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Abstract

Consider a random trigonometric polynomial Xn : R→ R of the form

Xn(t) =

n∑
k=1

(ξk sin(kt) + ηk cos(kt)) ,

where (ξ1, η1), (ξ2, η2), . . . are independent identically distributed bivariate real ran-
dom vectors with zero mean and unit covariance matrix. Let (sn)n∈N be any sequence
of real numbers. We prove that as n→ ∞, the number of real zeros of Xn in the inter-
val [sn + a/n, sn + b/n] converges in distribution to the number of zeros in the interval
[a, b] of a stationary, zero-mean Gaussian process with correlation function (sin t)/t.
We also establish similar local universality results for centered random vectors (ξk, ηk)

having an arbitrary covariance matrix or belonging to the domain of attraction of a
two-dimensional α-stable law.
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1 Introduction

We are interested in random trigonometric polynomials Xn : R→ R of the form

Xn(t) =

n∑
k=1

(ξk sin(kt) + ηk cos(kt)) , (1.1)

where the coefficients ξ1, η1, ξ2, η2, . . . are real random variables. In a recent paper, Azaïs
et al. [3] conjectured that if ξ1, η1, ξ2, η2, . . . are independent identically distributed (i.i.d.)
with zero mean and finite variance, then the number of real zeros of Xn in the interval
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Real roots of random trigonometric polynomials

[a/n, b/n] converges in distribution (without normalization) to the number of zeros in the
interval [a, b] of a stationary Gaussian process Z := (Z(t))t∈R with zero mean and

Cov(Z(t), Z(s)) = sinc(t− s), t, s ∈ R,

where

sinc t =

{
(sin t)/t, if t 6= 0,

1, if t = 0.

The limit distribution does not depend on the distribution of ξ1, a phenomenon referred
to as local universality. Azaïs et al. [3] proved their conjecture assuming that ξ1 has an
infinitely smooth density that satisfies certain integrability conditions. However, as they
remarked, even the case of the Rademacher distribution P[ξ1 = ±1] = 1/2 remained
open. Our aim is to prove the conjecture of Azaïs et al. [3] in full generality (Theorem 2.1
below). The method of proof proposed in the present paper is very different from the
one used in [3]. Let us briefly sketch our approach assuming that (ξ1, η1), (ξ2, η2), . . . are
i.i.d. random vectors such that ξ1 and η1 are centered uncorrelated random variables
with unit variance. We start by proving a functional limit theorem (Theorem 3.1 below)
stating that

1√
n
Xn

(
sn +

·
n

)
−→
n→∞

Z(·) (1.2)

weakly on some suitable space of analytic functions. Then, we use the continuous
mapping theorem to deduce the convergence of the real zeros. The basic fact underlying
this part of the proof is the Hurwitz theorem stating that the complex zeros of an
analytic function do not change “too much” under a slight perturbation of the function.
Essentially, Hurwitz’s theorem tells us that the functional which maps an analytic function
to the point process of its complex zeros is continuous. Since we are interested in real
zeros, we have to ensure that real zeros remain real after a small perturbation. If we
restrict ourselves to analytic functions which are real on R, then non-real zeros come in
complex conjugated pairs, and a simple real zero cannot become complex under a small
perturbation of the function. These considerations, see Lemmas 4.1 and 4.2, justify the
use of the continuous mapping theorem.

Our method is quite general and allows us to establish the corresponding local
universality result in the case when (ξ1, η1) has a non-zero correlation (Theorem 2.3) or
even does not have finite second moments but is in the domain of attraction of some
stable two-dimensional law (Theorem 2.5).

Closing the introduction, we mention that the scope of our approach is not restricted
to trigonometric polynomials. The same method can be applied to various ensembles of
random algebraic polynomials. A similar method was used in [20], [15] for complex zeros
of random Taylor series near the circle of convergence, in [19] for Dirichlet series with
random coefficients and some other sums of analytic functions with random coefficients,
and in [12, 13] for complex zeros of the partition function of the (Generalized) Random
Energy Model. Unlike in these works, we investigate real zeros. Let us also mention that
the asymptotics of ENn[a, b] (that is, the expected number of real zeros in an interval
whose length does not go to 0) was studied in the recent works [1] and [8], where more
references on random trigonometric polynomials can be found.

The structure of the paper is as follows. The main results are stated in Section 2.
Functional limit theorems for Xn and their proofs are given in Section 3. In Section 4
the proofs of the main theorems are presented. Some auxiliary technical lemmas are
collected in the Appendix.

As usual,
d−→ denotes convergence in distribution of random variables and vectors.

The notation
w−→ is used to denote weak convergence of random elements with values in

a metric space, while
v−→ denotes vague convergence of locally finite measures.
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Real roots of random trigonometric polynomials

2 Main results

2.1 Coefficients with finite second moments

For a real analytic function f which does not vanish identically denote by Nf [a, b]

the number of zeros of f in the interval [a, b]. It will become clear from our proofs that
the results hold independently of whether the zeros are counted with multiplicities or
not. Theorem 2.1, which is our first main result, proves the conjecture of [3], weakens
the original assumptions of [3] on the distribution of the coefficients and allows for an
arbitrary sequence (sn)n∈N as the location of the scaling window.

Theorem 2.1. Let (ξ1, η1), (ξ2, η2), . . . be i.i.d. random vectors with zero mean and unit
covariance matrix, that is,

Eξ1 = Eη1 = 0, E[ξ2
1 ] = E[η2

1 ] = 1, E[ξ1η1] = 0.

Let (sn)n∈N be any sequence of real numbers and [a, b] ⊂ R a finite interval. Then,

NXn

[
sn +

a

n
, sn +

b

n

]
d−→

n→∞
NZ [a, b],

where (Z(t))t∈R is the stationary Gaussian process defined in Section 1.

We can also prove the weak convergence of point processes of zeros. Given a locally
compact metric space X, denote by Mp(X) the space of locally finite point measures
on X endowed with the vague topology. A random element with values in Mp(X) is
called a point process on X. We refer to [17] for the information on point processes and
their weak convergence. For a real analytic function f which does not vanish identically
denote by ZerosR(f) the locally finite point measure on R counting the real zeros of
f with multiplicities. The next theorem is stronger than Theorem 2.1 in view of the
continuous mapping theorem and Lemma 4.2 below.

Theorem 2.2. Under the same assumptions as in Theorem 2.1 we have

ZerosR

(
Xn

(
sn +

·
n

))
w−→

n→∞
ZerosR(Z(·))

on Mp(R).

In the next theorem we consider i.i.d. random vectors with arbitrary covariance
matrix. In particular, this theorem covers random trigonometric polynomials of the form∑n
k=1 ξk sin(kt) and

∑n
k=1 ηk cos(kt) involving sin or cos terms only.

Theorem 2.3. Let (ξ1, η1), (ξ2, η2), . . . be i.i.d. random vectors with

Eξk = Eηk = 0, E[ξ2
k] = σ2

1 <∞, E[η2
k] = σ2

2 <∞, E[ξkηk] = ρ,

where 0 < σ2
1 + σ2

2 <∞. Then, for every fixed s ∈ R,

ZerosR

(
Xn

(
s+
·
n

))
w−→

n→∞
ZerosR(G(·))

on Mp(R), where (G(t))t∈R is a centered Gaussian process with covariance

E[G(t1)G(t2)] (2.1)

=

{
σ2
1+σ2

2

2 sinc(t1 − t2), s /∈ πZ,
σ2
1+σ2

2

2 sinc(t1 − t2)− σ2
1−σ

2
2

2 sinc(t1 + t2) + ρ 1−cos(t1+t2)
t1+t2

, s ∈ πZ,

with the convention that x 7→ (1− cosx)/x equals 0 at x = 0.

Remark 2.4. In Theorem 2.3 we can replace the fixed s by a general sequence (sn)n∈N as
in Theorem 2.1, but then we have to replace the condition s /∈ πZ (respectively, s ∈ πZ)
with limn→∞ ndist(sn, πZ) = +∞ (respectively, limn→∞ ndist(sn, πZ) = 0). Here, we
used the notation dist(sn, πZ) = min{|sn − πk| : k ∈ Z}.
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2.2 Coefficients from a stable domain of attraction

Let (ξ1, η1), (ξ2, η2), . . . be i.i.d. random vectors from the strict domain of attraction of
a two-dimensional α-stable distribution, 0 < α < 2. This means that there exist numbers
bn > 0 such that

1

bn

(
n∑
k=1

ξk,

n∑
k=1

ηk

)
d−→

n→∞
Sα,ν , (2.2)

where Sα,ν is a non-degenerate two-dimensional α-stable random vector with Lévy
measure ν and shift parameter 0. The adjective “strict” is used to highlight that con-
vergence (2.2) holds without centering, in particular, it is assumed that Eξ1 = Eη1 = 0

if α > 1. We refer to [18] for details on multivariate stable distributions and stable
processes. Note that ν is a locally finite measure on R2 \ {0} which has the homogeneity
property

ν(λB) = λ−αν(B)

for all λ > 0 and all Borel sets B ⊂ R2 \ {0}. In what follows we identify R2 and C via the
canonical isomorphism and consider R2-valued processes as C-valued and vice versa.

Theorem 2.5. Assume that (2.2) holds and let s ∈ R be fixed. Then

ZerosR

(
Xn

(
s+
·
n

))
w−→

n→∞
ZerosR(Zν(·))

on Mp(R), where (Zν(t))t∈R is a stochastic process given by

Zν(t) = Im

∫ 1

0

eitudL(u) =

∫ 1

0

sin(tu)d ReL(u) +

∫ 1

0

cos(tu)d ImL(u), (2.3)

for t ∈ R, and (L(u))u∈[0,1] is a C-valued α-stable Lévy process with zero drift, no
Gaussian component, and the Lévy measure ν̃ defined by

ν̃(B) :=

{∫ 1

0
ν(e2πiyB)dy, if s /∈ πQ,

1
q

∑q
k=1 ν(e2πik/qB), if s = 2πp/q, with p ∈ Z, q ∈ N coprime,

(2.4)

for all Borel sets B ⊂ C \ {0}, with ν being the Lévy measure of Sα,ν in (2.2).

Remark 2.6. The integral in (2.3) (which need not exist in the Lebesgue–Stieltjes sense
because L has finite variation a.s. in the case α ∈ (0, 1) only) is defined via integration by
parts: ∫ 1

0

eitudL(u)
def
= L(1)eit − it

∫ 1

0

L(u)eitudu. (2.5)

See, e.g., [10, 18] for the properties of such stochastic integrals.

Remark 2.7. An interesting feature of Theorem 2.5 is that the behavior of the zeros
near s depends on whether s̃ := s/(2π) is rational or not. To see why such arithmetic
effects show up, assume for a moment that ξk and ηk are independent and symmetric
α-stable. Then, Xn(s) is also symmetric α-stable with scaling parameter σn, where

σαn =

n∑
k=1

| cos(ks)|α +

n∑
k=1

| sin(ks)|α =

n∑
k=1

|cos (2π{ks̃})|α +

n∑
k=1

|sin (2π {ks̃})|α

and {·} denotes the fractional part. If s̃ is irrational, then the sequence ({ks̃})k∈N is
uniformly distributed on the interval [0, 1] by Weyl’s equidistribution theorem, see, for
example Theorem 2.1 and Example 2.1 in [14], whereas for rational s̃ = p/q it is uniformly
distributed on the finite set {0, 1

q , . . . ,
q−1
q }, whence

lim
n→∞

1

n
σαn =

{∫ 1

0
(| cos(2πu)|α + | sin(2πu)|α)du, if s /∈ πQ,

1
q

∑q
k=1(| cos(2πk/q)|α + | sin(2πk/q)|α), if s = 2πp/q.
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Note that for α = 2 (which corresponds to the finite variance case studied in Section 2.1),
there is no difference between the rational and irrational cases because sin2 t+ cos2 t = 1.

Remark 2.8. In Theorem 2.5 it is possible to replace the fixed s by a sequence (sn)n∈R
assuming that s := limn→∞ sn exists and either s /∈ πQ (the first case in (2.4)) or s ∈ πQ
and |sn − s| = o(1/n) as n→∞ (the second case in (2.4)).

3 Convergence of random trigonometric polynomials as random
analytic functions

3.1 Spaces of analytic functions and analytic continuations of the processes Z,
G and Zν

Let H be the space of functions which are analytic on the entire complex plane. We
endow H with the topology of uniform convergence on compact sets. This topology is
generated by the complete separable metric

d(f, g) =
∑
k≥1

1

2k
‖f − g‖D̄k

1 + ‖f − g‖D̄k
,

where D̄r = {|z| ≤ r} is the closed disk or radius r > 0 around the origin, and ‖f‖K =

supz∈K |f(z)| is the sup-norm of f on a compact set K ⊂ C; see [6, pp. 151–152]. A
random analytic function is a random element taking values in the spaceH endowed with
the Borel σ-algebra. We refer to [9] and [19] for more information on random analytic
functions.

Let HR be a closed subspace of H consisting of all functions f ∈ H which take real
values on R. Note that for every f ∈ HR we have f(z̄) = f(z) for all z ∈ C. Indeed,
the functions f(z) and f(z̄) are analytic and coincide on R. Hence, they must coincide
everywhere on C by the uniqueness theorem for analytic functions. The space HR is
endowed with the induced topology and metric.

Following the approach outlined in the introduction, we shall show that conver-
gence (1.2) and its counterparts in the case of correlated (ξ1, η1) and in the stable case
hold weakly on the spaceHR. But, first of all, we have to construct analytic continuations
of the limit processes Z, G and Zν appearing in Theorems 2.1, Theorems 2.3 and 2.5,
respectively.

3.1.1 The process Z

The stationary Gaussian process (Z(t))t∈R appearing in Theorem 2.1 can be extended
analytically to the complex plane using the representation

Z(t) =
∑
k∈Z

sinc(t− πk)Nk, t ∈ C, (3.1)

where (Nk)k∈Z are i.i.d. real standard Gaussian random variables. The series in (3.1)
converges uniformly on compact subsets of C because so does the series

∑
k∈Z | sinc(t−

πk)|2; see [9, Lemma 2.2.3]. It follows that (Z(t))t∈C is an analytic function on C with
probability 1.

The R2-valued process ((ReZ(t), ImZ(t)))t∈C is jointly real Gaussian in the sense that
for all t1, . . . , td ∈ C, the 2d-dimensional random vector

(ReZ(t1), ImZ(t1), . . . ,ReZ(td), ImZ(td))

is real Gaussian. Clearly, EZ(t) = 0 for all t ∈ C. The covariance structure of (Z(t))t∈C is
given by
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E[Z(t)Z(s)] = sinc(t− s), t, s ∈ C, (3.2)

E[Z(t)Z(s)] = sinc(t− s̄), t, s ∈ C. (3.3)

For instance, in the case when t, s /∈ πZ, we have

E[Z(t)Z(s)] =
∑
k∈Z

sin(t− πk)

t− πk

(
sin(s− πk)

s− πk

)
= (sin t)(sin s̄)

∑
k∈Z

1

(t− πk)(s̄− πk)

=
(sin t)(sin s̄)

s̄− t
∑
k∈Z

(
1

t− πk
− 1

s̄− πk

)
=

(sin t)(sin s̄)

s̄− t
(cot t− cot s̄)

=
sin(t− s̄)
t− s̄

,

where we used the partial fraction expansion of the cotangent. In the case when t = πj

for some j ∈ Z, we have

E[Z(t)Z(s)] =
∑
k∈Z

sinc(t− πk)sinc(s− πk) = sinc(s− πj) = sinc(t− s̄)

because sinc(t− πk) = 1 for k = j and 0 for k 6= j. The proof of (3.2) is similar.
Representation (3.1) appeared, for example, in [2]. Note that the analytically contin-

ued process (Z(t))t∈C is stationary with respect to shifts along the real axis, but it is not
stationary with respect to shifts along the imaginary axis.

3.1.2 The process G

In the case s /∈ πZ we can simply take

G(t) :=

√
σ2

1 + σ2
2

2
Z(t), t ∈ C,

where the process (Z(t))t∈C is the same as in Section 3.1.1. In the case s ∈ πZ take a
centered C-valued Brownian motion (W (u))u∈[0,1] with covariance structure

E[(ReW (1))2] = σ2
1 , E[(ImW (1))2] = σ2

2 , E[(ImW (1))(ReW (1))] = ρ,

and put

U(t) =

∫ 1

0

eitudW (u), t ∈ C,

where the integral is defined via the formal integration by parts, as in (2.5). Clearly, this
defines U as a random analytic function on C. Now put1

G(t) =
U(t)− U(t)

2i
=

∫ 1

0

sin(tu)d ReW (u) +

∫ 1

0

cos(tu)d ImW (u), t ∈ C.

1Here the following observation is used: if f is an analytic function, so is g(z) := (f(z) − f(z))/(2i).
Moreover, g ∈ HR and for t ∈ R we have g(t) = Im f(t). In particular, G(t) = ImU(t) for t ∈ R, but, generally
speaking, this relation fails for t ∈ C \R.
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Integrating by parts and using the identities∫ 1

0

sin(t1u) sin(t2u)du =
1

2
sinc(t1 − t2)− 1

2
sinc(t1 + t2),∫ 1

0

cos(t1u) cos(t2u)du =
1

2
sinc(t1 − t2) +

1

2
sinc(t1 + t2),∫ 1

0

sin(t1u) cos(t2u)du =
1− cos(t1 + t2)

2(t1 + t2)
+

1− cos(t1 − t2)

2(t1 − t2)
,

it is easy to check that the covariance function of (G(t))t∈R is given by the second line
in (2.1).

3.1.3 The process Zν

Let (L(u))u∈[0,1] be a C-valued α-stable Lévy process defined in Theorem 2.5. As in the
construction of G above, put

Uν(t) =

∫ 1

0

eitudL(u), t ∈ C, (3.4)

where the integral is understood as in (2.5). Obviously, Uν is a random analytic function
on C and we can take

Zν(t) =
Uν(t)− Uν(t)

2i
=

∫ 1

0

sin(tu)d ReL(u) +

∫ 1

0

cos(tu)d ImL(u), t ∈ C.

3.2 Functional limit theorems for random trigonometric polynomials

Now we are ready to prove convergence (1.2) and its counterparts corresponding to
Theorems 2.3 and 2.5.

Theorem 3.1. Let (ξ1, η1), (ξ2, η2), . . . be i.i.d. random vectors with zero mean and unit
covariance matrix. Fix any sequence of real numbers (sn)n∈N and consider a random
process (Yn(t))t∈C defined by

Yn(t) :=
1√
n
Xn

(
sn +

t

n

)
(3.5)

=
1√
n

n∑
k=1

(
ξk sin

(
k

(
sn +

t

n

))
+ ηk cos

(
k

(
sn +

t

n

)))
.

Then Yn
w−→

n→∞
Z on HR.

Proof. The proof consists of two steps.
Convergence of finite-dimensional distributions. Take any t1, . . . , td ∈ C. We have the

representation Yn(t) = Vn,1(t) + . . .+ Vn,n(t), where

Vn,k(t) :=
1√
n

(
ξk sin

(
k

(
sn +

t

n

))
+ ηk cos

(
k

(
sn +

t

n

)))
.

The d-dimensional complex random vector Yn := (Yn(t1), . . . , Yn(td)) can be represented
as a sum of independent, zero mean random vectors (Vn,k(t1), . . . , Vn,k(td)) over k =

1, . . . , n. To show that Yn converges in distribution to Y := (Z(t1), . . . , Z(td)), we shall
use the Lindeberg central limit theorem. First we need to check that for all i, j = 1, . . . , d,

lim
n→∞

E[Yn(ti)Yn(tj)] = E[Z(ti)Z(tj)] = sinc(ti − tj),

lim
n→∞

E[Yn(ti)Yn(tj)] = E[Z(ti)Z(tj)] = sinc(ti − t̄j).
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It follows from (3.5) that

E[Yn(ti)Yn(tj)] =
1

n

n∑
k=1

cos
k(ti − tj)

n
−→
n→∞

∫ 1

0

cos(u(ti − tj))du = sinc(ti − tj)

and, similarly,

E[Yn(ti)Yn(tj)] =
1

n

n∑
k=1

cos
k(ti − t̄j)

n
−→
n→∞

∫ 1

0

cos(u(ti − t̄j))du = sinc(ti − t̄j).

It remains to verify the Lindeberg condition. Take some t ∈ C. For every ε > 0 we need
to show that

lim
n→∞

n∑
k=1

E
[
|Vn,k(t)|21{|Vn,k(t)|≥ε}

]
= 0.

Using the inequalities |z1 + z2|2 ≤ 2|z1|2 + 2|z2|2 and | sin z| ≤ cosh(Im z), | cos z| ≤
cosh(Im z), we obtain that for all k = 1, . . . , n,

|Vn,k(t)|2 ≤ 2

n
(cosh2(Im t)) · (ξ2

k + η2
k).

With C = 2 cosh2(Im t) we get

n∑
k=1

E
[
|Vn,k(t)|21{|Vn,k(t)|≥ε}

]
≤ C

n

n∑
k=1

E
[
(ξ2
k + η2

k)1{C(ξ2k+η2k)≥nε2}

]
= CE

[
(ξ2

1 + η2
1)1{ξ21+η21≥nε2/C}

]
which converges to 0 as n→∞ because E[ξ2

1 + η2
1 ] <∞.

Tightness. In order to prove that the sequence (Yn)n∈N is tight on H, it suffices to
show that for every R > 0,

sup
n∈N

sup
|t|≤R

E|Yn(t)|2 <∞, (3.6)

see [12, Lemma 4.2] or the remark after Lemma 2.6 in [19]. For all |t| ≤ R and n ∈ N we
have

E|Yn(t)|2 =
1

n

n∑
k=1

cos
k(t− t̄)

n
=

1

n

n∑
k=1

cosh
2k(Im t)

n
≤ cosh(2R) <∞

because −R ≤ k
n Im t ≤ R for all k = 1, . . . , n.

It follows that Yn converges to Z weakly on H, as n → ∞. Since HR is a closed
subset of H and all processes under consideration have their sample paths in HR, the
convergence holds weakly on HR, as well.

The next theorem provides convergence of random trigonometric polynomials under
the assumptions of Theorem 2.3.

Theorem 3.2. Let s ∈ R be fixed and define a random process (Yn(t))t∈C by

Yn(t) :=
1√
n
Xn

(
s+

t

n

)
.

Under assumptions of Theorem 2.3 we have Yn
w−→

n→∞
G on HR.

Proof. We use the same idea as in the proof Theorem 3.1. We have Yn(t) =
∑n
k=1 Vn,k(t)

where

Vn,k(t) :=
1√
n

(
ξk sin

(
k

(
s+

t

n

))
+ ηk cos

(
k

(
s+

t

n

)))
.
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Real roots of random trigonometric polynomials

We shall need the standard trigonometric identities

n∑
k=1

cos(kθ) = −1

2
+

sin
(
(n+ 1

2 )θ
)

2 sin θ
2

,

n∑
k=1

sin(kθ) =
1

2
cot

θ

2
−

cos
(
(n+ 1

2 )θ
)

2 sin θ
2

. (3.7)

where the case θ ∈ 2πZ is understood by continuity. As in the proof of Theorem 3.1 the
subsequent argument is divided into two steps.

Convergence of finite-dimensional distributions. First we prove that the covariances
of Yn converge to those of G. For all t1, t2 ∈ C, we have

E[Yn(t1)Yn(t2)] =
σ2

1

n

n∑
k=1

sin

(
k

(
s+

t1
n

))
sin

(
k

(
s+

t2
n

))
(3.8)

+
σ2

2

n

n∑
k=1

cos

(
k

(
s+

t1
n

))
cos

(
k

(
s+

t2
n

))

+
ρ

n

n∑
k=1

sin

(
k

(
2s+

t1 + t2
n

))
.

Denote the three terms on the right-hand side by S1(n), S2(n), S3(n). Using the formula
2 sinx sin y = cos(x− y)− cos(x+ y) and then the first identity in (3.7) we obtain

S1(n) =
σ2

1

2n

n∑
k=1

cos

(
k
t1 − t2
n

)
− σ2

1

2n

n∑
k=1

cos

(
k

(
2s+

t1 + t2
n

))

=
σ2

1

2
sinc(t1 − t2)− σ2

1

2n

sin
(
(2n+ 1)

(
s+ t1+t2

2n

))
2 sin

(
s+ t1+t2

2n

) + o(1), as n→∞.

Sending n→∞ and considering the cases sin s 6= 0 and sin s = 0 separately, we infer

lim
n→∞

S1(n) =

{
σ2
1

2 sinc(t1 − t2), if s /∈ πZ,
σ2
1

2 sinc(t1 − t2)− σ2
1

2 sinc(t1 + t2), if s ∈ πZ.

Similarly, using the formula 2 cosx cos y = cos(x− y) + cos(x+ y) for the second sum we
arrive at

lim
n→∞

S2(n) =

{
σ2
2

2 sinc(t1 − t2), if s /∈ πZ,
σ2
2

2 sinc(t1 − t2) +
σ2
2

2 sinc(t1 + t2), if s ∈ πZ.

Finally, in view of the second formula in (3.7),

S3(n) =
ρ

n

(
1

2
cot

(
s+

t1 + t2
2n

)
−

cos
(
(2n+ 1)

(
s+ t1+t2

2n

))
2 sin

(
s+ t1+t2

2n

) )
.

Sending n→∞ gives

lim
n→∞

S3(n) =

{
0, if s /∈ πZ,
ρ 1−cos(t1+t2)

t1+t2
, if s ∈ πZ.

Taking everything together and recalling the definition of the process G, see (2.1), we
obtain

lim
n→∞

E[Yn(t1)Yn(t2)] = E[G(t1)G(t2)]. (3.9)

Similar computation (with t2 replaced by t̄2), yields

lim
n→∞

E[Yn(t1)Yn(t2)] = E[G(t1)G(t2)]. (3.10)
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Real roots of random trigonometric polynomials

Fix t1, . . . , td ∈ C. In view of the convergence of the covariances established in (3.9)
and (3.10), to prove that (Yn(t1), . . . , Yn(td)) converges in distribution to (G(t1), . . . , G(td))

it is enough to verify the Lindeberg condition:

lim
n→∞

n∑
k=1

E
[
|Vn,k(t)|21{|Vn,k(t)|≥ε}

]
= 0,

for every fixed t ∈ C and ε > 0. This can be done exactly in the same way as in the proof
of Theorem 3.1.

Tightness. It is sufficient to check condition (3.6). Starting with the equality
E|Yn(t)|2 = E[Yn(t)Yn(t̄)] and applying (3.8) with t1 = t = t̄2, we arrive at

E|Yn(t)|2 =
σ2

1

n

n∑
k=1

∣∣∣∣sin(k(s+
t

n

))∣∣∣∣2 +
σ2

2

n

n∑
k=1

∣∣∣∣cos

(
k

(
s+

t

n

))∣∣∣∣2
+
ρ

n

n∑
k=1

sin

(
k

(
2s+

2 Re t

n

))
.

Together with the inequalities | sin z| ≤ cosh(Im z) and | cos z| ≤ cosh(Im z), this implies
condition (3.6). Combining pieces together, we see that Yn → G weakly on H and hence,
also on HR.

In the case of attraction to a stable law we have the following functional limit theorem.
Since its proof is more involved than in the previous cases, it is given in the separate
Section 3.3.

Theorem 3.3. Fix s ∈ R. Under the assumptions of Theorem 2.5,(
1

bn
Xn

(
s+

t

n

))
t∈C

w−→
n→∞

(Zν(t))t∈C

on HR.

3.3 Proof of Theorem 3.3

We start with a well-known observation, see [16], that (2.2) implies that the dis-
tribution of (ξ1, η1) varies regularly in R2 with the limit measure ν, which, in turn, is
equivalent to the vague convergence

nP[b−1
n (ξ + iη) ∈ ·] v−→

n→∞
ν(·) (3.11)

on C \ {0}. Here, C := C ∪ {+∞} denotes the Riemann sphere, and C \ {0} is the
Riemann sphere with the punctured south pole. These spaces can be identified with
R2 := R2 ∪ {∞} (the one-point compactification of R2) and R2 \ {0}, respectively. The
measure ν is thought of as a measure on C \ {0} by setting ν({∞}) = 0.

The proof of Theorem 3.3 is presented in the series of lemmas. Let LEB denote the
standard Lebesgue measure.

Lemma 3.4. Fix s ∈ R and define a sequence of point processes on [0,∞)× (C \ {0}) as
follows:

Nn :=
∑
k≥1

δ( k
n ,
ξk+iηk
bn

eiks
), n ∈ N.

Then
Nn

v−→
n→∞

N∞ (3.12)

on Mp([0,∞)× (C \ {0})), where N∞ is a Poisson point process on [0,∞)× (C \ {0}) with
intensity measure LEB× ν̃, and ν̃ is as in (2.4).
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Real roots of random trigonometric polynomials

Proof. Define the sequence (λn)n∈N of measures on [0,∞)× (C \ {0}) as follows:

λn(dx, dz) :=
∑
k≥1

δk/n(dx)P[b−1
n (ξk + iηk)eiks ∈ dz], n ∈ N,

and let us show that
λn

v−→
n→∞

LEB× ν̃

on Mp([0,∞)× (C\{0})). To this end, fix a continuous function f : [0,∞)× (C\{0})→ R+

with compact support and pick a, r > 0 such that f(x, z) = 0 if x > a or |z| < r.
Case s /∈ πQ. We have to check that∑

k≥1

∫
|z|≥r

f(k/n, z)P[b−1
n (ξk + iηk)eiks ∈ dz] −→

n→∞

∫
|z|≥r

∫ a

0

f(x, z)dxν̃(dz).

The left-hand side of the latter relation equals

∫
|z|≥r

 1

n

∑
k≥1

f(k/n, eiksz)

(nP[b−1
n (ξ1 + iη1) ∈ dz]

)
,

and, in view of equation (5.1) in Lemma 5.1 in the Appendix and (3.11), converges to∫
|z|≥r

∫ a

0

∫ 1

0

f(x, e2πiyz)dydxν(dz) =

∫ 1

0

∫
|z|≥r

∫ a

0

f(x, z)dxν(e−2πiydz)dy

=

∫
|z|≥r

∫ a

0

f(x, z)dxν̃(dz).

Case s = 2πp/q follows analogously from (5.2) in Lemma 5.1.
The rest of the proof mimics the proof of Proposition 3.1 in [16]. The only place which

has to be checked is relation (3.3) of the cited paper, which in our situation reads

lim
n→∞

sup
k≥1

P[b−1
n (ξ1 + iη1)eiks ∈ A] = 0,

where A is a compact subset of C \ {0}. But this is obvious, since, by (3.11),

sup
k≥1

P[b−1
n (ξ1 + iη1)eiks ∈ A] ≤ P[b−1

n |ξ1 + iη1| ∈ {|z| : z ∈ A}] −→
n→∞

0.

The proof of Lemma 3.4 is complete.

In what follows D([0, 1],C) is the Skorokhod space of complex-valued functions
defined on the interval [0, 1] which are right-continuous on [0, 1) and have finite limits
from the left on (0, 1]. The space D([0, 1],C) is endowed with the usual J1-topology;
see [4].

Lemma 3.5. Fix s ∈ R and define a sequence of C-valued processes

Ln(t) :=
1

bn

[nt]∑
k=1

(ξk + iηk)eiks, t ∈ [0, 1]. (3.13)

Then,
(Ln(t))t∈[0, 1]

w−→
n→∞

(L(t))t∈[0, 1] (3.14)

on D([0, 1],C), where the Lévy process L is the same as in Theorem 2.5.
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Real roots of random trigonometric polynomials

Proof. If s ∈ 2πZ, then (3.14) is just a functional limit theorem for i.i.d. vectors cor-
responding to (2.2). Let us assume that s /∈ 2πZ, which means that the vectors are
independent but not identically distributed. We shall use a criterion for functional
convergence given in Theorem 3.1 in [21]. In view of Lemma 3.4 we need to check that,
for every δ > 0,

lim
ε→0

lim sup
n→∞

P

 sup
0≤t≤1

∣∣∣∣∣∣b−1
n

[nt]∑
k=1

(ξk + iηk)eiks
1{|ξk+iηk|≤bnε} + t

∫
ε<|z|≤1

zν̃(dz)

∣∣∣∣∣∣ ≥ δ
 = 0.

(3.15)
It follows from the definition of ν̃ that it is invariant under the transformations z 7→ ze2πiθ,
where θ ∈ R (if s /∈ πQ) and θ ∈ q−1Z (if s = 2πp/q). Since we assume s /∈ 2πZ, this
transformation group contains at least one non-trivial rotation which implies that∫

{ε<|z|≤1}
zν̃(dz) = 0. (3.16)

The next step is to show that

lim
ε→0

lim sup
n→∞

P

[
sup

1≤m≤n

∣∣∣∣∣
m∑
k=1

∆n,k

∣∣∣∣∣ ≥ bnδ
]

= 0, (3.17)

where

∆n,k = ∆n,k(s) :=
(
(ξk + iηk)1{|ξk+iηk|≤bnε} − E[(ξk + iηk)1{|ξk+iηk|≤bnε}]

)
eiks.

Note that E[∆n,k] = 0. Since (|
∑m
k=1 ∆n,k|)m∈N is a non-negative submartingale, we can

apply Doob’s inequality:

P

[
sup

1≤m≤n

∣∣∣∣∣
m∑
k=1

∆n,k

∣∣∣∣∣ ≥ bnδ
]
≤ (δbn)−2E

∣∣∣∣∣
n∑
k=1

∆n,k

∣∣∣∣∣
2

.

Further,

(δbn)−2E

∣∣∣∣∣
n∑
k=1

∆n,k

∣∣∣∣∣
2

= (δbn)−2
n∑
k=1

Var ∆n,k

≤ (δbn)−2nE
[
(ξ2 + η2)1{

√
ξ2+η2≤bnε}

]
,

where (ξ, η) is a distributional copy of (ξ1, η1). Assumption (3.11) implies that x 7→
P[
√
ξ2 + η2 > x] is regularly varying. Hence by Karamata’s theorem in the form given

by formula (5.22) on p. 579 in [7],

(δ2b−2
n )nE

[
(ξ2 + η2)1{

√
ξ2+η2≤bnε}

]
∼ cδ−2ε2nP[

√
ξ2 + η2 > εbn], n→∞,

for some c > 0. Therefore,

lim sup
n→∞

P

[
sup

1≤m≤n

∣∣∣∣∣
m∑
k=1

∆n,k

∣∣∣∣∣ ≥ bnδ
]
≤ cδ−2ε2 lim

n→∞
nP[

√
ξ2 + η2 > εbn]

= cδ−2ε2

∫
|z|>ε

ν̃(dz).

The last expression tends to zero, as ε→ 0, since ν̃ is a Lévy measure, whence (3.17).
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Combining (3.16), (3.17) and the trivial bound

sup
0≤t≤1

∣∣∣∣∣∣E [(ξ + iη)1{|ξ+iη|≤bnε}
] [nt]∑
k=1

eiks

∣∣∣∣∣∣ ≤ 2εbn
|1− eis|

,

we see that (3.15) holds.

Lemma 3.6. Fix s ∈ R and define a sequence of processes

Yn(t) :=
1

bn

n∑
k=1

(ξk + iηk) exp

(
ik

(
s+

t

n

))
, t ∈ C. (3.18)

Under the assumptions of Theorem 2.5 we have

(Yn(t))t∈C
w−→

n→∞
(Uν(t))t∈C (3.19)

on H, where the process Uν is defined in (3.4).

Proof. Define a mapping F : D([0, 1],C)→ H as follows:

(F(f))(z) :=

∫
[0, 1]

eizxdf(x)
def
= f(1)eiz − f(0)− iz

∫ 1

0

f(x)eizxdx, z ∈ C. (3.20)

Since f ∈ D([0, 1],C) ensures supt∈[0, 1] |f(t)| < ∞, the function F(f) is analytic on the
entire complex plane. Thus, F is indeed a well-defined mapping from D([0, 1],C) to H.
By Lemma 5.2 in the Appendix the mapping F is everywhere continuous on D([0, 1],C).

In view of the representation Yn = F(Ln), with Ln as in (3.13), convergence (3.19)
follows from the continuous mapping theorem.

Now we are in a position to prove Theorem 3.3.

Proof of Theorem 3.3. Recalling the definition of Xn, we can write

1

bn
Xn

(
s+

t

n

)
=

1

bn

n∑
k=1

(
ξk sin

(
k

(
s+

t

n

))
+ ηk cos

(
k

(
s+

t

n

)))

=
Yn(t)− Yn(t)

2i

with Yn as in (3.18). It follows from Lemma 3.6 that(
1

bn
Xn

(
s+

t

n

))
t∈C

w−→
n→∞

(
Uν(t)− Uν(t)

2i

)
t∈C

=

(∫ 1

0

sin(tu)d ReL(u) +

∫ 1

0

cos(tu)d ImL(u)

)
t∈C

on H. Since the processes under consideration have their sample paths in HR (which is
a closed subset of H), the convergence holds weakly on HR, too.

4 Convergence of zeros

Take some interval [a, b] ⊂ R and consider a mapping N : HR \ {0} → {0, 1, . . .}
which assigns to each function f ∈ HR the number of real zeros of f in the interval
[a, b]. Although this will be irrelevant, let us agree that the zeros are counted with
multiplicities.
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Lemma 4.1. Let A = A[a, b] ⊂ HR be the set consisting of all f ∈ HR which do not
have multiple real zeros in [a, b] and satisfy f(a) 6= 0, f(b) 6= 0. Then, the set A is open
and the mapping N is locally constant on A (that is, for every f ∈ A there is an open
neighborhood of f in HR on which N is constant).

Proof. Consider any sequence (fn)n∈N ⊂ HR which converges to f ∈ A locally uniformly.
We need to show that for sufficiently large n we have fn ∈ A and N(fn) = N(f). Let
R > 0 be so large that [a, b] is contained in the open disk DR = {|z| < R}. Let z1, . . . , zd
be the collection of all zeros of f in DR with corresponding multiplicities m1, . . . ,md.
Assume without loss of generality that f has no zeros on the boundary of DR (just
increase R, otherwise). Let ε > 0 be so small that the open ε-disks z1 +Dε, . . . , zd +Dε
do not intersect each other, the boundary of DR, and the real axis (except when the zero
is itself real). By Hurwitz’s theorem [6, p. 152], for all sufficiently large n, the function
fn has exactly mk zeros (with multiplicities) in the disk zk + Dε, for all k = 1, . . . , d,
and there are no other zeros of fn in DR. If zk ∈ (a, b), then mk = 1 (in view of f ∈ A)
and the corresponding zero of fn in the disk zk +Dε is also real because otherwise fn
would have two different complex conjugated zeros (recall that fn(z̄) = fn(z)), which is
a contradiction. It follows that all real zeros of fn in (a, b) are simple and their number
is N(f). Clearly, fn(a) 6= 0 and fn(b) 6= 0 for sufficiently large n. Hence, fn ∈ A and
N(fn) = N(f) for large n.

Recall that ZerosR(f) is a locally finite measure on R counting the real zeros of
f ∈ HR \ {0} with multiplicities.

Lemma 4.2. Let A(R) be the set of all f ∈ HR which do not have multiple real zeros.
Consider a mapping f 7→ ZerosR(f) from HR \ {0} to the space Mp(R) of locally finite
point measures on R endowed with the vague topology. Then, this mapping is continuous
on A(R).

Proof. Let (fn)n∈N ⊂ HR be a sequence which converges to f ∈ A(R) locally uniformly.
Fix R > 0. Let z1, . . . , zl be the real zeros of f in [−R,R] and assume there are no zeros
at −R and R. Fix ε > 0. Arguing as in the proof of Lemma 4.1, we can show that
for sufficiently large n, the function fn has exactly one real zero in any of the disks
z1 +Dε, . . . , zl +Dε and there are no further real zeros of fn in [−R,R]. But this means
that ZerosR(fn) converges to ZerosR(f) vaguely.

4.1 Proofs of Theorems 2.1, 2.2, 2.3 and 2.5

In view of the last two lemmas, Theorems 3.1, 3.2 and 3.3 and the continuous mapping
theorem, convergence of zeros in Theorems 2.2, 2.3 and 2.5 follows, if we can show that

P[Z ∈ A(R)] = P[G ∈ A(R)] = P[Zν ∈ A(R)] = 1. (4.1)

Analogously, Theorem 2.1 is a consequence of

P[Z ∈ A([a, b])] = 1, (4.2)

for every a < b. In order to verify these statements, we need the following result due
to E. V. Bulinskaya [5]. It provides general conditions which ensure that a stochastic
process (which need not be Gaussian) does not have multiple zeros, with probability 1.

Lemma 4.3. Let (Q(t))t∈[a,b] be a stochastic process with continuously differentiable
sample paths. Assume that the random variables Q(t) are absolutely continuous with
densities which are bounded uniformly in t ∈ [a, b]. Then, with probability 1 there is no
t ∈ [a, b] such that Q(t) = Q′(t) = 0.
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The parts of (4.1) and (4.2) regarding the Gaussian processes Z and G (in the case
s /∈ πZ) follow immediately from Lemma 4.3 (see also [23] or [22] for further work on
the absence of multiple zeros of Gaussian processes). Indeed, the variances of both Z
and G are non-zero constants which implies that there are uniform upper bounds on
the densities of Z(t) and G(t). Note also that the sample paths of Z and G are analytic
functions; see Section 3.1. Let us consider G(t) in the case s ∈ πZ.

Lemma 4.4. Let s ∈ πZ. Then, with probability 1 there is no t ∈ R such that G(t) =

G′(t) = 0.

Proof. We consider only t ≥ 0 because the case t < 0 is similar. For all t > 0 we have

VarG(t) =
σ2

1 + σ2
2

2
− σ2

1 − σ2
2

2
sinc(2t) + ρ

1− cos(2t)

2t
.

The function t 7→ tVarG(t) is non-decreasing since

d

dt
(2tVarG(t)) = (σ2

1 + σ2
2)− (σ2

1 − σ2
2) cos(2t) + 2ρ sin(2t) ≥ 0,

where in the latter inequality we used that |ρ| ≤ σ1σ2 (Cauchy–Schwarz inequality) and
the maximum of the function a cos(2t) + b sin(2t) is

√
a2 + b2.

Case VarG(0) = σ2
2 > 0. We can find ε > 0 such that VarG(t) > 1

2σ
2
2 > 0 for all

0 ≤ t ≤ ε. For t ≥ ε, we obtain VarG(t) ≥ εσ2
2/(2t) and consequently VarG(t) is bounded

below on compact sets, thus justifying the use of Lemma 4.3.
Case VarG(0) = σ2

2 = 0. Then ρ = 0 and VarG(t) = 1
2σ

2
1(1− sinc(2t)) is still uniformly

bounded away from zero on [a, b] for all 0 < a < b < ∞. By Lemma 4.3 there are no
multiple zeros of G on (0,∞), with probability 1. To see that 0 is a.s. not a multiple zero,
note that although G(0) = 0, we have G′(0) =

∫ 1

0
ud ReW (u) which is a Gaussian variable

with strictly positive variance (because Var ReW (1) = σ2
1 > 0) and hence, non-vanishing

a.s.

Let us check that P[Zν ∈ A(R)] = 1 using Lemma 4.3.

Lemma 4.5. With probability 1, there is no t ∈ R such that Zν(t) = Z ′ν(t) = 0.

Proof. Recall from Section 3.1 that Zν is a random analytic function. We intend to show
that Zν(t) have densities which are bounded uniformly in t ∈ R, ε < |t| < ε−1 for fixed
ε > 0. By Lemma 4.3 this implies that the process Zν almost surely does not have
multiple zeros in any interval bounded away from zero. Fix ε > 0. It is enough to show
that ∫

R

∣∣∣EeiaZν(t)
∣∣∣da ≤ C, (4.3)

where C does not depend on ε < |t| < ε−1. This means that the characteristic function
of the random variable Zν(t) has bounded L1-norm which, by Fourier inversion, implies
that this random variable has Lebesgue density, say pt, and

pt(x) =
1

2π

∣∣∣∣∫
R

e−iaxEeiaZν(t)da

∣∣∣∣ ≤ C

2π
, x ∈ R, ε < |t| < ε−1.

We prove (4.3). Recall that

aZν(t) =

∫ 1

0

a sin(tu)d ReL(u) +

∫ 1

0

a cos(tu)d ImL(u).

By a formula for the characteristic function of such stochastic integral (see, for example,
formula (6) in [10]), we have

logEeiaZν(t) =

∫ 1

0

ψ(a sin(tu), a cos(tu))du, (4.4)
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where
ψ(x, y) = logEei(xReL(1)+y ImL(1)), x, y ∈ R.

The random vector (ReL(1), ImL(1)) is α-stable. Denote its spectral measure by Γ (which
is a finite measure on the unit circle T = {z ∈ C : |z| = 1} that can be easily expressed in
terms of ν̃). We have, see Theorem 2.3.1 in [18],

Reψ(a sin(tu), a cos(tu)) = −|a|α
∫

[0,2π)

| Im ei(tu+φ)|αΓ(dφ)

= −|a|α
∫

[0,2π)

| sin(tu+ φ)|αΓ(dφ).

Putting this into (4.4) we obtain

Re logEeiaZν(t) = −|a|α
∫

[0,2π)

∫ 1

0

| sin(tu+ φ)|αduΓ(dφ)

= −|a|α
∫

[0,2π)

t−1

∫ t+φ

φ

| sin v|αdvΓ(dφ).

The function (φ, t) 7→ t−1
∫ t+φ
φ
| sin v|αdv is continuous and strictly positive on the compact

set [0, 2π]× [ε, ε−1], hence attains its minimal value, say δ > 0. Therefore,

Re logEeiaZν(t) ≤ −δΓ([0, 2π))|a|α, a ∈ R,

yielding (4.3) and proving that there are no multiple zeros in R \ {0}.
It remains to show that t = 0 is not a multiple zero almost surely. Note that if the

spectral measure Γ is supported by {0, π}, then ImL(u) = 0 and hence Zν(0) = 0 almost
surely. Otherwise, Zν(0) = ImL(1) is non-degenerate stable random variable, hence
P[Zν(0) = 0] = 0. So let us assume that Γ is concentrated on {0, π}. We have

Z ′ν(0) =

∫ 1

0

ud ReL(u)

implying that Z ′ν(0) has a non-degenerate stable law, hence P[Z ′ν(0) = 0] = 0. This
completes the proof of the lemma.

5 Appendix

The first statement of the next lemma is closely related to the classical Weyl equidis-
tribution theorem, see, for example, [14], which states that for every irrational α,

lim
n→∞

1

n
#{1 ≤ k ≤ n : (kα) mod 1 ≤ y} = y, y ∈ [0, 1].

It is used in the proof of Lemma 3.4.

Lemma 5.1. Let f : [0,∞) × (C \ {0}) → R+ be a continuous function with compact
support.

(i) If α ∈ R \ πQ, then

lim
n→∞

sup
z∈C\{0}

∣∣∣∣∣∣ 1n
∑
k≥1

f(k/n, eikαz)−
∫ ∞

0

∫ 1

0

f(x, e2πiyz)dydx

∣∣∣∣∣∣ = 0. (5.1)

(ii) If α = 2πp/q for p ∈ Z and q ∈ N coprime, then

lim
n→∞

sup
z∈C\{0}

∣∣∣∣∣∣ 1n
∑
k≥1

f(k/n, eikαz)− 1

q

q∑
k=1

∫ ∞
0

f(x, e2πik/qz)dx

∣∣∣∣∣∣ = 0. (5.2)
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Proof. Fix a, r > 0 such that f(x, z) = 0 if x > a or |z| < r. Consider a family (fz) ⊂
C([0, a] × [0, 2π]), where fz(x, y) := f(x, zeiy), y ∈ [0, 2π], x ∈ [0, a], indexed by the
complex variable z such that |z| ≥ r. Trivially, this family is uniformly bounded. Let
us check that (fz) is also equicontinuous and therefore, by the Arzelá–Ascoli theorem,
precompact in C([0, a]× [0, 2π]).

Fix ε > 0. Since f is uniformly continuous on [0,∞)× (C \ {0}) we can find δ > 0 such
that for every z1, z2 ∈ C \ {0}, |z1 − z2| < δ and every x1, x2 ∈ [0,∞), |x1 − x2| < δ, we
have |f(x1, z1)− f(x2, z2)| < ε/3. Further, by the uniform continuity of f , there exists a
finite limit

f(x,∞) = lim
|z|→+∞

f(x, z)

and moreover the convergence is uniform for x ∈ [0, a]. Pick R = R(ε) > 0 such that
|f(x, z1) − f(x, z2)| < ε/3 for |z1| > R, |z2| > R and all x ∈ [0, ∞). We have, for all
y1, y2 ∈ [0, 2π] and x1, x2 ∈ [0, a],

sup
|z|≥r

|fz(x1, y1)− fz(x2, y2)| = sup
|z|≥r

|f(x1, ze
iy1)− f(x2, ze

iy2)|

≤ sup
r≤|z|≤R

|f(x1, ze
iy1)− f(x1, ze

iy2)|

+ sup
|z|>R

|f(x1, ze
iy1)− f(x1, ze

iy2)|

+ sup
|z|≥r

|f(x1, ze
iy2)− f(x2, ze

iy2)|.

The first and the third summands are < ε/3 whenever |y1 − y2| < δ/R and |x1 − x2| < δ,
respectively. The second is < ε/3 by the choice of R. Hence,

sup
|z|≥r

|fz(x1, y1)− fz(x2, y2)| < ε

if |y1 − y2| < δ/R and |x1 − x2| < δ, yielding the equicontinuity.
To check (5.1), consider the measures on [0, a]× [0, 2π] defined by

µ′n :=
1

[na]

∑
k≥1

δ(k/n,(kα)mod(2π))

and note that, for every x ∈ (0, a] and y ∈ [0, 2π],

µ′n([0, x]× [0, y]) =
#{k ∈ N : k/n ≤ x, (kα)mod(2π) ≤ y}

[na]
(5.3)

∼ x

a

#{k ≤ nx : (kα)mod(2π) ≤ y}
nx

−→
n→∞

xy

2πa
,

where the last passage follows from Weyl’s equidistribution theorem. Therefore, we have
weak convergence of probability measures

µ′n −→
n→∞

µ′ := (2πa)−1LEB[0, a]×[0, 2π], (5.4)

since the distribution functions of µ′n converge pointwise to the distribution function of
µ′.

By the Skorokhod representation theorem there exists a probability space (Ω,A,P)

and random vectors Xn and X on this space such that Xn has distribution µ′n, X has
distribution µ′, and Xn → X, as n → ∞, almost surely. With this notation we can
recast (5.1) as follows:

lim
n→∞

a sup
|z|≥r

|EPfz(Xn)− EPfz(X)| = 0. (5.5)
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By the precompactness (or just equicontinuity) of the family (fz):

sup
|z|≥r

|fz(Xn)− fz(X)| a.s.−→
n→∞

0.

Recalling the uniform boundedness of (fz) and invoking the dominated convergence
theorem, we arrive at (5.5). Relation (5.2) follows analogously from the observation that

µ′′n :=
1

na

∑
k≥1

δ(k/n,(2πpk/q)mod(2π)}) → µ′′ := a−1LEB×Uq,

weakly, where Uq is a uniform measure on the set {0, 2π/q, 4π/q, . . . , 2π(q − 1)/q}. The
proof of Lemma 5.1 is complete.

The next lemma shows that the mapping F : D([0, 1],C) → H defined by (3.20) is
continuous.

Lemma 5.2. The mapping F , defined by (3.20), is everywhere continuous on D([0, 1],C).

Proof. Let fn → f , as n→∞, on D([0, 1],C). Fix a compact set K ⊂ C and let us show
that

lim
n→∞

sup
z∈K
|(F(fn))(z)− (F(f))(z)| = 0. (5.6)

By the definition of J1-topology, fn(1) → f(1) and fn(0) → f(0) as n → ∞. Hence
equation (5.6) is equivalent to

lim
n→∞

sup
z∈K

∣∣∣∣∫ 1

0

fn(x)eizxdx−
∫ 1

0

f(x)eizxdx

∣∣∣∣ = 0. (5.7)

It is known that convergence in D([0, 1],C) implies convergence in L1([0, 1]), see e.g.
Lemma 2.2 in [11]. Hence,

lim
n→∞

∫ 1

0

|fn(x)− f(x)|dx = 0

and (5.7) follows from the the inequalities

sup
z∈K

∣∣∣∣∫ 1

0

fn(x)eizxdx−
∫ 1

0

f(x)eizxdx

∣∣∣∣ ≤ ∫ 1

0

(
sup
z∈K
|eizx|

)
|fn(x)− f(x)|dx

≤
(

1 + sup
z∈K

e− Im z

)∫ 1

0

|fn(x)− f(x)|dx.

The proof of Lemma 5.2 is complete.
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