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Abstract: In this paper, we consider the problem of partitioning a small
data sample drawn from a mixture of k product distributions. We are inter-
ested in the case that individual features are of low average quality γ, and
we want to use as few of them as possible to correctly partition the sample.
We analyze a spectral technique that is able to approximately optimize the
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of 1/γ for K > n. Our goal is motivated by an application in clustering
individuals according to their population of origin using markers, when the
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1. Introduction

We explore a type of classification problem that arises in the context of compu-
tational biology. The problem is that we are given a small sample of size n, e.g.,
DNA of n individuals (think of n in the hundreds or thousands), each described
by the values of K features or markers, e.g., SNPs (Single Nucleotide Polymor-
phisms, think of K as an order of magnitude larger than n). Our goal is to use
these features to classify the individuals according to their population of origin.
Features have slightly different probabilities depending on which population the
individual belongs to, and are assumed to be independent of each other (i.e., our
data is a small sample from a mixture of k very similar product distributions).
The objective we consider is to minimize the total data size D = nK needed
to correctly classify the individuals in the sample as a function of the “average
quality” γ of the features, under the assumption that K > n. Throughout the

paper, we use pji and µji as shorthands for p
(j)
i and µ

(j)
i respectively.
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Statistical Model: We have k probability spaces Ω1, . . . ,Ωk over the set
{0, 1}K. Further, the components (features) of z ∈ Ωt are independent and
PrΩt [zi = 1] = pit (1 ≤ t ≤ k, 1 ≤ i ≤ K). Hence, the probability spaces
Ω1, . . . ,Ωk comprise the distribution of the features for each of the k popula-
tions. Moreover, the input of the algorithm consists of a collection (mixture)

of n =
∑k

t=1Nt unlabeled samples, Nt points from Ωt, and the algorithm is
to determine for each data point from which of Ω1, . . . ,Ωk it was chosen. In
general we do not assume that N1, . . . , Nt are revealed to the algorithm; but we
do require some bounds on their relative sizes. An important parameter of the
probability ensemble Ω1, . . . ,Ωk is the measure of divergence

γ = min
1≤s<t≤k

∑K
i=1(p

i
s − pit)

2

K
(1.1)

between any two distributions. Note that
√
Kγ measures the Euclidean distance

between the means of any two distributions and thus represents their separation.
Further, let N = n/k (so if the populations were balanced we would have N
of each type) and assume from now on that kN < K. Let D = nK denote the
size of the data-set. In addition, let σ2 = maxi,t p

i
t(1− pit) denote the maximum

variance of any random bit.
The biological context for this problem is we are given DNA information

from n individuals from k populations of origin and we wish to classify each
individual into the correct category. DNA contains a series of markers called
SNPs, each of which has two variants (alleles). Given the population of origin
of an individual, the genotypes can be reasonably assumed to be generated by
drawing alleles independently from the appropriate distribution. The following
theorem gives a sufficient condition for a balanced (N1 = N2) input instance
when k = 2.

Theorem 1.1 (Zhou (2006)). Assume N1 = N2 = N . If K = Ω
(

lnN
γ

)
and

KN = Ω
(

lnN log logN
γ2

)
then with probability 1− 1/ poly(N), among all balanced

cuts in the complete graph formed among 2N sample individuals, the maximum
weight cut corresponds to the partition of the 2N individuals according to their
population of origin. Here the weight of a cut is the sum of weights across all
edges in the cut, and the edge weight equals the Hamming distance between the
bit vectors of the two endpoints.

Variants of the above theorem, based on a model that allows two random
draws from each SNP for an individual, are given in Chaudhuri et al. (2007);
Zhou (2006). In particular, notice that edge weights based on the inner-product
of two individuals’ bit vectors correspond to the sample covariance, in which
case the max-cut corresponds to the correct partition Zhou (2006) with high
probability. Finding a max-cut is computationally intractable; hence in the same
paper Chaudhuri et al. (2007), a hill-climbing algorithm is given to find the
correct partition for balanced input instances but with a stronger requirement
on the sizes of both K and nK.
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A Spectral Approach: In this paper, we construct two simpler algorithms
using spectral techniques, attempting to reproduce conditions above. In partic-
ular, we study the requirements on the parameters of the model (namely, γ, N ,
k, and K) that allow us to classify every individual correctly and efficiently with
high probability.

The two algorithms Classify and Partition compare as follows. Both algo-
rithms are based on spectral methods originally developed in graph partitioning.
More precisely, Theorem 1.2 is based on computing the singular vectors with
the two largest singular values for each of the n×K input random matrix. The
procedure is conceptually simple, easy to implement, and efficient in practice.
For simplicity, Procedure Classify assumes the separation parameter γ is known
to decide which singular vector to examine; in practice, one can just try both
singular vectors as we do in the simulations. Proof techniques for Theorem 1.2,
however, are difficult to apply to cases of multiple populations, i.e., k > 2. Pro-
cedure Partition is based on computing a rank-k approximation of the input
random matrix and can cope with a mixture of a constant number of popula-
tions. It is more intricate for both implementation and execution than Classify.
It does not require γ as an input, while only requires that the constant k is
given. We prove the following theorems.

Theorem 1.2. Let ω =
min(N1,N2)

n and ωmin be a lower bound on ω. Let γ be
given. Assume that K > 2n lnn and k = 2. Procedure Classify allows us to

separate two populations w.h.p., when n ≥ Ω
(

σ2

γωminω

)
, where σ2 is the largest

variance of any random bit, i.e. σ2 = maxi,t p
i
t(1 − pit). Thus if the populations

are roughly balanced, then n ≥ c
γ suffices for some constant c.

This implies that the data required is D = nK = O
(
lnnσ4/γ2ω2ω2

min

)
. Let

Ps = (pis)i=1,...,K , we have

‖P1 − P2‖2 =
√
Kγ =

√√√√
K∑

i=1

(pi1 − pi2)
2 ≥ σ

ωminω

√
lnn. (1.2)

Theorem 1.3. Let ω = min(N1,...,Nk)
n

. There is a polynomial time algorithm
Partition that satisfies the following. Suppose that K > n logn, γ > K−2,

n > Ckσ
2

γω for some large enough constant Ck, and ω = Ω(1). Then given the
empirical n×K matrix comprising the K features for each of the n individuals
along with the parameter k, Partition separates the k populations correctly
w.h.p.

Summary and Future Direction: Note that unlike Theorem 1.1, both The-
orem 1.2 and Theorem 1.3 require a lower bound on n, even when k = 2 and
the input instance is balanced. We illustrate through simulations to show that
this seems not to be a fundamental constraint of the spectral techniques; our
experimental results show that even when n is small, by increasing K so that
nK = Ω(1/γ2), one can classify a mixture of two populations using ideas in Pro-
cedure Classify with success rate reaching an “oracle” curve, which is computed
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assuming that distributions are known, where success rate means the ratio be-
tween correctly classified individuals and N . Exploring the tradeoffs of n and
K that are sufficient for classification, when sample size n is small, is both of
theoretical interests and practical value.

Outline of the paper: The paper is organized as follows. In Section 1.1 we
discuss related work. Then, in Section 2 we describe the algorithm Classify for
Theorem 1.2 and outline its analysis. Some (very) technical details of the analy-
sis are deferred to the appendix. Section 3 deals with the algorithm Partition

for Theorem 1.3. Finally, in Section 4 we report some experimental results on
Classify.

1.1. Related work

In their seminal paper Pritchard et al. (2000), Pritchard, Stephens, and Don-
nelly presented a model-based clustering method to separate populations using
genotype data. They assume that observations from each cluster are random
from some parametric model. Inference for the parameters corresponding to
each population is done jointly with inference for the cluster membership of
each individual, and k in the mixture, using Bayesian methods.

The idea of exploiting the eigenvectors with the first two eigenvalues of the
adjacency matrix to partition graphs goes back to the work of Fiedler Fiedler
(1973), and has been used in the heuristics for various NP-hard graph parti-
tioning problems (e.g., Fjallstrom (1998)). The main difference between graph
partitioning problems and the classification problem that we study is that the
matrices occurring in graph partitioning are symmetric and hence diagonaliz-
able, while our input matrix is rectangular in general. Thus, the contribution of
Theorem 1.2 is to show that a conceptually simple and efficient algorithm based
on singular value decompositions performs well in the framework of a fairly gen-
eral probabilistic model, where probabilities for each of the K features for each
of the k populations are allowed to vary. Indeed, the analysis of Classify re-
quires exploring new ideas such as the Separation Lemma and the normalization
of the random matrix X, for generating a large gap between top two singular
values of the expectation matrix X and for bounding the angle between random
singular vectors and their static correspondents, details of which are included
in Section 2 with analysis in full version.

Procedure Partition and its analysis build upon the spectral techniques of
McSherry (2001) on graph partitioning, and an extension due to Coja-Oghlan
(2006). McSherry provides a comprehensive probabilistic model and presents a
spectral algorithm for solving the partitioning problem on random graphs, pro-
vided that a separation condition similar to (1.2) is satisfied. Indeed, McSherry
(2001) encompasses a considerable portion of the prior work on Graph Coloring,
Minimum Bisection, and finding Maximum Clique. Moreover, McSherry’s ap-
proach easily yields an algorithm that solves the classification problem studied
in the present paper under similar assumptions as in Theorem 1.3, provided
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that the algorithm is given the parameter γ as an additional input; this is ac-
tually pointed out in the conclusions of McSherry (2001). In the context of
graph partitioning, an algorithm that does not need the separation parameter
as an input was devised in Coja-Oghlan (2006). The main difference between
Partition and the algorithm presented in Coja-Oghlan (2006) is that Parti-

tion deals with the asymmetric n×K matrix of individuals/features, whereas
Coja-Oghlan (2006) deals with graph partitioning (i.e., a symmetric matrix).

There are two streams of related work in the learning community. The first
stream is the recent progress in learning from the point of view of cluster-
ing: given samples drawn from a mixture of well-separated Gaussians (compo-
nent distributions), one aims to classify each sample according to which com-
ponent distribution it comes from, as studied in Dasgupta (1999), Dasgupta
and Schulman (2000), Arora and Kannan (2001); Vempala and Wang (2002);
Achlioptas and McSherry (2005); Kannan et al. (2005); Dasgupta et al. (2005).
This framework has been extended to more general distributions such as log-
concave distributions in Achlioptas and McSherry (2005); Kannan et al. (2005)
and heavy-tailed distributions in Dasgupta et al. (2005), as well as to more than
two populations. These results focus mainly on reducing the requirement on the
separations between any two centers P1 and P2. In contrast, we focus on the
sample size D. This is motivated by previous results Chaudhuri et al. (2007);
Zhou (2006) stating that by acquiring enough attributes along the same set
of dimensions from each component distribution, with high probability, we can
correctly classify every individual.

While our aim is different from those results, where n > K is almost universal
and we focus on cases K > n, we do have one common axis for comparison,
the ℓ2-distance between any two centers of the distributions. In earlier works
Dasgupta and Schulman (2000); Arora and Kannan (2001), the separation re-
quirement depended on the number of dimensions of each distribution; this has
recently been reduced to be independent of K, the dimensionality of the dis-
tribution for certain classes of distributions Achlioptas and McSherry (2005);
Kannan et al. (2005). This is comparable to our requirement in (1.2) for the
discrete distributions. For example, according to Theorem 7 in Achlioptas and
McSherry (2005), in order to separate the mixture of two Gaussians,

‖P1 − P2‖2 = Ω

(
σ√
ω

+ σ
√

logn

)
(1.3)

is required. Besides Gaussian and Logconcave, a general theorem: Theorem 6
in Achlioptas and McSherry (2005) is derived that in principle also applies to
mixtures of discrete distributions. The key difficulty of applying their theo-
rem directly to our scenario is that it relies on a concentration property of the
distribution (Eq. (10) of Achlioptas and McSherry (2005)) that need not hold
in our case. In addition, once the distance between any two centers is fixed
(i.e., once γ is fixed in the discrete distribution), the sample size n in their al-
gorithms is always larger than Ω

(
K
ω log5K

)
Achlioptas and McSherry (2005);

Kannan et al. (2005) for log-concave distributions (in fact, in Theorem 3 of
Kannan et al. (2005), they discard at least this many individuals in order to
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correctly classify the rest in the sample), and larger than Ω(Kω ) for Gaussians
Achlioptas and McSherry (2005), whereas in our case, n < K always holds.
Hence, our analysis allows one to obtain a clean bound on n in the discrete
case.

The second stream of work is under the PAC-learning framework, where
given a sample generated from some target distribution Z, the goal is to output
a distribution Z1 that is close to Z in Kullback-Leibler divergence: KL(Z||Z1),
where Z is a mixture of product distributions over discrete domains or Gaussians
Kearns et al. (1994); Freund and Mansour (1999); Cryan (1999); Cryan et al.
(2002); Mossel and Roch (2005); Feldman et al. (2005, 2006). They do not re-
quire a minimal distance between any two distributions, but they do not aim to
classify every sample point correctly either, and in general require much more
data.

Our work is also related to the use of principal component analysis (“PCA”)
in genetics Patterson et al. (2006); Price et al. (2006). The basic approach in
these papers is to use the eigenvectors of a covariance matrix between samples
to analyze a mixture of populations. While Patterson et al. (2006); Price et al.
(2006) study the use of spectral methods empirically, the crucial point of the
present work is that we prove rigorously that spectral methods succeed on a
certain (simple) probabilistic model. Hence, our work can be seen as a further
theoretical justification of the practical use of PCA. A difference between the
present paper and Patterson et al. (2006); Price et al. (2006) is that we actually
aim to assign each individual to exactly one of the populations. By contrast,
Patterson et al. (2006); Price et al. (2006) just assign each individual a real
“weight” for each population: essentially the eigenvectors with the dominant
eigenvalues corresponding to the populations, and each individual is assigned
its projection on these dominant eigenvectors. The algorithm Classify is some-
what similar to PCA, but Partition is conceptually more involved. In addition,
our experimental results show a phase transition phenomenon similar to what
was observed in Patterson et al. (2006) in detecting population structure using
simulated data.

2. A simple algorithm using singular vectors

As described in Theorem 1.2, we assume we have a mixture of two product
distributions. Let N1, N2 be the number of individuals from each population
class. Our goal is to correctly classify all individuals according to their distri-
butions. Let n = 2N = N1 + N2, and refer to the case when N1 = N2 as the
balanced input case. For convenience, let us redefine “K” to assume we have
O(logn) blocks of K features each (so the total number of features is really
O(K logn)) and we assume that each set of K features has divergence at least
γ. (If we perform this partitioning of features into blocks randomly, then with
high probability this divergence has changed by only a constant factor for most
blocks.)

The high-level idea of the algorithm is now to repeat the following procedure
for each block ofK features: use theK features to create an n×K matrixX, such
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that each row Xi, i = 1, . . . , n, corresponds to a feature vector for one sample
point, across its K dimensions. We then compute the top two left singular
vectors u1, u2 of X and use these to classify each sample. This classification
induces some probability of error f for each individual at each round, so we
repeat the procedure for each of the O(logn) blocks and then take majority
vote over different runs. Each round we require K ≥ n features, so we need
O(n logn) features total in the end.

In more detail, we repeat the following procedure O(logn) times. Let T =
15N
32

√
3ωminγ, where ωmin is the lower bound on the minimum weight min{N1

2N
, N2

2N
},

which is independent of an actual instance. Let s1(X), s2(X) be the top two sin-
gular values of X.

Procedure Classify: Given γ,N, ωmin. Assume that N ≫ 1
γ ,

• Normalization: use the K features to form a random n×K matrixX; Each
individual random variable Xi,j is a normalized random variable based on

the original Bernoulli r.v. bi,j ∈ {0, 1} with Pr[bi,j = 1] = pj1 for Xi ∈ P1

and Pr[bi,j = 1] = pj2 for Xi ∈ P2, such that Xi,j = b+1
2 .

• Take top two left singular vectors u1, u2 ofX, where ui = [ui,1, . . . , ui,n], i =
1, 2.

1. If s2(X) > T = 15N
32

√
3ωminγ, use u2 to partition the individuals

with 0 as the threshold, i.e., partition j ∈ [n] according to u2,j < 0
or u2,j ≥ 0.

2. Otherwise, use u1 to partition, with mixture mean M =
∑n

i=1 u1,n

as the threshold.

Analysis of the Simple Algorithm: Our analysis is based on comparing
entries in the top two singular vectors of the normalized random n × K ma-
trix X, with those of a static matrix X , where each entry Xi,j = E[Xi,j] is
the expected value of the corresponding entry in X. Hence ∀i = 1, . . . , N1,

Xi = [µ1
1, µ

2
1, . . . , µ

K
1 ], where µj1 =

1+pj
1

2 , ∀j, and ∀i = N1 + 1, . . . , n, Xi =

[µ1
2, µ

2
2, . . . , µ

K
2 ], where µj2 =

1+pj
2

2 , ∀j. We assume the divergence is exactly γ
among the K features that we have chosen in all calculations.

The inspiration for this approach is based on Lemma 2.1, whose proof is built
upon Theorem A.2 that is presented in a lecture note by Spielman (2002). For
an n×K matrix A, let s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) be singular values of A. Let
u1, . . . , un, v1, . . . , vn, be the n left and right singular vectors ofX, corresponding
to s1(X), . . . , sn(X) such that ‖ui‖2 = 1, ‖vi‖2 = 1, ∀i. We denote the set of n
left and right singular vectors of X with ū1, . . . , ūn, v̄1, . . . , v̄n.

Lemma 2.1. Let X be the random n × K matrix and X its expected value
matrix. Let A = X − X be the zero-mean random matrix. Let θi be the angle
between two vectors: [ui, vi], [ūi, v̄i], where ‖[ui, vi]‖2 = ‖[ūi, v̄i]‖2 = 2 and [u, v]
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represents a vector that is the concatenation of two vectors u, v.

‖ui − ūi‖2 ≤ ‖[ui, vi] − [ūi, v̄i]‖2 ≈ 2θi ≈ 2 sin(θi) ≤
4s1(A)

gap(i,X )
, (2.1)

where gap(i,X ) = minj 6=i |si(X ) − sj(X )|.
We first bound the largest singular value s1(A) = s1(X − X ) of (ai,j) with

independent zero-mean entries, which defines the Euclidean operator norm

‖(ai,j)‖ := sup

{∑

i,j

ai,jxiyj :
∑

x2
i ≤ 1,

∑
y2
i ≤ 1

}
. (2.2)

The behavior of the largest singular value of an n×m random matrices A with
i.i.d. entries is well studied. Latala (2005) shows that the weakest assumption
for its regular behavior is boundedness of the fourth moment of the entries, even
if they are not identically distributed. Combining Theorem 2.2 of Latala (2005)
with the concentration Theorem 2.3 by Meckes (2004) proves Theorem 2.4 that
we need 1.

Theorem 2.2 (Norm of Random Matrices Latala (2005)). For any finite
n ×m matrix A of independent mean zero r.v.’s ai,j we have, for an absolute
constant C,

E ‖(ai,j)‖ ≤ C



max
i

√∑

j

Ea2
i,j + max

j

√∑

i

Ea2
i,j +

(∑

i,j

Ea4
i,j

) 1
4



 . (2.3)

Theorem 2.3 (Concentration of Largest Singular Value: Bounded
Range Meckes (2004)). For any finite n × m, where n ≤ m, matrix A,
such that entries ai,j are independent r.v. supported in an interval of length at
most D, then, for all t,

Pr[|s1(A) − Ms1(A)| ≥ t] ≤ 4e−t
2/4D2

. (2.4)

Theorem 2.4 (Largest Singular Value of a Mean-zero Random Ma-
trix). For any finite n×K, where n ≤ K, matrix A, such that entries ai,j are
independent mean zero r.v. supported in an interval of length at most D, with
fourth moment upper bounded by B, then

Pr
[
s1(A) ≥ CB1/4

√
K + 4D

√
π + t

]
≤ 4e−t

2/4 (2.5)

for all t. Hence ‖A‖ ≤ C1B
1/4

√
K for an absolute constant C1.

1One can also obtain an upper bound of O(
√

n + K) on s1(A) using a theorem on by Vu
(2005), through the construction a (n + K) × (n + K) square matrix out of A.
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2.1. Generating a large gap in s1(X ), s2(X )

In order to apply Lemma 2.1 to the top two singular vectors of X and X through

‖u1 − ū1‖2 ≤ 4s1(X − X )

|s1(X ) − s2(X )| (2.6)

‖u2 − ū2‖2 ≤ 4s1(X −X )

min (|s1(X ) − s2(X )| , |s2(X )|) , (2.7)

we need to first bound |s1(X ) − s2(X )| away from zero, since otherwise, RHSs
on both (2.6) and (2.7) become unbounded. We then analyze

gap(2,X ) = min (|s1(X ) − s2(X )| , |s2(X )|) .

Let us first define values a, b, c that we use throughout the rest of the paper:

a =

K∑

k=1

(µk1)
2, b =

K∑

k=1

µk1µ
k
2 , c =

K∑

k=1

(µk2)
2. (2.8)

For the following analysis, we can assume that a, b, c ∈ [K/4, K], given that X
is normalized in Procedure Classify.

We first show that normalization of X as described in Procedure Classify
guarantees that not only |s1(X ) − s2(X )| 6= 0, but there also exists a Θ(

√
NK)

amount of gap between s1(X ) and s2(X ) in Proposition 2.5:

gap(X ) := |s1(X ) − s2(X )| = Θ(
√
NK). (2.9)

Proposition 2.5. For a normalized random matrix X, its expected value matrix

X satisfies 4c0
√

2NK
5 ≤ gap(X ) ≤

√
2NK, where c0 = |b|

√
ac

K(a+c) is a constant,

given that a, b, c ∈ [K/4, K] as defined in (2.8). In addition,

√
KN

4
≤ s1(X ) ≤

√
2NK, and

√
NK

2
≤ s1(X ) + s2(X ) ≤

√
2NK. (2.10)

We next state a few important results that justify Procedure Classify. Note
that the left singular vectors ūi, ∀i of X are of the form [xi, . . . , xi, yi, . . . , yi]

T :

ū1 = [x1, . . . , x1, y1, . . . , y1]
T , and ū2 = [x2, . . . , x2, y2, . . . , y2]

T , (2.11)

where xi repeats N1 times and yi repeats N2 times. We first show Proposition 2.6
regarding signs of xi, yi, i = 1, 2, followed by a lemma bounding the separation
of x2, y2. We then state the key Separation Lemma that allows us to conclude
that least one of top two left singular vectors of X can be used to classify data
at each round. It can be extended to cases when k > 2.

Proposition 2.6. Let b as defined in (2.8): when b > 0, entries x1, y1 in ū1

have the same sign while x2, y2 in ū2 have opposite signs.
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Lemma 2.7. |x2 − y2|2 ≤ Cmax

2N where Cmax =
(√

1
ω1

+
√

1
ω2

)2 ≤ 4
ωmin

; |x2|2 ≥
Cx min

2N where Cxmin = ω2

4ω2
1+ω1ω2

; |y2|2 ≥ Cy min

2N where Cymin = ω1

4ω2
2+ω1ω2

.

Lemma 2.8 (Separation Lemma). Kγ = s1(X )2(x1−y1)2+s2(X )2(x2−y2)2.
Proof. Let ∆ := P1 − P2 as in Theorem 1.2, and ~b = [1, 0, . . . , 0,−1, 0, . . . , 0]T ,
where 1 appears in the first and −1 appears in the N1 + 1st positions. Then
∆ = XT~b = [µ1

1−µ1
2, µ

2
1−µ2

2, . . . , µ
K
1 −µK2 ].Given X = s1(X )ū1v̄

T
1 +s2(X )ū2v̄

T
2 ,

we thus rewrite ∆ as: ∆ = X T~b = s1(X )v̄1ū
T
1
~b + s2(X )v̄2ū

T
2
~b = s1(X )v̄1(x1 −

y1)+s2(X )v̄2(x2−y2). The lemma follows from the fact that ‖∆‖2 =
√
Kγ and

v̄1, v̄2 are orthonormal.

Combining Proposition 2.6, Lemma 2.7, (2.10), and Lemma 2.8, we have

Corollary 2.9. s2(X ) ≤
√

2NKγ√
cx min+

√
cy min

, and hence gap(2,X ) = min(s2(X ),

|s1(X ) − s2(X )|) = s2(X ) for a sufficiently small γ.

In Section 2.2, we first prove a proposition regarding a, b, c as defined in (2.8).
We next provide the proof for Theorem 2.4 regarding the largest singular value
of (X −X ). In Section 2.4, we show that the probability of error at each round
for each individual is at most f = 1/10, given the sample size n as specified
in Theorem 1.2. Hence by taking majority vote over the different runs for each
sample, our algorithm will find the correct partition with probability 1− 1/n2,
given that at each round we take a set of K > n independent features.

2.2. Detailed analysis for the simple algorithm

Throughout the rest of the paper, we use X, Y , H to represent random matri-

ces, where H = XXT and Y =
[

0 X
XT 0

]
. We use X ,Y, H to represent the

corresponding static matrices. Let us substitute a, b, c in H = XX T , where the
blocks in H from top to bottom and from left to right are of size: N1 ×N1, N1×
N2, N2 ×N1 and N2 ×N2 respectively:

H = XX T =





a . . . a b . . . b
. . .
a . . . a b . . . b
b . . . b c . . . c
. . .
b . . . b c . . . c





2N×2N

. (2.12)

Proposition 2.10. For any choices of µki , ac ≥ b2; By definition,

a+ c − 2b =

K∑

i=1

α2
k, where αk = |µk1 − µk2 |. (2.13)
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Proof. a + c− 2b =
∑

k α
2
k holds by definition.

ac− b2 =

K∑

k=1

(µk1)2
K∑

k=1

(µk2)2 −
(

K∑

k=1

(µk1µ
k
2)

)2

=

K∑

k=1

(µk1µ
k
1)2 +

∑

j 6=k
((µk1µ

j
2)

2 + (µj1µ
k
2)

2)

−




K∑

k=1

(µk1µ
k
1)2 +

∑

j 6=k
2µk1µ

k
2µ

j
1µ
j
2





=
∑

j 6=k
(µk1µ

j
2)

2 + (µj1µ
k
2)

2 − 2µk1µ
k
2µ

j
1µ

j
2 =

∑

j 6=k
(µk1µ

j
2 − µj1µ

k
2)2 ≥ 0.

Remark 2.11. Both matrices of X and XX T have rank at most two. When
ac = b2, H has rank 1.

2.3. Proof of Theorem 2.4

By having an upper bound on both maximum variance and fourth moment of
any entry, we have the following corollary of Theorem 2.2.

Corollary 2.12 (Largest Singular Value: Bounded Fourth Moment
Latala (2005)). For any finite n × m, where n ≤ m, matrix of independent
mean zero r.v.’s ai,j, such that the maximum variances of any entry is at most
σ2, and each entry has a finite fourth moment B we have

E ‖(ai,j)‖ ≤ C
(
σ(
√
m+

√
n) + (mnB)1/4

)
≤ CB1/4√m (2.14)

for an absolute constant C.

Remark 2.13. The requirement that σ2 is upper bounded is not essential. The
conclusion in Corollary 2.12 works so long as fourth moment is bounded by B.

Let Ms1(A) be the median of s1(A). Following a calculation from Meckes
(2004), we have

|E[s1(A)] − Ms1(A)| ≤ E[|s1(A) − Ms1(A)|]

=

∫ ∞

0

Pr[|s1(A) − Ms1(A)| ≥ t]dt

≤ 4

∫ ∞

0

e−t
2/4D2

dt = 4D
√
π,

where D ≤ 1 for Bernoulli random variables that we consider. This allows us to
conclude Theorem 2.4.
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2.4. Correctness of classification for the simple algorithm

We now prove correctness of our algorithm. We first show how to choose T for
Procedure Classify. Let B denote the fourth moment bound for a single random
variable in the mean zero random matrix X − X ; for the type of normalized
Bernoulli r.v.s that we care about,

√
B is in the order of σ2, where σ2 is defined

in Theorem 1.2.
Let Nγ be a large enough constant. Let s1(X − X ) ≤ C0

√
K, where C0 =

C1B
1/4 as defined in Theorem 2.4 and let the threshold

T =
√
C3KNγ ≥ 15C0

√
K, (2.15)

which requires that

C3Nγ ≥ 225C2
0 , where C3 satisfies (2.19). (2.16)

Following Lemma A.4, (A.1), (A.3), and Proposition A.1, we have

|s2(X ) − s2(X)| ≤ s1(X −X ) ≤ C0

√
K. (2.17)

We have two cases,

1. When s2(X) ≤ T , by Lemma 2.7 and the fact that s2(X ) ≤ s2(X) +
s1(X − X ) ≤ T + C0

√
K ≤ 16T

15 , we have

s2(X )2|x2 − y2|2 ≤ 256T 2

225

Cmax

2N
≤ 128C3KγCmax

225
≤ 128C3Kγ4

225ωmin
(2.18)

for Cmax as defined in Lemma 2.7. We want s2(X )2|x2 −y2|2 ≤ 3Kγ
4 . This

holds so long as 128C3KγCmax

225 ≤ 128C3Kγ4
225ωmin

≤ 3Kγ
4 , which is true if

C3 ≤ 675ωmin

2048
; thus we take C3 =

675ωmin

2048
from this point on. (2.19)

It follows from Lemma 2.8 that s1(X )2|x1 − y1|2 ≥ Kγ
4

. Hence by (2.10)

|x1 − y1| ≥
√
Kγ

2s1(X )
≥

√
Kγ

2
√

2NK
≥ 1

2

√
γ

2N
. (2.20)

Thus the condition of Theorem 2.14 holds with c2 = 1
2 , so long as

Nγ ≥ 2048C2
1

√
B

3ωmin
, (2.21)

due to (2.16) and (2.19); This is a weaker condition than (2.32) for f < 1
2 .

2. When s2(X) ≥ T , we have s2(X ) ≥ s2(X) − s1(X − X ) ≥ T − C0

√
K ≥

14T
15

; This satisfies the condition of Theorem 2.18, with c3 = 14
√
C3

15
=

7
16

√
3ωmin

2
.
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Let us first denote the first singular vector u1 and its “noise” vector ǫ as
follows:

uT1 = (x+ δ1, . . . , x+ δN1 , y+ τ1, . . . , y + τN2 ) , ǫ
T = (δ1, . . . , δN1 , τ1, . . . , τN2) .

It turns out that we only need to use the mixture mean

M =

∑N1

i=1(x+ δi) +
∑N2

i=1(y + τi)

2N
(2.22)

to decide which side to put a node, i.e., to partition j ∈ [2N ] according to
u1,j <M or u1,j ≥M , given that N1/N2 is a constant; Misclassifying any entry

will contribute Ω
(
γ

2N

)
amount to ‖ū1 − u1‖2

2.

Theorem 2.14. Assume w.l.o.g. that N1 ≤ N2 and 2N ≤ K. Let ω1 = N1/2N
and ω2 = N2/2N . Suppose |x1 − y1| ≥ c2

√
γ

2N for some constant c2 = 1
2 . By

requiring N ≥ 2048C2
1

√
B

3γωmin
as in (2.21), and

N1 ≥ 2c21σ
2

fc22γω1ω2
, or equivalently 2N ≥ 2c21σ

2

fc22γω2ω2
1

=
25C2

1

√
B

fc22γω2ω2
1

, (2.23)

where c1 = 5C1B
1/4

√
2c0σ

for C1 specified in Theorem 2.4 and c0 specified in Proposi-

tion 2.5, we can classify the two population using the mixture mean M with the
error factor at most f for N1, N2 respectively whp.

By Lemma 2.1 and Theorem 2.4, we immediately have the following claim.

Claim 2.15. For c1 chosen as in Theorem 2.14, ‖ǫ‖2
2 =

∑N1

i=1 δ
2
i +

∑N2

i=1 τ
2
i ≤

c21σ
2

N .

Proof. Given that c1 = 5C1

1
4
√
B√

2c0σ
such that C1 appears in Theorem 2.4 and c0

appears in Proposition 2.5,

√√√√
N1∑

i=1

δ2i +

N2∑

i=1

τ2
i = ‖u1 − ū1‖2 ∼ 2θ1 ∼ 2 sin(θ1)

≤ 4s1(X − X )

gap(1,X )
≤ 4C1

1
4

√
B
√
K

4c0
√

2NK/5
=
c1σ√
N
.

This allows us to conclude the claim.

We need the following lemma, proof of which appears in Appendix B.

Lemma 2.16. Assume that 2N ≤ K and Condition (2.23) in Theorem 2.14,
we have

|M − x| ≥ N2(1 −√
γ) |y − x|

2N
, |y −M | ≥ N1(1 −√

γ) |y − x|
2N

. (2.24)
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Proof of Theorem 2.14. Recall that the largest ū1, ū2 have the form of [x, . . . , x,
y, . . . , y], where x repeats N1 times and y repeats N2 times; hence w.l.o.g.,
assume that x < y, we have

∀i, s.t. x+ δi > M, it contributes δ2i > |M − x|2 ≥≈ N2
2 c

2
2γ

8N3
to ‖ǫ‖2

2 , (2.25)

∀i, s.t. y − τi < M, it contributes δ2i > |M − y|2 ≥≈ N2
2 c

2
2γ

8N3
to ‖ǫ‖2

2 . (2.26)

Hence the total number of entries that goes above M from P1, and those goes
below M from P2 can not be too many since their total contribution is upper
bounded by ‖ǫ‖2

2 = ‖u1 − ū1‖2
2. Let ℓ1 be the number of misclassified entries

from N1, i.e., those described in (2.25), by Lemma 2.1,

ℓ1
N2

2 c
2
2γ

8N3
≤ ℓ1|M − x|2 ≤ ‖ǫ‖2

2 ≤ c21σ
2

N
. (2.27)

Thus given that N1 ≥ 8c21σ
2

fc22γ
≥ 2c21σ

2

fω2
2c

2
2γ

; hence it suffices to guarantee that ℓ1 ≤
2c21σ

2

ω2
2c

2
2γ

≤ fN1 .

We next bound the number of entries from P2 that goes below M , which can
not be too many either; let ℓ2 be the number of misclassified entries from P2,

ℓ2
N2

1 c
2
2γ

8N3
≤ ℓ2|M − y|2 ≤ ‖ǫ‖2

2 ≤ c21σ
2

N
, (2.28)

hence by requiring

N2 ≥ 2c21σ
2

fω2
1c

2
2γ
, (2.29)

it suffices to guarantee that ℓ2 ≤ 2c21σ
2

ω2
2c

2
2γ

≤ fN2 .

Condition (2.29) is equivalent to

N1 =
N2ω1

ω2
≥ 2c21σ

2

fω1ω2c22γ
, (2.30)

Thus by requiring

N1 ≥ 2c21σ
2

fc22γω2ω1
, (2.31)

we have satisfied all requirements.

Combining Lemma 2.1 and Corollary 2.9, we have

Claim 2.17. Given that s2(X ) ≥ c3
√
KNγ, ‖u2 − ū2‖2

2 ≤ 16s1(X−X )2

s2(X )2 ≤
16C2

0K
c23KNγ

.
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This allows us to prove the following theorem. Let the classification error
factor be the number of misclassified individuals from one group over total
amount of people in that group.

Theorem 2.18. Assume N1 ≤ N2 and 2N ≤ K. Let ω1 = N1/2N and ω2 =

N2/2N . Let s2(X ) ≥ c3
√
KNγ, where c3 = 7

16

√
3ωmin

2
and ωmin is the minimum

possible weight allowed by the algorithm. By requiring

2N ≥ 360C2
0

ωminfγ

(
ω2

ω1
+ 1

)
= Θ

(
σ2

fγωminω1

)
, (2.32)

we can classify the two population using 0 to separate components in u2, with
error factor at most f for both P1, P2 whp.

Proof. Let ℓ1, ℓ2 be the number of misclassified entries from P1 and P2 respec-
tively; they each contribute at least Cx min

2N , and
Cy min

2N amount to ‖u2 − ū2‖2,
and hence by Claim 2.17,

ℓ1
Cxmin

2N
≤ ‖u2 − ū2‖2

2 ≤ 16C2
0K

c23KNγ
≤ 16C2

0

c23Nγ
. (2.33)

Hence ℓ1 ≤ 32C2
0

c23γCx min
≤ fN1 given that N ≥ 16C2

0

c23fγ

(
4ω1

ω2
+ 1
)
.

Similarly, by Claim 2.17, we have ℓ2
Cx min

2N ≤ ‖u2 − ū2‖2
2 and thus ℓ2 ≤

32C2
0

c23γCy min
≤ N2

f
so long as N ≥ 16C2

0

c23fγ

(
4ω2

ω1
+ 1
)
; the bound on 2N follows by

plugging in c3 = 7
16

√
3ωmin

2 .

Finally,

Theorem 2.19. Given a set of n ≥ Ω
(

σ2

γfωωmin

)
individuals, by trying Proce-

dure Classify for logn rounds, with probability of error at each round for each
individual being f = 1/10, where each round we take a set of K > n independent
features, and by taking majority vote over the different runs for each sample,
our algorithm will find the correct partition with probability 1 − 1/n2.

Proof. A sample is put in the wrong side with a probability 1/10 at each round.
Let Ei be the event that sample i is misclassified for more than logn times, thus

Pr[Ei] =
(

1
10

)log n ≤ 1/n3.32; hence by union bound, with probability 1 − 1/n2,
none of the 2N individuals is misclassified.

3. The algorithm Partition

3.1. Preliminaries

Let V = {1, . . . , n} be the set of all n individuals, and let ψ : V → {1, . . . , k}
be the map that assigns to each individual the population it belongs to. Set
Vt = ψ−1(t) and Nt = |Vt|. Moreover, let E = (Evi)1≤v≤n,1≤i≤K be the n ×K
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matrix with entries Evi = piψ(v). For any 1 ≤ t ≤ k we let E
Vt = (plt)l=1,...,K be

the row of E corresponding to any v ∈ Vt. In addition, let A = (avi) denote the
empirical n×K input matrix. Thus, the entries of E equal the expectations of
the entries of A.

As in Theorem 1.3, we let

γ = K−1 min
1≤i<j≤k

‖E
Vi − E

Vj‖2, Γ = Kγ.

Further, set λ =
√
Kσ. Then the assumption from Theorem 1.3 can be rephrased

as
nminΓ > Ckλ

2 and Γ > K−1 (3.1)

where Ck signifies a sufficiently large number that depends on k only (the precise
value of Ck will be specified implicitly in the course of the analysis). As in
the previous section, by repeating the partitioning process logn times, we may
restrict our attention to the problem of classifying a constant fraction of the
individuals correctly. That is, it is sufficient to establish the following claim.

Claim 3.1. There is a polynomial time algorithm Partition that satisfies the
following. Suppose that (3.1) is true. Then whp Partition(A, k) outputs a par-
tition (S1, . . . , Sk) of V such that there exists a permutation σ such that

k∑

i=1

|Vi△Sσ(i)| < 0.001nmin.

Let X = (xij)1≤i≤n,1≤j≤K be a n×K matrix. By Xi we denote the i’th row
(Xi1, . . . , XiK) of X. Moreover, we let

‖X‖ = max
ξ∈RK :‖ξ‖=1

‖Xξ‖

signify the operator norm of X. A rank k approximation of X is a matrix X̂ of
rank at most k such that for any n × K matrix Y of rank at most k we have
‖X − X̂‖ ≤ ‖X −Y ‖. Given X, a rank k approximation X̂ can be computed as
follows. Letting ρ = rank(X), we compute the singular value decomposition

X =

ρ∑

i=1

λiξiη
T
i ;

here (ξi)1≤i≤ρ is an orthonormal family in Rn, (ηi)1≤i≤ρ is an orthonormal
family in RK , and we assume that the singular values λi are in decreasing order
(i.e., λ1 ≥ · · · ≥ λρ). This can be accomplished in polynomial time within any

numerical precision. Then X̂ =
∑min{k,ρ}

i=1 λiξiη
T
i is easily verified to be a rank

k approximation.
In addition to the operator norm, we are going to work with the Frobenius

norm

‖X‖F =

√√√√
n∑

i=1

K∑

j=1

x2
ij.
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Although the following fact is well known, we provide its proof for completeness.

Lemma 3.2. If X has rank k, then ‖X‖2
F ≤ k‖X‖2.

Proof. Let X =
∑k

i=1 λiξiη
T
i be a singular value decomposition as above. Then

‖X‖2
F =

∑

i,j

x2
ij =

k∑

i,j=1

λiλj 〈ξi, ξj〉 〈ηi, ηj〉 .

Since ξ1, . . . , ξk and η1, . . . , ηk are orthonormal families, we have 〈ξi, ξj〉 =

〈ηi, ηj〉 = 1 if i = j and 〈ξi, ξj〉 = 〈ηi, ηj〉 = 0 if i 6= j. Hence, ‖X‖2
F =

∑k
i=1 λ

2
i .

This implies the assertion, because λi ≤ ‖X‖ for all 1 ≤ i ≤ k.

3.2. Description of the algorithm

Algo 3.3. Partition(A, k)
Input: A n×K matrix A and the parameter k. Output: A partition S1, . . . , Sk
of V .

1. Compute a rank k approximation Â of A.

For j = 1, . . . , 2 log K do

2. Let Γj = K2−j and compute Q(j)(v) = {w ∈ V : ‖Âw − Âv‖
2 ≤ 0.01Γ2

j} for

all v ∈ V .

Then, determine sets Q
(j)
1 , . . . , Q

(j)
k as follows: for i = 1, . . . , k do

3. Pick v ∈ V \
⋃i−1

l=1
Q

(j)
l such that |Q(j)(v) \

⋃i−1

l=1
Q

(j)
l | is maximum.

Set Q
(j)
i = Q(j)(v) \

⋃i−1

l=1
Q

(j)
l and ξ

(j)
i = 1

|Q
(j)

i
|

∑
w∈Q

(j)

i

Âw.

4. Partition the entire set V as follows: first, let S
(j)
i = Q

(j)
i for all 1 ≤ i ≤ k.

Then, add each v ∈ V \
⋃k

l=1
Q

(j)
l to a set S

(j)
i such that ‖Âv − ξ

(j)
i ‖ is

minimum.

Set rj =
∑k

i=1

∑
v∈S

(j)

i

‖Âv − ξ
(j)
i ‖2.

5. Let J be such that r∗ = rJ is minimum. Return S
(J)
1 , . . . , S

(J)
k .

The basic idea behind Partition is to classify each individual v ∈ V accord-
ing to its row vector Âv in the rank k approximation Â. That is, two individuals
v, w are deemed to belong to the same population iff ‖Âv − Âw‖2 ≤ 0.01Γ2.
Hence, Partition tries to determine sets S1, . . . , Sk such that for any two v, w
in the same set Sj the distance ‖Âv − Âw‖ is small. To justify this approach,

we show that Â is “close” to the expectation E of A in the following sense.

Lemma 3.4. There is a constant C > 0 such that
∑

v∈V ‖Âv − Ev‖2 ≤ Ckλ2

whp.

Proof. Since both Â and E have rank at most k, and as therefore Â − E has
rank at most 2k, Lemma 3.2 yields

∑

v∈V
‖Âv − Ev‖2 = ‖Â− E‖2

F ≤ 2k‖Â− E‖2.
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Furthermore, ‖Â−E‖ ≤ ‖Â−A‖+ ‖E−A‖ ≤ 2‖E−A‖, because Â is a rank k
approximation ofA. As Theorem 2.4 implies that ‖A−E‖2 ≤ Cλ2/8 for a certain

constant C > 0, we thus obtain
∑

v∈V ‖Âv − Ev‖2 ≤ 8k‖A− E‖2 ≤ Ckλ2.

Observe that Lemma 3.4 implies that for most v we have ‖Âv−Ev‖2 ≤ 10−6Γ,

say. For letting z = |{v : ‖Âv − Ev‖2 > 10−6Γ}|, we get

10−6Γz ≤
∑

v∈V
‖Âv − Ev‖2 ≤ Ckλ2,

whence z ≪ nmin due to our assumption that nminΓ ≫ kλ2. Thus, most rows of
Â are close to the corresponding rows of the expected matrix E. Therefore, the

separation assumption n > Ckσ
2

γω from Theorem 1.3 implies that for most pairs

of elements in different classes v ∈ Vi, w ∈ Vj the squared distance ‖Âv − Âw‖2

will be large (at least 0.99Γ, say). By contrast, for most pairs u, v ∈ Vi of

elements belonging to the same class ‖Âv − Âw‖2 will be small (at most 0.01Γ,
say), because Ev = Ew.

As the above discussion indicates, if the algorithm were given Γ as an input
parameter, the procedure described in Steps 2–4 (with Γj replaced by Γ) would
yield the desired partition of V . The procedure described in Steps 2–4 is very
similar to the spectral partitioning algorithm from McSherry (2001).

However, since Γ is not given to the algorithm as an input parameter, Parti-

tion has to estimate Γ on its own. (This is the new aspect here in comparison to
McSherry (2001), and this fact necessitates a significantly more involved anal-
ysis.) To this end, the outer loop goes through 2 logK “candidate values” Γj.

These values are then used to obtain partitionsQ
(j)
1 , . . . , Q

(j)
k in Steps 2–4. More

precisely, Step 2 uses Γj to compute for each v ∈ V the set Q(v) of elements

w such that ‖Âw − Âv‖ ≤ 0.01Γ2
j . Then, Step 3 tries to compute “big” disjoint

Q
(j)
1 , . . . , Q

(j)
k , where each Q

(j)
i results from some Q(vi). Further, Step 4 assigns

all elements v not covered by Q
(j)
1 , . . . , Q

(j)
k to that Q

(j)
i whose “center vector”

ξ
(j)
i is closest to Âv. In addition, Step 4 computes an “error parameter” rj.

Finally, Step 5 outputs the partition that minimizes the error parameter rj.
Thus, we need to show that eventually picking the partition whose error term

rj is minimum yields a good approximation to the ideal partition V1, . . . , Vk.

The basic reason why this is true is that the “empirical” mean ξ
(j)
i should

approximate the expectation E
Vi for class Vi well iffQ

(j)
i is a good approximation

of Vi. Hence, if Q
(j)
1 , . . . , Q

(j)
k is “close” to V1, . . . , Vk, then

rj =

k∑

i=1

∑

v∈S(j)

i

‖Âv − ξ
(j)
i ‖2

will be about as small as ‖Â−E‖2
F (cf. Lemma 3.4). In fact, the following lemma

shows that if Γj is “close” to the ideal Γ, then rj will be small.
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Lemma 3.5. If 1
2Γ ≤ Γj ≤ Γ, then rj ≤ C0k

3λ2 for a certain constant C0 > 0.

We defer the proof of Lemma 3.5 to Section 3.3. Furthermore, the next lemma
shows that any partition such that rj is small yields a good approximation to
V1, . . . , Vk.

Lemma 3.6. Let S1, . . . , Sk be a partition and ξ1, . . . , ξk a sequence of vec-
tors such that

∑k
i=1

∑
v∈Si

‖ξi − Âv‖2 ≤ C0k
3λ2. Then there is a bijection

Ξ : {1, . . . , k} → {1, . . . , k} such that the following holds.

1. ‖ξi − E
VΞ(i)‖2 ≤ 0.001Γ2 for all i = 1, . . . , k, and

2.
∑k

i=1 |Si△VΞ(i)| < 0.001nmin.

The proof of Lemma 3.6 can be found in Section 3.4.

Proof of Claim 3.1. Since the rank k approximation Â can be computed in poly-
nomial time (within any numerical precision), Partition is a polynomial time
algorithm. Hence, we just need to show that K−1 ≤ Γ ≤ K; for then Partition

will eventually try a Γj such that 1
2Γ ≤ Γj ≤ Γ, so that the claim follows from

Lemmas 3.5 and 3.6. To see that K−1 ≤ Γ ≤ K, recall that we explicitly assume
that Γ > K−1. Furthermore, all entries of the vectors E

Vi lie between 0 and 1,
whence Γ = maxi<j ‖E

Vi − E
Vj‖2 ≤ K.

3.3. Proof of Lemma 3.5

Suppose that 1
2Γ ≤ Γj ≤ Γ. To ease up the notation, we omit the superscript

j; thus, we let Si = S
(j)
i , Qi = Q

(j)
i for 1 ≤ i ≤ k, and Q(v) = Q(j)(v) for

v ∈ V (cf. Steps 2–4 of Partition). The following lemma shows that there is a
permutation π such that ξi is “close” to E

Vπ(i) for all 1 ≤ i ≤ k, and that the
sets Qi are “not too small”.

Lemma 3.7. Suppose that 1
2Γ ≤ Γj ≤ Γ. There is a bijection π : {1, . . . , k} →

{1, . . . , k} such that for each 1 ≤ i ≤ k we have |Qi| ≥ 1
2 |Vπ(i)| and ‖ξi −

E
Vπ(i)‖2 ≤ 0.1Γ.

Proof. For 1 ≤ i ≤ k we choose π(i) so that |Qi ∩ Vπ(i)| is maximum. We shall
prove below that for all 1 ≤ l ≤ k we have

‖ξl − E
Vπ(l)‖2 ≤ 0.1Γ, (3.2)

|Ql| ≥ max{|Vi| : i ∈ {1, . . . , k} \ π({1, . . . , l− 1})}− 0.01nmin, (3.3)

|Ql ∩ Vπ(l)| ≥ |Ql| − 0.01nmin. (3.4)

These three inequalities imply the assertion. To see that π is a bijection, let us
assume that π(l) = π(l′) for two indices 1 ≤ l < l′ ≤ k. Indeed, suppose that
l = minπ−1(l). Then |Ql| ≥ |Vπ(l)| − 0.01nmin by (3.3), and thus |Vπ(l) \Ql| ≤
0.1nmin by (3.4). As Ql ∩Ql′ = ∅ by construction, we obtain the contradiction

0.99nmin

(3.3)

≤ |Ql′ |
(3.4)

≤ 1.1|Ql′ ∩ Vπ(l)| ≤ 1.1|Vπ(l) \Ql| ≤ 0.11nmin.
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Finally, as π is bijective, (3.3) entails that |Ql| ≥ 0.9Vπ(l) for all 1 ≤ l ≤ k.

Hence, due to (3.4) we obtain |Ql ∩ Vl| ≥ 0.9|Ql| ≥ 1
2 |Vπ(l)|, as desired.

The remaining task is to establish (3.2)–(3.4). We proceed by induction on
l. Thus, let us assume that (3.2)–(3.4) hold for all l < L; we are to show that
then (3.2)–(3.4) are true for l = L as well. As a first step, we establish (3.3). To
this end, consider a class Vi such that i 6∈ π({1, . . . , L− 1}) and let Zi = {v ∈
Vi : ‖Âv − Ev‖2 ≤ 0.001Γ}. Then 0.001Γ(|Vi| − |Zi|) ≤

∑
v∈Vi\Zi

‖Âv − Ev‖2 ≤
‖Â− E‖2

F ≤ Ckλ2 (cf. Lemma 3.4) whence the assumption (3.1) on Γ yields

|Zi| ≥ |Vi| − 0.01nmin, (3.5)

provided that Ck is sufficiently large. Moreover, for all v ∈ Zi we have

Q(v) = {w ∈ V : ‖Âv − Âw‖2 ≤ 0.01Γj} ⊃ Zi, (3.6)

because we are assuming that Γj ≥ Γ/2. In addition, let w ∈ Ql for some l < L;
since our choice of i ensures that v ∈ Vi 6= Vπ(l) , we have

√
Γ≤‖E

Vπ(l) −Ev‖ ≤ ‖Ev− Âv‖+ ‖Âw − Âv‖+ ‖ξl− Âw‖+ ‖ξl−E
Vπ(l)‖. (3.7)

Now, the construction in Step 3 of Partition ensures that ‖Âw − ξl‖ ≤ 0.1
√

Γ.

Furthermore, ‖ξl − E
Vπ(l)‖ ≤

√
Γ/3 by induction (cf. (3.2)), and ‖Âv − Ev‖ ≤

0.1
√

Γ, because v ∈ Zi. Hence, (3.7) entails that ‖Âw − Âv‖ > 0.1
√

Γ, so that
w 6∈ Q(v). Consequently, (3.6) yields

Zi ∩Ql = ∅ for all l < L. (3.8)

Finally, let vL signify the element chosen by Step 3 of Partition to construct
QL. Then by construction |QL| = |Q(vL)\⋃L−1

l=1 Ql| ≥ |Q(v)\⋃L−1
l=1 Ql|. There-

fore,

|QL| ≥ |Q(v) \
L−1⋃

l=1

Ql|
(3.6), (3.8)

≥ |Zi|
(3.5)

≥ |Vi| − 0.01nmin.

As this estimate holds for all i 6∈ π({1, . . . , L− 1}), (3.3) follows.
Thus, we know that QL is “big”. As a next step, we prove (3.4), i.e., we show

that QL “mainly” consists of vertices in Vπ(L). To this end, let 1 ≤ i ≤ k be

such that ‖E
Vi − ÂvL‖ is minimum. Let Y = QL \ Vi. Then for all w ∈ Y we

have ‖Ew − ÂvL‖ ≥ ‖E
Vi − Âv‖. Further, since

√
Γ ≤ ‖Ew − E

Vi‖ ≤ ‖Ew −
ÂvL‖ + ‖E

Vi − ÂvL‖ ≤ 2‖Ew − ÂvL‖, we conclude that ‖Ew − ÂvL‖2 ≥ 1
4Γ. On

the other hand, as w ∈ QL, we have ‖Âw− ÂvL‖2 ≤ 0.01Γ. Therefore, we obtain

‖Âw − Ew‖2 ≥ 0.1Γ for all w ∈ Y , so that

0.1|Y |Γ ≤
∑

w∈Y
‖Âw − Ew‖2 ≤ ‖Â− E‖2

F

Lemma 3.4
≤ ckλ

2. (3.9)

Hence, due to our assumption (3.1) on Γ, (3.9) yields that |Y | < 0.01nmin.
Consequently, (3.3) entails that |Vi ∩ QL| ≥ 0.99|QL|, so that i = π(L). Hence,
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we obtain |QL ∩ Vπ(L)| = |QL ∩ Vi| = |QL \ Y | ≥ |QL| − 0.01nmin, thereby
establishing (3.4).

Finally, to show (3.2), we note that by construction ‖ξL − ÂvL‖2 ≤ 0.01Γ

and ‖Âw − ÂvL‖2 ≤ 0.01Γ for all w ∈ QL ∩ Vπ(L) (cf. Step 3 of Partition).
Therefore,

|QL ∩ Vπ(L)| · ‖Eπ(L) − ξL‖2

≤ 3
∑

w∈QL∩Vπ(L)

‖ξL − ÂvL‖2 + ‖Âw − ÂvL‖2 + ‖Âw − Êπ(L)‖2

≤ 0.06Γ|QL ∩ Vπ(L)| + 3‖Â− E‖2
F

Lemma 3.4
≤ 0.06Γ|QL ∩ Vπ(L)| + 3ckλ

2. (3.10)

Since |QL∩Vπ(L)| ≥ 0.9nmin due to (3.3) and (3.4), (3.10) entails that ‖Eπ(L) −
ξL‖2 ≤ 0.07Γ + 6ckλ

2

nmin
≤ 0.1Γ. Thus, (3.2) follows.

In the sequel, we shall assume without loss of generality that the map π
from Lemma 3.7 is just the identity, i.e., π(i) = i for all i. Bootstrapping on
the estimate ‖ξi − E

Vi‖2 ≤ 0.1Γ for 1 ≤ i ≤ k from Lemma 3.7, we derive the
following stronger estimate.

Corollary 3.8. For all 1 ≤ i ≤ k we have ‖ξi−E
Vi‖2 ≤ 100|Qi|−1

∑
v∈Qi

‖Âv−
Ev‖2.

Proof. By the Cauchy-Schwarz inequality,

‖ξi − E
Vi‖ = |Qi|−1

∥∥∥∥∥
∑

v∈Qi

Âv − E
Vi

∥∥∥∥∥ ≤ |Qi|−1/2

[
∑

v∈Qi

‖Âv − E
Vi‖2

]1/2

. (3.11)

Furthermore, as ‖ξi − E
Vi‖2 ≤ 0.1Γ by Lemma 3.7, for all v ∈ Qi \ Vi we have

‖Âv − E
Vi‖2 ≤ 2(‖Âv − ξi‖2 + ‖ξi − E

Vi‖2) ≤ Γ1/3, (3.12)

because the construction of Qi in Step 3 of Partition ensures that ‖Âv−ξi‖2 ≤
0.01Γ. Hence, as ‖Ev−E

Vi‖2 ≥ Γ, (3.12) implies that ‖Âv−Ev‖ ≥ 0.1‖Âv−E
Vi‖.

Therefore, the assertion follows from (3.11).

Corollary 3.9. For all v ∈ Si \ Vi we have ‖Âv − ξi‖ ≤ 3‖Âv − Ev‖.
Proof. Let i 6= l and consider a v ∈ Si ∩ Vl. We shall establish below that

‖Âv − ξi‖ ≤ ‖Âv − ξl‖. (3.13)

Then by Lemma 3.7 ‖Âv−ξi‖ ≤ ‖Âv−Ev‖+‖Ev−ξl‖ ≤ ‖Âv−Ev‖+
√

Γ/3, and

thus
√

Γ ≤ ‖Ev−E
Vi‖ ≤ ‖Âv−ξi‖+‖ξi−E

Vi‖+‖Âv−Ev‖ ≤ 2‖Âv−Ev‖+ 2
3

√
Γ.
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Consequently, we obtain ‖Âv − Ev‖ ≥ 1
6

√
Γ, so that the assertion follows from

the estimate

‖Âv − ξi‖
(3.13)

≤ ‖Âv − ξl‖ ≤ ‖Âv − Ev‖ + ‖Ev − ξl‖
Lemma 3.7

≤ ‖Âv − Ev‖ +

√
Γ

3
≤ 3‖Âv − Ev‖.

Finally, we prove (3.13). If v ∈ Si ∩ Vl \ Qi, then the construction of Si in

Step 4 of Partition guarantees that ‖Âv − ξi‖ ≤ ‖Âv − ξl‖, as claimed. Thus,
assume that v ∈ Qi ∩ Vl. Then

‖Âv − ξi‖ ≤ 0.15
√

Γ [by the definition of Qi in Step 3],

max{‖ξi − E
Vi‖, ‖ξl − Ev‖} ≤ 1

3

√
Γ [by Lemma 3.7],

‖E
Vi − Ev‖ ≥

√
Γ .

Therefore, if ‖Âv − ξl‖ < ‖Âv − ξi‖, then we would arrive at the contradiction
√

Γ ≤ ‖E
Vi − Ev‖ ≤ ‖E

Vi − ξi‖ + ‖Ev − ξl‖ + ‖ξi − ξl‖

≤ 2

3

√
Γ + ‖Âv − ξi‖ + ‖Âv − ξl‖ <

2

3

√
Γ + 2‖Âv − ξi‖ ≤ 0.99

√
Γ.

Thus, we conclude that ‖Âv−ξl‖ ≥ ‖Âv−ξi‖, thereby completing the proof.

Proof of Lemma 3.5. Since |Qi| ≥ 1
2 |Vi| by Lemma 3.7, we have the estimate

k∑

i=1

∑

w∈Si∩Vi

‖Âw − ξi‖2 ≤ 2

k∑

i=1

∑

w∈Si∩Vi

[
‖Âw − Ew‖2 + ‖Ew − ξi‖2

]

Cor. 3.8
≤ 2‖Â− E‖2

F + 200
k∑

i=1

|Si ∩ Vi|
|Qi|

∑

v∈Qi

‖Âv − Ev‖2

≤ 500‖Â− E‖2
F . (3.14)

Furthermore, by Corollary 3.9

k∑

i=1

∑

v∈Si\Vi

‖Âv − ξi‖2 ≤ 9
k∑

i=1

∑

v∈Si\Vi

‖Âv − Ev‖2 ≤ 9‖Â− E‖2
F . (3.15)

Since ‖Â−E‖2
F ≤ Ckλ2 by Lemma 3.4, the bounds (3.14) and (3.15) imply the

assertion.

3.4. Proof of Lemma 3.6

Set Sab = Sa∩Vb for 1 ≤ a, b ≤ k. Moreover, for each 1 ≤ a ≤ k let 1 ≤ π(a) ≤ k
be such that ‖E

Vπ(a) − ξa‖ is minimum. Then for all b 6= π(a) we have
√

Γ ≤ ‖E
Vπ(a) − E

Vb‖ ≤ ‖E
Vπ(a) − ξa‖ + ‖E

Vb − ξa‖ ≤ 2‖E
Vb − ξa‖, (3.16)
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so that ‖E
Vb−ξa‖ ≥

√
Γ/2. Therefore, by our assumption that

∑k
i=1

∑
v∈Si

‖ξi−
Âv‖2 ≤ C0k

3λ2, we have

Γ

4

k∑

a=1

∑

1≤b≤k:b 6=π(a)

|Sab| ≤
k∑

a,b=1

|Sab| · ‖E
Vb − ξa‖2

≤ 2

k∑

a,b=1

∑

v∈Sab

‖Ev − Âv‖2 + ‖Âv − ξa‖2

≤ 2‖Â− E‖2
F + 2

k∑

a,b=1

∑

v∈Sab

‖Âv − ξa‖2

Lemma 3.4
≤ 4C0k

3λ2 + 2C0k
3λ2 ≤ C2

0k
3λ2. (3.17)

Hence,

k∑

a=1

|Sa△Vπ(a)| =
∑

1≤a,b≤k:b 6=π(a)

2|Sab| ≤
8c20k

3λ2

Γ
≤ 0.001nmin, (3.18)

provided that Ck is sufficiently large (cf. (3.1)). Combining (3.17) and (3.18),
we obtain nmin

2 ‖E
Vπ(a) − ξa‖2 ≤ |Sa ∩ Vπ(a)| · ‖Eπ(a) − ξa‖2 ≤ c20k

3λ2, whence

‖Eπ(a) − ξa‖2 ≤ 2c20k
3λ2

nmin
≤ 0.001Γ for all 1 ≤ a ≤ k, (3.19)

provided that Ck is large enough. Thus, we have established the first two parts of
the lemma. In addition, observe that (3.18) implies that π is bijective (because
the sets S1, . . . , Sk are pairwise disjoint and |Va| ≥ nmin for all 1 ≤ a ≤ k).
Finally, the third assertion follows from the estimate

k∑

a,b=1

|Sab| · ‖E
Vπ(a) − E

Vπ(b)‖2 ≤ 2

k∑

a,b=1

|Sab|
(
‖E

Vπ(a) − ξa‖2 + ‖E
Vπ(b) − ξa‖2

)

(3.16)

≤ 8

k∑

a,b=1

|Sab| · ‖E
Vπ(b) − ξa‖2

(3.17)

≤ 8C2
0k

3λ2 ≤ 0.001Γnmin,

where we assume once more that Ck is sufficiently large.

4. Experiments

We illustrate the effectiveness of spectral techniques using simulations. In par-
ticular, we explore the case when we have a mixture of two populations; we
show that when NK > 1/γ2 and K > 1/γ, either the first or the second left
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Fig 1. Plots show success rate as a function of N for several values of K, when γ =
(0.04)2. Each point is an average over 100 trials. Horizontal lines (“oracles”) indicate the
information-theoretically best possible success rate for that value of K (how well one could do
if one knew in advance which features satisfied pi

1 > pi
2 and which satisfied pi

1 < pi
2; they are

not exactly horizontal because they are also an average over 100 runs). Vertical bars indicate
the value of N for which NK = 1/γ2.

singular vector of X shows an approximately correct partitioning, meaning that
the success rate is well above 1/2. The entry-wise expected value matrix X is:
among K/2 features, pi1 > pi2 and for the other half, pi1 < pi2 such that ∀i,
pi1, p

i
2 ∈ { 1+α

2 + ǫ
2 ,

1−α
2 + ǫ

2}, where ǫ = 0.1α. Hence γ = α2. We report results
on balanced cases only, but we do observe that unbalanced cases show similar
tradeoffs. For each population P , the success rate is defined as the number of
individuals that are correctly classified, i.e., they belong to a group that P is
the majority of that group, versus the size of the population |P |.

Each point on the SVD curve corresponds to an average rate over 100 trials.
Since we are interested in exploring the tradeoffs ofN,K in all ranges (e.g., when
N << K or N >> K), rather than using the threshold T in Procedure Classify
that is chosen in case both N,K > 1/γ, to decide which singular vector to use,
we try both u1 and u2 and use the more effective one to measure the success
rate at each trial. For each data point, the distribution of X is fixed across all
trials and we generate an independent X2N×K for each trial to measure success
rate based on the more effective classifier between u1 and u2.

One can see from the plot that when K < 1/γ, i.e., when K = 200 and 400,
no matter how much we increase N , the success rate is consistently low. Note
that 50/100 of success rate is equivalent to a total failure. In contrast, when N is
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smaller than 1/γ, as we increase K, we can always classify with a high success
rate, where in general, NK > 1/γ2 is indeed necessary to see a high success
rate. In particular, the curves for K = 5000, 2500, 1250 show the sharpness of
the threshold behavior for increasing sample size n from below 1/Kγ2 to above.
For each curve, we also compute the best possible classification one could hope to
make if one knew in advance which features satisfied pi1 > pi2 and which satisfied
pi1 < pi2. These are the horizontal(ish) dotted lines above each curve. The fact
that the solid curves are approaching these information-theoretic upper bounds
shows that the spectral technique is correctly using the available information.
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Appendix A: More Proofs for the simple algorithm classify

A.1. Proof of Lemma 2.1

Let u1, . . . , un, v1, . . . , vn be the n left and right singular vectors of X, corre-
sponding to s1(X) ≥ s2(X) ≥ · · · ≥ sn(X), we have for ∀i, ‖ui‖2 = 1, ‖vi‖2 = 1
such that XT ui = si(X)vi and Xvi = si(X)ui.

Before we prove Lemma 2.1, given an n×K matrix X, where n < K, let us
first define H = XXT and a block matrix

Y =

[
0 X
XT 0

]

(2N+K)×(2N+K)

. (A.1)

Recall that singular values of a real n × K matrix X are exactly the non-
negative square roots of the n largest eigenvalues of H = XXT , i.e, si(X) =√
λi(H), ∀i = 1, . . . , n, given that

Hui = XXT ui = si(X)Xvi = s2i (X)ui. (A.2)

Hence the left singular vectors u1, . . . , un of X are eigenvectors of H correspond-
ing to λi(H) = s2i (X).

We next show that the first n eigenvalues of Y and their corresponding eigen-
vectors:

Y

[
ui
vi

]
=

[
0 X
XT 0

] [
ui
vi

]
=

[
Xvi
XT ui

]
=

[
si(X)ui
si(X)vi

]
= si(X)

[
ui
vi

]
,

(A.3)

and hence

Proposition A.1. The largest n eigenvalues of Y are s1(X), . . . , sn(X) with
corresponding eigenvectors [ui, vi], ∀i = 1, . . . , n, where ui, vi, ∀i, are left and
right singular vectors of X corresponding to si(X).
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In fact both ±si(X) are eigenvalues of Y , which is irrelevant.

Proof of Lemma 2.1. We first state a theorem, whose statement appears in
a lecture note by Spielman (2002), with a slight modification (off by a factor
on RHS). Our proof for this theorem is included here for completeness. It is
known that for any real symmetric matrix, there exist a set of n orthonormal
eigenvectors.

Theorem A.2 (Modified Version of Spielman (2002)). For A and M
being two symmetric matrices and E = M − A. Let λ1(A) ≥ λ2(A) ≥ · · · ≥
λn(A) be eigenvalues of A, with orthonormal eigenvectors v1, v2, . . . , vn and let
λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) be eigenvalues of M and w1, w2, . . . , wn be the
corresponding orthonormal eigenvectors of M , with θi = ∠(vi, wi). Then

θi ∼ sin(θi) ≤
‖E − ∆iI‖2

gap(i, A)
≤ ‖E‖2 + |∆i|

gap(i, A)
≤ 2 ‖E‖2

gap(i, A)
(A.4)

where gap(i, A) = minj 6=i |λi(A) − λj(A)| and ∆i = λi(M) − λi(A).

Let us apply Theorem A.2 to the symmetric matrix Y in (A.1). In particular,
we only compare the first n eigenvectors of Y of Y. For the numerator of RHS
of (A.4), we have E = Y −Y, and ‖E‖2 = ‖Y −Y‖2 = s1(Y −Y) by a derivation
similar to (A.3), where eigenvectors of E are concatenations of left and right
singular vectors of X − X ; For the denominator, we have by Proposition A.1,
gap(i,Y) = minj 6=i |λi(Y) − λj(Y)| = minj 6=i |si(X ) − sj(X )| .

We first prove the following claim.

Claim A.3. For any symmetric n× n matrix A, let λi, ∀i = 1, . . . , n be eigen-
values of A with orthonormal eigenvectors v1, v2, . . . , vn, for all y ⊥ vi,

‖(A− λi)y‖2 ≥ min
j 6=i

|λi − λj | ‖y‖2 .

Proof. Let us first assume y ⊥ vi and write y =
∑n

j=1,j 6=i cjvj , thus we have

‖y‖2 =
√∑n

j=1,j 6=i c
2
j and

‖(A− λi)y‖2 =

∥∥∥∥∥

n∑

j=1,j 6=i
cj(A− λi)vj

∥∥∥∥∥
2

=

∥∥∥∥∥

n∑

j=1,j 6=i
cj(λj − λi)vj

∥∥∥∥∥
2

=

√√√√
n∑

j=1,j 6=i
c2j |λj − λi|2

≥ min
j 6=i

|λi − λj |

√√√√
n∑

j=1,j 6=i
c2j = min

j 6=i
|λi − λj | ‖y‖2 .
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Proof of Theorem A.2. Let us construct a vector y that is orthogonal to vi as
follows:

y = wi − (vTi wi)vi

By Claim A.3, we have

‖(A− λi(A))y‖2 ≥ min
j 6=i

|λi(A) − λj(A)| ‖y‖2 ,

and hence

‖y‖2 ≤ ‖(A − λi(A))y‖2

minj 6=i |λi(A) − λj(A)|
On the other hand,

‖(A − λi(A))y‖2 =
∥∥(A − λi(A))(wi − (vTi wi)vi)

∥∥
2

= ‖(A− λi(A))wi‖2

= ‖(M − E − λi(A))wi‖2

= ‖(λi(M) − λi(A))wi − Ewi‖2

= ‖(∆iI − E)wi‖2 ≤ ‖E − ∆iI‖2

≤ ‖E‖2 + |∆i|
Finally, given that ‖w‖2 = 1,

sin(θi) =
‖y‖2

‖w‖2

≤ ‖(A − λi(A))y‖2

minj 6=i |λi(A) − λj(A)|

≤ ‖E‖2 + |∆i|
gap(i, A)

.

Lemma A.4. ∀i = 1, . . . , n, |∆i| ≤ ‖E‖2.

Proof. Let Sj be a subspace of dimension j. Recall the following definition of
λi for a matrix:

λi(M) = inf
SN−i+1

sup
x∈SN−i+1 ,‖x‖2=1

xTMx. (A.5)

In the following, let SvN−i+1 be the subspace that is orthogonal to the subset of
orthonormal eigenvectors v1, . . . , vi−1 of symmetric matrix A. Note that this is
the N− i+1 dimensional subspace that achieves the minimum of the maximum
of vTAv over all unit-length vectors v in the particular subspace. We have

λi(M) = inf
SN−i+1

sup
x∈SN−i+1 ,‖x‖2=1

xTMx ≤ sup
x∈Sv

N−i+1 ,‖x‖2=1

xTMx

≤ sup
x∈Sv

N−i+1
,‖x‖2=1

xT (A+ E)x

≤ sup
v∈Sv

N−i+1
,‖v‖2=1

vTAv + sup
x∈Rn,‖x‖2=1

|xTEx|

= λi(A) + ‖E‖2 .
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For the other direction, let SwN−i+1 be the subspace that is orthogonal to the
subset of orthonormal eigenvectors w1, . . . , wi−1 of symmetric matrix M . Note
that this is the N−i+1 dimensional subspace that achieves the minimum of the
maximum of wTMw over all unit-length vectors w in the particular subspace.
We have

λi(A) = inf
SN−i+1

sup
x∈SN−i+1 ,‖x‖2=1

xTAx ≤ sup
x∈Sw

N−i+1
,‖x‖2=1

xTAx

≤ sup
x∈Sw

N−i+1
,‖x‖2=1

xT (M + (−E))x

≤ sup
w∈Sw

N−i+1
,‖w‖2=1

wTMw + sup
x∈Rn,‖x‖2=1

xT (−E)x

≤ sup
w∈Sw

N−i+1 ,‖w‖2=1

wTMw + sup
x∈Rn,‖x‖2=1

|xT (−E)x|

= λi(M) + ‖E‖2 ,

where ‖E‖2 = ‖−E‖2. Thus −‖E‖2 ≤ λi(M) − λi(A) ≤ ‖E‖2, and |∆i| ≤
‖E‖2.

Therefore, sin(θi) ≤ ‖E‖2+|∆i|
gap(i,A)

≤ 2‖E‖2

gap(i,A)
.

A.2. Some Propositions regarding the static matrices

For static matrix H = XX T and Y =
[

0 X
XT 0

]
, we define

gap(H) = |λ1(H) − λ2(H)|,

gap(Y) = |λ1(Y) − λ2(Y)| =
gap(H)

λ1(Y) + λ2(Y)
,

Proposition A.5. For static matrix Y, let gap(Y) = |λ1(Y)−λ2(Y)| = gap(H)
λ1(Y)+λ2(Y)

,

we have

√
max{N1a,N2c} ≤ λ1(Y) ≤

√
N1a+N2c,√

N1a+N2c ≤ λ1(Y) + λ2(Y) ≤
√

2(N1a+N2c),√
N1N2(ac− b2)

N1a +N2c
≤ λ2(Y) ≤

√
2N1N2(ac− b2)

N1a+N2c
,

gap(Y) = Θ

(
gap(H)√
N1a+N2c

)
= Θ

(√
(N1a +N2c)2 − 4N1N2(ac− b2)√

N1a+N2c

)
.

Proof. We first show the following:
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Proposition A.6. For static matrix H = XX T as in (2.12), Let λ1(H), λ2(H)
be the non-zero eigenvalues of H, and denote gap(H) = |λ1(H) − λ2(H)|.

λ1(H) =
N1a+N2c+

√
(N1a−N2c)2 + 4N1N2b2

2
, (A.6)

λ2(H) =
N1a+N2c−

√
(N1a−N2c)2 + 4N1N2b2

2
, (A.7)

|N1a−N2c| ≤ gap(H) ≤ N1a+N2c, (A.8)

where λ2(H) = 0, when ac = b2 and gap(H) = N1a+N2c.

Proof. Let H = XX T . The rank of H is at most 2. Therefore there exist at most
two non-zero eigenvalues λ1, λ2 for H, with corresponding nonzero eigenvectors
v1, v2 being constant on each population. This is true because if we multiply
H = XX T by a permutation matrix P to exchange two rows among the same
population, we have PHvi = λiPvi, ∀i = 1, 2; given that PHvi = Hvi, we
deduce that Pvi = vi for non-zero λi. Hence vi must be constant on each
population.

Let the top two eigenvector v1, v2 be of form [x, . . . , x, y, . . . , y], where x
repeats N1 times and y repeats N2 times; Note that they corresponds to ū1 and
ū2 of X following a derivation similar to (A.2).

We thus have the following equations:

N1ax+N2by = λx, (A.9)

N1bx+N2cy = λy, (A.10)

which can be written in a matrix form:
[
N1a − λ N2b
N1b N2c− λ

] [
x
y

]
= 0

Given that [
x
y

]
6= 0,

the matrix is not one-to-one and therefore

D

[
N1a− λ N2b
N1b N2c− λ

]
= 0.

By solving (N1a−λ)(N2c−λ)−N1N2b
2 = 0, we get λ1(H), λ2(H) and gap(H).

We next derive an upper bound on gap(H).

gap(H) =
√

(N1a−N2c)2 + 4N1N2b2 (A.11)

=
√

(N1a+N2c)2 − 4N1N2ac+ 4N1N2b2 (A.12)

≤
√

(N1a+N2c)2 (A.13)

≤ N1a+N2c, (A.14)

where a, c ≥ 0 and ac ≥ b2 as in Proposition 2.10. Hence gap(H) ≥ |N1a−N2c|,
given that b2 ≥ 0.
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Thus we have

max{N1a,N2c} ≤ λ1(H) ≤ N1a+N2c, (A.15)

0 ≤ λ2(H) ≤ min{N1a,N2c}, (A.16)

λ1(H) + λ2(H) = N1a +N2c, (A.17)

λ1(H)λ2(H) = N1N2(ac − b2), (A.18)

Given two largest eigenvalues of Y, λ1(Y) =
√
λ1(H) and λ2(Y) =

√
λ1(H) for

Y =
[

0 X
XT 0

]
, we get all inequalities, by Proposition A.6 and the following:

√
(λ1(Y)2 + λ2(Y)2) ≤ λ1(Y) + λ2(Y) =

√
2(λ1(Y)2 + λ2(Y)2).

A.3. Proofs of Proposition 2.5 and 2.6

Proof of Proposition 2.5. We rewrite Proposition A.5 given that, for a normal-
ized X , gap(H) ≥ 8c0NK

5 , as Proposition A.8 and λj(Y) = sj(X ). In particular,

gap(X ) = gap(Y) =
gap(H)

λ1(Y) + λ2(Y)

≥ gap(H)√
N1a +N2c

≥ 8c0NK

5
√

2NK

≥ 4
√

2NK

5
.

For the upper bound on gap(X ), we have that

gap(X ) = gap(Y) =
gap(H)

λ1(Y) + λ2(Y)

≤ N1a+N2c√
N1a+N2c

≤
√

2NK

Definition A.7. For our application, we have ∀k, 1 ≥ pk1 , p
k
2 ≥ 0, and

X =





1+p11
2

1+p21
2 . . .

1+pK
1

2
. . .

1+p11
2

1+p21
2 . . .

1+pK
1

2
1+p12

2
1+p22

2
. . .

1+pK
2

2
. . .

1+p12
2

1+p22
2 . . .

1+pK
2

2





2N×K

It is easy to see that with this normalized random matrix, λ1(H) = λ2(H) is
not possible, given that a, b, c ∈ [K/4, K]; furthermore, gap(H) = Θ(NK) as in
the Proposition A.8.



A. Blum et al./Separating populations with wide data: A spectral analysis 107

Proposition A.8. Given H = XX T and a, b, c as in (2.8) for any expected
value mean matrix X , which is not necessarily normalized,

gap(H) =
√

(N1a−N2c)2 + 4N1N2b2 ≥ 8c0NK

5
,

where c0 = |b|√ac
K(a+c) .

Hence for a normalized X , gap(H) = Θ(NK) given that a, b, c ∈ [K/4, K].

Proof. For a tighter lower bound of gap(H) than the obvious |N1a − N2c|, let
us assume w.l.o.g. that N2c ≥ N1a. Thus we have

N2 ≥ 2N
a

a+ c
(A.19)

We differentiate two cases:

• Balanced case: N1a ≥ 4
25
N2c.

• Imbalanced case: N1a ≤ 4
25N2c.

For balanced case: we have N1 ≥ 4
25
N2c
a

and hence

gap(H) ≥
√

4N1N2b2 ≥ 4N2|b|
5

√
c

a

≥ 8N |b|
5

a

a+ c

√
c

a
≥ 8N |b|

5

√
ac

a+ c

=
8c0NK

5
,

where N2 ≥ 2N a
a+c as in (A.19).

For the imbalanced case, given that
√
ac ≥ |b| by Proposition 2.10,

gap(H) ≥
√

(N1a−N2c)2 ≥ 21

25
N2c

≥ 42

25

Nac

a+ c
≥ 8

5

N |b|√ac
a+ c

≥ 8c0NK

5
.

Finally, for a normalized random matrix X and its X , we have c0 being a
constant and combing with the upper bound of gap(H) ≤ N1a + N2c ≤ 2NK
concludes that gap(H) = Θ(NK).

Proof of Proposition 2.6. By (A.2), ū1, ū2 are the first and second eigenvectors
of H corresponding to λ1(H) and λ2(H). Let x, y be entries that correspond to
P1, P2 respectively in the first or second eigenvectors of H. By (A.9) and (A.10),
we have

y

x
=
λ −N1a

N2b
=

N1b

λ −N2c
.

In addition, given any b 6= 0, we have gap(H) > |N1a−N2c| and hence λ1(H) >
max{N1a,N2c} > λ2(A). Therefore, for b > 0, y

x ≥ 0 for first eigenvector and
≤ 0 for v2. and for b < 0, it is the opposite.
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A.4. Proof of Lemma 2.7

Proof of Lemma 2.7. We first show that |x2|, |y2| are within a constant factor
of each other, given that ω1/ω2 = N1

N2
is a constant.

Proposition A.9. For a normalized X , where N1, N2, a, b 6= 0, x2, y2 in the
second top left singular vector ū2 satisfy

2N2

N1
≥ |x2|

|y2|
≥ N2

2N1

Proof. By (A.9) and given the upper bound on gap(H) in (A.8),

|y2|
|x2|

=
N1a− λ2

N2b
=
N1a−N2c + gap(H)

2N2b
≤ N1a

N2b
, (A.20)

and hence |x2|
|y2| ≥

N2b
N1a

. By (A.10) and (A.8), we have

|x2|
|y2|

=
N2c− λ2

N1b
=
N2c −N1a+ gap(H)

2N1b
≤ N2c

N1b
(A.21)

We finish the proof by observing that 1
2 ≤ a

b ≤ 2, 1
2 ≤ c

b ≤ 2:, due to the

fact that 1
2
≤ µ

j
1

µj
2

≤ 2, ∀j = 1, . . . , K for µji ∈ [1/2, 1] in a normalized X , and the

following lemma:

Lemma A.10. If 0 < cmin ≤ ai

bi
≤ cmax, ∀i = 1, . . . , n, where ai, bi > 0, then

cmin ≤
∑n

i=1
ai∑

n

i=1
bi

≤ cmax.

Proof. cmin =

∑n

i=1
cminbi∑

n

i=1
bi

≤
∑n

i=1
ai∑

n

i=1
bi

≤
∑n

i=1
cmaxbi∑

n

i=1
bi

= cmax.

Let x = x2 and y = y2. By Proposition A.9, |y| ≤ 2N1|x|
N2

and

1 = N1x
2 +N2y

2 ≤ N1x
2 +N2

(
2|x|N1

N2

)2

≤ x2

(
4N2

1 +N1N2

N2

)
,

hence for Cxmin = ω2

4ω2
1+ω1ω2

,

x2 ≥ ω2

4ω2
1 + ω1ω2

1

2N
. (A.22)

Looking in the other direction, by Proposition A.9, |x| ≤ 2|y|N2

N1
,

1 = N1x
2 +N2y

2 ≤ N2y
2 +N1

(
2|y|N2

N1

)2

≤ y2

(
N2N1 + 4N2

2

N1

)
,
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and hence for a given Cymin = ω1

4ω2
2+ω1ω2

,

|y|2 ≥ ω1

4ω2
2 + ω1ω2

1

2N
.

On the other hand, by Proposition A.9, we have |y| ≥ N1|x|
2N2

, we have

1 = N1x
2 +N2y

2 ≥ N1x
2 +N2

( |x|N1

2N2

)2

≥ x2

(
N2

1 + 4N1N2

4N2

)
,

and thus x2 ≤ 4ω2

ω2
1+4ω1ω2

1
2N
. Looking in the other direction, by Proposition A.9,

|x| ≥ |y|N2

2N1
,

1 = N1x
2 +N2y

2 ≥ N2y
2 +N1

( |y|N2

2N1

)2

≥ y2

(
4N2N1 +N2

2

4N1

)
,

and hence |y|2 ≤ 4ω1

ω2
2+4ω1ω2

1
2N

. Hence we have that

|x− y|2 = (|x|+ |y|)2 ≤
(√

4ω2

ω2
1 + 4ω1ω2

1

2N
+

√
4ω1

ω2
2 + 4ω1ω2

1

2N

)2

≤ 1

2N

(√
4ω2

ω2
1 + 4ω1ω2

+

√
4ω1

ω2
2 + 4ω1ω2

)2

,

and Cmax = (
√

1
ω1

+
√

1
ω2

)2. Hence

Cmax ≤
(√

4ω2

ω2
1 + 4ω1ω2

+

√
4ω1

ω2
2 + 4ω1ω2

)2

≤
(√

1

ω1
+

√
1

ω2

)2

.

Appendix B: Proof of Lemma 2.16

Recall that the largest left singular vectors u1, u2 has the form of [x, . . . , x, y, . . . , y],
where x repeats N1 times and y repeats N2 times. Proof of Lemma 2.16. Let
us define the following random variables,

δ =
1

N1

N1∑

i=1

δi, τ =
1

N2

N2∑

i=1

τi, (B.1)

such that by Claim 2.15,

|δ| =

∣∣∣∣∣
1

N1

N1∑

i=1

δi

∣∣∣∣∣ ≤
1

N1

N1∑

i=1

|δi| ≤

√
N1

∑N1

i=1 δ
2
i

N1
≤ c1σ√

N1N

|τ | =

∣∣∣∣∣
1

N2

N2∑

i=1

τi

∣∣∣∣∣ ≤
1

N2

N2∑

i=1

|τi| ≤

√
N2

∑N2

i=1 τ
2
i

N2
≤ c1σ√

N2N



A. Blum et al./Separating populations with wide data: A spectral analysis 110

and hence

max(|N1δ|, |N2τ |) ≤
c1σ

√
N2√
N

(B.2)

given that we always assume that N2 > N1. A natural classifier to separate
individuals would be: x+y2 when we use u1; but we do not have access to x and
y. Recall that

M =

∑N1

i=1(x+ δi) +
∑N2

i=1(y + τi)

2N
=
N1x+N2y

2N
+
N1δ +N2τ

2N
.

We are now ready to show that when N1, N2 are large enough, we see enough
separation between the mixture sample mean and both x and y. We first prove
the following claims.

Claim B.1. xN1δ + yN2τ = −‖ǫ‖2
2

2 .

Proof. This claim is obvious given that ‖u1‖2 = ‖ū1‖2 = 1, and ū1, u1, ǫ all

being real vectors, ‖u1‖2
2 = ‖ū1‖2

2 +‖ǫ‖2
2 +2 < ū1, ǫ >= ‖ū1‖2

2 +‖ǫ‖2
2 +2xN1δ+

yN2τ.

We next use 1√
2N

|xN1δ + yN2τ | to obtain a bound on
∣∣N1δ+N2τ

2N

∣∣, given that

1√
2N

|xN1δ + yN2τ | ≤
‖ǫ‖2

2

2
√

2N
≤ c21σ

2

2N
√

2N
; (B.3)

Claim B.2. Let N1 ≤ N2, and ω1 = N1

2N and ω2 = N2

2N , and given that N1 ≥
max

(
2c21σ

2

c2γ
,

8c21σ
2

γ
ω2

ω1

)
, we have

∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣ ≤
N1 |y − x|√γ

2N
(B.4)

Proof. We next derive a bound on N1δ+N2τ
2N . By Separation Lemma 2.8, we have

|x− y| = c2
√

γ
2N for a constant c2 = 1/2, and thus we have

max(x,y)√
2N

> 1
2N .

Therefore,

|xN1δ + yN2τ |√
2N

=
|max(x, y)(N1δ +N2τ ) + (x− max(x, y))N1δ + (y − max(x, y))N2τ |√

2N

≥ |max(x, y)| (N1δ +N2τ )√
2N

− |x− y|max(|N1δ|, |N2τ |)√
2N
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Thus we have, given (B.2), (B.3) and (B.5),

∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣ ≤ |max(x, y)|√
2N

|(N1δ +N2τ )|

≤ |xN1δ + yN2τ |√
2N

+
|x− y|max(|N1δ|, |N2τ |)√

2N

≤ c21σ
2

2N
√

2N
+
c2
√
γ

2N
c1σ

√
N2

N

≤ N1c2γ

2N
√

2N
≤ N1|y− x|√γ

2N
,

where

c21σ
2

2N
√

2N
<

N1c2γ

4N
√

2N
, holds so long as N1 ≥ 2c21σ

2

c2γ
, and (B.5)

c2
√
γc1σ

2N

√
N2

N
<

N1c2γ

4N
√

2N
. holds so long as N1 ≥ 8c21σ

2

γ

ω2

ω1
, so that (B.6)

N1 ≥ 2
√

2c1σ
√
N2√

γ
, (B.7)

Both conditions are guaranteed by (2.23) in Theorem 2.14.

This allows us to conclude that
∣∣∣∣
N1x+N1δ +N2y +N2τ

2N
− N1x+N2y

2N

∣∣∣∣ =

∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣

≤
(

min{N1, N2}√γ
2N

)
|x− y| .

Given that |y − x| = c2
√
γ/

√
2N as shown in the Separation Lemma 2.8, we

have
∣∣∣∣
N1x+N1δ +N2y +N2τ

2N
− x

∣∣∣∣ =

∣∣∣∣
N2(y − x)

2N
+
N1δ +N2τ

2N

∣∣∣∣

≥
∣∣∣∣
N2(y − x)

2N

∣∣∣∣−
∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣

≥ N2 |y − x|
2N

− min{N1, N2}√γ |y − x|
2N

≥ (1 −√
γ)N2 |y − x|
2N

,
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and similarly,
∣∣∣∣y −

N1x+N1δ +N2y +N2τ

2N

∣∣∣∣ =

∣∣∣∣
N1(y − x)

2N
− N1δ +N2τ

2N

∣∣∣∣

≥
∣∣∣∣
N1(y − x)

2N

∣∣∣∣ −
∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣

≥ N1 |y − x|
2N

− min{N1, N2}√γ |y − x|
2N

≥ (1 −√
γ)N1 |y − x|
2N

.
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