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Abstract. The limiting tail behaviour of distributions is known to follow one
of three possible limiting distributions, depending on the domain of attraction
of the observational model under suitable regularity conditions. This work
proposes a new approach for identification and analysis of the shape parame-
ter of the GPD as a mixture distribution over the three possible regimes. This
estimation is based on evaluation of posterior probabilities for each regime.
The model-based approach uses a mixture at the observational level where
a Generalized Pareto distribution (GPD) is assumed above the threshold, and
mixture of Gammas distributions is used under a threshold. The threshold is
also estimated. Simulation exercises were conducted to evaluate the accuracy
of the model for various parameter settings and sample sizes, specifically in
the estimation of high quantiles. They show an improved performance over
existing approaches. The paper also compares inferences based on Bayesian
regime choice against Bayesian averaging over the regimes. Results of envi-
ronmental applications show the correctly identifying the GPD regime plays
a vital role in these studies.

1 Introduction

Natural disasters have become an issue of increasing concern worldwide. Accord-
ing to Parmesan, Root and Willing (2000), changes in extremes of temperature are
more responsible for impacts in nature than change in mean temperature. Sang and
Gelfand (2009) says that trends in climate extremes are more important than trends
in the mean climate.

Given the importance of extreme values in the aforementioned situations, Ex-
treme Value Theory (EVT) has proved vital for the prediction of these rare but high
destructive events. Through EVT, one can formulate a specific model to estimate
rare events and their odds by generalized extreme value distribution (GEV), when
analyzing maxima of data blocks, or by generalized Pareto distribution (GPD),
when analyzing excesses above a large threshold.

Pickands (1975) proved that if X is a random variable whose distribution func-
tion F , with endpoint xF , is in the domain of attraction of a GEV distribution, then
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as u → xF , the conditional distribution function F(x|u) = P(X ≤ u+x|X > u) is
the distribution function of a generalized Pareto distribution (GPD), whose density
is provided below:

g(x|�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

σ

(
1 + ξ

(x − u)

σ

)−(1+ξ)/ξ

, if ξ �= 0,

1

σ
exp

{−(x − u)/σ
}
, if ξ = 0,

(1.1)

where x − u > 0 for ξ ≥ 0 and 0 ≤ x − u < −σ/ξ for ξ < 0. Thus, the GPD is
always bounded from below by u, is bounded from above by u − σ/ξ if ξ < 0 and
unbounded from above if ξ ≥ 0. These different possibilities for the tail shape are
named Gumbel (ξ = 0), Fréchet (ξ > 0) and Weibull (ξ < 0).

Smith (1984) proposed parameter estimation in this family of models via max-
imum likelihood. He showed that the maximum likelihood estimators do not obey
the regularity conditions if ξ ∈ (−1,−0.5), and do not exist if ξ < −1. Cooley
et al. (2012) revises some estimation methods, such as using a Poisson process for
the occurrence of events.

Extreme value theory is particularly useful for determination of larger quantiles,
that is, q-values satisfying P(X > xp) = 1 − p for large values of p. The quantile
xq can be found by inversion of the distribution function of the GPD distribution
function p = G(q|ξ, σ,u): ∈ [0,1]. This gives

xp =
⎧⎪⎨
⎪⎩

u + ((1 − p)−ξ − 1)σ

ξ
, if ξ �= 0,

u − σ log(1 − p), if ξ = 0.

(1.2)

Most other exceedance data analyses make no assumptions at all about the dis-
tribution of values below the threshold, or make estimation empirically of the pro-
portion of data higher a threshold, considering the threshold fixed. Various models
have been proposed for the distribution of values below the threshold. Scarrott
and Macdonald (2012) makes an encompassing review of possible approaches, in-
cluding Frigessi, Haug and Rue (2002), Behrens, Gamerman and Lopes (2004),
Tancredi, Anderson and O’Hagan (2006), Macdonald et al. (2011). In this work,
we used the approach of Nascimento, Gamerman and Lopes (2012), that used a
mixture of Gammas below the threshold. They showed the importance of this
model, having more precise prediction of data in nonexceedance part, and good
results in estimation of the threshold.

The sign of the GPD shape is also important in identifying the support of the
underlying process. Usual approaches for studying the shape parameter either as-
sume knowledge of the limiting regime or assume the shape to vary continuously
over its possible values. One of the main difficulties there is to testing the hypoth-
esis whether ξ is significantly different from zero. The most works related with
GPD estimation does not consider the part of Gumbel, even so the estimation of ξ

is very close to 0.
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In this study, identification of the Gumbel tail behavior is explicitly considered,
since in many of the applications cited above this seems to take place. Our ap-
proach allows for evaluation of the probabilities of the three limiting regimes,
afforded by a mixed distribution for the shape parameter ξ . Stephenson and
Tawn (2004) provided a similar approach in the study threshold exceedances via
the GEV distribution. They only considered the possibilities ξ = 0 and ξ �= 0,
the priors for (ξ, σ ) follow Coles and Tawn (1996) and the prior probabilities
of the regimes are fixed. Our approach allows for different specification for each
of the possible 3 regimes.

Section 2 introduces the observational model, which is based on the Nascimento,
Gamerman and Lopes (2012) model that combines a finite mixture of Gammas be-
low the threshold, and a GPD above. A Bayesian approach will be presented for pa-
rameter estimation of all model parameters. A distinctive feature is the mixed prior
distribution for ξ , with a positive probability of this parameter being equal to 0.
Section 3 shows simulation results from the proposed model, which illustrate the
efficiency of the estimation method and the accuracy in estimating extreme quan-
tiles. The method is compared with the method proposed in Nascimento, Gamer-
man and Lopes (2012), that consider an absolutely continuous distribution for ξ .
Section 4 illustrates our procedure applied to two applications: rainfall data from
Portugal and river flow in Puerto Rico. Results show that in some applications,
there is a high probability of the tail shape ξ parameter equalling zero. Section 5
summarizes the main conclusions of this work.

2 The model

In this section, we propose a new approach to analyse the observational model
of Nascimento, Gamerman and Lopes (2012), that takes into account the com-
plete range of the data, bearing in mind the need to estimate extreme quantiles.
Nascimento, Gamerman and Lopes (2012) showed that a mixture of Gamma dis-
tributions provides an efficient procedure for non-parametric density estimation
below a threshold for positive data. Their mixture model with Gamma´s and GPD
(MGPD, in short) has density given by

f (x|θ,p,�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k∑
j=1

pjfG(x|μj , νj ), if x ≤ u,

[
1 −

k∑
j=1

pjFG(u|μj , νj )

]
g(x|�), if x > u,

(2.1)

where fG and FG are respectively, the density and cumulative functions of a
Gamma distributions, and g is the GPD density with parameters � = (ξ, σ,u). An
alternative for data over the entire line would be a Gaussian mixture as in Diebolt
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and Robert (1994), Richardson and Green (1997), Frühwirth-Schnatter (2001) and
Macdonald et al. (2011).

One could argue that the threshold u has no physical meaning, being a mere
artifact of an approach based on an asymptotic result. While we essentially agree
with this view, it is also important for users to learn about where the GPD regime
can be assumed to hold. In fact, this is a key point in applying the GPD and users
will benefit from the estimation results about the threshold. Of course, if one is
uncomfortable with this parametrisation, one can always integrate the threshold
out and proceed from there. The reader is referred to the comprehensive review of
Scarrott and Macdonald (2012) for further discussion.

Parameters are estimated under the Bayesian paradigm, assigning a probability
distribution for the parametric vector that combines information from the dataset
and the prior distribution via Bayes theorem. The novelty is in the characterization
of the shape parameter ξ , and this will be made explicit through its prior distribu-
tion. We are specifically concerned here in the determination of the limiting regime
to bring the data belong. So, the prior distribution for ξ will explicitly consider this
distinction among the regimes through a mixed distribution.

A difficulty arises from the discreteness of the Gumbel regime, associated with
ξ = 0. If a continuous distribution is assumed for ξ , testing for Gumbel could be
performed by either checking if the posterior credibility interval of high level (say
0.95) includes 0 or by evaluating the probability of ξ > 0, where π denotes the
posterior distribution. A large value for this probability would indicate that the
Gumbel regime is not supported by the data. The latter procedure is successfully
used for testing by West and Harrison (1997) in the context of state-space models.

2.1 Prior distribution

The parametric vector for density (2.1) is composed of three groups of parameters:
(a) the parameter θ = (μ,η) of the k-mixture of Gamma densities fG(x|μj ,ηj )

with means μj and shape parameters ηj , j = 1, . . . , k, where μ = (μ1, . . . ,μk)

and η = (η1, . . . , ηk); (b) the mixture weights p = (p1, . . . , pk); (c) the GPD pa-
rameter � = (ξ, σ,u).

The prior distribution for θ is the same as the one used in Nascimento, Gamer-
man and Lopes (2012), based on work of Wiper, Rios Insua and Ruggeri (2001).
An important question about these parameters is their identification. Diebolt and
Robert (1994) and Frühwirth-Schnatter (2001) showed that the identifiability of
the parameters of the finite mixture of densities is only possible if the parametric
space is restricted to C(μ) = {μ|0 < μ1 < μ2 < · · · < μk}. Therefore, the prior for
μ is taken in the form

p(μ1, . . . ,μk) = K

k∏
i=1

fIG(μi |ai/bi, bi)I (μ1 < · · · < μk),
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where K−1 = ∫
C(μ)

∏k
i=1 p(μi) d(μ1, . . . ,μk) and fIG is the inverse Gamma den-

sity with parameters defined as in the corresponding Gamma.
The prior for shape parameters η is taken as a product of Gamma distributions

with ηj ∼ G(cj/dj , cj ), for some positive constants cj and dj , for j = 1, . . . , k.
The prior for the weights is taken as p ∼ Dk(γ1, . . . , γk), that represents the Dirich-
let distribution with density proportional to

∏k
i=1 p

γi

i .
The prior distribution for the threshold u is assumed to be N(μu,σ

2
u ), as sug-

gested by Behrens, Gamerman and Lopes (2004). This distribution is truncated at
the lower data limit but usual choices of hyperparameters make the effect of this
truncation negligible. Nascimento, Gamerman and Lopes (2012) describes how to
specify this value even with scarce prior information. The prior distribution for
the scale parameter σ is given in the usual non-informative format for the scale
parameter p(σ) ∝ σ−1, σ > 0. This can be shown to be the marginal specification
for the Jeffreys prior proposed for GPD model in Castellanos and Cabras (2007)
for (σ, ξ).

A mixed distribution is proposed for ξ , considering separately the probabilities
associated with the three possible limiting tail behaviors: Gumbel (ξ = 0), Fréchet
(ξ > 0) and Weibull (ξ < 0).

When ξ is positive or negative, continuous densities are assumed for these re-
gions. This mixed setting can be rephrased with the insertion of latent quantities
(Zξ ,Qξ ). The three-dimensional quantity Zξ = (Z+

ξ ,Z0
ξ ,Z

−
ξ ), where Z+

ξ + Z0
ξ +

Z−
ξ = 1, indicates the signal of ξ , where Z+

ξ = 1 indicates that ξ > 0, Z0
ξ = 1 in-

dicates that ξ = 0 and Z−
ξ = 1 indicates that ξ < 0. The importance of Zξ is that

the probability of the data tail behavior can be obtained through its distribution.
The quantity Qξ shows the probability of ξ be positive, negative or null, given by
Qξ = (q+

ξ , q0
ξ , q−

ξ ), where q+
ξ + q0

ξ + q−
ξ = 1. The joint prior of these parameters

is given by

p(ξ,Zξ ,Qξ ) = p(ξ |Zξ ,Qξ )p(Zξ |Qξ)p(Qξ )

= p(ξ |Zξ)p(Zξ |Qξ)p(Qξ ),

where conditional independence between ξ and Qξ given Zξ is assumed. The
distribution of ξ |Zξ is assigned in the following specification

ξ |Z+
ξ = 1 ∼ Gamma(aξ , bξ ), ξ |Z0

ξ = 1 ∼ δξ=0 and
(2.2)

ξ |Z−
ξ = 1 ∼ U(−0.5,0),

where the parameters aξ , bξ may be chosen so that the prior distribution of the
positive part is vague, δ is the Dirac function.

Thus, the range of negative values of ξ is limited to [−0.5,0], as situations
where ξ < −0.5 are extremely rare in environmental data (Coles and Tawn, 1996).
A number of other options were considered for the prior of ξ |Z−

ξ = 1. We also
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used a negative Gamma prior with same parameters as those used for ξ |Z+
ξ = 1,

and the results were the same. Inference does not also seem to be affected by the
specific choices of hyperparameters made above. Simulations with other values
of aξ and bξ returned virtually unchanged results. Similarly, a shifted Beta prior
over [−0.5,0] were considered for the negative range of ξ and results remained
unchanged.

The conditional distribution Zξ |Qξ is assigned a multinomial prior with param-
eters (q+

ξ , q0
ξ , q−

ξ )

p(Zξ |Qξ) ∝ (
q+
ξ

)z+
ξ
(
q0
ξ

)z0
ξ
(
q−
ξ

)z−
ξ

for
(
z+
ξ , z0

ξ , z
−
ξ

) = (0,0,1), (0,1,0), (1,0,0),

and 0, otherwise. Finally, Qξ was given a Dirichlet distribution with parameter
αξ = (α+, α0, α−). Then,

p(Qξ) ∝ (
q+
ξ

)α+(
q0
ξ

)α0
(
q−
ξ

)α−

for
(
q+
ξ , q0

ξ , q−
ξ

) ∈ {
(x, y, z)|x, y, z ≥ 0, x + y + z = 1

}
,

and 0, otherwise. In the lack of prior information, the vector αξ may be chosen to
provide the desired amount of information on Qξ . We opted to assign a distribution
to Qξ (unlike Stephenson and Tawn, 2004, who assign prior values directly to Qξ )
in order to introduce as little prior information as possible and to let the data govern
inference. Note that and the choice of this value affects the posterior probabilities,
as shown in their Table 1.

The above prior distribution can be marginalized with respect to Zξ and Qξ by
analytic integration, leading to a mixture distribution for ξ containing continuous
and discrete components. The above formulation is retained because it simplifies
computations and also highlights the different regimes of tail behavior by read-
ily providing their posterior probabilities. These features are explored in the next
sections.

Table 1 Posterior probability of Zξ in different values α0, with α+ = α− = 0.1

α0 = 0.01 α0 = 0.1 α0 = 1

ξ Z+ Z0 Z− Z+ Z0 Z− Z+ Z0 Z−

0 0.176 0.487 0.337 0.139 0.492 0.369 0.135 0.514 0.350
0.1 0.976 0.019 0.005 0.982 0.015 0.003 0.975 0.020 0.005

Zv indicates the value of P(zv
ξ = 1), for v = +,0,−.
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2.2 Posterior distribution

The posterior distribution function to the parameters is obtained by combining the
observations of a sample x = (x1, . . . , xn) of size n from the model (2.1), with the
prior distribution of the parametric vector described in Section 2.1. The posterior
density is given by

π(θ,p,�,Zξ ,Qξ |x)

∝ ∏
i:xi≤u

(
k∑

j=1

pjfG(xi |μj ,ηj )

) ∏
i:xi≥u

[
1 −

k∑
j=1

pjFG(u|μj ,ηj )

]
g(xi |�)

(2.3)

×
k∏

j=1

[
p

γj

j η
cj−1
j exp

(
−dj

ηj

)
μ

aj−1
j exp

(
− bj

μj

)]
1

2
exp

(
−(u − μu)

2σu

)2

× 1

σ
p(ξ |Zξ)

(
q+
ξ

)z+
ξ +α+(

q0
ξ

)z0
ξ+α0

(
q−
ξ

)z−
ξ +α−,

where the first line above comes from the likelihood, the second line refers to the
prior density of parameters, where p(ξ |Zξ) is the density of (2.2), with a mixed
distribution.

Inference cannot be performed analytically and approximating MCMC meth-
ods are used (Gamerman and Lopes, 2006). Convergence was assessed by running
four parallel chains with different starting values. Chain convergence was visu-
ally assessed through the trace plots of the chains. Parameters were separated into
blocks and each block was updated according to a Metropolis rule, since most do
not have full conditional densities in recognizable form. Among the exception, one
can cite Qξ , whose full conditional distribution is known.

Stephenson and Tawn (2004) use reversible jump MCMC to moves from space
where ξ = 0 to a space where ξ �= 0. Here, we make the movements of each regime
using the posterior probabilities of Zξ , and when z0

ξ = 1, we consider a degenerate

posteriori of ξ (P (ξ = 0|z0
ξ = 1) = 1). Basically the value of z

(t)
ξ determines the

regime at time t . Each of the 3 possible regimes is proposed with equal proba-
bilities (1/3). Posterior distribution of ξ has discrete full conditional component
when Zξ = 0, but has continuous full conditional when Zξ is +1 or −1. The
Associate Editor noted that the “terms in Metropolis acceptance rate are densi-
ties with respect to an unusual dominating measure—not the usual Lebesgue, but
Lebesgue modified by adding a point mass on ξ = 0. Then the rate is well-defined
(as a Radon–Nikodym derivative) because these point masses cancel out”. This is
a similar point to that made on page 317 of Hastie and Green (2012). The MCMC
sampler deals correctly with this issue. Metropolis–Hastings acceptance probabil-
ities determines the regime at time t + 1. Details of the sampling algorithm are
provided in the Appendix and are similar to the application of the algorithm seen
in Nascimento, Gamerman and Lopes (2012). Proposal variances were tuned with
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a variation of the method proposed by Roberts and Rosenthal (2009), with vari-
ances smaller than their target value since our blocks are multidimensional.

2.3 Bayesian inference for higher quantiles

The model proposed here can be seen as mixture of different models M1, M2 and
M3 characterized by the 3 possible limiting tail regimes. This distinction is entirely
based on a single parameter ξ with all other parameters remaining the same under
the possible sub-models. There are a few possibilities for making inference about
quantities of interest in such cases. Of particular interest in EVT is estimation of
higher quantiles, extrapolated beyond the data points, that are merely functions of
model parameters.

Consider estimating a quantity of interest δ, for example, a large quantile. The
posterior probability of each model is given by

π(Ml|y) = π(y|Ml)π(Ml)∑3
j=1 π(y|Mj)π(Mj)

for l = 1,2,3, (2.4)

and the posterior distribution of δ is given by

p(δ|y) =
3∑

j=1

p(δ|y,Mj )π(Mj |y).

Following Draper (1995), inference should be based on this distribution, ob-
tained as a weighted average of all possible models, hence the name Bayesian
model averaging (BMA). An alternative route is provided by Bayesian model
choice (BMC) where one of the models (say s) is chosen according to some cri-
teria and inference about δ is based on the conditional posterior p(δ|y,Ms). The
most obvious criteria is to choose the most probable model. An interesting discus-
sion on the relative merits of BMA and BMC at a less formal level can be seen in
Wasserman (2000) and references therein. The next sections present and compare
both approaches to inference about higher quantiles.

3 Simulation

Simulation studies were performed in different settings of parameter values to bet-
ter understand features of parameter estimation, and to verify that the proposed
methodology provides accurate and credible results. Particular attention is given
to the variation of the shape parameter ξ , which is the main target of this study.

The simulation exercise was performed with samples of sizes 1000, 2500 and
10,000. Data below the tail were simulated by a mixture of two Gamma distribu-
tions with μ = (2,8), η = (4,8), and weight vector p = (2/3,1/3). The threshold
was fixed at the 80% quantile of the generating mixture of Gamma density and the
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scale parameters was σ = 2. The shape parameter ξ was fixed with the following
values ξ = (−0.4,−0.1,0,0.1,0.4,1).

The prior distributions for mixture parameters were μj ∼ IG(2.1,5.5) and
ηj ∼ G(6,0.5), for j = 1, . . . , k, and π(p) ∼ Dk(1, . . . ,1). These distributions
have mean around the actual parameter value but large variance to represent lack
of information: the prior variance for the μj ’s is 250 and the prior variance for ηj ’s
is 24. The prior distributions for the GPD parameters were specified as follows:
Jeffreys prior for σ , with p(σ) ∝ 1/σ ; the prior distribution described in (2.2) was
assigned to ξ , with aξ = bξ = 0.1; and Qξ was assigned a vague Dirichlet prior
with α+ = α0 = α− = 0.1, in a case where initially all regimes has the same prob-
ability. Table 1 suggests that the posterior is not sensitive to the value of prior pa-
rameters α0 chosen to reflect vague prior information. The threshold was assigned
as a normal prior distribution (Nascimento, Gamerman and Lopes, 2012).

Inference was performed via the MCMC algorithm. 50,000 iterations were used
as burn-in and the next 30,000 iterations were kept for inference for simulations
with a sample size n = 1000. 25,000 iterations to burn-in and 15,000 iterations
were retained for inference were run for the simulations with n = 2500, while for
simulations with sample size n = 10,000, 15,000 iterations to burn-in and 10,000
iterations were retained for inference. Inference was made after thinning at every
20 iterations in all simulations. The code was developed in OxMetrics5 (Doornik,
1996) in a HP Compaq 6005 Pro MT PC and 2Gb RAM. The processing time
allowed for 35 (or 4) iterations per second when n = 1000 (or n = 10,000).

Figure 1 shows the posterior histogram distribution of tail parameters in simu-
lations with ξ = 0.4. The distributions of the parameters are centered around the
true values of the parameters used in the simulation. Precision was as high as in the
model by Nascimento, Gamerman and Lopes (2012), with threshold prior variance
of σ 2

u = 10. Note that the entire posterior distribution of ξ is contained in the pos-
itive semi-line, because the sampled values of Zξ in all interactions of the chain
were z+

ξ = 1. Estimation is more precise for larger data sizes, as expected.
Figure 2 shows the estimation of ξ , when the true value is equal to 0.1, in three

different configurations of sample size. The parameter estimates are less accurate
now as this value is close to 0, and there is a substantial probability that ξ = 0,
specially for smaller sample sizes. The estimation becomes more accurate and the
posterior distribution is located around the true value as sample size increases, with
a few (when n = 2500) or rare (when n = 10,000) samples associated with the
estimated value ξ = 0. Figure 2 also shows the estimation of ξ , when the true value
is equal to 0, in three different configurations of sample size. Virtually the same
comments are valid here with replacement of ξ = 0.1 by ξ = 0. It is interesting
to notice the similarities between the two patterns despite the different expected
behavior between ξ = 0.1 and ξ = 0.

Table 2 shows the posterior probability of parameter Zξ in all simulations. The
tail behavior is correctly identified with posterior probability 1 for situations where
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Figure 1 Posterior histogram for the GPD parameters with ξ = 0.4: top row—n = 1000; bottom
row—n = 10,000. Vertical lines: true value of parameter.

ξ is away from 0 (ξ = (−0.4,0.4,1)), even for smaller sample sizes. The poste-
rior P(Z0

ξ = 1|x) in the case ξ = 0 is high for the three sample sizes, and seem to
converge to 1 when the sample size increases. Care is required to study the situa-
tions where ξ is close to 0 (ξ = (−0.1,0.1)). In those cases when the sample size
is smaller, the estimation is less accurate. Thus, there is greater uncertainty about
the sign of the parameter ξ , and in the simulations with n = 1000, the probability
P(Z0

ξ = 1|x) of incorrect detection was high. This does not occur for samples with
n = 10,000, which provide more accuracy in detection of the sign of ξ , giving a
probability of correct sign very close to 1.

3.1 Simulations from mixture of Gammas

Another simulation exercise is to consider the case where there is no threshold
in the true model. In this case, the same simulations were performed as in the
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Figure 2 Posterior histogram for ξ in simulations: top row—ξ = 0.1; bottom row—ξ = 0. Vertical
lines: probability lumps at ξ = 0. Their respective posterior probabilities have the scales shown on
the right y-axis and are given in Table 2.

Table 2 Posterior probability of Zξ in all simulations

n = 1000 n = 2500 n = 10,000

ξ Z+ Z0 Z− Z+ Z0 Z− Z+ Z0 Z−

−0.4 0 0 1 0 0 1 0 0 1
−0.1 0.02 0.45 0.52 0.03 0.66 0.31 0 0 1

0 0.07 0.75 0.18 0.22 0.75 0.03 0.02 0.95 0.03
0.1 0.22 0.72 0.06 0.16 0.82 0.02 1 0 0
0.4 1 0 0 1 0 0 1 0 0
1 1 0 0 1 0 0 1 0 0

Zv indicates the value of P(zv
ξ = 1), for v = +,0,−.
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Table 3 Fit measures and ξ estimation for simulations of MG model

n = 1000 n = 2500 n = 10,000

Model MG Prop. MG Prop. MG Prop.

DIC 4399 4445 11,074 11,070 44,432 44,422
BIC 4450 4464 11,131 11,153 44,497 44,519
ξ̂ −0.136 (0.079) −0.097 (0.057) −0.163 (0.018)
P(Zξ = z−

ξ ) 0.88 0.88 1

MG is the mixture of Gammas model. Prop. is the model proposed in this work. ξ̂ is the posterior
mean of ξ , with posterior standard deviations in brackets.

previous section, but allowing the original dataset to be drawn from mixture of
Gamma distributions. The purpose of this section is to check what happens when
we try to estimate the threshold in this situation.

In the first exercise, the same threshold prior was retained, with σ 2
u = 10. The

posterior mean of the threshold approached the maximum value of the observa-
tions, giving all the weight of the estimation for the Mixture of Gammas.

In a second exercise, the variance for the threshold was reduced to σ 2
u = 1, re-

flecting a situation where almost all information about this threshold is already
provided by the prior distribution. Table 3 shows the fit measures BIC (Schwarz,
1978) and DIC (Spiegelhalter et al., 2002) of for the estimation exercise. Results
show that for n small, the MG model outperformed our proposal model as ex-
pected. However, as n gets larger, our MGPD model provides comparable results.
Table 3 shows also the results of the posterior mean of ξ , and the probability of
regime with ξ < 0. We can observe that when n increases, the tail distribution of
Mixture of Gammas converges to the Weibull regime (ξ < 0). These results in-
dicate that our MGPD model is a robust alternative for estimation, particularly if
tail behavior is relevant. So, they can be safely used even the data is known to be
drawn from an alternative model, specially for large datasets.

3.2 Extreme quantiles

A important evaluation criterion in the estimation of extreme values is the anal-
ysis of high quantiles of the distribution. These will also be compared here. Fig-
ure 3 illustrates the estimation of the posterior distribution of extreme quantiles xp ,
given in (1.2) in two different simulations. High quantiles are well estimated in
the proposed model even in the cases where the model mistakenly indicates with
high probability the incorrect tail behavior. So imprecise regime identification for
smaller sample sizes does not seem to affect estimation of high quantiles.

Table 4 shows the estimation of extreme quantiles xp in two different configu-
rations (ξ = 0 and ξ = 0.1). They constitute the cases where the proposed mixed
model with a lump probability at ξ = 0 may contrast more from the MGPD model
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Figure 3 p-quantiles of simulations: left—ξ = 0.1, n = 1,000 and p = 0.999; right—ξ = 0,
n = 10,000 and p = 0.9999. Vertical lines: true values of quantiles.

Table 4 Extreme quantile xp of simulations

ξ = 0 ξ = 0.1

p T E M P T E M P

n = 1000
0.95 9.85 10.01 9.90 9.82 10.06 10.41 10.25 10.36
0.99 13.06 13.04 12.85 12.92 14.09 14.03 14.44 14.26
0.999 17.67 16.93 16.65 17.30 21.10 20.37 21.91 20.27
0.9999 22.28 N/A 20.14 21.65 29.93 N/A 32.04 27.13

n = 10,000
0.95 9.85 9.80 9.91 9.87 10.06 9.93 9.96 9.96
0.99 13.06 12.77 13.11 13.12 14.09 13.86 13.83 13.84
0.999 17.67 17.00 17.54 17.78 21.10 20.86 20.47 20.56
0.9999 22.28 22.42 21.79 22.43 29.93 27.22 28.70 28.99

T—True, E—Empirical, M—MGPD, P—Proposed.

with continuous prior for ξ . The quantiles of the mixed model were compared with
empirical quantiles, and with the quantiles obtained from the continuous MGPD
model of Nascimento, Gamerman and Lopes (2012). The comparison favors the
empirical quantiles for n = 1000 with the continuous MGPD providing better es-
timates for ξ = 0.1 and the mixed MGPD providing better estimates when ξ = 0.
The difference between the 2 models becomes smaller for larger sample sizes with
a slight superiority for the quantiles proposed here.

Figure 4 shows point estimates of returns with our approach and MGPD. The
results are very similar but our approach performs uniformly better when ξ = 0.1
and better for early periods when ξ = 0.
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Figure 4 Estimated returns (in log scale) for simulations with n = 1000. Left: ξ = 0. Right: ξ = 0.1.
Solid line: true; grey line: MGPD; Dashed line: our approach.

3.3 BMA × BMC: empirical results

The estimation approaches described in Section 2.3 are evaluated empirically in
this section. Table 2 shows that the posterior probability for the correct regime
is basically 1 for all situations considered, when ξ is away from 0. This means
that inference via BMA or BMC will return basically the same values, since
π(Ml|y) ≈ 1, for some l and BMA and BMC will coincide. Thus, a more detailed
study is only required when the two approaches may differ, that is, when ξ is close
or equal to 0.

Table 5 presents a comparison of the 2 approaches for the estimation of high
quantiles. The closer the proportion of runs that includes the true value to the nom-
inal credibility level, the better is the estimation procedure. The table shows a clear
superiority of the BMA in all scenarios considered. In some situations, the BMC
has a poor result, with true coverage well below the nominal level. The largest ad-
vantage is observed when ξ = 0. Note that differences between the two approaches
get smaller as sample sizes increase, as expected. Based on these findings, it seems
more reasonable to use BMA to report the results of the applications of the next
section.
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Table 5 Summary of comparison BMA × BMC: proportion of simulations (based on 100 indepen-
dent runs) where the true value of the quantile xp was included in the 95% credibility interval

ξ = −0.1 ξ = 0 ξ = 0.1

p BMA BMC BMA BMC BMA BMC

n = 1000
0.95 0.95 0.95 0.99 0.98 0.99 0.98
0.99 0.98 0.98 0.94 0.93 0.94 0.94
0.999 0.92 0.88 0.95 0.81 0.89 0.83
0.9999 0.92 0.86 0.95 0.71 0.89 0.82
Total 0.94 0.92 0.96 0.86 0.93 0.89

n = 2500
0.95 0.96 0.96 0.98 0.98 0.95 0.95
0.99 0.95 0.94 0.97 0.96 0.91 0.91
0.999 0.97 0.97 0.94 0.80 0.82 0.80
0.9999 0.97 0.99 0.96 0.67 0.67 0.66
Total 0.96 0.96 0.96 0.85 0.86 0.85

BMA—Bayesian Model Averaging, BMC—Bayesian Model Choice.

4 Applications

This section shows results of real data analyses of extreme data from Environmen-
tal Sciences. The same datasets used in the applications of Nascimento, Gamer-
man and Lopes (2012) were considered for comparative purposes. It consists of
datasets where the shape parameter ξ was around 0 in continuous analysis using
the MGPD model, and thus there was a reasonable degree of uncertainty about the
tail behavior. One would expect that the proposed model would assign substantial
probability to the Gumbel regime in these cases.

The first analysis is based on a dataset consisting of the measurement of the
levels of flow of two rivers located in Northeast Puerto Rico: Fajardo and Espirito
Santo. The data were recorded daily from April 1967 to September 2002, and are
freely available from waterdata.usgs.gov. A total of 864 fortnightly maxima was
analyzed. The second analysis is based on datasets consisting of the measurement
of the amount of rain in two monitoring stations in Portugal: Barcelos in the North,
and Grandola in the South. The data were recorded daily from 1931 to 2008, and
are freely available from www.snirh.pt. The complete dataset has a large number of
missing values, leading to a total of 918 monthly maxima data points for Barcelos
station and 925 monthly maxima data points for Grandola station.

Figure 5 illustrates the estimation of ξ in the four applications considered. The
posterior distribution of ξ is significantly positive (around 0.5) only in the Fajardo
river application. In all other applications, more than half of the distribution is
concentrated in the Gumbel regime (ξ = 0). More specifically, for the Espirito

http://waterdata.usgs.gov
http://www.snirh.pt
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Figure 5 Posterior distribution for ξ in the applications. The respective posterior mass probabili-
ties at 0 have the scales shown on the right y-axis.

Figure 6 Posterior histogram of high quantiles of applications. Left: Espirito Santo river, quantile
99.9%. Right: Barcelos station, quantile 99.99%. Vertical lines: full—posterior mean; dashed—max-
imum observed data.

Santo river, P(z0
ξ = 1|x) = 0.61, while for the Barcelos station P(z0

ξ = 1|x) = 0.69

and for the Grandola station P(z0
ξ = 1|x) = 0.70. One can conjecture that similar

results, with large posterior probabilities associated with values of ξ around 0,
would be obtained in some of the other environmental applications of Tancredi,
Anderson and O’Hagan (2006), Castellanos and Cabras (2007), Macdonald et al.
(2011) and Mahmoudi (2011), for example.

Figure 6 shows estimation of extreme quantiles for the two applications. For the
Espirito Santo river, the 99.9% quantile is estimated close to the data maximum.
Taking the posterior mean as an estimator of the quantile, it is expected that a river
flow greater than or equal to 2531 ft3/s occurs once every 40 years. This is close



556 F. Ferraz do Nascimento, D. Gamerman and R. Davis

to the estimated value of 2726 ft3/s obtained for the MGPD model. The 99.99%
quantile for Barcelos station goes beyond the observed maximum, well above the
observations. This means that one day with rain levels greater than or equal to
180 mm will occur on average once every 820 years.

Table 6 shows the fit measures for the four data sets. In two applications, the pro-
posed mixed model provides a lower BIC, compared with the continuous MGPD
model, whereas lower DIC values are obtained for the continuous MGPD model.
In the other two applications, the BIC and DIC values are lower for the MGPD
model. The difference is relatively small in both cases, indicating that the estima-
tion by both methods give similar results. This is particularly true for the central
part of the data, modelled in the same way by the MGPD and by our proposed
model, which contain large percentage of the observations, resulting in a much
greater weight in the calculation of the fit measures than the tail.

Table 7 shows the posterior mean of extreme quantiles xp for the applications,
comparing the MGPD and the proposed model. The 0.95 and 0.99 quantiles of
both models are close. There is greater difficulty in estimation of more extreme
quantiles, because these quantiles are already extrapolating beyond the observed
data. In these situations, the difference between the models increases. Based on
simulation results, which showed that very high quantiles for the proposed model
are more efficiently estimated by the proposed model than by the MGPD when
ξ = 0, while the two models are equivalent around ξ = 0, we can safely make in-

Table 6 Fit measures for the applications

Espirito Santo Fajardo Barcelos Grandola

Model DIC BIC DIC BIC DIC BIC DIC BIC

Prop. 11,268 11,335 11,265 11,344 7640 7716 4318 4395
MGPD 11,255 11,329 11,264 11,380 7612 7709 4304 4397

Prop.—Proposed mixed model, MGPD—continuous MGPD model.

Table 7 Extreme quantile xp of applications

Espirito Santo (ft3/s) Fajardo (ft3/s) Barcelos (mm) Grandola (mm)

p MGPD Prop. MGPD Prop. MGPD Prop. MGPD Prop.

0.95 813 818 858 857 77.5 75.5 53.9 51.1
0.99 1450 1444 1836 2002 105.4 103.1 75.2 71.7
0.999 2726 2531 4706 8181 139.9 142.9 94.8 103.2
0.9999 4734 4292 11,631 23,387 176.1 185.3 110.4 139.7

Prop.—Proposed model, MGPD—MGPD model.
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Figure 7 Expected return levels for the applications. Top: Espirito Santo river flow. Bottom: rainfall
at Barcelos station. Solid line: posterior mean; dashed lines: 95% credibility limits.

ferences about rare events with the quantiles proposed in this paper. The quantiles
in the table respectively represent the probability of an event greater than or equal
to the estimated every 10 months, 4 years, 40 years and 400 years for applications
in rivers and twice of these values respectively for the applications of the rainfalls.
For example, a river flow greater than or equal to 857 ft3/s in Fajardo river will oc-
cur on average once every 10 months, and the level of rainfall at Grandola station
will be greater than or equal to 51.1 mm on average once every 20 months, based
on the estimation of the quantile 0.95 using the proposed model.

Figure 7 presents estimated return levels for Espirito Santo river flow and rain-
fall at Barcelos station. Useful summaries of return levels can be obtained from
this figure. These plots indicate that the expected Espirito Santo river flow is ex-
pected to surpass 1000 ft3/s and 1500 ft3/s every 37 and 100 fortnightly periods on
average, respectively. The respective expected return levels of a 80 mm or 100 mm
rainfall at Barcelos station are 23 or 80 months on average.
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5 Conclusions

This paper presented a new approach to estimate extreme events, using the GPD
distribution for the exceedances, where the distribution of the shape parameter
ξ has a mixed nature, assigning probabilities to the 3 different extreme regimes.
These probabilities are estimated using a Bayesian framework.

The only differences were observed in situations where the simulated value of
ξ is close to 0 and the sample size is small, where there was greater uncertainty on
the parameter, and where a high probability of ξ = 0 was obtained. These problems
however occur for many of the other approaches and we conjecture they will occur
for all approaches unless very informative prior distributions are used. Extreme
quantile and fit measures showed the advantage of the proposed model, specifically
with respect to the BIC, and when the quantiles are very high.

These findings emphasize the importance of the models proposed here where
special attention is given to the ξ = 0 regime, usually discarded or overlooked in
other formulations. This work can serve as a basis for all other models derived from
the use of the GPD distribution and exceedances for the study of extreme value.
These include regression models (Nascimento, Gamerman and Lopes, 2011) and
time series models (Huerta and Sansó, 2007).

Appendix: MCMC algorithm

Sampling was made in blocks with Metropolis–Hastings proposals for each block
due to unrecognizable form of the respective full conditionals. Each GPD parame-
ter was sampled separately, the pair (μ,η) for each mixture component was sam-
pled in a block and the weights p were sampled in a single block.

Details of the MCMC sampling scheme are given below. At iteration s, param-
eters are updated as follows:

Sampling Qξ : it can be seen from the posterior distribution in (2.3) that the full
conditional distribution of Qξ is a Dirichlet distribution and it will be sampled in
step s + 1 from

Q
(s+1)
ξ |� ∼ D3

(
z+(s)

ξ + α+, z0(s)

ξ + α0, z
−(s)

ξ + α−
)
.

Sampling ξ,Zξ : Although it is possible, obtain Zξ marginally using the prior
distribution, given by

(
q+
ξ fG(ξ |aξ , bξ )

)z+
ξ
(
q0
ξ I(ξ=0)

)z0
ξ
(
q−
ξ fU (ξ | − 0.5,0)

)z−
ξ ,

the parameters ξ and Zξ must be sampled jointly because these parameters are
highly correlated and it is also simpler to sample them jointly. The proposed
kernel is q(ξ,Zξ ) = q(ξ |Zξ)q(Zξ ). The proposal for q(Zξ ) is a multinomial
M3(1,1/3,1/3,1/3) and provides a value Z∗

ξ = (z+∗
ξ , z0∗

ξ , z−∗
ξ ). If z+∗

ξ = 1, ξ∗
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is obtained from a Gamma distribution G(aξ , bξ ). If z0∗
ξ = 1, then ξ∗ = 0 with

probability 1. If z−∗
ξ = 1, then ξ∗ is generated from the Uniform U(−δ,0), where

δ = σ (s)/(M − u(s)) and M = max(x1, . . . , xn). So, ξ (s+1) = ξ∗ and Z
(s+1)
ξ = Z∗

ξ

are jointly accepted with probability αξ , where

αξ = min
{

1,
π(�∗|x)q(ξ (s),Z

(s)
ξ )

π(�̃|x)q(ξ∗,Z∗
ξ )

}
,

where �∗ = (μ(s), η(s),p(s), u(s), σ (s), ξ∗,Z∗
ξ ,Q

(s+1)
ξ ) and �̃ = (μ(s), η(s),p(s),

u(s), σ (s), ξ (s),Z
(s)
ξ ,Q

(s+1)
ξ ).

Sampling σ,u,μ,η,p: The algorithm to sample these parameters is similar to
the algorithm for the MGPD model of Nascimento, Gamerman and Lopes (2012).
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