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Asymptotics for sparse exponential random graph models
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Abstract. We study the asymptotics for sparse exponential random graph
models where the parameters may depend on the number of vertices of the
graph. We obtain exact estimates for the mean and variance of the limiting
probability distribution and the limiting log partition function of the edge-
(single)-star model. They are in sharp contrast to the corresponding asymp-
totics in dense exponential random graph models. Similar analysis is done for
directed sparse exponential random graph models parametrized by edges and
multiple outward stars.

1 Introduction

Exponential random graphs are a class of graph ensembles of fixed vertex number
n defined by analogy with the Boltzmann ensemble of statistical mechanics. Let
{εp} be a set of local features of a single graph, for example the number of edges or
copies of any finite subgraph, as well as more complicated characteristics includ-
ing the degree sequence or degree distribution, and combinations thereof. These
quantities play a role similar to energy in statistical mechanics. Let {βp} be a set
of inverse temperature parameters whose values we are free to choose. By vary-
ing these parameters, one could analyze the influence of different local features on
the global structure of the graph. Let Gn be the set of all possible graphs (undi-
rected and with no self-loops or multiple edges in the simplest case) on n vertices.
The k-parameter family of exponential random graphs is defined by assigning a
probability P

(n)(Gn) to every graph Gn in Gn:

P
(n)(Gn) = Zn

(
β

(n)
1 , β

(n)
2 , . . . , β

(n)
k

)−1 exp

[
k∑

p=1

β(n)
p εp(Gn)

]
, (1.1)

where Zn is the partition function,

Zn

(
β

(n)
1 , β

(n)
2 , . . . , β

(n)
k

) = ∑
Gn∈Gn

exp

[
k∑

p=1

β(n)
p εp(Gn)

]
. (1.2)

These rather general models are widely used to model real-world networks, such
as the Internet, the World Wide Web, social networks, and biological networks, as
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they are able to capture a wide variety of common network tendencies by repre-
senting a complex global structure through a set of tractable local features, see,
for example, Newman (2010) and Wasserman and Faust (2010). They are particu-
larly useful when one wants to construct models that resemble observed networks
as closely as possible but without going into details of the specific process under-
lying network formation. Since real-world networks are often very large in size, a
pressing objective is to understand the asymptotics of the mean and variance of the
limiting probability distribution P

(n) and the limiting log partition function logZn.
By differentiating logZn with respect to appropriate parameters βp , averages of
various quantities of interest may be derived. In particular, a phase transition oc-
curs when logZn is non-analytic, since it is the generating function for the limiting
expectations of other random variables. Computation of logZn is also important in
statistics because it is crucial for carrying out maximum likelihood estimates and
Bayesian inference of unknown parameters.

Exponential models described above have been extensively studied over the last
decades. We refer to Besag (1975), Snijders et al. (2006), Rinaldo et al. (2009),
van der Hofstad (2014), and Fienberg (2010a, 2010b) for history and a review of
developments. The past few years especially has witnessed (exponentially) grow-
ing attention in exponential models and their variations. Many investigations have
been centered on dense graphs (number of edges comparable to the square of num-
ber of vertices), and emphasis has been made on the variational principle of the
limiting free energy, concentration of the limiting probability distribution, phase
transitions and asymptotic structures. See, for example, Chatterjee and Varad-
han (2011), Chatterjee and Diaconis (2013), Radin and Yin (2013), Lubetzky and
Zhao (2012), Radin and Sadun (2013, 2015), Radin et al. (2014), Kenyon et al.
(2014), Yin (2013), Yin et al. (2013), Kenyon and Yin (2014), Aristoff and Zhu
(2014, 2015), and Zhu (2014). Most of these papers utilize the theory of graph
limits as developed by Lovász and coauthors (V. T. Sós, B. Szegedy, C. Borgs,
J. Chayes, K. Vesztergombi, etc.), who have constructed this unified and elegant
theory in a sequence of papers (Borgs et al., 2006, 2008, 2012, Lovász, 2009,
Lovász and Szegedy, 2006). See the book by Lovász (2012) for a comprehensive
account and references.

Although the graph limit theory is tailored to dense graphs, parallel theories for
sparse graphs are likewise emerging. See, for example, Benjamini and Schramm
(2001) and Aldous and Lyons (2007) where the notion of local weak convergence
is discussed, which is relevant to the sparse graph setting since the vast major-
ity of sparse graphs are locally tree-like. See also the new works of Borgs et al.
(2014a, 2014b) that are making progress towards generalizing the existing L∞
theory of dense graph limits by developing a limiting object for sparse graph se-
quences based on Lp graphons. Their interest in sparse graphs is well justified, as
most networks data are sparse in the real world. Biomedical signals tend to have
sparse depictions when expressed in a proper basis; A gene network is sparse since
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a regulatory pathway involves only a small number of genes; The neural represen-
tation of sounds in the auditory cortex of unanesthetized animals is sparse since
the fraction of neurons active at a given instant is small. More examples may be
found in Golub et al. (1999), Guyon et al. (2002), Hromádka et al. (2008), and Ye
and Liu (2012). The present investigation will focus on sparse exponential random
graph models. They are indeed harder to study than their dense counterparts, nev-
ertheless, some important discoveries have recently been made by Chatterjee and
Dembo (2014).

The rest of this paper is organized as follows. In Section 2, we analyze the
asymptotic features of the undirected exponential model parametrized by various
subgraph densities and derive exact estimates for the mean and variance of the lim-
iting probability distribution (Theorems 2.1 and 2.2) and the limiting log partition
function of the edge-(single)-star model (Theorem 2.3) under a sparsity assump-
tion about the parameters. In Section 3, we analyze the asymptotic features of the
directed exponential model parametrized by edges and multiple outward stars and
derive exact estimates for the mean and variance of the limiting probability dis-
tribution (Theorems 3.1, 3.2, 3.3 and 3.4) and the limiting log partition function
(Remark 3) under different sparsity assumptions about the parameters.

2 Undirected graphs

Consider undirected graphs Gn on n vertices, where a graph is represented by a
matrix Xn = (Xij )1≤i<j≤n with each Xij ∈ {0,1}. Here, Xij = 1 means there is
an edge between vertex i and vertex j ; otherwise, Xij = 0. Give the set of such
graphs the probability

P
(n)(Gn) = Zn

(
β

(n)
1 , β

(n)
2 , . . . , β

(n)
k

)−1 exp

[
n2

(
k∑

p=1

β(n)
p t (Hp,Gn)

)]
, (2.1)

where Hp is a finite simple graph with vertex set V (Hp) = {1, . . . , v(Hp)} and
edge set E(Hp), t (Hp,Gn) is the homomorphism density of Hp in Gn, that is, the
probability that a random vertex map V (Hp) → V (Gn) is edge-preserving,

t (Hp,Gn) = |hom(Hp,Gn)|
|V (Gn)||V (Hp)| , (2.2)

and Zn(β
(n)
1 , β

(n)
2 , . . . , β

(n)
k ) is the appropriate normalization. The parameters β

(n)
p

are scaled according to the number of vertices of the graph,

β(n)
p = βpαn, p = 1,2, . . . , k, (2.3)

where αn → ∞ as n → ∞. We are interested in the situation where a typical
random graph sampled from the exponential model P(n) (2.1) is sparse, that is,
the probability that there is an edge between vertex i and vertex j goes to 0 as
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n → ∞. One natural question to ask is when this indeed happens, what is the
speed of the graph towards sparsity? This in general is a rather difficult question,
nevertheless when the parameters βi are all negative, we are able to provide some
concrete answers. The following Theorems 2.1 and 2.2 give the mean and variance
of the limiting probability distribution P

(n) under a sparsity assumption about the
parameters.

Theorem 2.1. Assume that β1, . . . , βk are all negative and H1 denotes a single
edge. Let us further assume that limn→∞ n2e2αnβ1 = 0 and limn→∞ αn

n
= 0. Then

lim
n→∞

P
(n)(X1i = 1)

e2αnβ1
= 1, i �= 1. (2.4)

Proof. By symmetry, the fact that X1i ∈ {0,1} and the definition of the probability
measure P

(n) (2.1),

P
(n)(X1i = 1) = E

(n)[X1i]

= 1

n − 1
E

(n)

[
n∑

i=2

X1i

]
(2.5)

= 1

n − 1

2(n
2)E[∑n

i=2 X1ie
αnn2 ∑k

p=1 βpt (Hp,Gn)]
2(n

2)E[eαnn2 ∑k
p=1 βpt (Hp,Gn)]

,

where E is the expectation associated with the uniform measure, that is, each pos-
sible graph configuration is weighted equally at 1/2(n

2).
First, let us analyze the denominator. On one hand, taking Gn to be the empty

graph gives t (Hp,Gn) = 0 for any simple graph Hp , which implies that

2(n
2)E

[
e
αnn2 ∑k

p=1 βpt (Hp,Gn)] ≥ 2(n
2)

1

2(n
2)

= 1. (2.6)

On the other hand, since β1, . . . , βk are all negative and t (H1,Gn) measures the
edge density of Gn, using (Xij )1≤i<j≤n are i.i.d. Bernoulli under the uniform mea-
sure, we have

2(n
2)E

[
e
αnn2 ∑k

p=1 βpt (Hp,Gn)] ≤ 2(n
2)E

[
eαnn2β1t (H1,Gn)]

= 2(n
2)E

[
e2αnβ1

∑
1≤i<j≤n Xij

]
(2.7)

= 2(n
2)

(
1 + e2αnβ1

2

)(n
2)

→ 1.

Next, let us analyze the numerator. On one hand, since t (H1,Gn) measures the
edge density of Gn, a graph Gn with only one edge X1i = 1 for some 2 ≤ i ≤ n
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gives t (H1,Gn) = 2/n2 and carries a weight of 1/2(n
2), which implies that

2(n
2)E

[
n∑

i=2

X1ie
αnn2 ∑k

p=1 βpt (Hp,Gn)

]

≥ 2(n
2)

n∑
i=2

E
[
e
αnn2 ∑k

p=1 βpt (Hp,Gn)|X1i = 1,Xi′j ′ = 0,
(
i ′, j ′) �= (1, i)

]

· P(
X1i = 1,Xi′j ′ = 0,

(
i ′, j ′) �= (1, i)

)
(2.8)

= e2αnβ1

n∑
i=2

E
[
e
αnn2 ∑k

p=2 βpt (Hp,Gn)|X1i = 1,Xi′j ′ = 0,
(
i ′, j ′) �= (1, i)

]

=
n∑

i=2

e
2αnβ1+αnn2 ∑k

p=2 βpcpn−v(Hp)

= (n − 1)e
2αnβ1+αnn2 ∑k

p=2 βpcpn−v(Hp)

,

where v(Hp) ≥ 3 denotes the number of vertices of Hp and cp is the number
of homomorphisms from Hp into Gn (a graph with only one edge) and so is a
constant that only depends on Hp .

On the other hand, since β1, . . . , βk are all negative and t (H1,Gn) measures
the edge density of Gn, using (Xij )1≤i<j≤n are i.i.d. Bernoulli under the uniform
measure, we have

2(n
2)E

[
n∑

i=2

X1ie
αnn2 ∑k

p=1 βpt (Hp,Gn)

]

≤ 2(n
2)E

[
n∑

i=2

X1ie
αnn2β1t (H1,Gn)

]

= 2(n
2)E

[
n∑

i=2

X1ie
2αnβ1

∑
1≤i<j≤n Xij

]

(2.9)

= 2(n
2)

1

2αn

∂

∂β1
E

[
e2αnβ1

∑n
i=2 X1i

]
E

[
e2αnβ1

∑
2≤i<j≤n Xij

]

= 2(n
2)

1

2αn

∂

∂β1

(
1 + e2αnβ1

2

)n−1(
1 + e2αnβ1

2

)(n−1
2 )

= (n − 1)e2αnβ1
(
1 + e2αnβ1

)(n
2)−1

.

The conclusion follows when we apply the scaling assumption. �
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Theorem 2.2. Assume that β1, . . . , βk are all negative and H1 denotes a single
edge. Let us further assume that limn→∞ n2e2αnβ1 = 0 and limn→∞ αn

n
= 0. Then

lim
n→∞

P
(n)(X1i = 1,X1j = 1)

e4αnβ1
= 1, i �= j �= 1. (2.10)

Proof. By symmetry, the fact that X1i ,X1j ∈ {0,1} and the definition of the prob-
ability measure P

(n) (2.1),

P
(n)(X1i = 1,X1j = 1)

= E
(n)[X1iX1j ]

(2.11)

= 1

(n − 1)(n − 2)

[
E

(n)

[(
n∑

i=2

X1i

)2]
−E

(n)

[
n∑

i=2

X1i

]]

= 1

(n − 1)(n − 2)

2(n
2)E[[(∑n

i=2 X1i )
2 − ∑n

i=2 X1i]eαnn2 ∑k
p=1 βpt (Hp,Gn)]

2(n
2)E[eαnn2 ∑k

p=1 βpt (Hp,Gn)]
,

where E is the expectation associated with the uniform measure, that is, each pos-
sible graph configuration is weighted equally at 1/2(n

2).
We only need to analyze the numerator since the denominator has already been

analyzed in Theorem 2.1. On one hand, since t (H1,Gn) measures the edge density
of Gn, a graph Gn with only a 2-star X1i = X1j = 1 for some 2 ≤ i �= j ≤ n gives

t (H1,Gn) = 4/n2 and carries a weight of 1/2(n
2), which implies that

2(n
2)E

[[(
n∑

i=2

X1i

)2

−
n∑

i=2

X1i

]
e
αnn2 ∑k

p=1 βpt (Hp,Gn)

]

≥ 2(n
2)

1

2

∑
2≤i≤n

∑
2≤j≤n:i �=j

E
[(

22 − 2
)
e
αnn2 ∑k

p=1 βpt (Hp,Gn)|

X1i = X1j = 1,Xi′j ′ = 0,
(
i ′, j ′) �= (1, i) and

(
i ′, j ′) �= (1, j)

]
· P(

X1i = X1j = 1,Xi′j ′ = 0,
(
i ′, j ′) �= (1, i) and

(
i ′, j ′) �= (1, j)

)
(2.12)

= e4αnβ1
∑

2≤i≤n

∑
2≤j≤n:i �=j

E
[
e
αnn2 ∑k

p=2 βpt (Hp,Gn)|

X1i = X1j = 1,Xi′j ′ = 0,
(
i ′, j ′) �= (1, i) and

(
i ′, j ′) �= (1, j)

]
= ∑

2≤i≤n

∑
2≤j≤n:i �=j

e
4αnβ1+αnn2 ∑k

p=2 βpcpn−v(Hp)

= (n − 1)(n − 2)e
4αnβ1+αnn2 ∑k

p=2 βpcpn−v(Hp)

,
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where v(Hp) ≥ 3 denotes the number of vertices of Hp and cp is the number of
homomorphisms from Hp into Gn (a graph with only a 2-star) and so is a constant
that only depends on Hp .

On the other hand, since β1, . . . , βk are all negative and t (H1,Gn) measures
the edge density of Gn, using (Xij )1≤i<j≤n are i.i.d. Bernoulli under the uniform
measure, we have

2(n
2)E

[[(
n∑

i=2

X1i

)2

−
n∑

i=2

X1i

]
e
αnn2 ∑k

p=1 βpt (Hp,Gn)

]

≤ 2(n
2)E

[[(
n∑

i=2

X1i

)2

−
n∑

i=2

X1i

]
eαnn2β1t (H1,Gn)

]

= 2(n
2)E

[[(
n∑

i=2

X1i

)2

−
n∑

i=2

X1i

]
e2αnβ1

∑
1≤i<j≤n Xij

]

(2.13)

= 2(n
2)

(
1

4α2
n

∂2

∂β2
1

E
[
e2αnβ1

∑n
i=2 X1i

] − 1

2αn

∂

∂β1
E

[
e2αnβ1

∑n
i=2 X1i

])

·E[
e2αnβ1

∑
2≤i<j≤n Xij

]
= 2(n

2)
(

1

4α2
n

∂2

∂β2
1

(
1 + e2αnβ1

2

)n−1

− 1

2αn

∂

∂β1

(
1 + e2αnβ1

2

)n−1)

·
(

1 + e2αnβ1

2

)(n−1
2 )

= (n − 1)(n − 2)e4αnβ1
(
1 + e2αnβ1

)(n
2)−2

.

The conclusion follows when we apply the scaling assumption. �

Together, Theorems 2.1 and 2.2 indicate that when the rate of divergence of
αn is between the order of logn and n, the graph displays Erdős–Rényi behavior
in the large n limit if all the parameters β1, . . . , βk are negative, where the edge
formation probability is given by e2αnβ1 . It depends on β1 and n and decays to
0 as n → ∞. This is in sharp contrast to the standard exponential model where
the parameters β1, . . . , βk are not scaled by αn and are instead held fixed. In this
so-called dense regime, Chatterjee and Diaconis (2013) have done extensive re-
search and found that when all the parameters β1, . . . , βk are non-negative, the
graph behaves like an Erdős–Rényi random graph in the large n limit, where the
edge formation probability depends on all parameters β1, . . . , βk . Nevertheless,
not much is known when some of the parameters are negative. In fact, even when
all the parameters are negative as assumed in the present investigation, analysis of
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the limiting behavior of a typical graph has proved to be very hard, except in some
special cases such as the edge-(single)-star and edge-triangle models.

Remark 1. We make some comments on the scaling assumption in (2.3) before
proceeding further. If a graph is sparse, then the density of edges might not scale
with n in the same way as the density of, say, triangles. Intuitively, if the chance
of having an edge is small, then the chance of having a triangle would be even
smaller. As such, one might expect that αn should depend on p and diverge to
infinity faster when the structure of Hp is more complicated. We generalize (2.3)
following this philosophy,

β(n)
p = βpαn,p, p = 1,2, . . . , k,

and assume that limn→∞ n2e2αn,1β1 = 0 and limn→∞ αn,p

nv(Hp)−2 = 0 for p = 2, . . . , k.
Under this more relaxed assumption, the proof for Theorems 2.1 and 2.2 go
through without modifications and the same conclusions hold.

As mentioned earlier, we are interested in deriving the exact asymptotics of
the limiting log partition function logZn of the exponential model, since it is the
generating function for the expectations of all other random variables on the graph
space. Due to the myriad of structural possibilities of Hp , this is a rather difficult
task, but we are able to make some headway in the edge-(single)-star model. We
briefly outline the rationale first. For the general exponential model P(n) defined in
(2.1), Chatterjee and Dembo (2014) showed that when |β(n)

1 | + · · · + |β(n)
k | does

not grow too fast, logZn/n2 may be approximated by

logZn

n2 	 Ln = sup
x∈Pn

{
β

(n)
1 t (H1, x) + · · · + β

(n)
k t (Hk, x) − I (x)

n2

}
, (2.14)

where Pn = {(xij )1≤i<j≤n : xij ∈ [0,1],1 ≤ i < j ≤ n},

t (Hp, x) = 1

nv(Hp)

n∑
q1,...,qv(Hp)=1

∏
{l,l′}∈E(Hp)

xqlql′ , (2.15)

and

I (x) = ∑
1≤i<j≤n

I (xij ) = ∑
1≤i<j≤n

(
xij logxij + (1 − xij ) log(1 − xij )

)
.

They also gave a concrete error bound for this approximation,

−cB

n
≤ logZn

n2 − Ln

(2.16)

≤ CB8/5n−1/5(logn)1/5
(

1 + logB

logn

)
+ CB2n−1/2,
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where B = |β(n)
1 | + · · · + |β(n)

k |, and c and C are constants that may depend only
on H1, . . . ,Hk .

For the edge-p-star model, i.e., H1 is an edge and H2 is a p-star, (2.14) becomes

Ln = sup
x∈Pn

{
αnβ1t (H1, x) + αnβ2t (H2, x) − I (x)

n2

}
. (2.17)

The supremum over upper triangular array Pn in (2.17) may be simplified further.
On one hand, it was proved in Chatterjee and Diaconis (2013) that when H2 is a
p-star,

Ln ≤ sup
0≤x∗≤1

{
αnβ1x

∗ + αnβ2
(
x∗)p − 1

2
I
(
x∗)}

. (2.18)

On the other hand, by considering (xij ) ∈ Pn where xij ≡ x∗ for any 1 ≤ i < j ≤ n,

Ln ≥
(

1 − c

n

)
sup

0≤x∗≤1

{
αnβ1x

∗ + αnβ2
(
x∗)p − 1

2
I
(
x∗)}

, (2.19)

where c is a constant that only depends on H1 and H2. This extra dependency
comes from the following consideration. The difference between I (x)/n2 and
I (x∗)/2 is easy to estimate, while the difference between t (H1, x) and x∗ (or be-
tween t (H2, x) and (x∗)p) is caused by the zero diagonal terms xii . We do a broad
estimate and find that it is bounded by cp/n, where cp is a constant that only de-
pends on Hp . Therefore the upper and lower bounds for Ln are asymptotically the
same,

Ln 	 sup
0≤x∗≤1

{
αnβ1x

∗ + αnβ2
(
x∗)p − 1

2
I
(
x∗)}

. (2.20)

The following Theorem 2.3 explores the asymptotics for Ln using (2.20) and in
turn provides an exact asymptotic estimate for logZn based on (2.16).

Theorem 2.3. Consider the edge-p-star model, that is, H1 is an edge and H2 is a
p-star. Assume that β1 and β2 are both negative. Then

lim
n→∞

Ln

e2αnβ1
= 1

2
. (2.21)

Let us further assume that limn→∞ α
8/5
n (logn)1/5e2αn|β1|

n1/5 = 0. Then

lim
n→∞

logZn

n2e2αnβ1
= 1

2
. (2.22)

Proof. The optimization problem (2.20) was well studied in Radin and Yin (2013)
and Aristoff and Zhu (2014). When β1 and β2 are both negative, they showed that
the optimizer x∗ uniquely satisfies

αnβ1 + αnβ2p
(
x∗)p−1 = 1

2
log

(
x∗

1 − x∗
)
. (2.23)
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Since |αnβ1| and |αnβ2| both diverge to infinity as n → ∞, x∗ → 0 as n → ∞.
We can rewrite (2.23) as

(
1 − x∗)

e2αnβ2p(x∗)p−1 = x∗

e2αnβ1
. (2.24)

This shows that x∗
e2αnβ1

≤ 1, and thus

2αnβ2p
(
x∗)p−1 = 2αnβ2pe2(p−1)αnβ1

(
x∗

e2αnβ1

)p−1

→ 0 (2.25)

as n → ∞. Hence, we conclude that

lim
n→∞

x∗

e2αnβ1
= 1. (2.26)

By (2.20) and (2.23),

Ln = αnβ1x
∗ + αnβ2

(
x∗)p − 1

2
x∗ logx∗ − 1

2

(
1 − x∗)

log
(
1 − x∗)

= αnβ2
(
x∗)p

(1 − p) − 1

2
log

(
1 − x∗)

(2.27)

= αnβ2
(
x∗)p

(1 − p) + 1

2
x∗ + O

((
x∗)2)

,

which implies that limn→∞ Ln

x∗ = 1
2 and limn→∞ Ln

e2αnβ1
= 1

2 . From (2.16),

−cαn(|β1| + |β2|)
n

≤ logZn

n2 − Ln

≤ Cα8/5
n

(|β1| + |β2|)8/5
n−1/5(logn)1/5

(2.28)

×
(

1 + logαn + log(|β1| + |β2|)
logn

)

+ C
(|β1| + |β2|)2

α2
nn

−1/2.

Therefore, under the further assumption that limn→∞ α
8/5
n (logn)1/5e2αn|β1|

n1/5 = 0, we
have ∣∣∣∣ logZn

n2e2αnβ1
− Ln

e2αnβ1

∣∣∣∣ → 0 as n → ∞, (2.29)

and hence

lim
n→∞

logZn

n2e2αnβ1
= 1

2
. (2.30)

�
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Remark 2. This is consistent with the observations in Theorems 2.1 and 2.2, since
the log partition function logZn of an Erdős–Rényi random graph with edge for-
mation probability e2αnβ1 may be approximated by

logZn

n2 	 −1

2
log

(
1 − e2αnβ1

) 	 1

2
e2αnβ1 . (2.31)

3 Directed graphs

Consider directed graphs Gn on n vertices, where a graph is represented by a
matrix Xn = (Xij )1≤i,j≤n with each Xij ∈ {0,1}. Here, Xij = 1 means there is a
directed edge from vertex i to vertex j ; otherwise, Xij = 0. Give the set of such
graphs the probability

P
(n)(Gn) = Zn

(
β

(n)
1 , β

(n)
2 , . . . , β

(n)
k

)−1 exp

[
n2

(
k∑

p=1

β(n)
p sp(Xn)

)]
, (3.1)

where

sp(Xn) = n−p−1
∑

1≤i,j1,j2,...,jp≤n

Xij1Xij2 · · ·Xijp (3.2)

is the directed p-star homomorphism density of Gn and Zn(β
(n)
1 , β

(n)
2 , . . . , β

(n)
k )

is the appropriate normalization. The parameters β
(n)
p are scaled according to the

number of vertices of the graph,

β(n)
p = βpαn, p = 1,2, . . . , k, (3.3)

where αn → ∞ as n → ∞. Note that sp(Xn) has an alternate expression

sp(Xn) = n−p−1
n∑

i=1

(
n∑

j=1

Xij

)p

, (3.4)

and in particular, when p = 1, it represents the directed edge homomorphism den-
sity of Gn. For ease of notation, we allow Xii to equal 1, but it is not hard to see
that without this simplification, our main results still hold. As in the undirected
case, we are interested in the situation where a typical random graph sampled
from the exponential model P(n) (3.1) is sparse, that is, the probability that there
is a directed edge from vertex i to vertex j goes to 0 as n → ∞. We ask the same
question: When the parameters βi are all negative, what is the speed of the graph
towards sparsity? The following Remark 3 and Theorems 3.1 and 3.2 explore the
asymptotics of the limiting log partition function logZn and the mean and variance
of the limiting probability distribution P

(n) and provide some concrete answers un-
der a sparsity assumption about the parameters. Together, they show that when the
rate of divergence of αn is between the order of logn and n, the graph displays
Erdős–Rényi behavior in the large n limit, where the edge formation probability is
given by eαnβ1 . It depends on β1 and n and decays to 0 as n → ∞.
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Remark 3. (i) When β1, . . . , βk are all negative, on one hand,

(Zn)
1
n ≤

n∑
j=0

(
n

j

)
enαnβ1(

j
n
) = (

1 + eαnβ1
)n

, (3.5)

which implies that lim supn→∞(Zn)
1
n2 ≤ 1. On the other hand,

(Zn)
1
n ≥

(
n

0

)
e
nαn

∑k
p=1 βp( 0

n
)p = 1. (3.6)

Therefore

lim
n→∞(Zn)

1
n2 = 1. (3.7)

(ii) Furthermore, if we assume that limn→∞ neαnβ1 = 0, then

lim
n→∞(Zn)

1
n = 1. (3.8)

(iii) If instead we assume that limn→∞ neαnβ1 = λ ∈ (0,∞), then as will be
shown in Theorem 3.3,

lim
n→∞(Zn)

1
n = eλ. (3.9)

(iv) We can get more precise asymptotics. Let us assume that limn→∞ neαnβ1 =
0 and limn→∞ αn

n
= 0. On one hand,

logZn

n2 ≤ log
(
1 + eαnβ1

)
, (3.10)

which implies that

lim sup
n→∞

logZn

n2eαnβ1
≤ 1. (3.11)

On the other hand,

(Zn)
1
n ≥

1∑
j=0

(
n

j

)
e
nαn

∑k
p=1 βp(

j
n
)p = 1 + ne

nαn
∑k

p=1 βp( 1
n
)p

, (3.12)

which implies that

lim inf
n→∞

logZn

n2eαnβ1
≥ lim inf

n→∞
log(1 + ne

nαn
∑k

p=1 βp( 1
n
)p

)

neαnβ1

= lim inf
n→∞

log(1 + ne
nαn

∑k
p=1 βp( 1

n
)p

)

ne
nαn

∑k
p=1 βp( 1

n
)p

ne
nαn

∑k
p=1 βp( 1

n
)p

neαnβ1
(3.13)

= 1.
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Therefore

lim
n→∞

logZn

n2eαnβ1
= 1. (3.14)

Theorem 3.1. Assume that β1, . . . , βk are all negative. Let us further assume that
limn→∞ neαnβ1 = 0 and limn→∞ αn

n
= 0. Then

lim
n→∞

P
(n)(X1i = 1)

eαnβ1
= 1. (3.15)

Proof. The proof follows a similar line of reasoning as in the proof of Theo-
rem 2.1. However, due to the alternate expression of the directed star density (3.4),
rather than concentrating on each single edge, we will examine the number of di-
rected edges from vertex 1 as a whole, which is Binomial under the uniform mea-
sure. Using symmetry, we write the probability of a directed edge as a quotient of
two expectations. The lower bound for the denominator is obtained by consider-
ing a graph with no edges protruding from vertex 1, and the lower bound for the
numerator is obtained by considering a graph with only one edge protruding from
vertex 1. The upper bound for both the numerator and the denominator is obtained
by including only the directed edge density in the exponent. �

Theorem 3.2. Assume that β1, . . . , βk are all negative. Let us further assume that
limn→∞ neαnβ1 = 0 and limn→∞ αn

n
= 0. Then

lim
n→∞

P
(n)(X1i = 1,X1j = 1)

e2αnβ1
= 1, i �= j. (3.16)

Proof. The proof follows a similar line of reasoning as in the proof of Theo-
rem 2.2. Using symmetry, we write the probability of a directed 2-star as a quotient
of two expectations. The lower bound for the denominator is obtained by consid-
ering a graph with no edges protruding from vertex 1, and the lower bound for
the numerator is obtained by considering a graph with two edges protruding from
vertex 1. The upper bound for both the numerator and the denominator is obtained
by including only the directed edge density in the exponent. �

Remark 4. As in the undirected case, we remark that the scaling assumption in
(3.3) may be generalized by taking

β(n)
p = βpαn,p, p = 1,2, . . . , k,

and assuming that limn→∞ neαn,1β1 = 0 and limn→∞ αn,p

np−1 = 0 for p = 2, . . . , k.
Under this more relaxed assumption, the proof for Theorems 3.1 and 3.2 go
through without modifications and the same conclusions hold.
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We now ask some related questions. Consider an Erdős–Rényi random graph
on n vertices with edge formation probability ρ. The distribution of the degree of
any vertex i is Binomial with parameters n and ρ. A known fact is that for n large,
ρ small and nρ a constant, Binomial distribution with these parameters tends to a
Poisson distribution with parameter nρ. We have seen in Theorems 3.1 and 3.2 that
when the rate of divergence of αn is between the order of logn and n, the graph
displays Erdős–Rényi behavior, where the edge formation probability is given by
eαnβ1 . One natural question to ask is if neαnβ1 approaches a constant λ ∈ (0,∞)

as n → ∞, that is, when the divergence rate of αn is of the order of logn, will the
graph display Poisson behavior? The following Theorem 3.3 gives an affirmative
answer to this question. Notice that if limn→∞ neαnβ1 = λ, then limn→∞ αn

n
= 0 is

automatically satisfied.

Theorem 3.3. Assume that β1, . . . , βk are all negative. Let us further assume that
limn→∞ neαnβ1 = λ ∈ (0,∞). Then

lim
n→∞

P
(n)(X1i = 1)

λn−1 = 1, (3.17)

lim
n→∞

P
(n)(X1i = 1,X1j = 1)

λ2n−2 = 1, i �= j. (3.18)

Moreover, the degree of any vertex is asymptotically Poisson with parameter λ,
that is,

n∑
i=1

X1i → Poisson(λ) (3.19)

in distribution as n → ∞.

Proof. By symmetry,

P
(n)(X1i = 1) = 1

n
E

(n)

[
n∑

i=1

X1i

]

(3.20)

= 1

n

∑n
j=0

(n
j

)
je

αnβ1j+∑k
p=2 αnβp

jp

np−1

∑n
j=0

(n
j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

.

First, let us analyze the denominator. On one hand, for any fixed M ,

n∑
j=0

(
n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1 ≥
M∑

j=0

(
n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

(3.21)

→
M∑

j=0

λj

j ! .
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Since this is true for any M , let M → ∞, and we obtain an asymptotic lower bound∑∞
j=0

λj

j ! = eλ. On the other hand,

n∑
j=0

(
n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1 ≤
n∑

j=0

(
n

j

)
eαnβ1j

= (
1 + eαnβ1

)n (3.22)

→ eλ.

Next, let us analyze the numerator. On one hand, for any fixed M ,

n∑
j=0

j

(
n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1 ≥
M∑

j=0

j

(
n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

(3.23)

→
M−1∑
j=0

λj+1

j ! .

Since this is true for any M , let M → ∞, and we obtain an asymptotic lower bound∑∞
j=0

λj+1

j ! = λeλ. On the other hand,

n∑
j=0

j

(
n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1 ≤
n∑

j=0

j

(
n

j

)
eαnβ1j

= 1

αn

∂

∂β1

(
1 + eαnβ1

)n
(3.24)

= neαnβ1
(
1 + eαnβ1

)n−1

→ λeλ.

Again by symmetry,

P
(n)(X1i = 1,X1j = 1)

= 1

n(n − 1)

[
E

(n)

[(
n∑

i=1

X1i

)2]
−E

(n)

[
n∑

i=1

X1i

]]
(3.25)

= 1

n(n − 1)

∑n
j=0(j

2 − j)
(n
j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

∑n
j=0

(n
j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

.
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We have observed earlier that the denominator converges to eλ as n → ∞. Let us
analyze the numerator. On one hand, for any fixed M ,

n∑
j=0

(
j2 − j

)(n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

≥
M∑

j=0

(
j2 − j

)(n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1 (3.26)

→
M−2∑
j=0

λj+2

j ! .

Since this is true for any M , let M → ∞, and we obtain an asymptotic lower bound∑∞
j=0

λj+2

j ! = λ2eλ. On the other hand,

n∑
j=0

(
j2 − j

)(n

j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

≤
n∑

j=0

(
j2 − j

)(n

j

)
eαnβ1j

= 1

α2
n

∂2

∂β2
1

(
1 + eαnβ1

)n − 1

αn

∂

∂β1

(
1 + eαnβ1

)n
= n(n − 1)e2αnβ1

(
1 + eαnβ1

)n−2 → λ2eλ.

Lastly, for any fixed j ∈ N∪ {0},

P
(n)

(
n∑

i=1

X1i = j

)
= E

(n)[1∑n
i=1 X1i=j ]

(3.27)

=
(n
j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

∑n
j=0

(n
j

)
e
αnβ1j+∑k

p=2 αnβp
jp

np−1

,

and the denominator converges to eλ and the numerator converges to λj

j ! as
n → ∞. �

A natural follow-up question is what if the divergence rate of αn is of the order
of n or faster? Since dependence on the rest of the parameters β2, . . . , βk does not
diminish as n → ∞, this situation is much harder to study. Some partial answers
are given in the following Theorem 3.4. Notice that if lim infn→∞ αn

n
> 0, then

limn→∞ neαnβ1 = 0 is automatically satisfied.
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Theorem 3.4. Assume that β1, . . . , βk are all negative. Let us further assume that
lim infn→∞ αn

n
>

log 2
|β1| . Then

lim
n→∞

P
(n)(X1i = 1)

e
nαn

∑k
p=1 βp( 1

n
)p

= 1. (3.28)

Proof. By symmetry,

P
(n)(X1i = 1) = 1

n

∑n
j=0

(n
j

)
je

nαn
∑k

p=1 βp(
j
n
)p

∑n
j=0

(n
j

)
e
nαn

∑k
p=1 βp(

j
n
)p

. (3.29)

From Remark 3(ii), the denominator converges to 1 as n → ∞. Let us analyze the
numerator. On one hand,

n∑
j=0

(
n

j

)
je

nαn
∑k

p=1 βp(
j
n
)p ≥ ne

nαn
∑k

p=1 βp( 1
n
)p

. (3.30)

On the other hand,

2nne2αnβ1

ne
nαn

∑k
p=1 βp( 1

n
)p

= 2ne2αnβ1

e
αnβ1+∑k

p=2 αn
βp

np−1

= e
n[log 2+ αn

n
β1− αn

n

∑k
p=2

βp

np−1 ] → 0

(3.31)
implies that

n∑
j=0

(
n

j

)
je

nαn
∑k

p=1 βp(
j
n
)p ≤ ne

nαn
∑k

p=1 βp( 1
n
)p +

n∑
j=2

(
n

j

)
jenαnβ1

2
n

(3.32)

≤ ne
nαn

∑k
p=1 βp( 1

n
)p + 2nne2αnβ1 	 ne

nαn
∑k

p=1 βp( 1
n
)p

. �
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