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Abstract

Kang, Perkins, and Spencer [7] conjectured that the size of the largest component of
the Bohman-Frieze process at a fixed time t smaller than tc, the critical time for the
process, is L1(t) = O(logn/(tc − t)2) with high probability. Bhamidi, Budhiraja, and
Wang [3] have shown that a bound of the form L1(tn) = O((logn)4/(tc − tn)2) holds
with high probability for tn ≤ tc − n−γ where γ ∈ (0, 1/4). In this paper, we improve
the result in [3] by showing that for any fixed λ > 0, L1(tn) = O(logn/(tc − tn)2) with
high probability for tn ≤ tc − λn−1/3. In particular, this settles the conjecture in [7].
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1 Introduction

Initiated by a question of Dimitris Achlioptas, the study of modified Erdős–Rényi
processes (called Achlioptas processes) has grown into a large area of research in
the past decade. At each step of an Achlioptas process, two edges are sampled at
random, and one of these edges is added to the graph according to some selection
rule. The Erdős–Rényi process, for example, is an Achlioptas process where the first
edge sampled is always added to the random graph. One such Achlioptas process
called the Bohman-Frieze process has received a lot of attention and will be the main
focus of this paper. We first describe a continuous time version of the Bohman-Frieze
process. Consider the complete graph Kn = (Vn, En) on the vertex set Vn = {1, . . . , n}.
Consider independent Poisson processes Pe, e ∈ En × En, each having rate 2/n3. Let
∪e∈En×EnPe = {u1 < u2 < . . .}. Then the continuous time Bohman-Frieze process BFn(·)
evolves as follows:
• BFn(u) is the empty graph on Vn for 0 ≤ u < u1.
• If the Poisson process Pe has a point at ui, where e = (e1, e2) ∈ En × En and the
endpoints of e1 are isolated vertices in BFn(ui−), set BFn(u) = BFn(ui−) ∪ e1 for u ∈
[ui, ui+1). Otherwise, set BFn(u) = BFn(ui−) ∪ e2 for u ∈ [ui, ui+1).

The corresponding discrete time version DBFn(·) evolves as follows:
• DBFn(u) is the empty graph on Vn for 0 ≤ u < 2/n.
• At time 2(k + 1)/n, two edges e1 and e2 are selected uniformly (with replacement)
from En. If the endpoints of e1 are isolated vertices in DBFn(2k/n), set DBFn(u) =
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The largest component in the Bohman-Frieze process

DBFn(2k/n)∪e1 for u ∈ [2(k+1)/n, 2(k+2)/n). Otherwise, setDBFn(u) = DBFn(2k/n)∪
e2 for u ∈ [2(k + 1)/n, 2(k + 2)/n).

We will denote the size of the largest component of BFn(t) (resp. DBFn(t)) by LBF1 (t)

(resp. LDBF1 (t)). Spencer and Wormald [8] have shown that there exists tc > 1 (which
we call the critical time for the process) such that

LDBF1 (t) =

{
OP (log n), if t < tc,

ΘP (n), if t > tc.
(1.1)

It is easy to see that tc is also the critical time for the continuous time Bohman-Frieze
process, and hence we will refer to it as the critical time for the Bohman-Frieze process.
In [7, Theorem 4], it was claimed that for any fixed t ∈ (0, tc),

P(LDBF1 (t) ≥ K log n/(tc − t)2)→ 1 (1.2)

for some constant K free of t. Later the authors discovered a gap in the proof (Mihyun
Kang, personal communication). So the bound in (1.2) seems to be an open problem now.
In the same paper, Kang, Perkins, and Spencer conjectured [7, Conjecture 1] that the
bound in (1.2) is of the right order, i.e.,

P(LDBF1 (t) ≤ K ′ log n/(tc − t)2)→ 1

for any fixed t ∈ (0, tc) and some constant K ′ free of t. Bhamidi, Budhiraja, and Wang
[3, 2] independently showed that for γ ∈ (0, 1/4), there exists a constant C = C(γ) such
that

P(LBF1 (tn) ≤ C(log n)4/(tc − tn)2)→ 1 for tn ≤ tc − n−γ (1.3)

by connecting the dynamics of BFn(·) to an inhomogeneous random graph model. In
this work, we take the approach in [3] and go through a more careful analysis to prove
[7, Conjecture 1] (Theorem 2.1 and Corollary 2.2). Our result is true for tn ≤ tc − λn−1/3

(for any fixed λ > 0) and thus closes the gap between the critical window and the interval
0 < t ≤ tc − n−γ , γ < 1/4 where the bound in [3] is valid.

2 Main results

The following theorem is our main result.

Theorem 2.1. Let tc be the critical time for the Bohman-Frieze process. Let t = t(n)

satisfy t ≤ tc − λn−1/3 for a fixed λ > 0. Let LBF1 (t) denote the size of the largest
component of BFn(t). Then there exists a universal positive constant C such that

P
(
LBF1 (t) > C log n/(tc − t)2

)
n→∞−→ 0. (2.1)

An immediate consequence of Theorem 2.1 is an analogous result for the discrete
time Bohman-Frieze process.

Corollary 2.2. Let tc be the critical time for the Bohman-Frieze process. Let t = t(n)

satisfy t ≤ tc − λn−1/3 for a fixed λ > 0. Let LDBF1 (t) denote the size of the largest

component of DBFn(t). Then there exists a universal positive constant C such that

P
(
LDBF1 (t) > C log n/(tc − t)2

) n→∞−→ 0.

Remark 2.3. Let LBFi (t) denote size of the i-th largest component of BFn(t) for i =

1, 2, . . .. It was shown in [3] that for fixed λ ∈ R and t = t(n) = tc + λn−1/3 (the so-called
critical window), the vector n−2/3(LBF1 (t), LBF2 (t), . . .) converges in distribution to the
ordered excursion lengths of a reflected Brownian motion with parabolic drift (see [1]).
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So the results of Theorem 2.1 and Corollary 2.2 are sub-optimal for this particular
choice of t(n). Very precise results about the size of the largest component in the barely-
subcritical regime of the Erdős-Rényi process is known; see, e.g., [6, Theorem 5.23]. We
expect the Bohman-Frieze process to exhibit similar behavior. From this consideration,
one would guess that the bounds in Theorem 2.1 and Corollary 2.2 are sub-optimal also
when t(n) is, for instance, of the form t(n) = tc − log n/n1/3. However, we expect our
bounds to be of the right order whenever t(n) ≤ tc − n−γ and γ < 1/3. But as mentioned
before, a lower bound of the form (1.2) is currently unavailable in the literature.

3 The associated inhomogeneous random graph model

The most natural way of bounding component sizes of random graphs is by branching
process approximations. Spencer and Wormald [8] studied the Bohman-Frieze (BF)
process directly via the differential equation method. However, this method does not
associate the BF process with any branching process. In [3], an interesting connec-
tion between the BF process and an inhomogeneous random graph model (IRG) was
established which made studying the BF process simpler, as IRGs are more amenable
to analysis via branching process approximations. We will now briefly describe this
connection and introduce the necessary notation. The interested reader can find a
detailed account of general IRG models in [4].

Let Xn(v) be the number of singletons (i.e., isolated vertices) in BFn(v), and set
xn(v) = Xn(v)/n. An edge added in the BF process at time v can be of the following
types:
(A) Both its endpoints were isolated vertices in BFn(v−).
(B) Only one of its endpoints was an isolated vertex in BFn(v−).
(C) None of its endpoints were isolated in BFn(v−).
Two singletons are added in the BF process (i.e., an edge of type A is created) if one of
the following happens:
(i) the first edge selected connects two isolated vertices or
(ii) the first edge selected does not connect two isolated vertices, but the second edge
selected joins two isolated vertices.
Hence, two singletons are added in the BF process at a rate

2

n3

[(
Xn(v)

2

)(
n

2

)
+

((
n

2

)
−
(
Xn(v)

2

))(
Xn(v)

2

)]
=: nan(xn(v)),

where an(·) is a bounded function that can be directly computed from the above expres-
sion. One can similarly show that a given non-singleton vertex (i.e., a vertex that is not
isolated) in BFn(v) gets connected to some isolated vertex (i.e., an edge of type B is
created) at a rate

2

n3

((
n

2

)
−
(
Xn(v)

2

))
Xn(v) =: cn(xn(v))

for a function cn(·). Finally, two given non-singleton vertices are joined (i.e., an edge of
type C is created) at a rate

2

n3

((
n

2

)
−
(
Xn(v)

2

))
=:

1

n
bn(xn(v)),

for a function bn(·). Define the functions a0, b0, c0 : [0, 1]→ R+ as follows:

a0(y) = y2 − y4/2, b0(y) = 1− y2, and c0(y) = (1− y2)y. (3.1)

Then it is straightforward to check that

sup
y∈[0,1]

(|an(y)− a0(y)|+ |bn(y)− b0(y)|+ |cn(y)− c0(y)|) = O(1/n).

ECP 21 (2016), paper 64.
Page 3/15

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP20
http://www.imstat.org/ecp/


The largest component in the Bohman-Frieze process

Further, the function xn(·) is highly concentrated around x(·) (see [8, 3]) which satisfies
the ODE

x′(v) = −x(v)− x2(v) + x3(v), x(0) = 1. (3.2)

As a result, the three rate functions an(xn(v)), bn(xn(v)), and cn(xn(v)) lie very close to
the functions

a(v) := a0(x(v)), b(v) := b0(x(v)), and c(v) := c0(x(v)) (3.3)

respectively with high probability. This motivates one to consider an IRG model (de-
fined below) associated with the deterministic rate functions a, b, c given by (3.3) that
approximates the BF process with high probability.

We need a few definitions to describe the IRG model. Let T = 2tc, where tc is as
in (1.1), and let W be the space D([0, T ] : Z≥0) equipped with the Skorohod topology.
Suppose we are given three continuous functions ā, b̄, c̄ : [0, T ] → [0,∞). For each

s ∈ [0, T ], let V (c̄)
s be a random increasing function taking values in W defined as follows:

• V (c̄)
s (u) = 0 for u ∈ [0, s) and V (c̄)

s (s) = 2 almost surely.

• Conditioned on V
(c̄)
s (u), s ≤ u ≤ v, V̄ (c̄)

s (·) increases by one in (v, v + dv] with rate

V
(c̄)
s (v)c̄(v).

Let ν(c̄)
s be the law of V (c̄)

s . Let X = [0, T ] ×W . Define a measure µ = µ[ā, c̄] and a
function φv on X as follows:

µ(d(s, w)) = ā(s)ds ν(c̄)
s (dw), φv(s, w) = w(v) for (s, w) ∈ X. (3.4)

Finally, define a kernel kv = kv[b̄] on X ×X by

kv
(
(s1, w1), (s2, w2)

)
:=

∫ v

0

w1(u)w2(u)b̄(u) du, where (si, wi) ∈ X, i = 1, 2. (3.5)

Then the IRG RGn,v(ā, b̄, c̄) can be described as follows: declare the vertex set to be
points of a Poisson process P on X with intensity nµ(dx), and then join any two points
x, y ∈ P with probability 1∧ kv(x, y)/n. The volume of a connected component C is given
by

volume(C) :=
∑
x∈C

φv(x).

Lemma 4.2 stated below gives a precise way of comparing the the random graph BFn(t)

with the IRG RGn,t(a, b, c), where a, b, c are as in (3.3).
Associated with the kernel kv there is an integral operator Kv on L2(X,µ) given by

Kvf(x) :=
∫
X
kv(x, y)f(y)µ(dy). We will denote by k(i)

v the i-fold convolution of kv with

itself. Hence the integral operator associated with k(i)
v is Ki

v. We will write ρv[ā, b̄, c̄] to
denote the norm, in L2(µ[ā, c̄]), of the operator Kv associated with kv = kv[b̄].

Organization of the paper. In Section 4.1, we give the statements of some technical
results needed in the proof. In Section 4.2, we first reduce the problem of bounding
LBF1 to the problem of bounding the total progeny of the branching process associated
with the IRG model. Then we go through a careful analysis of this branching process
in Lemma 4.5. The proof of Theorem 2.1 is then easily completed by using a Chernoff
bound. In Section 4.3, we give the proof of a technical estimate (Lemma 4.1) used in the
proof of Theorem 2.1. Finally, in Section 4.4, we give the proof of Corollary 2.2.

We point out here that the two key ingredients that allow us to improve the result
in [3] are: (i) Lemma 4.5 which gives very precise control over exponential moments of
the total progeny of the associated branching process, and (ii) Lemma 4.1 which gives a
sharp bound on the change in the operator norm ρv[a, b, c] when the functions a, b, c are
slightly perturbed.
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4 Proofs

Throughout this section, C, C ′ will denote positive universal constants whose values
may change from line to line. Special constants will be indexed, as for example C1,
C2 etc. Throughout this section a0(·), b0(·), c0(·), x(·), a(·), b(·) and c(·) will be as in (3.1),
(3.2), and (3.3) respectively. Recall from Section 3 that T = 2tc where tc is the critical
time for the BF process.

Assume that t = t(n) satisfies t ≤ tc − λn−1/3. Fix γ ∈ (1/3, 1/2), and define En :=

{sup0≤u≤T |xn(u)−x(u)| > n−γ}. Since a(u) = a0(x(u)) is C1 on [0, T ] and |an(u)−a0(u)| =
O(1/n), it follows that on the event Ecn,

an(xn(u)) ≤ a0(xn(u)) +
C

n
≤ a(u) + C ′

( 1

n
+ |xn(u)− x(u)|

)
≤ a(u) +

C1

nγ
,

and similar upper bounds hold for bn(xn(u)) and cn(xn(u)). Set

δ = δn = C1n
−γ and define an,δ(u) = a(u) + δn

for u ∈ [0, T ]. Define bn,δ(u) and cn,δ(u) similarly. Hence, an(xn(u)) ≤ an,δ(u) on Ecn
and similar upper bounds hold for bn(xn(u)) and cn(xn(u)). Note also that the following
bound is a simple consequence of (3.1):

sup
u∈[0,T ]

max{an,δ(u), bn,δ(u), cn,δ(u)} ≤ 1 for large n. (4.1)

4.1 Some preliminary results

The following lemma, whose proof is deferred to Section 4.3, gives us control over
ρu[an,δ, bn,δ, cn,δ].

Lemma 4.1. There exists a positive constant β0 such that∣∣∣ρu[an,δ, bn,δ, cn,δ]− ρu[a, b, c]
∣∣∣ ≤ β0δ for each u ∈ [0, T ].

A weaker version of the above result was proven in [3, Lemma 6.9], where a bound of
the form O(|(log δ)|3

√
δ) was established. This weaker bound allows one to perform the

analysis in the regime t(n) ≤ tc − n−γ , γ ∈ (0, 1/4). The stronger result in Lemma 4.1
allows us to prove the bound in (2.1) for t(n) ≤ tc − λn−1/3.

We will collect some useful estimates from [3] in the next lemma. Write νs,δ for ν
(cn,δ)
s

(recall the definition from around (3.4)). Consider the IRG model RGn,t(an,δ, bn,δ, cn,δ)
conditioned on having a point (0, w), where w is distributed according to ν0,δ. Let
CRGn,δ (t) be the volume of the component containing (0, w). Further, let C0

n(t) denote the
component of the first edge appearing in BFn(t).

Lemma 4.2. The following hold.
(i) Bound on P(En) [3, Lemma 6.4]: P(En) ≤ exp(−Cn1−2γ).
(ii) Connection between BF process, and RGn,t(an,δ, bn,δ, cn,δ) [3, Lemma 5.1, Lemma
5.2, and Lemma 6.1]: We have

P(LBF1 (t) > m) ≤ nTP(C0
n(t) > m).

Further,
P(C0

n(t) > m,Ecn) ≤ P(CRGn,δ (t) > m).

(iii) Properties of operator norms [3, Lemma 6.10]: The function f(u) := ρu[a, b, c] is
strictly increasing and satisfies f(tc) = 1. Further, there exists η > 0 such that

(1− f(u))/(tc − u)→ η as u ↑ tc.

(iv) Absolute continuity of measures [3, Lemma 6.19]: Write µ = µ[a, c], and µδ =

µ[an,δ, cδ]. Then µ << µδ and for x = (s, w) ∈ X,
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h(x) :=
dµ

dµδ
(x) =

a(s)

an,δ(s)
exp

(∫ T

s

w(u)(cn,δ(u)− c(u))du

)w(T )−2∏
i=1

(
c(γi)

cn,δ(γi)

)
, (4.2)

where γi = γi(s, w) is the time of the ith jump of w after time s.

Let µ := µ[1, 1], i.e., the measure on [0, T ]×W associated with the functions that are

identically equal to one, and similarly let νs = ν
(1)
s . Thus µ(d(s, w)) = ds νs(dw). The

next lemma helps us control the cluster sizes.

Lemma 4.3. The cluster sizes follow negative binomial distribution under νs, i.e.,

νs(w(T ) = k) = (k − 1)e−2(T−s)
(

1− e−(T−s)
)k−2

for k ≥ 2 and s ∈ [0, T ). (4.3)

As a consequence, w(T ) has exponentially decaying tail under ν0. Further,

ν0 ≥
st
νs ≥

st
νs,δ for s ∈ [0, T ],

where the second inequality is true for large n. Here “≥
st

” denotes stochastic domination.

Proof: (4.3) is a standard fact about birth processes and can be derived from, for
example, [5, Equation (1)]. The first stochastic domination is immediate and the second
one is a consequence of (4.1). �

4.2 Proof of Theorem 2.1

We first make note of an inequality that will be used later in the proof. An application
of Lemma 4.1 together with (iii) of Lemma 4.2 yields

ρt(an,δ, bn,δ, cn,δ) ≤ ρt(a, b, c) +
β0C1

nγ
≤ 1− C(tc − t) +

β0C1

nγ
≤ 1− β(tc − t) (4.4)

for sufficiently large n and a positive universal constant β. Here we have used the fact
that t ≤ tc − λn−1/3 and γ > 1/3. This shows that

∆n,t ≥ β(tc − t) > 0 (4.5)

for sufficiently large n, where

∆ = ∆n,t := 1− ρt(an,δ, bn,δ, cn,δ). (4.6)

The next few steps consist of reducing the problem to getting an upper bound on the
total progeny of a suitable branching process. From Lemma 4.2, we get

P(LBF1 (t) > m) ≤ nT
[
P(C0

n(t) > m,Ecn) + P(En)
]

(4.7)

≤ nT
[
P(CRGn,δ (t) > m) + exp(−Cn1−2γ)

]
= nT

[ ∫
W

Pw0
(CRGn,δ (t) > m) ν0,δ(dw0) + exp(−Cn1−2γ)

]
,

where Pw0(·) = P
(
·
∣∣ (0, w0) ∈ RGn,t(an,δ, bn,δ, cn,δ)

)
for every fixed w0 ∈W .

Write kt,δ for kt[bn,δ] and recall that µδ = µ[an,δ, cn,δ]. Consider a branching process
on Xt := [0, t]×W as follows: Define x0 = (0, w0) to be generation zero of the branching
process. For k ≥ 0, denote the total number of points in generation k by Nk (thus N0 = 1),
and let x(k)

1 , . . . , x
(k)
Nk

denote the points in generation k (note that x0 = x
(0)
1 ). Then for

k ≥ 0 and 1 ≤ i ≤ Nk, x(k)
i gives birth to its own offsprings according to a Poisson process

with intensity kt,δ(x
(k)
i , y) µδ(dy) independent of the other points in generation k.

Let G(x0) :=
∑∞
k=0

∑Nk
i=1 φt(x

(k)
i ) be the total progeny. By a breadth-first search

argument (see [3, Lemma 6.12]),

Pw0
(CRGn,δ (t) > m) ≤ P(G(x0) > m). (4.8)
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From (4.7) and (4.8), we have

P(LBF1 (t) > m) ≤ nT
[ ∫

W

P
(
G ((0, w0)) > m

)
ν0,δ(dw0) + exp(−Cn1−2γ)

]
. (4.9)

We will use the next two lemmas to bound P
(
G ((0, w0)) > m

)
. Let Kt,δ be the integral

operator on L2(X,µδ) associated with the kernel kt,δ.

Lemma 4.4. Let f∞ := φt+
∑∞
i=1(1+∆/2)iKi

t,δφt. Then there exists a universal constant
C3 such that for every (s, w) ∈ Xt = [0, t]×W ,

f∞(s, w) ≤ C3w(T )/∆.

Lemma 4.5. Set f0 = φt and define

f` := φt +
∑̀
i=1

(1 + ∆/2)iKi
t,δφt for ` = 1, 2, . . . .

Fix x = (s, w) ∈ Xt, and let y1, . . . , yN be the points of a Poisson process in Xt having
intensity kt,δ(x, y)µδ(dy). Then there exists η0 > 0 (independent of x) such that for every
η ∈ (0, η0],

E exp
(
η∆2

N∑
i=1

f(yi)
)
≤ exp

(
η∆2(1 + ∆/2)Kt,δf(x)

)
for every f ∈ {f` : ` ≥ 0}.

Lemma 4.5 will be used to get a sharp tail bound on G((0, w0)). A restrictive version of
this result was obtained in [3, Lemma 6.14], where the authors used a direct truncation
argument. [3, Lemma 6.14] leads to a bound of the form O((log n)4/(tc − t)2), whereas
the stronger result in Lemma 4.5 will yield the bound O(log n/(tc − t)2).

To simplify notation, we will write ρt,δ for ρt(an,δ, bn,δ, cn,δ), and aδ (resp. bδ, cδ) for
an,δ (resp. bn,δ, cn,δ) throughout the rest of this section.

Proof of Lemma 4.4: First note that

‖φt‖2L2(µδ)
=

∫
Xt

w1(t)2µδ(d(s1, w1)) (4.10)

=

∫ t

0

aδ(s1)Eνs1,δ [w1(T )2]ds1 ≤ Eν0

[
w1(T )2

] ∫ T

0

aδ(s1)ds1 <∞,

where the third step uses Lemma 4.3. Note also that

Ki
t,δφt(s, w) =

∫
Xt

k
(i)
t,δ

(
(s, w), (s1, w1)

)
φt(s1, w1) µδ(d(s1, w1)) (4.11)

≤ ‖k(i)
t,δ((s, w), · )‖L2(µδ)‖φt‖L2(µδ)

≤ C‖Ki−1
t,δ kt,δ((s, w), · )‖L2(µδ) ≤ Cρ

i−1
t,δ ‖kt,δ((s, w), · )‖L2(µδ).

Now

kt,δ((s, w), (s1, w1)) =

∫ t

0

w(u)w1(u)bδ(u)du ≤ Cw(T )w1(T ). (4.12)

Hence

‖kt,δ((s, w), .)‖2L2(µδ)
=

∫
Xt

kt,δ((s, w), (s1, w1))2µδ(d(s1, w1)) (4.13)

≤ C
∫ t

0

aδ(s1)ds1

∫
w1∈W

w2(T )w2
1(T )νs1,δ(dw1)

≤ Cw2(T )Eν0

[
w1(T )2

] ∫ T

0

aδ(s1)ds1 ≤ C ′w2(T ),
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The largest component in the Bohman-Frieze process

where the penultimate step again uses Lemma 4.3. From (4.10), (4.11) and (4.13), we
get

f∞(s, w) = φt(s, w) +

∞∑
i=1

(1 + ∆/2)iKi
t,δφt(s, w)

≤ w(T ) + C

∞∑
i=1

(1 + ∆/2)iρi−1
t,δ w(T )

≤ C ′w(T )

(
1 +

1

1− (1−∆)(1 + ∆/2)

)
≤ C3w(T )

∆
,

which is the desired bound. �

Proof of Lemma 4.5: By properties of Poisson processes,

E exp

(
η∆2

N∑
i=1

f(yi)

)
= exp

(∫
Xt

kt,δ(x, u)
(

exp(η∆2f(u))− 1
)
µδ(du)

)
. (4.14)

Now∫
Xt

kt,δ(x, u)(exp(η∆2f(u))− 1)µδ(du) (4.15)

=

∫
Xt

kt,δ(x, (s1, w1))(exp(η∆2f(s1, w1))− 1)µδ(d(s1, w1))

=

∫ t

s1=0

∫
w1∈W

(∫ t

s1

w(v)w1(v)bδ(v)dv
)(

exp
(
η∆2f(s1, w1)

)
− 1
)
νs1,δ(dw1)aδ(s1)ds1

=

∫ t

s1=0

∫ t

v=s1

w(v)bδ(v)aδ(s1)Eνs1,δ

[
w1(v)

(
exp

(
η∆2f(s1, w1)

)
− 1
) ]
dvds1.

Fix s1 ∈ (0, t) and v ∈ (s1, t). Then

Eνs1,δ

[
w1(v)(exp(η∆2f(s1, w1))− 1)

]
(4.16)

= η∆2Eνs1,δ

[
w1(v)

(
f + η∆2f2/2! +

∞∑
j=2

(η∆2)jf j+1/(j + 1)!
)]

=: η∆2Eνs1,δ(T1 + T2 + T3).

We now have to get upper bounds on Eνs1,δ(T3) and Eνs1,δ(T2). To this end, note that
∆2j ≤ ∆j+2 for j ≥ 2 and f ≤ f∞. Hence from Lemma 4.4,

Eνs1,δ(T3) ≤ Eνs1,δ
[
w1(v)

∞∑
j=2

(η∆2)j
(C3w1(T ))j+1

∆j+1(j + 1)!

]
≤ Eνs1,δ

[
w1(T )

∞∑
j=2

ηj∆
(C3w1(T ))j+1

(j + 1)!

]
≤ C2

3η∆× Eνs1,δ
[
w1(T )3

∞∑
j=2

(C3ηw1(T ))j−1

(j + 1)!

]
≤ C2

3η∆× Eν0

[
w1(T )3 exp(C3ηw1(T ))

]
≤ C2

3η∆×
[
Eν0(w1(T )6)

]1/2[
Eν0(exp(2C3ηw1(T )))

]1/2
.

Since w1 has an exponentially decaying tail (Lemma 4.3), we can choose η1 > 0 small so
that
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The largest component in the Bohman-Frieze process

Eν0
[exp(2C3η1w1(T ))] <∞,

and for 0 ≤ η ≤ η1,

Eνs1,δ(T3) ≤ ∆ ≤ ∆

4
Eνs1,δ

[
w1(v)f(s1, w1)

]
. (4.17)

Here the last inequality uses the fact that if v ∈ (s1, t) and w1 is distributed as νs1,δ, then
w1(v) ≥ 2 and f(s1, w1) ≥ φt(s1, w1) = w1(t) ≥ 2.

It follows from Lemma 4.4 that f(s1, w1) ≤ f∞(s1, w1) ≤ C3w1(T )/∆ whenever f ∈
{f` : ` ≥ 0}. Hence

Eνs1,δT2 = Eνs1,δ
[
w1(v)η∆2f2/2

]
≤ C3η∆

2
Eνs1,δ

[
w1(T )2f(s1, w1)

]
. (4.18)

Suppose f = f` = φt +
∑`
i=1(1 + ∆/2)iKi

t,δφt. Choose an η2 > 0 so that

C3η2Eν0

[
w1(T )3

]
≤ 2. (4.19)

Then for 0 < η ≤ η2,

C3η∆

2
Eνs1,δ

[
w1(T )2φt(s1, w1)

]
≤ C3η∆

2
Eν0

[
w1(T )3

]
(4.20)

≤ ∆ ≤ ∆

4
Eνs1,δ [w1(v)φt(s1, w1)] .

For i ≥ 1, let gi = Ki−1
t,δ φt. Then

Eνs1,δ
[
w1(T )2Ki

t,δφt(s1, w1)
]

(4.21)

= Eνs1,δ
[
w1(T )2Kt,δgi(s1, w1)

]
= Eνs1,δ

[
w1(T )2

∫
Xt

(∫ t

z=s1

w1(z)w2(z)bδ(z)dz

)
gi(s2, w2)µδ(d(s2, w2))

]
=

∫
Xt

[(∫ t

z=s1

Eνs1,δ
(
w1(T )2w1(z)

)
w2(z)bδ(z)dz

)
gi(s2, w2)

]
µδ(d(s2, w2))

≤
∫
Xt

[(∫ t

z=s1

Eν0

(
w1(T )3

)
w2(z)bδ(z)dz

)
gi(s2, w2)

]
µδ(d(s2, w2)),

where the second equality follows from the definition of Kt,δ and the final step uses the
stochastic domination relation between ν0 and νs1,δ (Lemma 4.3). Hence for 0 < η ≤ η2,

C3η∆

2
Eνs1,δ

[
w1(T )2Ki

t,δφt(s1, w1)
]

(4.22)

≤ C3η∆

2
Eν0

[
w1(T )3

] ∫
Xt

[(∫ t

z=s1

w2(z)bδ(z)dz

)
gi(s2, w2)

]
µδ(d(s2, w2))

≤ ∆

∫
Xt

[(∫ t

z=s1

w2(z)bδ(z)dz

)
gi(s2, w2)

]
µδ(d(s2, w2))

≤ ∆

4

∫
Xt

[(∫ t

z=s1

Eνs1,δ (w1(v)w1(z))w2(z)bδ(z)dz

)
gi(s2, w2)

]
µδ(d(s2, w2))

=
∆

4
Eνs1,δ

[
w1(v)

∫
Xt

kt,δ((s1, w1), (s2, w2))gi(s2, w2)µδ(d(s2, w2))

]
=

∆

4
Eνs1,δ

(
w1(v)Ki

t,δφt(s1, w1)
)
,
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The largest component in the Bohman-Frieze process

where the second inequality follows from (4.19), and the third inequality is a consequence
of the following observation: w1(v), w1(z) ≥ 2 under νs1,δ when v, z ∈ (s1, t). Combining
(4.18), (4.20), and (4.22), we get

Eνs1,δT2 ≤
∆

4
Eνs1,δ [w1(v)f(s1, w1)] . (4.23)

From (4.16), (4.17), and (4.23),

Eνs1,δ
[
w1(v)(exp(η∆2f(s1, w1))− 1)

]
≤ η∆2 (1 + ∆/2)Eνs1,δ [w1(v)f(s1, w1)] . (4.24)

From (4.24) and (4.15), we get∫
Xt

kt,δ(x, u)
(
exp(η∆2f(u))− 1

)
µδ(du) (4.25)

≤ η∆2 (1 + ∆/2)

∫ t

s1=0

∫ t

v=s1

w(v)bδ(v)aδ(s1)Eνs1,δ [w1(v)f(s1, w1)] dvds1

= η∆2(1 + ∆/2)

∫ t

s1=0

aδ(s1)Eνs1,δ [kt,δ(x, (s1, w1))f(s1, w1)] ds1

= η∆2(1 + ∆/2)Kt,δf(x),

for 0 < η ≤ η0 := η1 ∧ η2. This together with (4.14) yields the result. �

Completing the proof of Theorem 2.1. Now the proof of Theorem 2.1 becomes
routine and can be finished by a Chernoff bound argument. Let Gi :=

∑Ni
j=1 φt(x

(i)
j )

be the total volume of points in generation k, and let Fk be the σ-field generated by
{x(j)

i : i ≤ Nj , j ≤ k}.

Lemma 4.6. For 0 < η ≤ η0,

E
(

exp
(
η∆2

k∑
i=j

Gi
) ∣∣∣ Fj) ≤ exp

(
η∆2

Nj∑
i=1

fk−j(x
(j)
i )
)
. (4.26)

Proof : The assertion is immediate for j = k. Assume that it is true for ` + 1 ≤ j ≤ k.
Then

E
(

exp
(
η∆2

k∑
i=`

Gi

) ∣∣∣ F`)
= exp(η∆2G`)E

[
E
(

exp
(
η∆2

k∑
i=`+1

Gi

) ∣∣∣ F`+1

) ∣∣∣ F`]

≤ exp(η∆2G`)E
[

exp
(
η∆2

N`+1∑
i=1

fk−`−1(x
(`+1)
i )

) ∣∣∣ F`]
≤ exp(η∆2G`) exp

(
η∆2(1 + ∆/2)

N∑̀
i=1

Kt,δfk−`−1(x
(`)
i )
)

= exp
(
η∆2

N∑̀
i=1

fk−`(x
(`)
i )
)
,

where the second step follows from the induction hypothesis and the third step follows
from Lemma 4.5. This proves our claim. �

Setting j = 0 and letting k tend to infinity in (4.26), we get

E
[
exp(η0∆2G(x0))

]
≤ exp

(
η0∆2f∞ ((0, w0))

)
≤ exp (η0∆C3w0(T )) ≤ exp(C3η0w0(T )),
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The largest component in the Bohman-Frieze process

where the second inequality is a consequence of Lemma 4.4. Hence∫
W

P
(
G((0, w0)) > m

)
ν0,δ(dw0) ≤ exp(−η0∆2m)

∫
W

E
[

exp
(
η0∆2G((0, w0))

)]
ν0,δ(dw0)

≤ exp(−η0∆2m)

∫
W

exp (C3η0w0(T )) ν0(dw0)

= C4 exp(−η0∆2m) ≤ C4 exp(−η0β
2(tc − t)2m), (4.27)

where the last step follows from (4.5). The constant C4 is finite by the choice of η0. From
(4.27) and (4.9), we see that

P
(
LBF1 (t) >

2 log n

η0β2(tc − t)2

)
n→∞−→ 0,

which completes the proof of Theorem 2.1.

4.3 Proof of Lemma 4.1

Recall the definitions of a(·), b(·), and c(·) from (3.3). As in the previous section,
we will write aδ(u), bδ(u), and cδ(u) for an,δ(x(u)), bn,δ(x(u)) and cn,δ(x(u)) respectively
throughout this section. We will write ku for ku[b] and ku,δ for ku[bδ]. Recall that µ, µδ,
and µ stand for µ[a, c], µ[aδ, cδ], and µ[1, 1] respectively. Then

|ρu(a, b, c)− ρu(aδ, bδ, cδ)| ≤ |ρu(a, b, c)− ρu(aδ, b, cδ)|+ |ρu(aδ, b, cδ)− ρu(aδ, bδ, cδ)|
=: T1 + T2. (4.28)

We first bound the term T1, as bounding T2 is considerably simpler. Writing n(k∗, µ∗) for
the norm, in L2(µ∗), of the integral operator associated with the kernel k∗, note that
ρu(a, b, c) = n(ku, µ) and ρu(aδ, b, cδ) = n(ku, µδ). Let h = dµ/dµδ be as in (iv) of Lemma
4.2. Since n(ku(x, y), µ) = n(ku(x, y)

√
h(x)h(y), µδ),

T1 =

∣∣∣∣n(ku(x, y)
√
h(x)h(y), µδ

)
− n(ku(x, y), µδ)

∣∣∣∣ (4.29)

≤ n

(
ku(x, y)

(√
h(x)h(y)− 1

)
, µδ

)
≤
(∫

X

∫
X

k2
u(x, y)

(√
h(x)h(y)− 1

)2
µδ(dx)µδ(dy)

)1/2

,

where the second step uses the triangle inequality, and the third step uses the fact

n(k∗, µ∗)2 ≤
∫ ∫

k∗(x, y)2µ∗(dx)µ∗(dy).

Recall the notation γi(·, ·) used in the expression of h from (4.2). Writing x = (s1, w1),
y = (s2, w2) and τi = γi(x), ξj = γj(y), we have L ≤

√
h(x)h(y) ≤ U , where

L :=

(
a(s1)

aδ(s1)

a(s2)

aδ(s2)

w1(T )−2∏
i=1

c(τi)

cδ(τi)

w2(T )−2∏
j=1

c(ξj)

cδ(ξj)

) 1
2

and U := exp

(
δT

2

(
w1(T ) + w2(T )

))
.

(4.30)
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The largest component in the Bohman-Frieze process

From (4.12) and (4.29),

T1 ≤ C
(∫

X

∫
X

w1(T )2w2(T )2
[
(U − 1)2 + (L− 1)2

]
µδ(dx)µδ(dy)

)1/2

(4.31)

≤ C
(∫

X

∫
X

w1(T )2w2(T )2(U − 1)2µδ(dx)µδ(dy)

)1/2

+ C

(∫
X

∫
X

w1(T )2w2(T )2(L− 1)2µδ(dx)µδ(dy)

)1/2

=: C(T3 + T4).

Note that

(U − 1)2 ≤ 2

(
exp

(
δTw1(T )

2

)
− 1

)2

exp

(
δTw2(T )

)
+ 2

(
exp

(
δTw2(T )

2

)
− 1

)2

exp

(
δTw1(T )

)
.

This together with the simple inequality ex − 1 ≤ xex yields

T 2
3 ≤ 4

∫ ∫
w2

1(T )w2
2(T )

(
exp

(
δTw1(T )

2

)
− 1

)2

exp (δTw2(T ))µδ(dx)µδ(dy) (4.32)

≤ Cδ2

[ ∫
w4

1(T ) exp
(
δTw1(T )

)
µδ(dx)

] [∫
w2

2(T ) exp (δTw2(T ))µδ(dy)

]
≤ C ′δ2Eν0

[
w4

1(T ) exp (δTw1(T ))
]
Eν0

[
w2

2(T ) exp (δTw2(T ))
]
.

Since the tail of w1(T ) decays exponentially, we conclude that for large n (so that δ = δn
is sufficiently small),

T3 ≤ Cδ. (4.33)

Next, from the definition of T4 in (4.31) and the definition of L in (4.30), it follows that

T 2
4 ≤ C

∫ ∫
w2

1(T )w2
2(T )(L1 + L2 + L3 + L4)µδ(dx)µδ(dy), (4.34)

where

L1 =

(
1−

√
a(s1)

aδ(s1)

)2

, L2 =

(
1−

√
a(s2)

aδ(s2)

)2

,

L3 =

(
1−

w1(T )−2∏
i=1

√
c(τi)

cδ(τi)

)2

, and L4 =

(
1−

w2(T )−2∏
j=1

√
c(ξj)

cδ(ξj)

)2

.

Note that inf [0,T ] a(s) =: m1 > 0 and 0 ≤ aδ(s)− a(s) ≤ δ. Hence∫ ∫
w2

1(T )w2
2(T )L1 µδ(dx)µδ(dy) (4.35)

≤
∫ ∫

w2
1(T )w2

2(T )

(
1− a(s1)

aδ(s1)

)2

µδ(dx)µδ(dy)

≤ δ2

m2
1

∫ ∫
w2

1(T )w2
2(T )µδ(dx)µδ(dy) ≤ Cδ2

(
Eν0w

2
1(T )

)2
.

The integrand corresponding to L2 can be handled in the same way. Next note that
inf [0,ε](c(t))

′ = inf [0,ε] c
′
0(x(t))x′(t) > 0 (see [8]) whenever ε > 0 is small enough. Hence

cδ(t) ≥ max(δ,m2t) for t ∈ [0, T ] (4.36)
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for a positive constant m2. Further, c(t) is increasing in an interval [0, t0] and is bounded
away from zero on [t0, T ]. Therefore,

cδ(τi) ≥ min(cδ(τ1),m3) for 1 ≤ i ≤ w1(T )− 2. (4.37)

Hence, on the set w1(T ) ≥ 3,

L3 ≤ w1(T )

w1(T )−2∑
i=1

(
1−

√
c(τi)

cδ(τi)

)2

≤ w1(T )

w1(T )−2∑
i=1

(
1− c(τi)

cδ(τi)

)2

≤ w1(T )

w1(T )−2∑
i=1

δ2

c2δ(τi)

≤ w1(T )δ2

w1(T )−2∑
i=1

(
1

m3
+

1

cδ(τ1)

)2

≤ Cδ2w1(T )2 1

cδ(τ1)2
,

where the penultimate step follows from (4.37). We thus have∫ ∫
w2

1(T )w2
2(T )L3 µδ(dx)µδ(dy) (4.38)

≤ Cδ2

∫ ∫
w2

2(T )
w4

1(T )

cδ(τ1)2
I{w1(T )≥3}µδ(dx)µδ(dy)

≤ C ′δ2

∫
w4

1(T )

cδ(τ1)2
I{w1(T )≥3}µδ(dx)

≤ C ′δ2

(∫
w4p

1 (T )µδ(dx)

)1/p(∫
1

cδ(τ1)2q
I{w1(T )≥3}µδ(dx)

)1/q

≤ C ′′δ2

(∫
1

cδ(τ1)2q
I{w1(T )≥3}µδ(dx)

)1/q

.

Here we choose p, q > 1 so that p−1 + q−1 = 1 and 2q = 2 + θ with 0 < θ < 1. Define

τ1 := τ1 · I{w1(T ) ≥ 3}+ T · I{w1(T ) = 2}.

Then∫
1

cδ(τ1)2q
I{w1(T )≥3}µδ(dx) ≤

∫
1

cδ(τ1)2+θ
µδ(dx) (4.39)

=

∫ T

s1=0

aδ(s1)ds1Eνs1,δ

[ 1

cδ(τ1)2+θ

]
=

∫ T

s1=0

aδ(s1)ds1

[ ∫ T

u=s1

1

cδ(u)2+θ
exp

(
− 2

∫ u

s1

cδ(z)dz
)

2cδ(u)du+
νs1,δ{w1(T ) = 2}

cδ(T )2+θ

]
≤ C

∫ T

s1=0

ds1

[ ∫ T

u=s1

du

(m2u)1+θ
+

1

(m2T )2+θ

]
.

In the third step we have simply used the density of τ1 to evaluate the expectation, and
the last inequality is a consequence of (4.36). Since θ < 1, the last integral is finite. A
similar analysis can be carried out for the integrand corresponding to L4. Combining
(4.33), (4.35), (4.38) and (4.39), we get

T1 ≤ Cδ. (4.40)
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Finally,

T 2
2 ≤ n

(
(ku,δ − ku), µδ

)2
≤
∫
X

∫
X

(
ku,δ(x, y)− ku(x, y)

)2

µδ(dx)µδ(dy)

≤
∫
X

∫
X

(∫ T

0

w1(z)w2(z)(bδ(z)− b(z))dz
)2

µδ(dx)µδ(dy)

≤ Cδ2
(∫

w2
1(T )µ(dx)

)2

= C ′δ2. (4.41)

Combining (4.28), (4.40), and (4.41) completes the proof.

4.4 Proof of Corollary 2.2

Let Yn(s) denote the number of edges in BFn(s). Define a process BFn(·) by

BFn(2Yn(s)/n) := BFn(s) for s ≥ 0,

and extend the definition toR+ by right continuity. ThenBFn(·) has the same distribution

as DBFn(·). Let LBF1 (s) denote the size of the largest component of BFn(s). Let us
assume that tc/2 ≤ t ≤ tc − λn−1/3, since for t ≤ tc/2 the desired bound will follow
directly. We have

P
(
LBF1

(
t+

log n√
n

)
≥ m

)
≥ P

(
LBF1

(
t+

log n√
n

)
≥ m, Yn

(
t+

log n√
n

)
≥ nt

2

)
≥ P

(
LBF1 (t) ≥ m, Yn

(
t+

log n√
n

)
≥ nt

2

)
.

Hence

P
(
LBF1 (t) ≥ m

)
≤ P

(
LBF1 (t+ log n/

√
n) ≥ m

)
+ P

(
Yn(t+ log n/

√
n) < nt/2

)
. (4.42)

Let Z1, . . . , Zn be i.i.d. Poisson random variables with mean µn := 1
2 (1 − 1/n)2(t +

log n/
√
n). Then Yn(t+log n/

√
n)

d
= Z1 + . . .+Zn. Since nt/2−nµn = −

√
n log n/2+O(1),

P
(
Yn

(
t+

log n√
n

)
<
nt

2

)
≤ P

( n∑
j=1

(Zj − µn)/
√
nµn < −C log n

)
≤ Φ(−C log n) +

C ′√
n
,

where Φ is the distribution function of a standard Gaussian random variable. The last
inequality is a consequence of the classical Berry-Esseen theorem. The result follows
once we combine (4.42) and Theorem 2.1 with the last inequality.
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