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Abstract. In this paper, a bivariate (n, k) replacement policy with cumula-
tive repair cost limit for a two-unit system is studied, in which the system
is subjected to shock damage interaction between units. Each unit 1 failure
causes random damage to unit 2 and these damages are additive. Unit 2 will
fail when the total damage of unit 2 exceed a failure level K , and such a fail-
ure makes unit 1 fail simultaneously, resulting in a total failure. When unit 1
failure occurs, if the cumulative repair cost till to this failure is less than a pre-
determined limit L, then unit 1 is corrected by minimal repair, otherwise, the
system is preventively replaced. The system is also replaced at the nth unit 1
failure, or at damage level k (<K) of unit 2, or at total failure. The explicit
expression of the long-term expected cost per unit time is derived and the
corresponding optimal bivariate replacement policy can be determined ana-
lytically or numerically. Finally, a numerical example is given to illustrate the
theoretical results for the proposed model.

1 Introduction

The maintenance for multi-unit systems has became more and more complex in
the last few decades, because the systems are becoming more complicated having
many interacting or dependent units. For this reason, the modelling and optimiza-
tion of preventive maintenance actions is also more complicated than before. Sev-
eral preventive maintenance (abbreviated PM) models for multi-unit systems were
reviewed in Nicolai and Dekker (2008) and Nowakowski and Werbińka (2009).
The failure times are often stochastically dependent between units in the multi-
unit system; these dependencies can be classified into economic, structural and
stochastic dependencies in Thomas (1986):

(1) Economic dependence between units shows that performing maintenance
on several units at the same time is cheaper than the total cost for individual unit
separately. By this fact, economic dependence also offers the opportunity to exe-
cute group maintenance of many units which can save costs (Nicolai and Dekker
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(2008)). Focused on the concept of economic dependence, Dekker, Wildeman and
van der Duyn Schouten (1997) reviewed many literatures on multi-unit mainte-
nance models and distinguished these models into two categories: stationary mod-
els and dynamic models.

(2) Structure dependence means that it must maintain the other units simulta-
neously when we repair the failed units, because the units in the system are always
constructed into a whole unit.

(3) Stochastic dependence means that the state (e.g., the age, the failure rate or
the model of failure) of one unit influences the lifetime distribution of other units,
or there are some external causes to bring these units into simultaneous failure
and hence the lifetimes of these units are correlated. Sun et al. (2006) developed
an analytical model to analyze this type of failure interaction quantitatively and
verify the model using case studies and experiments.

In category of stochastic dependency, Murthy and Nguyen (1985a) first intro-
duced the concept of failure interaction between units; furthermore, failure inter-
actions can be divided into three groups:

(3-1) Type I failure-interaction: When a unit fails, it can induce simultaneous
failure or no effect to the other units, which is according to a fixed probability rule.
Murthy and Nguyen (1985a) proposed such type of failure interaction for a two-
unit system. Murthy and Nguyen (1985b) extended Type I failure interaction to
a multi-unit system. Murthy and Wilson (1994) discussed the estimation problem
for Type I failure interaction model under different data structures. Jhang and Sheu
(2000) extended the fixed probability rule in Murthy and Nguyen (1985a) to be a
probability function of time t . Golmakani and Moakedi (2012a) found the optimal
periodic inspection interval over a finite time horizon for a two-unit repairable
system with failure interactions. Golmakani and Moakedi (2012b) determined the
optimal periodic inspection interval for a multi-unit repairable system with failure
interactions.

(3-2) Failure rate interaction: When a unit fails, it acts an interior shock to the
other units and then accelerates their failure rates. Such type of failure interaction
is also called as Type II failure-interaction which is also introduced by Murthy and
Nguyen (1985a). Murthy and Casey (1987) studied such type of failure interaction
in a two-unit system and derived the optimal replacement policies. Lai and Chen
(2006) proposed a periodic replacement model for a two-unit system subjected
to failure rate interaction between units. Subsequently, Lai (2007a) extended the
concept of failure rate interactions to a multi-unit system. Lai and Chen (2008)
modified the model of Lai and Chen (2006) by adding the effect of external shocks.
Sung et al. (2012) extended the model of Lai and Chen (2006) to develop a two-
parameter (n;T ) replacement policy, in which the system is replaced at age T ;
upon the nth failure of unit-A, or at the first total failure, whichever occurs first.

(3-3) Shock damage interaction: When a unit fails in a two-unit system, it
causes a random amount of damage to the other units. Such damages will be
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accumulated and the system fails when the total damage exceed a failure level.
Nakagawa and Murthy (1993) derived an optimal replacement policy to minimize
the expected cost rate per unit time, in which the replacement decision is based on
the number of failure. Satow and Osaki (2003) extended the work of Nakagawa
and Murthy (1993) and proposed a two-parameter (T ;k) replacement model for a
two-unit system with shock damage interaction, in which the system is replaced at
age T , at the total damage to unit 2 exceeds a damage level k, or at unit 2 failure.
Wang and Zhang (2009) proposed an optimal replacement policy n∗ for a two-unit
system with shock damage interaction, in which the repair times follow a geo-
metric process. Sheu et al. (2015) presented a two-parameter (T ,N) replacement
model for a two-unit system with shock damage interaction. It allows the two gen-
eralized situation, one is unit B can have a certain initial damage and the other is
that unit B with cumulative damage level z may enter a minor failure state with
probability π(z) at each unit A minor failure.

Concerning PM models for a multi-unit system, minimal repair is corrective
maintenance action that restores the system to an operational state without affect-
ing the level of deterioration. Repair-cost limit policies with minimal repair, which
prescribe repairing or replacing decision depending on a single repair cost, have
been discussed in several articles. When a failure occurs, the necessary repair cost
is evaluated. If the cost exceeds a certain level, the system is replaced; otherwise,
it is repaired. Such a repair-cost limit policy was first studied by Drinkwater and
Hastings (1967). Modified Single repair-cost limit policy, Lai (2007b) incorporated
the concept of cumulative repair cost limit into a periodic replacement model, in
which the information of all repair costs is collected for the decision for repairing
or replacing the system. This paper overcame the shortcomings of the traditional
single repair-cost limit policy. Followed the work of Lai (2007b), Chang, Sheu
and Chen (2010) presented a preventive maintenance model for determining the
optimal number of minimal repairs before replacement. Chien, Sheu and Chang
(2009) extended the work of Lai (2007b) by introducing the random lead time for
replacement delivery. Chien, Chang and Sheu (2010) modified the work of Chien,
Sheu and Chang (2009) by adding an age-dependent type of failure. Sheu et al.
(2010) presented a generalized model for determining the optimal replacement
policy based on multiple factors (or more information) such as the number of min-
imal repairs before replacement and the cumulative repair cost limit. Lai (2012)
modified the work of Lai and Chen (2006) by incorporating with the concept of
the cumulative repair cost limit to a two-unit system. Chang, Sheu and Chen (2013)
modified the work of Chang, Sheu and Chen (2010) by allowing an age-dependent
failure type.

Under shock damage interaction between units, we want to incorporate the con-
cept of cumulative repair cost limit to preventive maintenance model for a two-unit
system. In real life application, we can have an illustrative example in chemical in-
dustry. A system consists of a metal container (unit 2) and pneumatic pump (unit 1)
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in which chemical reactions take place in metal container and and the temperature
of the container is controlled by cold water pump. Whenever pneumatic pump
fails, it causes a random amount of damage to metal container. The damage will
be accumulated; and when the cumulative damage exceeds a threshold, the sys-
tem fails. If pneumatic pump can be repaired after failure and then, the cumulative
repair cost will be the indicator for the decision of replacing the system.

By adding the concept of cumulative repair cost limit, we extended the work of
Satow and Osaki (2003) to present a bivariate (n, k) replacement policy for a two-
unit system subject to shock damage interaction, in which the system is replaced
preventively at the nth unit 1 failure, (2) when the total damage of unit 2 exceeds
k and is less or equal to K , or (3) when the accumulated repair cost of unit 1
exceeds a pre-determined limit L. Therefore, we consider a flexible replacement
policy under which the system is replaced at age, or at the occurrence time of
some one unit 1 failure when the total damage to unit 2 exceeds a specified level or
the accumulated repair cost to unit 1 exceeds a pre-determined limit L, whichever
occurs first. Such a policy is general enough and appropriate for maintaining a
complex system with multiple units.

The outline of this paper is as follows. Section 2 presents the model analysis,
the long-term expected costs per unit time and the optimization. In Section 3, spe-
cial cases of our model are introduced. A computational example is provided to
demonstrate the above results in Section 4. Section 5 gives some conclusions.

2 Model analysis

Notation:

{N1(t), t ≥ 0} NHPP for unit 1 failures.
N1(t) the number of unit 1 failures occurred in [0, t).
r1(t) the intensity rate of unit 1 failure.
R1(t) mean number of unit 1 failures during [0, t).

Sj the occurrence time of the j th unit 1 failure, j = 0,1,2,3, . . . with
S0 = 0.

Pi(t) the probability that there is just j unit 1 failures occurred during
[0, t).

Di random amount of damage to unit 2 by the ith unit 1 failure.
Hi(d) probability distribution of random variable Di .

μd mean of random variable Di .
Wj total damage to unit 2 up to the j th unit 1 failure with W0 = 0.

H(j)(w) CDF of Wj .
Z the occurrence time of the first total failure.

FZ(t) survival function of random variable Z.
Xi random repair cost due to the ith unit 1 failure.
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G(x) probability distribution of random variable Xi .
μx mean of random variable Xi .

G(j)(x) the j -fold Stieltjes convolution of G(x).
C0 cost of preventive replacement.
C1 cost of failure replacement (C1 > C0).
L pre-determined limit for the accumulated repair cost.
T scheduled time for preventive replacement.

α(n) probability that the system is replaced at the nth unit 1 failure.
β(L) probability that the system is replaced at when the accumulated

repair cost exceeds a pre-determined limit L.
δ(k) probability that the system is replaced at when the total damage of

unit 2 exceeds a level k.
η(K) probability that the system is replaced at the first total failure.

Z(n, k) mean length of a replacement cycle.
R(n, k) expected total cost incurred during a replacement cycle.

C(n, k,L) long-term expected cost per unit time.
n∗ n which minimizes C(n, k,L).
k∗ k which minimizes C(n, k,L).

A system composed of two units (denoted as units 1 and 2), in which shock
damage interaction exists between units, is considered. Unit 1 fails according
to the intensity rate r1(t) and each unit 1 failure is assumed to be corrected
by minimal repair. So, unit 1 failures occur according to a non-homogeneous
Poisson process {N1(t), t ≥ 0} with intensity rate r1(t) and mean-value function
R1(t) = ∫ t

0 r1(x) dx. Let Sj (j = 0,1,2,3, . . . ) be the occurrence time of j th unit
1 failure with S0 = 0. The probability that there are at least j unit 1 failures oc-
curred in [0, t] is given by

Pr
(
N1(t) ≥ j

) = P(Sj ≤ t) =
∞∑
i=j

(R1(t))
ie−R1(t)

i! =
∞∑

i=j

Pi(t). (1)

In equation (1), N1(t) denotes the number of unit 1 failures occurred in [0, t].
Then, the distribution function of random variable Sj is given by

fsj (t) = d

dt
P (Sj ≤ t) = d

dt
Fj (t)

(2)

= d

dt

∞∑
i=j

(R1(t))
i exp(−R1(t))

i! = r1(t)Pj−1(t).

Whenever unit 1 fails, it causes a random amount of damage to unit 2. The
amount of damage Di due to the ith unit 1 failure is a sequence of identical and
independent random variables with a probability distribution Hi(d) = P(Di ≤ d)
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and a finite mean μd , i = 1,2,3, . . . . These damages to unit 2 are additive and
let Wj = ∑j

i=1 Di be the total damage after j th unit 1 failure with W0 = 0. Then,
random variable Wj has the distribution function:

P(Wj ≤ w) = H(j)(w) =
{

1, j = 0,

H1 ∗ H2 ∗ · · · ∗ Hj(w), j = 1,2,3, . . . ,
(3)

where H(j)(w) is the j -fold Stieltjes convolution of H(w) with itself.
Unit 2 fails whenever the total damage exceeds a failure level K . Each unit 2

failure causes unit 1 into failure at the same time and leads to a total failure of
two-unit system. Because unit 2 is not repairable and as a result, a failed two-
unit system needs to replaced by a new one. Let random variable Z denote the
occurrence time of the first total failure, so the survival function of Z is given by

FZ(t) = P(Z > t) = P(WN1(t) < K)
(4)

=
∞∑
i=0

P
(
N1(t) = i,Wi < K

) =
∞∑
i=0

Pi(t)H
(i)(K).

Finally, we consider a preventive maintenance model in which minimal repair or
replacement takes place according to the following scheme. The cost for minimal
repair is evaluated when a unit 1 failure occurs. We assume that the repair cost
Xi due to the ith unit 1 failure is a sequence of identical and independent random
variables with a probability distribution G(x) = P(Xi ≤ x) and a finite mean μx ,
i = 1,2,3, . . . . Then, the total repair cost Yj = ∑j

i=1 Xi till to the j th unit 1 failure
after the installation has a distribution function

P(Yj ≤ y) = G(j)(y) =
{

1, j = 0,

G1 ∗ G2 ∗ · · · ∗ Gj(y), j = 1,2,3, . . . ,
(5)

where G(j)(x) is the j -fold Stieltjes convolution of G(x) with itself.
The system can be replaced at four different cases:

1. When the nth unit 1 failure occurs.
2. When the total damage of unit 2 exceeds k and is less or equal to K .
3. When the accumulated repair cost of unit 1 exceeds a pre-determined limit L.
4. When the first total failure occurs.

The first three cases are preventive replacement and the last case is a failure
replacement. Let C(n, k,L) be the long-term expected cost per unit time. The cost
of preventive replacement is C0, while the cost of failure replacement is C1 (C1 >

C0). This problem is just to find an optimal pair (n∗, k∗) to minimize C(n, k,L) in
the steady state case.
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2.1 Different replacement cases

According to the above description, the replacement of the system can occur at
four different cases and the probabilities of four cases are derived as follows.

1. The probability α(n), that the system is preventively replaced at the nth
unit 1 failure, is given by

α(n) = P(Yn < L,Wn < k) = G(n)(L)H(n)(k). (6)

2. The probability β(L), that the system is preventively replaced at the j th
(j < n) unit 1 failure when the accumulated repair cost exceeds a pre-determined
limit L, is given by

β(L) =
n∑

j=1

P(Yj−1 < L < Yj ,Wj < k)

(7)

=
n∑

j=1

H(j)(k)
(
G(j−1)(L) − G(j)(L)

)
.

3. The probability δ(k), that the system is preventively replaced at some one
unit 1 failure when the total damage of unit 2 exceeds a level k, is given by

δ(k) =
n∑

j=1

P(Yj < L,Wj−1 < k < Wj < K)

+
n∑

j=1

P(Yj−1 < L < Yj ,Wj−1 < k < Wj < K)

=
n∑

j=1

G(j)(L)

∫ k

0

(
H(K − x) − H(k − x)

)
dH(j−1)(x) (8)

+
n∑

j=1

(
G(j−1)(L) − G(j)(L)

) ∫ k

0

(
H(K − x) − H(k − x)

)
dH(j−1)(x)

=
n∑

j=1

G(j−1)(L)

∫ k

0

(
H(K − x) − H(k − x)

)
dH(j−1)(x).

4. The probability η(K), that the system is replaced at the first total failure, is
given by

η(K) =
n∑

j=1

P(Yj < L,Wj−1 < k < K < Wj)

+
n∑

j=1

P(Yj−1 < L < Yj ,Wj−1 < k < K < Wj)
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=
n∑

j=1

G(j)(L)
(
H(j−1)(K) − H(j)(k)

)
(9)

+
n∑

j=1

(
G(j−1)(L) − G(j)(L)

)(
H(j−1)(K) − H(j)(k)

)

=
n∑

j=1

G(j−1)(L)

∫ k

0
H(K − x)dH(j−1)(x)

=
n−1∑
j=1

G(j)(L)

∫ k

0
H(K − x)dH(j)(x).

It is easily seen that the equations (6) + (7) + (8) + (9) = 1.
More specifically, we need the following assumptions:

1. The system is monitored continuously so that failures of two units can be
detected instanteously.

2. The times taken for minimal repair or replacement are very smaller than the
mean time between failures. As a consequence, we can ignore those and treat those
as being zero.

2.2 Long-term expected cost per unit time

A replacement cycle is exchanged if a replacement is completed. Here, a replace-
ment cycle is actually a time interval between the installation of the system and
the first replacement or a time interval between consecutive replacements. So, the
successive replacement cycles will constitute a regenerative process.

Let Z(n, k) and R(n, k) denote the expected length of a replacement cycle and
the expected total cost incurred during a replacement cycle, respectively. Using the
renewal-reward theorem, we can observe that the long-term expected cost per unit
time in the steady-state case is given by Ross (1983):

C(n, k,L) = R(n, k)/Z(n, k).

The expected length of a replacement cycle Z(n, k) depends on the situation
and can be computed as follows:

Z(n, k) =
[
G(n)(L)H(n)(k)

∫ ∞
0

t × Pn−1(t)r1(t) dt

]

+
[

n∑
j=1

(
G(j−1)(L) − G(j)(L)

)
H(j)(k)

∫ ∞
0

t × Pj−1(t)r1(t) dt

]

+
[

n∑
j=1

G(j−1)(L)

∫ k

0

(
H(K − x) − H(k − x)

)
dH(j−1)(x) (10)
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×
∫ ∞

0
t × Pj−1(t)r1(t) dt

]

+
[

n∑
j=1

G(j−1)(L)

∫ k

0
H(K − x)dH(j−1)(x)

∫ ∞
0

t × Pj−1(t)r1(t) dt

]

=
[

n−1∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt

]

and then, the expected total cost R(n, k) during a replacement cycle is

R(n, k) = [
C0 + (n − 1)μx

] × G(n)(L)H(n)(K)

+
n∑

j=1

[
C0 + (j − 1)μx

] × H(j)(k)
(
G(j−1)(L) − G(j)(L)

)

+
[

n∑
j=1

[
C0 + (j − 1)μx

]

× G(j−1)(L)

∫ k

0

(
H(K − x) − H(k − x)

)
dH(j−1)(x)

]

+
[

n∑
j=1

[
C1 + (j − 1)μx

]
(11)

× G(j−1)(L)

∫ k

0
H(K − x)dH(j−1)(x)

]

= C0 + (C1 − C0) ×
n∑

j=1

G(j−1)(L)

∫ k

0
H(K − x)dH(j−1)(x)

+ μx ×
n−1∑
j=1

G(j)(L)H(j)(k)

= C0 + (C1 − C0) ×
n−1∑
j=0

G(j)(L)

∫ k

0
H(K − x)dH(j)(x)

+ μx ×
n−1∑
j=1

G(j)(L)H(j)(k).
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Combining (10) and (11), the long-term expected cost per unit time C(n, k,L) is
obtained as follows:

C(n, k,L) =
(
C0 + (C1 − C0) ×

n−1∑
j=0

G(j)(L)

∫ k

0
H(K − x)dH(j)(x)

+ μx ×
n−1∑
j=1

G(j)(L)H(j)(k)

)
(12)

/(
n−1∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt

)
.

2.3 Optimization

In the steady-state case, this problem is to find the values of n and k that minimize
the function C(n, k,L) given by equation (12) under the following assumptions:

(a1) r1(t) is a continuous and increasing function of t with r1(t) → ∞ as
t → ∞.

(a2) G(n)(y) and H(n)(w) are PF2 (a Polya frequency function of order 2).

From Lemma 3.7 in Barlow and Proschan (1975), it is known that G(n)(L) (or
H(n)(w)) is decreasing in n for all L > 0. In addition, we can observe that G(n)(L)

(or H(n)(w)) is PF2 if and only if G(n)(L)/G(n−1)(L) (or H(n)(K)/H(n−1)(K))
is decreasing in n for all L (or K) >0 (Gottlieb (1980, p. 749)).

First, we shall minimize C(n, k,L) with respect to k for given n and L. A neces-
sary condition that a finite optimal k (<K) minimizes C(n, k,L) can be obtained
by differentiating C(n, k,L) with respect to k and setting it equal to zero. Hence,
dC(n, k,L)/dk = 0 holds if and only if

U(n, k,L)

= B(n, k,L) ×
n−1∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt

(13)

− (C1 − C0) ×
n−1∑
j=1

G(j)(L)

∫ k

0
H(K − x)dH(j)(x) − μx

×
n−1∑
j=1

G(j)(L)H(j)(k) = C0,

where

B(n, k,L) = [(C1 − C0)H(K − k) + μx] × ∑n−1
j=1 G(j)(L)h(j)(k)∑n−1

j=0 G(j)(L)h(j)(k)
∫ ∞

0 Pj (t) dt
. (14)
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Next, we shall minimize C(n, k,L) with respect to n for given k and L. When
the inequalities C(n + 1, k,L) ≥ C(n, k,L) and C(n, k,L) < C(n − 1, k,L) are
both satisfied for some finite n, there exist an optimal n∗. In the derivation of
these inequalities, we can see that the inequalities C(n+ 1, k,L) ≥ C(n, k,L) and
C(n, k,L) < C(n − 1, k,L) hold if and only if

K(n, k,L) ≥ C0 and K(n − 1, k,L) < C0, (15)

where

K(n, k,L)
(16)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(C1 − C0)MnQn + μxQn

) ×
n−1∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt

− (C1 − C0)

n−1∑
j=1

G(j)(L)

∫ k

0
H(K − x)dH(j)(x)

− μx

n−1∑
j=1

G(j)(L)H(j)(k), n = 1,2,3, . . . ,

0, n = 0,

and

Mn =
∫ k

0 H(K − x)dH(n)(x)

H(n)(k)
,

Qn = 1∫ ∞
0 Pn(t) dt

.

If K(n, k,L) is showed to be an increasing function of n and limn→∞ K(n, k,

L) > C0, then the optimal n∗ is finite and unique for all k > 0. In order to show
that K(n, k,L) is an increasing function of n, the following Lemma 1 is needed.

Lemma 1. Under assumptions (a1) and (a2), the following results are true:

(1) Mn = ∫ k
0 H(K − x)dH(n)(x)/H(n)(k) is increasing in n.

(2) Qn = 1/
∫ ∞

0 Pn(t) dt is increasing in n.

The detailed proof of Lemma 1 is presented in Appendix. We want to find the
optimal pair n∗ and k∗ that minimize C(n, k,L) in (12) under certain sufficient
conditions.

Theorem 1. Under assumption (a1) and (a2), if r1(t) is an increasing and contin-
uous function of t , there exists finite k∗ and n∗ that satisfy (13) and (16), respec-
tively.
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Proof. First, it is evident that U(n,0,L) = limk→0 U(n, k,L) = 0 < C0 and if

U(n,K,L) = lim
k→K

U(n, k,L)

= (C1 − C0 + μx) × ∑n−1
j=1 G(j)(L)h(j)(K)∑n−1

j=0 G(j)(L)h(j)(K)
∫ ∞

0 Pj (t) dt

×
n−1∑
j=0

G(j)(L)H(j)(K)

∫ ∞
0

Pj (t) dt

− (C1 − C0 + μx) ×
n−1∑
j=1

G(j)(L)H(j)(K) + (C1 − C0)

×
n−1∑
j=1

G(j)(L)H(j+1)(K) > C0.

Hence, we can know that then there exists at least one finite optimal k∗ such that
U(n, k,L) = C0, that is, k∗ satisfies (13). Furthermore, if r1(t) is strictly increas-
ing and

d

dT
U(T ,n,L) =

(
d

dk
B(n, k,L)

)
×

n−1∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt > 0.

Then U(n, k,L) is also a strictly increasing function of t , and hence, the optimal
k∗ is unique.

In equation (16), we know that U(0, k,L) = 0 < C0. If limn→∞ K(n, k,L) >

C0, we can observe that there is a finite n such that equation (16) is satisfied. Using
the equation (16) and Lemma 1, we have

K(n + 1, k,L) − K(n, k,L)

= (
(C1 − C0)Mn+1Qn+1 + μxQn+1

) ×
n∑

j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt

− (C1 − C0)

n∑
j=1

G(j)(L)

∫ k

0
H(K − x)dH(j)(x)

− μx

n∑
j=1

G(j)(L)H(j)(k)

− (
(C1 − C0)MnQn + μxQn

) ×
n−1∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt
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+ (C1 − C0)

n−1∑
j=1

G(j)(L)

∫ k

0
H(K − x)dH(j)(x)

+ μx

n−1∑
j=1

G(j)(L)H(j)(k)

= [
(C1 − C0)(Mn+1Qn+1 − MnQn) + μx(Qn+1 − Qn)

]
×

n∑
j=0

G(j)(L)H(j)(k)

∫ ∞
0

Pj (t) dt.

From Lemma 1, we can know that (Mn+1Qn+1 − MnQn) > 0 and Qn+1 −
Qn > 0 for any n, furthermore,

∑n
j=0 G(j)(L)H(j)(k)

∫ ∞
0 Pj (t) dt > 0, then

K(n + 1, k,L) − K(n, k,L) > 0 for all n. Thus, K(n, k,L) is increasing in n

and there exists a finite and unique n∗ that satisfies (16) for all k < K .
According the above proof, we can know that there exists finite n∗ and k∗ that

satisfy the equations (13) and (16), respectively. �

3 Special cases

The replacement policy (n, k,L) for a given L can be considered as a generaliza-
tion of several past models, we have the following special cases:

Case 1. If L → ∞ and n → ∞, it means that the two-unit system is replaced
preventively at time T or on unit 2 failure. Thus, C(n, k,L) will be reduced to be

C(∞, k,∞) =
(
C0 + (C1 − C0) ×

∞∑
j=0

∫ k

0
H(K − x)dH(j)(x)

+ (C1 − C0 + μx) ×
∞∑

j=1

H(j)(k)

)

/( ∞∑
j=0

H(j)(k)

∫ ∞
0

Pj (t) dt
)

which is same as equation (15) in Satow and Osaki (2003).
Case 2. If L → ∞ and k → K , it means that the two-unit system is replaced

preventively at the nth unit 1 failure or at total failure. So, C(n, k,L) will be re-
duced to be

C(n,K,∞) = C1 − (C1 − C0)H
(n)(K) + μx × ∑n−1

j=1 H(j)(K)∑n−1
j=0 H(j)(K)

∫ ∞
0 Pj (t) dt

,

this is same as equation (12) in Nakagawa and Murthy (1993).
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4 Numerical example

In this example, we consider the intensity rate r1(t) of unit 1 failures with shape
parameter β and scale parameter λ is given by

r1(t) = λtβ−1, λ > 0, β > 1.

The mean-value function is R1(t) = ∫ t
0 λuβ−1 du = λtβ/β . We assume that the

shape parameter is set at β = 2 and then, r1(t) = λt is an increasing function of t .
If λ > 1 indicates that the failure rate of unit 1 increases with time, in other words,
unit 1 has the characteristic of “aging process” and unit 1 is more likely to fail as
time goes on.

Suppose that the random repair cost Xi for unit 1 failure has an exponential
distribution G(x) = P(Xi ≤ x) and finite mean μx . The random damage Di from
consecutive unit 1 failures has an exponential distribution Hi(d) = P(Di ≤ d) and
finite mean μd .

We use an algorithm, which is proposed in Chang et al. (2011), to compute the
optimal replacement policy (n∗, k∗) under a pre-determined cumulative repair cost
limit L as follows.

Step 1. Set n = 1 and C(0, k0,L) = ∞.
Step 2. Compute

∑n−1
j=0 G(j)(L)H(j)(k)

∫ ∞
0 Pj (t) dt ,

∑n−1
j=1 G(j)(L)

∫ k
0 H(K−

x)dH(j)(x),
∑n−1

j=1 G(j)(L)H(j)(k) and
[(C1−C0)H(K−k)+μx ]×∑n−1

j=1 G(j)(L)h(j)(k)∑n−1
j=0 G(j)(L)h(j)(k)

∫ ∞
0 Pj (t) dt

as

defined by equations (13) and (14).
Step 3. Find the solutions k∗

n−1, k∗
n , and k∗

n+1 which satisfy equation (13)
(U(n − 1, kn−1,L) = C0, U(n, kn,L) = C0 and U(n + 1, kn+1,L) = C0, respec-
tively).

Step 4. Compute C(n − 1, kn−1,L), C(n, kn,L) and C(n + 1, kn+1,L) as de-
fined by equation (12).

Step 5. If C(n + 1, kn+1,L) ≥ C(n, kn,L) and C(n, kn, n,L) < C(n − 1,

kn−1,L), then n∗ = n, k∗ = k, C(n∗, k∗,L) = C(n, kn,L) and go to output. Oth-
erwise, make n = n + 1 and go to Step 2.

Output: k∗, n∗ and C(n∗, k∗,L).
Stop.

The optimal replacement policy turns out to be (n∗, k∗). It is noted that the fore-
going algorithm does not ensure a global minimum. Nevertheless, the algorithm
can considerably reduce the search of the optimal values.

For the purpose of easy computation, we consider the following cases:

Case 1: C1 = 2000, L = 500, μx = 50, μd = 40, and λ = 1.2 are fixed values,
K and C0 are varied.

Case 2: C0 = 1000,C1 = 2000,K = 800,μd = 40 and L = 600 are fixed val-
ues, λ and μx are varied.
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Case 3: C0 = 1000,C1 = 2000,K = 800,L = 600, and λ = 1.2 are fixed val-
ues, L/μx and K/μd are varied.

The results of three cases are provided in Tables 1 to 3, respectively. From Ta-
bles 1 and 3, we have the following conclusions:

(1) When the failure level K increases, we can know that the optimal n∗ and
k∗ increases but the minimum C(n∗, k∗,L) decreases in Table 1. The greater K

implies that it allows more damages from unit 1 failures before system failure, then

Table 1 Optimal n∗, k∗ and C(n∗, k∗,L) at different combination of K and C0

K

600 800 1000

C0 n∗ k∗ C(n∗, k∗,L) n∗ k∗ C(n∗, k∗,L) n∗ k∗ C(n∗, k∗,L)

600 25 471.4 106.1924067 29 666.9 100.2498.96 30 865.9 98.95249052
800 27 489.4 125.5786142 30 685.4 118.4514539 32 884.5 116.9329121

1000 27 505.7 144.5921616 30 702.1 136.5711198 32 901.3 134.8999192
1200 27 521.8 163.2300430 30 718.6 154.6101424 32 918.0 152.8540613

Table 2 Optimal n∗, k∗ and C(n∗, k∗,L) at different combination of λ and μx

λ

1.2 1.6 2.0

μx n∗ k∗ C(n∗, k∗,L) n∗ k∗ C(n∗, k∗,L) n∗ k∗ C(n∗, k∗,L)

40 33 691.2 105.9452085 33 691.9 107.0501990 33 692.4 107.8173807
60 30 701.6 145.5288997 30 702.6 147.5896420 30 703.3 149.0296303
80 26 710.1 185.7779308 26 711.4 189.1442743 27 712.3 191.5123869

100 26 716.6 224.2445394 26 718.2 229.1672234 26 719.2 232.6525186

Table 3 Optimal n∗, k∗ and C(n∗, k∗,L) at different combination of L/μx and K/μd

L/μx

8 10 12

K/μd n∗ k∗ C(n∗, k∗,L) n∗ k∗ C(n∗, k∗,L) n∗ k∗ C(n∗, k∗,L)

16 27 688.4 157.3016842 27 680.7 141.9676416 30 675.4 132.8197040
20 29 709.5 153.9901750 30 702.1 136.5711198 32 696.6 125.3011255
25 29 727.3 153.2032777 30 721.1 134.8999192 33 716.0 122.4285467
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the optimal n∗ and k∗ increase, i.e., the mean time to replacement will increase and
the minimum C(n∗, k∗,L) will be smaller.

(2) When preventive replacement cost C0 increases, we can know that the op-
timal n∗, k∗ and the minimum C(n∗, k∗,L) increase synchronously in Table 1.
The greater C0 implies that the gap between C0 and C1 is smaller, and then the
possibility of preventive replacement will be reduced, then the optimal n∗ and k∗
will increase. And, the minimum C(n∗, k∗,L) will increase because preventive
replacement cost C0 increases.

(3) If the parameter λ increases from 1.2 to 2.0, in other words, the rate of
recurrence of unit 1 failures is larger, hence unit 1 failures happen quickly. When
the parameter λ increases, we can know that the optimal k∗ and the minimum
C(n∗, k∗,L) increase synchronously in Table 2, but the variation of the optimal n∗
has not an significiant change. The variation of the optimal k∗ and the minimum
C(n∗, k∗,L) is relatively smaller than the increment of λ.

(4) When the mean cost of minimal repair μx increases, we can know that the
optimal k∗ and the minimum C(n∗, k∗,L) increase synchronously in Table 2, but
the optimal n∗ decreases. The greater μx implies that the possibility of preventive
replacement at the nth unit 1 failure increases, then the optimal n∗ decreases. As
the optimal n∗ decreases, the mean time to replacement is shorter, and then the
minimum C(n∗, k∗,L) increases.

(5) When the ratio L/μx increases, that is, it allows more minimal repairs for
unit 1 failures, we can see that the optimal n∗ increases, but the optimal k∗ and
the minimum C(n∗, k∗,L) decrease synchronously in Table 3. The greater L/μx

implies that there are more unit 1 failures to occur, that is, the total damage of
unit 2 will be accumulated rapidly, so the optimal k∗ will be shorter to prevent
total failure of the system.

(6) When the ratio K/μd increases, that is, it allows more damages from unit 1
failures before system failure, we can see that the optimal n∗ and k∗ increase syn-
chronously, but the minimum C(n∗, k∗,L) decreases in Table 3. The greater K/μd

implies that the system can allow more damages from unit 1 failures before system
failure, so the optimal k∗ can be larger.

(7) In Table 3, we can see that the variations in the optimal k∗ and the minimum
C(n∗, k∗,L) with regard to K/μd are significantly larger than that of L/ux . So, the
ratio K/μd is more important than the ratio L/μx when we are going to determine
the optimal replacement policy.

Although these conclusions are intuitive, our model provides a quantitative tool
for practitioners in designing the most cost effective PM policies. This PM policy
proposed is not too complicated so that the implementation is still feasible in a
real life situation. However, before using this approach, we must estimate the pa-
rameters like λ,μx and μd . But, the parameters like λ,μx and μd are unknown
in practice, so collecting the relevant data (for example, the failure times, the re-
pair costs and the amount of damages due to unit 1) to the parameters λ,μx and
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μd are necessary. These parameters can be estimated using the general statistical
inference procedure.

5 Conclusions

In this paper, an optimal bivariate PM policy with cumulative repair-cost limit for
a two-unit system under a shock damage interaction between units was presented
and studied. The long-term expected cost per unit time was developed, incorpo-
rating costs related to replacement and repair. We have shown the existence and
uniqueness of the optimal PM policy that minimizes the long-term expected cost
per unit time. The optimal PM schedule n∗ and k∗ can be determined by the nu-
merical search. Furthermore, we can find that the ratio K/μd is more important for
determining the optimal PM policy. This model provided a more general frame-
work for analyzing the maintenance policies for a two-unit system subject to shock
damage interactions. These results and methods would be useful practically for the
maintenance of general systems by suitable modification and extension.

However, some future directions for this research can be considered. First, the
intensity rate of unit 1 failure may be permitted to depend on the number of failures
or its age, which will be more general than an increasing intensity rate function.
This research introduces a PM model for a two-unit system with shock damage
interactions between units. In real situations, the multi-unit systems having more
applicable cases can be another future research.

Appendix: Proof of Lemma 1

(i) First, we want to show that Mn = ∫ k
0 H(K − x)dH(n)(x)/H(n)(k) is in-

creasing in n. Let

Mn =
∫ k

0 H(K − x)dH(n)(x)

H(n)(k)
= 1 −

∫ k
0 H(K − x)dH(n)(x)

H(n)(k)
(A.1)

= 1 − H(n+1)(k)

H (n)(k)
.

From assumptions (a1) and (a2), we can know that H(n)(k)/H(n−1)(k) is de-

creasing in n for all k > 0, because H(n)(k) is PF2. Thus, Mn = 1 − H(n+1)(k)

H(n)(k)
is

increasing in n.
(ii) From Nakagawa and Kowada (1983), we know that if r1(t) is (strictly)

increasing, then
∫ T

0 Pn(t) dt is (strictly) decreasing in n, and then, Qn = 1/∫ ∞
0 Pn(t) dt is increasing in n.
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