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Differentiable approximation of diffusion equations driven
by α-stable Lévy noise

H. Al-Talibi
Linnæus University

Abstract. Edward Nelson derived Brownian motion from the Ornstein–
Uhlenbeck theory by a scaling limit. Previously we extended the scaling limit
to an Ornstein–Uhlenbeck process driven by an α-stable Lévy process. In this
paper we extend the scaling result to α-stable Lévy processes in the presence
of a nonlinear drift, an external field of force in physical terms.

1 Introduction

In Nelson (1967) Brownian motion is constructed as a scaling limit of a one pa-
rameter family of Ornstein–Uhlenbeck position processes. In a further step he ex-
tended the scaling limit by adding a nonlinear drift to the evolution equation. The
result goes back to a work by Chandrasekhar. In contrast to Einstein’s model, the
noise is introduced into a second order ordinary differential equation, a Newton
equation in physical terms. In this way the approximating processes are differen-
tiable almost surely. For this and further references see Nelson (1967). Processes of
this type are solutions of stochastically perturbed Newton equations which where
studied, for instance, in Albeverio et al. (1992, 1999) and Markus and Weerasinghe
(1993). Stated in geometrical terms, the Ornstein–Uhlenbeck process is defined in
the tangent bundle of the real line. The driving Brownian motion of the system is
defined in the tangent space. The scaling procedure recovers the driving process in
the limit and the drift term which physically represents the external field of force;
see Nelson (1967). We point out that Nelson does not assign the notation B to
standard Brownian motion.

In this paper we do not assume the drift to be of the form K(x) = β ∇�
�

where
the complex valued function � solves a Schrödinger equation, which motivated
E. Nelson to set up his beautiful kinetic theory of Brownian motion. It reveals a
new physical interpretation of the stochastically perturbed Newton equations in
terms of stochastic forward and backward velocities. A consistent probabilistic
variational approach of dynamics is developed in Zambrini (1986). An extension
to bridges of Lévy processes with jumps may be found in Privault and Zambrini
(2004).

In our previous work (Al-Talibi et al., 2009) we have extended the result
in Nelson (1967), Chapters 9 and 10, concerning the Ornstein–Uhlenbeck process
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to α-stable Lévy processes using time change. In this paper we treat the scaling
limit for Newton equations perturbed by an α-stable Lévy process as in Al-Talibi
et al. (2009) with an additional nonlinear drift term (βK), β > 0, satisfying a uni-
form Lipschitz condition. Applying integration by parts, we separate the terms to
be found in the limit. The remaining terms are shown to converge to zero by using
time change. In the course of this argument it becomes important to have a uni-
form estimate on the supremum of the position process. This can be achieved by
introducing an adequate finite partition of the compact interval for which the limit
holds.

In physical models x(t) describes the position of a particle at time t > 0. It is as-
sumed that the velocity dx

dt
= v exists and satisfies the so-called Langevin equation

with an additional nonlinear drift. Mathematically, the two ordinary differential
equations combine to the initial value problem:

dxt = vt dt,
(1.1)

dvt = −βvt dt + βK(xt ) dt + β dXt,

with initial value (x0, v0) = (x(0), v(0)), where β > 0, K is a nonlinear drift which
satisfies sufficient conditions to guarantee existence and uniqueness of solutions
[see, for example, Applebaum (2004) and Kolokoltsov et al. (2002)] and Xt is an
α-stable Lévy process.

For simplicity reason we treat the case where K in (1.1) is independent of time.

2 The position process

We study the diffusion equation (1.1). Sufficient conditions for the existence of a
unique solution may be found in Applebaum (2004), Ikeda and Watanabe (1989)
and Kolokoltsov et al. (2002). In this case the solution of this stochastic differential
equation can be represented as given in the proposition below.

Proposition 2.1. Let a be a constant. Furthermore, let X be a Lévy process on R.
Let f : [0,∞) → R be a continuous function such that

∫ t
0 ea(t−s)f (s) ds is finite

for almost all t . Then the global solution of the stochastic differential equation

dζt = aζt dt + f (t) dt + dXt , t ≥ 0,

where initial value ζ(0) = ζ0 exists and is of the form

ζt = eat ζ0 +
∫ t

0
ea(t−s)f (s) ds +

∫ t

0
ea(t−s) dXs.

Proof. Due to the assumption on f ,

ζt := eat

[
ζ0 +

∫ t

0
e−asf (s) ds +

∫ t

0
e−as dXs

]
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exists almost everywhere for arbitrary constant ζ0. Equivalently,
∫ t

0
e−asf (s) ds +

∫ t

0
e−as dXs = e−at ζt − ζ0.

Moreover, calculating the total derivative of ζt and reinserting ζt reveals the given
stochastic differential equations, that is, ζt solves the given differential equa-
tions. �

Let us focus on the position process {xt }t≥0 in (1.1). Due to Proposition 2.1, it
has the form

xt = x0 +
∫ t

0
e−βsv0 ds + β

∫ t

0

∫ s

0
e−β(s−u)K(xu) duds

(2.1)

+
∫ t

0

∫ s

0
βe−β(s−u) dXu ds.

There is a natural extension of these results to Rd , d > 1. We observe that the
third term in (2.1), a double integral, includes a stochastic integral with respect to
a Lévy process.

Our notation coincides with the one in Applebaum (2004) from where we also
recall that for arbitrary Lévy processes Y the characteristic function is of the form
φYt (u) = etη(u) for each u ∈ R, t ≥ 0, where η is the Lévy-symbol of Y(1). For
centered α-stable Lévy processes, the Lévy-symbol at t = 1 for α �= 1 is given by

η(u) = −σα|u|α, (2.2a)

and for α = 1 is given by

η1(u) = −σ |u|. (2.2b)

Proposition 2.2. Assume that Y is an α-stable Lévy process, 0 < α < 2, and g is
a continuous function on the interval [s, t] ⊂ T � R. Let η be the Lévy symbol of
Y1 and ξt be the Lévy symbol of ψ(t) = ∫ t

s g(r) dYr . Then we have

ξt (u) =
∫ t

s
η(ug(r)) dr.

The proof is a direct consequence of Theorem 1 in Lukacs (1969).
For g(�) = eβ(�−t), � ≥ 0, and the α-stable process X in (2.1) the symbol of

Zt = ∫ t
s eβ(r−t) dXr is

ξ(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

s
eαβ(r−t) dr · η(u) for 0 < α < 2, α �= 1,∫ t

s
eαβ(r−t) dr · η1(u) for α = 1
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with η, η1 as in (2.2a) and (2.2b), respectively, and 0 ≤ s ≤ t . We are thus led to
introduce the time change τ−1(t) where

τ(t) =
∫ t

0
e−αβt eαβu du = 1

αβ
(1 − e−αβt ), (2.3)

which is actually deterministic. This means that Xt and Zτ−1(t) have the same
distribution.

3 The main result

Let us now formulate the main result of this paper. Let

dyt = K(yt ) dt + dXt, (3.1)

with y(0) = x0 and assume that K : R → R satisfies a global Lipschitz condition.

Theorem 3.1. Let t1 < t2, t1, t2 ∈ T , T a compact subset of [0,∞), and β > 0.
Then the limit

lim
β→∞xt = yt

exists almost surely for any t ∈ T , where {xt }t≥0 is the position process (2.1) and
{yt }t≥0 is the solution of (3.1) with {Xt }t≥0 as its driving α-stable Lévy noise.

Proof. The statement of the theorem means that the position process xt in (2.1)
converges in almost sure sense to yt on any compact subset of the time axis [0,∞),
as β tends to infinity. The increment of the process (2.1), according to Proposi-
tion 2.1, is given by

xt2 − xt1 =
∫ t2

t1

e−βsv0 ds + β

∫ t2

t1

∫ s

0
e−β(s−u)K(xu) duds

(3.2)

+
∫ t2

t1

∫ s

0
e−β(s−u)β dXu ds.

From now on let us denote t = t2 − t1. The first integral of (3.2) tends to zero as β

tends to infinity; see Al-Talibi et al. (2009). Indeed, we demonstrate the technique
which uses time change on the third part of (3.2). But first we split the double
integral into two integrals. We have

β

[∫ t2

t1

∫ s

t1

e−βseβu dXu ds +
∫ t2

t1

∫ t1

0
e−βseβu dXu ds

]
. (3.3)

Let us look to the first part of (3.3) which reveals the increment of the driving Lévy
process. We use partial integration to have

β

∫ t2

t1

∫ s

t1

e−βseβu dXu ds = −e−βt2

∫ t2

t1

eβu dXu + (Xt2 − Xt1). (3.4)
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By introducing a time change in analogy to (2.3) on the right-hand side of (3.4),
we obtain

−e−βt2

∫ t2

t1

eβu dXu = Z(1/αβ)(1−e−αβt ) = 1
α
√

β
Z(1/α)(1−e−αβt ),

where we used the scaling property of α-stable Lévy processes, that is, Zγτ
=

γ αZτ with γ > 0.
We see that e−αβt tends to zero when β tends to infinity and simultaneously

Z(1/α)(1−e−αβt ) converges to Z(1/α).

In analogy to the argument above, the product 1
α
√

β
Z(1/α)(1−e−αβt ) tends to zero

almost surely for β tending to infinity. The double integral of the second part
of (3.3) tends to zero as β tends to infinity. For more details we refer to Al-Talibi
et al. (2009). We now turn to the term in (3.2) which has not been dealt with
in Al-Talibi et al. (2009); the second term is given by

I2 :=
∫ t2

t1

βe−βs
∫ s

0
eβuK(xu) duds.

Using integration by parts, we obtain

I2 =
[
−e−βs

∫ s

0
eβuK(xu) du

]t2

t1

+
∫ t2

t1

K(xs) ds

(3.5)

= −e−βt2

∫ t2

0
eβuK(xu) du + e−βt1

∫ t1

0
eβuK(xu) du +

∫ t2

t1

K(xs) ds.

The last term will appear in the limit where β tends to infinity. In the sequel we
show that other two terms converge to zero in this limit. The first integral of (3.5)
can be estimated by∣∣∣∣

∫ t2

0
e−β(t2−u)K(xu) du

∣∣∣∣ ≤
∫ t2

0
e−β(t2−u)|K(xu) − K(x0)|du

(3.6)

+ K(x0)

∫ t2

0
e−β(t2−u) du.

The last integral of (3.6) is K(x0)(− 1
β

+ 1
β
e−βt2), which tends to zero as β tends to

infinity. Let κ be the Lipschitz constant of K , that is, |K(x1)−K(x2)| ≤ κ|x1 −x2|
for x1, x2 ∈ R. Looking at the first integral in (3.6), we see that it is bounded by∫ t2

0
e−β(t2−u)|K(xu) − K(x0)|du ≤ κ sup

0≤u≤t2

|xu − x0|
∫ t2

0
e−β(t2−u) du

(3.7)
= κ

β
(−1 + e−βt2) sup

0≤u≤t2

|xu − x0|.

As mentioned before, 1
β
(−1 + e−βt2) converges to zero as β tends to infinity,

hence, it suffices that the supremum is uniformly bounded, which is done below.
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For arbitrary t1, t2 ∈ T it might be necessary to introduce a partition of the in-
terval [0, t2]. Therefore, we reconsider (3.2) for increments xt − xt1 , 0 ≤ t1 ≤ t .
The absolute value of this difference may be estimated by using monotonicity of
Lebesgue integrals, triangle inequality, partial integrations and by neglecting neg-
ative terms as follows:

|xt − xt1 | ≤
∫ t

t1

e−βs |v0|ds + β

∫ t

t1

∫ s

0
e−β(s−u)|K(xu)|duds

+ β

∣∣∣∣
∫ t

t1

∫ s

0
e−βseβu dXu ds

∣∣∣∣
=

∫ t

t1

e−βs |v0|ds − e−βt
∫ t

t1

eβu|K(xu)|du + e−βt1

∫ t1

0
e−βu|K(xu)|du

+
∫ t

t1

|K(xs)|ds +
∣∣∣∣−e−βt

∫ t

0
eβu dXu

∣∣∣∣
+

∣∣∣∣e−βt1

∫ t1

0
e−βu dXu

∣∣∣∣ +
∣∣∣∣
∫ t

t1

dXs ds

∣∣∣∣
≤

∫ t

t1

e−βs |v0|ds + e−βt1

∫ t1

0
eβu|K(xu)|du +

∫ t

t1

|K(xs)|ds

+
∣∣∣∣−e−βt

∫ t

0
eβu dXu

∣∣∣∣ +
∣∣∣∣e−βt1

∫ t1

0
eβu dXu

∣∣∣∣ + |(Xt − Xt1)|.
Due to the Lipschitz continuity of K with constant κ , taking suprema on both sides
of the inequality and observing that

∫ s
0 e−β(s−u) du ≤ 1 reveals

sup
t1≤t≤t2

|xt − xt1 | ≤ |v0| + e−βt1κ sup
t1≤u≤t2

|xu − xt1 |
∫ t1

0
eβu du

+ e−βt1

∫ t1

0
eβu|K(xt1)|du + (t − t1)κ sup

t1≤s≤t2

|xs − xt1 |

+ (t − t1)|K(xt1)| + sup
t1≤t≤t2

∣∣∣∣e−βt
∫ t

0
eβu dXu

∣∣∣∣

+
∣∣∣∣e−βt1

∫ t1

0
eβu dXu

∣∣∣∣ + sup
t1≤u≤t2

|(Xu − Xt1)|.

Letting (t − t1)κ ≤ 1
2 and observing that the second and the third integrals vanish

as β tends to infinity, then algebraic calculation yields

sup
t1≤t≤t2

|xt − xt1 | ≤ |v0| + 1

2
sup

t1≤s≤t2

|xs − xt1 | +
1

2κ
|K(xt1)|

+ sup
t1≤t≤t2

∣∣∣∣e−βt
∫ t

0
eβu dXu

∣∣∣∣
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+
∣∣∣∣e−βt1

∫ t1

0
eβu dXu

∣∣∣∣ + sup
t1≤u≤t2

|(Xu − Xt1)|,

1

2
sup

t1≤t≤t2

|xt − xt1 | ≤ |v0| + 1

2κ
|K(xt1)| + sup

t1≤t≤t2

∣∣∣∣e−βt
∫ t

0
eβu dXu

∣∣∣∣

+
∣∣∣∣e−βt1

∫ t1

0
eβu dXu

∣∣∣∣ + sup
t1≤u≤t2

|(Xu − Xt1)|.

Having a continuous function as an integrand and for β tending to infinity,
supt1≤t≤t2

|e−βt
∫ t

0 eβu dXu| and |e−βt1
∫ t1

0 eβu dXu| vanish. Hence, we neglect
these terms in the sequel and find that

sup
t1≤t≤t2

|xt − xt1 | ≤ 2|v0| + c|K(xt1)| + 2 sup
t1≤u≤t2

|Xu − Xt1 |, (3.8)

where c = 1
κ

> 0. The term K(xt1) can be written by introducing a partition of the
time interval [0, t1] as

K(xt1) = |K(xt1) − K(xt ′n)| + K(xt ′n) − · · · + K(x0),

which is finite with (t ′n − t ′n−1)κ ≤ 1
2 . We see that the right-hand side of the in-

equality (3.8) is bounded almost surely. If (t2 − t1)κ > 1
2 , we introduce a finite

partition t1 = τ1 < · · · < τn < τn+1 = t2 of the time interval [t1, t2] such that
(τp+1 − τp)κ ≤ 1

2 , 1 ≤ p ≤ n, and iterate the above. Let

sup
t1≤t≤τn

|xt − xτn |.

For n = 1 we have seen that (3.8) holds. We assume that supt1≤t≤τn
|xt − xτn | is

bounded, then we use the supremum property to show that the supremum of the
increment is bounded for t1 ≤ t ≤ τp+1, τp+1 ≤ t2, namely,

sup
t1≤t≤τp+1

|xt − xt1 | ≤ sup
t1≤t≤τp

|xt − xt1 | + sup
τp≤t≤τp+1

|xt − xτp |,

where the first term of the right-hand side is bounded by assumption and the second
term of the right-hand side is bounded by an analogous argument to the one given
earlier. Inserting (3.8) into (3.7), we obtain

∫ t2

t1

e−β(t2−u)|K(xu) − K(xt1)|du

≤ κ
[
2|v0| + c|K(xt1)| + 2 sup

t1≤u≤t2

|Xu − Xt1 |
][ 1

β
(1 − e−βt2)

]
.

Then, the integral
∫ t2

0 e−β(t2−u)|K(xu) − K(x0)|du vanishes when β tends to in-
finity. Moreover, the second integral in I2 can be estimated in the same manner as
above. This means that the increments related to the position process, that is, the
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terms independent of the drift K , are the sum of the increments of the originally
driving α-stable Lévy process

Xt2 − Xt1,

and three terms which are uniformly bounded by e−tβ for all t1, t2 ∈ T , T a com-
pact subset of [0,∞), and which converge to zero as β tends to infinity. Finally,
the remaining, nonvanishing part of (3.5) is the integral

∫ t2
t1

K(xs) ds as proposed
in the limit of the theorem above. �

Interesting applications of the Nelson-type scaling limit for α-stable Lévy pro-
cesses are to study Lévy processes on manifolds. A generalization of Nelson’s
result on Brownian motion to Banach spaces and Riemannian manifolds is proven
in Dowell (1980).
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