPCK Total SCD1 GPAT PEPCK
EN 4.80 20.18 2.98 27.96 353 76 105

Lasso 2.69 15.02 2.50 20.22 17 11 19
POCRE 2.41 16.61 1.06 20.07 21 32 25
POCRE0 1.62 17.68 1.23 20.53 120 16 222

SPLS 2.71 16.09 1.44 20.23 15 164 29
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Fig 1. Common ω1 and ω2 in a latent variable model generated by POCRE.

We set up the test dataset including randomly selected 5 female and 5 male
mice, and the rest are included in the training dataset.

We adjusted the phenotypic values to remove the possible gender effects. For
each phenotype of the training dataset, its correlation to each gene is calculated,
then an overall correlation coefficient (OCC) of the three phenotypes to a single
gene is defined as minimizing the absolute values of the correlation coefficients
between the gene and the three phenotypes. Here we investigated expression
profiling of the top 5,000 genes (ranked on the basis of OCC) to predict the
three physiological phenotypic values. We built up the model using the training
dataset and then calculated the sum of squared prediction errors (SSPE) using
the test data.

With each of EN, lasso, POCRE0, POCRE, and SPLS, we separately build
up regression models for each of the three physiological phenotypic values. The
results are presented in Table 3. Overall, lasso tends to select a smaller number
of predictors but is competitive to others in terms of SSPE. While EN reports
the largest SSPE for each phenotype, it also selects a large number of predictors.
On the other hand, POCRE reports the smallest overall SSPE, and selects a
relatively small number of predictors for each phenotype.

As a comparison, we also fit a multivariate-response regression model for all
three phenotypes using POCRE, POCRE0, and SPLS, respectively. POCRE
generated ten common components using a total of 203 genes with the total
SSPE at 26.48 (see Figure 1 for the first two components), while POCRE0 gen-
erated four common components using a total of 536 genes and the correspond-
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ing total SSPE was 19.38. On the other hand, SPLS generated one common
component using only one gene, and reported the total SSPE at 22.53.

8. Discussion

Effective dimension reduction is crucial for a successful analysis of p ≫ n data.
Traditional unsupervised dimension reduction can be used to exclude many fea-
tures from constructed sparse predictors, but the false discovery rate (FDR)
can be very high. On the other hand, available supervised dimension reduction,
such as PLS, ignores the sparse nature of the underlying components. Further-
more, all these methods assume that the predictors are accurately measured,
and do not incorporate functional relatedness of candidates. As a result, despite
years of searching, only a handful of predictive biomarkers have advanced to
general clinical practice. Clearly, more effective approaches are called if the true
potential of predictive molecular signatures is to be realized.

Recently, different algorithms have been proposed to implement sparse PLS
by constructing sparse components, e.g., Chun and Keles [4] and Cao et al. [3].
Chun and Keles [4] took the generalized regression formulation of SPLS and
proposed to implement it using the LARS algorithm. Cao et al.[3] implemented
SPLS via a sparse PCA approach proposed by Shen and Huang [17]. Both
versions of SPLS use cross-validation for the optimal tuning parameters and
optimal number of components. While SPLS inherits the grouping property from
PLS, it will be challenging to extend it for incorporating a priori information,
other than sparsity, on the component loadings.

PLS can be considered as an algorithm to fit the orthogonal-component re-
gression model (2.5) by estimating the covariance between the response and
the covariates with the empirical estimator. James and Stein [10] and Donoho
and Johnstone [6] showed that shrinkage and threshold methods can signifi-
cantly improve the estimate of high-dimensional parameters. POCRE sequen-
tially constructs orthogonal components by finding penalized leading principal
components which are essentially sparsity-adaptive estimates and it thus has
advantage in the case that only a small number of predictors contribute to the
response variable in a p ≫ n regression. The involved computation is efficient
and feasible for large p small n data. As in Section 7 which presented a training
dataset with n = 50 and p = 22, 690, POCRE, coded in MATLAB r©, took less
than three minutes to fit the latent variable model (the tuning parameter was
chosen using ten-fold cross-validation, and it was run on a desktop computer
with Intel r© 3.0GHz CoreTM 2 Duo CPU).

POCRE implements the penalization via an empirical Bayes thresholding.
Since this empirical Bayes thresholding is constructed with a sparsity-adaptive
prior, POCRE is automatically enabled to select sparse variables in the large p
small n paradigm. Unlike SPLS, POCRE only needs to find the optimal tuning
parameter via cross-validation. As shown in the simulation studies, it is compet-
itive to SPLS, and provides a clear and significant benefit to the general task of
variable selection in the large p small n paradigm, even with clustered predictors
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or noisy predictors. It confirmed the utility of the new method in molecular pro-
filing, thus indicating an enormous promise for its use in transcriptional profiling
(genomics), protein profiling (proteomics), methylation profiling (epigenomics),
and metabolite profiling (metabolomics). The full potential of the new frame-
work, however, lies in providing breakthrough solutions to implementing the
Bayesian penalization for structured noisy features.
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Appendix A: Proof of Theorem 1

Since for each j, cov(X̃j+1, ω
T
j X̃j) = 0, then for any l > 0,

cov(ωT
j+lX̃j+l, ω

T
j X̃j) = ωT

j+l

{
l−1∏

m=1

(I − θj+l−mω
T
j+l−m)

}
cov(X̃j+1, ω

T
j X̃j) = 0,

which proves that ̟T
1 X, ̟T

2 X, · · · , are uncorrelated and therefore orthogonal.
On the other hand,

Ỹl+1 = Ỹl − ϑl̟
T
l X = · · · = Y −

l∑

j=1

ϑj̟
T
j X.

Suppose Ỹl+1 is uncorrelated to X̃l+1 . Then,

E[Y |X] =

l∑

j=1

ϑj̟
T
j X + E[Ỹl+1|X]

Note that

X̃l+1 = X̃l − θlω
T
l X̃l = · · · = X −

l∑

j=1

θjω
T
j X̃j =⇒ X = X̃l+1 +

l∑

j=1

θjω
T
j X̃j .

Therefore,

cov(Ỹl+1 , X) = cov(Ỹl+1 , X̃l+1) +
l∑

j=1

cov(Ỹl+1 , ω
T
j X̃j)θ

T
j = 0.

Denote Ỹl+1 = β̃TX + ǫ, then

β̃TV = 0 =⇒ β̃T V β̃ = cov(β̃TX, β̃TX) = 0 =⇒ β̃TX = 0,

which implies that E[Ỹl+1|X] = 0, and concludes the proof.
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Appendix B: Proof of Theorem 3

Denote (α̂(κ), γ̃(κ)) as

argminα,γ:‖α‖=1

{∥∥∥∥M −M
γ

1 + κ
αT

∥∥∥∥
2

+ κ

∥∥∥∥
γ

1 + κ

∥∥∥∥
2

+ pλ

(
γ

1 + κ

)}
.

Then γ̃(κ)/‖γ̃(κ)‖ = γ̂(κ)/‖γ̂(κ)‖.
Since

∥∥∥∥M −M
γ

1 + κ
αT

∥∥∥∥
2

+ κ

∥∥∥∥
γ

1 + κ

∥∥∥∥
2

+ pλ

(
γ

1 + κ

)

= tr(MT M) +
−2γT MTMα

1 + κ
+
tr

(
αγT MTMγαT

)
+ κγT γ

(1 + κ)2
+
pλ(γ)

1 + κ

= tr(MT M) +
1

1 + κ

{
−2γT MT Mα+ γT MTM + κI

1 + κ
γ + pλ(γ)

}
.

Therefore,

(α̂(κ), γ̃(κ)) = argminα,γ:‖α‖=1

{
−2γT MTMα+ γT MTM + κI

1 + κ
γ + pλ(γ)

}
,

which implies

(α̂(∞), γ̃(∞)) = argminα,γ:‖α‖=1

{
−2γT MTMα + ‖γ‖2 + pλ(γ)

}
= (α̂, γ̂).
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